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Abstract

Observations indicate that nearly all galaxies contain supermassive black holes at their centers. When galaxies
merge, their component black holes form SMBH binaries (SMBHBs), which emit low-frequency gravitational
waves (GWs) that can be detected by pulsar timing arrays. We have searched the North American Nanohertz
Observatory for Gravitational Waves 11 yr data set for GWs from individual SMBHBs in circular orbits. As we did
not find strong evidence for GWs in our data, we placed 95% upper limits on the strength of GWs from such
sources. At fgw=8 nHz, we placed a sky-averaged upper limit of h0<7.3(3)×10−15. We also developed a
technique to determine the significance of a particular signal in each pulsar using “dropout” parameters as a way of
identifying spurious signals. From these upper limits, we ruled out SMBHBs emitting GWs with fgw=8 nHz

within 120Mpc for = M109 , and within 5.5 Gpc for = M1010 at our most sensitive sky location. We
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also determined that there are no SMBHBs with > ´ M1.6 109 emitting GWs with fgw=2.8–317.8 nHz in
the Virgo Cluster. Finally, we compared our strain upper limits to simulated populations of SMBHBs, based on
galaxies in the Two Micron All-Sky Survey and merger rates from the Illustris cosmological simulation project,
and found that only 34 out of 75,000 realizations of the local universe contained a detectable source.

Key words: gravitational waves – pulsars: general – quasars: supermassive black holes

1. Introduction

Pulsar timing arrays (PTAs) seek to detect gravitational waves
(GWs) by searching for correlations in the timing observations of
a collection of millisecond pulsars (MSPs). The stability of MSPs
over long timescales (∼decades) makes PTAs ideal detectors for
long-wavelength GWs (see Cordes 2013). Currently, there are
three PTA experiments in operation: the North American
Observatory for Gravitational Waves (NANOGrav; McLaughlin
2013), the European Pulsar Timing Array (EPTA; Desvignes
et al. 2016), and the Parkes Pulsar Timing Array (PPTA;
Hobbs 2013). Together these groups form the International Pulsar
Timing Array (Verbiest et al. 2016). The NANOGrav collabora-
tion has released three data sets based on 5 years of observations
(Demorest et al. 2013; hereafter NG5a), 9 years of observations
(Arzoumanian et al. 2015; hereafter NG9a), and 11 years of
observations (Arzoumanian et al. 2018a; hereafter NG11a).

Potential GW sources in the PTA band include supermassive
black hole binaries (SMBHBs; see Sesana et al. 2004;
Sesana 2013; Burke-Spolaor et al. 2018), primordial GWs
(Grishchuk 2005; Lasky et al. 2016), cosmic strings and
superstrings (Damour & Vilenkin 2001; Ölmez et al. 2010;
Blanco-Pillado et al. 2018), and bubble collisions during
cosmological phase transitions (Caprini et al. 2010). Historically,
analyses have focused on the stochastic gravitational wave
background (GWB) formed by the ensemble of a cosmic
population of SMBHBs, as models predict that this signal is
expected to be detected first (Rosado et al. 2015). In the absence
of a detection, constraints have been placed on the GWB, most
recently with the NANOGrav 11 yr data set (Arzoumanian et al.
2018b, hereafter NG11b). These limits have been used to narrow
the viable parameter space for binary evolution in dynamic
galactic environments (e.g., Chen et al. 2017; Taylor et al. 2017;
Middleton et al. 2018) and make statements about SMBHB
population statistics (e.g., Holgado et al. 2018, Sesana et al. 2018).

PTAs are also sensitive to GWs emitted from nearby
individual SMBHBs with periods on the order of months to
years, total masses of ∼108–1010 M , and orbital separations of

–~ - -10 10 pc3 1 , depending on the total mass of the binary.
SMBHBs that are emitting in the PTA band have nearly-
constant orbital frequencies, hence the GWs from these sources
are referred to as “continuous waves” (CWs). However, we do
account for the evolution of their orbits over the span of our
observations in our analyses. Although there has not yet been a
detection of GWs from individual sources with PTAs, they
have already been used to place limits on the masses of
candidate SMBHBs (e.g., Jenet et al. 2004; Schutz &
Ma 2016). Simulations predict that individual sources will be
observed by PTAs within the next 10–20 yr (Rosado et al.
2015; Mingarelli et al. 2017; Kelley et al. 2018).

In this paper, we present the results of searches for GWs
from individual circular SMBHBs performed on the NANO-
Grav 11 yr data set. This is an extension of Arzoumanian et al.
(2014) (hereafter NG5b), which performed a similar analysis
on the NANOGrav 5 yr data set. Our approach was also
inspired by searches performed by the PPTA and EPTA. The

first all-sky search for GWs from individual SMBHBs was
performed by the PPTA in Yardley et al. (2010), and a later
analysis was published in Zhu et al. (2014). The most recent
limits on GWs from individual SMBHBs comes from the
EPTA (Babak et al. 2016), which performed both Bayesian and
frequentist searches for GWs, and placed upper limits as a
function of GW frequency and sky location.
The paper is organized as follows. In Section 2, we review the

pulsar observations and data reduction techniques used in the
creation of the data sets. In Section 3, we describe the GW signal
model and noise models used in our search pipelines. We also
describe the Bayesian and frequentist methods and software. In
Section 4, we present the results of detection searches. As we did
not find evidence for GWs in the 11 yr data set, we placed upper
limits on the GW strain for fgw=2.8–317.8 nHz. We also
discuss a new analysis technique for identifying spurious signals
in PTA data. In Section 5 we present limits on the distances to
individual SMBHBs, and limits on the chirp masses of potential
SMBHBs in the nearby Virgo Cluster. We also compare our
current sensitivity to simulations of SMBHB populations, and
estimate the expected number of detectable sources. We
conclude in Section 6. Throughout this paper, we use units
where G=c=1.

2. The 11 yr Data Set

We analyzed the NANOGrav 11 yr data set, which was
published in NG11a and consisted of times of arrival (TOAs) for
45 pulsars with observations made between 2004 and 2015. Some
of these data were previously published as the NANOGrav 5 yr
data set in NG5a and the NANOGrav 9 yr data set in NG9a. We
briefly review the observations and data reduction techniques
here; further details can be found in NG11a.
We made observations using two radio telescopes: the 100-

m Robert C.Byrd Green Bank Telescope (GBT) of the Green
Bank Observatory in Green Bank, West Virginia; and the
305-m William E. Gordon Telescope (Arecibo) of Arecibo
Observatory in Arecibo, Puerto Rico. Because Arecibo is more
sensitive than GBT, all pulsars that could be observed from
Arecibo (0° < δ< 39°) were observed with it, while those
outside of Arecibo’s declination range were observed with
GBT. Two pulsars were observed with both telescopes:
PSRJ1713+0747 and PSRB1937+21. We observed most
pulsars once a month. In addition, we started a high-cadence
observing campaign in 2013, in which we made weekly
observations of two pulsars with GBT (PSR J1713+0747 and
PSR J1909−3744) and five pulsars with Arecibo (PSR J00
30+0451, PSR J1640+2224, PSR J1713+0747, PSR J2043
+1711, and PSR J2317+1439). This high-cadence observing
campaign was specifically designed to increase the sensitivity
of our PTA to GWs from individual sources (Burt et al. 2011;
Christy et al. 2014).
In most cases, we observed pulsars at every epoch with two

receivers at different frequencies in order to measure the pulse
dispersion due to the interstellar medium (ISM). At GBT, the
monthly observations used the 820 MHz and 1.4 GHz

2

The Astrophysical Journal, 880:116 (11pp), 2019 August 1 Aggarwal et al.



receivers. The weekly observations used only the 1.4 GHz
receiver, which has a wide enough bandwidth to measure the
dispersion. At Arecibo, four receivers were used for this project
(327 MHz, 430 MHz, 1.4 GHz, and 2.3 GHz); each pulsar was
observed with two different receivers, which were chosen
based on the spectral index and timing characteristics of that
pulsar. Backend instrumentation was upgraded about midway
through our project. Initially, data at Arecibo and GBT were
recorded using the ASP and GASP systems, respectively,
which had bandwidths of 64 MHz. Between 2010 and 2012,
we transitioned to the wideband systems PUPPI and GUPPI,
which had bandwidths up to 800 MHz. Instrumental offsets
between the data acquisition systems at each observatory were
measured with high precision and were removed from the data
to allow for seamless data sets (see NG9a for details).

For each pulsar, the observed TOAs were fit to a timing
model that described the pulsar’s spin period and spin period
derivative, sky location, proper motion, and parallax. The
timing model also included terms describing pulse dispersion
along the line of sight. Additionally, for those pulsars in
binaries the timing model also included five Keplerian
parameters that described the binary orbit, and additional
post-Keplerian parameters that described relativistic binary
effects if they improved the timing fit. In the GW analyses, we
used a linearized timing model centered around the best-fit
parameter values.

3. Data Analysis Methods

PTAs are sensitive to GWs through their effect on the timing
residuals. We can write the residuals for each pulsar δt as

( )d = + + +t M n n s, 1white red

where M is the design matrix, which describes the linearized
timing model, ò is a vector of the timing model parameter
offsets, nwhite is a vector describing white noise, nred is a vector
describing red noise, and s is a vector of the residuals induced
by a GW. In this section, we briefly discuss the signal model,
likelihood, and methods used in our analyses. These are all
similar to those used in NG5b—in the discussion that follows,
we emphasize areas in which this analysis differs from
previous ones.

3.1. Signal and Noise Models

Consider a GW source whose location in equatorial
coordinates is given by decl. δ and R.A. α. It is convenient
to write the sky position in terms of the polar angle θ and
azimuthal angle f, which are related to δ and α by θ=π/
2−δ and f=α. The emitted GWs can be written in terms of
two polarizations:

( ˆ ) ( ˆ ) ( ˆ ) ( ˆ ) ( ˆ ) ( )W = W W + W W+
+

´
´h t e h t e h t, , , , 2ab ab ab

where Ŵ is a unit vector from the GW source to the solar
system barycenter (SSB), h+,× are the polarization amplitudes,
and + ´eab

, are the polarization tensors. The polarization tensors
can be written in the SSB frame as (Wahlquist 1987)

( ˆ ) ˆ ˆ ˆ ˆ ( )W = -+e m m n n , 3ab a b a b

( ˆ ) ˆ ˆ ˆ ˆ ( )W = +´e m n n m , 4ab a b a b

where

ˆ ˆ ˆ ˆ ( )q f q f qW = - - -x y zsin cos sin sin cos , 5

ˆ ˆ ˆ ( )f f= - +m x ysin cos , 6

ˆ ˆ ˆ ˆ ( )q f q f q= - - +n x y zcos cos cos sin sin . 7

The response of a pulsar to the source is described by the
antenna pattern functions F+ and F

×
(Sesana & Vecchio 2010;

Ellis et al. 2012; Taylor et al. 2016),

( ˆ )
( ˆ · ˆ ) ( ˆ · ˆ )

ˆ · ˆ
( )W =

-
+ W

+F
m p n p

p

1

2 1
, 8

2 2

( ˆ )
( ˆ · ˆ )( ˆ · ˆ )

ˆ · ˆ
( )W =

+ W
´F

m p n p

p1
, 9

where p̂ is a unit vector pointing from the Earth to the pulsar.
The effect of a GW on a pulsar’s residuals can be written as

( ˆ ) ( ˆ ) ( ) ( ˆ ) ( ) ( )W = W D + W D+
+

´
´s t F s t F s t, , 10

whereD + ´s , is the difference between the signal induced at the
Earth and at the pulsar (the so-called “Earth term” and “pulsar
term”),

( ) ( ) ( ) ( )D = -+ ´ + ´ + ´s t s t s t , 11p, , ,

where t is the time at which the GW passes the SSB and tp is
the time at which it passes the pulsar. From geometry, we can
relate t and tp by

( ˆ · ˆ ) ( )= - + Wt t L p1 , 12p

where L is the distance to the pulsar.
For a circular binary, at zeroth post-Newtonian (0-PN) order,

+ ´s , is given by (Wahlquist 1987; Corbin & Cornish 2010; Lee
et al. 2011)

( )
( )

[ ( )( )

( ) ] ( )

w
y

y

= - F +

- F

+


s t
d t

t i

t i

sin 2 1 cos cos 2

2 cos 2 cos sin 2 , 13

L

5 3

1 3
2

( )
( )

[ ( )( )

( ) ] ( )

w
y

y

= - F +

+ F

´


s t
d t

t i

t i

sin 2 1 cos sin 2

2 cos 2 cos cos 2 , 14

L

5 3

1 3
2

where i is the inclination angle of the SMBHB, ψ is the GW
polarization angle, dL is the luminosity distance to the source,
and ( ) ( )º + m m m m1 2

3 5
1 2

1 5 is a combination of the
black hole masses m1 and m2, which is called the “chirp mass.”
Note that the variables  and ω are the observed redshifted
values, which are related to the rest-frame values r and ωr

according to

( )=
+




z1
, 15r

( ) ( )w w= + z1 . 16r

Currently PTAs are only sensitive to sources in the local
universe for which (1+ z)≈1.
For a circular binary, the orbital angular frequency is related

to the GW frequency by ω0=πfgw, where ( )w w= t0 0 . For our
search, we defined the reference time t0 as 2015 December 31
(MJD 57387), which corresponded to the last day data were
taken for the 11 yr data set. The orbital phase and frequency of

3

The Astrophysical Journal, 880:116 (11pp), 2019 August 1 Aggarwal et al.



the SMBHB are given by (NG5b)

( ) [ ( ) ] ( )w wF = F + -- - -t t
1

32
, 170

5 3
0
5 3 5 3

( ) ( )⎜ ⎟
⎛

⎝

⎞

⎠
w w w= -

-
t t1

256

5
, 180

5 3
0
8 3

3 8

where Φ0 and ω0 are the initial orbital phase and frequency,
respectively. Unlike in NG5b, we used the full expression for
ω(t) in our signal model rather than treating the GW frequency
at the Earth as a constant, as high-chirp-mass binaries will
evolve significantly over the timescale of our observations.

Our noise model for individual pulsars included both white
noise and red noise. We used the same white noise model
as NG5b, which has three parameters: EFAC, EQUAD, and
ECORR. The EFAC parameter scales the TOA uncertainties,
and the EQUAD parameter adds white noise in quadrature. The
ECORR parameter describes additional white noise added in
quadrature that is correlated within the same observing epoch,
such as pulse jitter (Dolch et al. 2014; Lam et al. 2017). We
used the improved implementation of ECORR described
in NG11b. To model the red noise, we divided the noise
spectrum into 30 bins spaced linearly between f=1/Tobs and
f=30/Tobs, where Tobs is the total observation time for a
particular pulsar,36 and then fit the power spectral density to a
power-law model,
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where fyr≡1/(1 yr), Ared is the amplitude, and γ is the spectral
index. There are many possible sources of red noise in pulsar
timing residuals, including spin noise, variations in pulse
shape, pulsar mode changes, and errors in modeling pulse
dispersion from the ISM (Cordes 2013; Jones et al. 2017; Lam
et al. 2017). We model time variations in the ISM through
DMX parameters, which measure the dispersion at almost
every observing epoch (NG9a, Lam et al. 2016).

3.2. Bayesian Methods and Software

We used Bayesian inference to determine posterior distribu-
tions of GW parameters from our data. The procedure followed
closely that of NG5b, with the addition of the BAYESEPHEM
model for the uncertainty in the SSB introduced in NG11b.
Pulsar timing uses a solar system ephemeris (SSE) to transform
from individual observatories’ reference frames to an inertial
reference frame centered at the SSB. We used DE436 (Folkner
& Park 2016) to perform this transformation, plus the
BAYESEPHEM model. Uncertainty in the SSE has a significant
impact on the computation of GW upper limits from PTA data.
The BAYESEPHEM model mitigates this by marginalizing over
perturbations in the outer planets’ masses and Jupiter’s orbit.
This approach removes systematic uncertainty in the position
of the SSB by introducing statistical uncertainty through the
addition of new parameters. Another approach to differentiat-
ing between GW signals and uncertainty in the SSE, which we
do not explore in this paper, is to exploit the fact that the two

have different spatial correlations (Tiburzi et al. 2016). A
detailed analysis of how errors in the SSE effect PTAs can be
found in Caballero et al. (2018).
We used the same likelihood as in NG5b. We implemented

the likelihood and priors and performed the searches using
NANOGrav’s new software package enterprise.37 We
confirmed the accuracy of this package by also performing
some searches using the software package PAL2,38 which has
been used for previous NANOGrav GW searches. Both
packages used the Markov Chain Monte Carlo (MCMC)

sampler PTMCMCSampler39 to explore the parameter space.
For detection and upper-limit runs, we described the Earth-

term contribution to the GW signal by eight parameters:

{ } ( )l q f y= F i f h, , , , , , , , 200 0 gw 0

where the characteristic strain h0 is related to, fgw, and dL
according to
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We used log-uniform priors on h0 for detection analyses, and a
uniform prior on h0 to compute upper limits on the strain. For
both types of analyses, we searched over [ ]Î - -hlog 18, 1110 0 .
We used isotropic priors on the sky position of the source

(θ, f), source inclination angle i, GW polarization angle ψ, and
GW phase Φ0. We searched over log10 with a uniform prior

( ) [ ] Î Mlog 7, 1010 . For high fgw, we truncated the prior
on log10 to account for the fact that high-chirp-mass systems
will have merged before emitting high-frequency GWs.
Assuming binaries merge when the orbital frequency is equal
to the innermost stable circular orbit frequency, must satisfy
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where q is the mass ratio. For our analyses, we used the chirp-
mass cutoff with q=1. This change to the prior on  only
affected f 191.3 nHzgw .
We performed searches at fixed values of fgw. The minimum

GW frequency was set by the total observation time,
( )= =f 1 11.4 yr 2.8 nHzgw . The maximum GW frequency

was set by the observing cadence. Because of the high-cadence
observing campaign, the 11 yr data set can detect GWs with
frequencies up to 826.7 nHz; however, the data are not very
sensitive at high frequencies. Also, we do not expect to find
any SMBHBs with orbital periods of weeks because high-
chirp-mass systems would have already merged before emitting
at those frequencies, and low-chirp-mass systems would be
evolving through the PTA band very quickly at that point.
Therefore, we only searched for GWs with frequencies up to
317.8 nHz, which corresponded to the high-frequency-cutoff
adopted in NG5b.
The pulsar-term contributions to the GW signal used the

pulsar distances to compute the light-travel-time between when
the GW passed the pulsars and when it passed the SSB (see
Equation (12)). We used a Gaussian prior on the distances with
the measured mean and uncertainty from Verbiest et al. (2012);

36 Van Haasteren & Vallisneri (2015) introduced a better method for choosing
the frequency basis for red noise, which reduces the computational cost.
However, in this work we chose a linear frequency basis to make it easier to
compare these results with the results in NG5b.

37 https://github.com/nanograv/enterprise
38 https://github.com/jellis18/PAL2
39 https://github.com/jellis18/PTMCMCSampler
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for the pulsars not included in that paper, we used a mean of
1 kpc and error of 20%. The use of approximate distances for
some pulsars did not seem to affect our results—we found that
the pulsar distance posteriors were identical to the priors,
indicating that the data are insensitive to the pulsar distances.
Furthermore, we only used approximate pulsar distances for
pulsars that had only been observed for a few years, and
therefore did not contribute significantly to the GW sensitivity.
The phase at the pulsar can be written as

( ) [ ( ) ( ) ]

( )

w wF = F + F + -- - -t t t
1

32
,

23

p p p0
5 3

,0
5 3 5 3

where Φp is the phase difference between the Earth and the
pulsar. The pulsar phase parameters Φp can be computed from
the pulsar distances and chirp mass as

[ ( ) ] ( )w wF = -- - - t
1

32
; 24p p

5 3
0
5 3

,0
5 3

however, in most cases the pulsar distance uncertainties
(ΔL∼ 10–100 pc) are significantly greater than the GW
wavelengths ( –l ~ 0.1 10 pcgw ), so the phase differences
between the Earth terms and pulsar terms are effectively
random. Therefore, following the approach of Corbin &
Cornish (2010), we treated Φp as an independent parameter
with a uniform prior [ ]pF Î 0, 2p .

We fixed the white noise parameters to their best-fit values,
as determined from noise analyses performed on individual
pulsars. In the GW analyses, we simultaneously searched over
the individual pulsars’ red noise using a power-law model with
uniform priors on [ ]Î - -Alog 20, 1110 red and γ ä [0,7]. In
order to burn-in the red noise and BAYESEPHEM parameters
efficiently, we introduced jump proposals that drew proposed
samples from empirical distributions based on the posteriors
from an initial Bayesian analysis with only the pulsars’ red
noise and BAYESEPHEM (i.e., excluding a GW signal). For
more details, see the Appendix.

We computed Bayes factors for the presence of a GW signal
using the Savage–Dickey formula (Dickey 1971),
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where 1 is the model with a GW signal plus individual pulsar
red noise, 0 is the model with only individual pulsar red
noise, ( ∣ )= p h 00 1 is the prior volume at h0=0, and

( ∣ )=  p h 0 ,0 1 is the posterior volume at h0=0. We were
able to use the Savage–Dickey formula because 1 and 0 are
nested models, i.e., 0 is = h: 01 0 . We approximated

( ∣ )=  p h 0 ,0 1 as the fraction of quasi-independent samples
in the lowest-amplitude bin of a histogram of h0. We found the
quasi-independent samples by thinning the chain by the
autocorrelation chain length, which is a measure of how far
apart two samples in the chain must be in order to be
statistically independent. We computed the error in the Bayes
factor as

( )s =

n
, 26

10

where n is the number of samples in the lowest-amplitude bin.

For upper limits, following the approach of NG11b, we
computed the standard error as
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where x=0.95 and Ns is the number of effective samples in
the chain. This definition of σ is the error in the computed 95%
upper limit due to using a finite number of samples. We
estimated the number of effective samples by dividing the total
number of samples by the autocorrelation chain length, which
is a measure of how far apart two samples in the chain must be
in order to be statistically independent.

3.3. p-statistic

As in NG5b, we also performed a frequentist analysis with
the p-statistic, which we computed using the software
package enterprise. The p-statistic is an incoherent
detection statistic that is derived by maximizing the log of
the likelihood ratio (Ellis et al. 2012). Essentially, it is the
weighted sum of the power spectrum of the residuals, summed
over all pulsars. This statistic assumes the SMBHB’s orbital
frequency is not evolving significantly over the timescale of our
observations. In the absence of a signal, 2 p follows a chi-
squared distribution with 2Np degrees of freedom, where Np is
the number of pulsars. The corresponding false-alarm-prob-
ability (FAP) is
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In performing GW searches over our entire frequency range,
we compute the p statistic Nf times, where Nf is the number of
independent frequencies, i.e., the number of frequencies
separated by 1/Tobs=2. 7 nHz. The FAP for the entire search
is

( ) [ ( )] ( )= - - P P1 1 . 29F
T

p F p
N

,0 ,0
f

For the analysis in this paper, Nf=115.

4. Results

In this section we report the results of both detection and
upper limit analyses of the NANOGrav 11 yr data set for GWs
from individual circular SMBHBs. We used the data to place
upper limits as a function of frequency and sky location, and to
compare upper limits from the 11 yr data set to those from the 5
and 9 yr data sets. We also discuss a new Bayesian technique
to determine how much each pulsar in a PTA contributes to
a common signal in order to diagnose spurious signals.
Following the approach of NG11b, our analyses of the 11 yr
data set only used the 34 pulsars that had been observed for at
least three years. Our analyses of the 5 and 9 yr data sets used
the same subset of pulsars that were used in the corresponding
analyses for the GWB (NG5a, Arzoumanian et al. 2016), which
included 17 and 18 pulsars, respectively.

4.1. Detection Analyses

We performed detection searches for GWs from individual
circular SMBHBs on the 11 yr data set. Figure 1 shows the
Bayes factors for each frequency, marginalized over the sky
location. We did not find strong evidence for GWs in the 11 yr
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data set. The largest Bayes factor was at =f 109 nHzgw , for
which ( )= 15 610 . For all other frequencies, the Bayes factors
were between ( )= 0.449 410 and ( )= 1.4 310 , indicating no
evidence of GWs in the data.

We also used the p-statistic to determine the significance of
a GW signal. Figure 2 shows the p-statistic as a function
of fgw, and the corresponding FAP as computed from
Equation (28). There are no frequencies for which the FAP
lies below our detection threshold of 10−4. At the GW
frequency that maximizes p, the total FAP for the search as
computed from Equation (29) is ( ) =P 0.543F

T
p,0 . Thus, we

concluded that the frequentist analyses also found that the 11 yr
data set does not contain significant evidence for GWs.

Although the detection search at =f 109 nHzgw found a
higher Bayes factor than any of the other values of fgw, we
emphasize that the Bayes factor is not high enough to claim a
detection. A Bayes factor of 15 means 15:1 odds for the
presence of a GW signal; similarly, at this frequency the
p-statistic corresponds to ( ) =P 0.235F p,0 , or a signal-to-
noise ratio (S/N) of 1.2. Neither of these metrics supports the
claim that the data show evidence of GWs. Furthermore, as we
discuss in more detail in Section 4.3, we determined that most
of the evidence for this signal was in the residuals of a single
pulsar, J1713+0747, whereas a true GW signal that is this
strong should be seen in many pulsars.

4.2. Upper Limit Analyses

As we did not find strong evidence for GWs from individual
circular SMBHBs in the 11 yr data set, we placed upper limits
on the GW strain. Figure 3 shows the sky-averaged 95% upper
limit on the GW strain amplitude. At the most sensitive
frequency of 8 nHz, we placed a 95% upper limit on the strain
of approximately h0<7.3(3)×10−15. We also show the
strain upper limits from the 5 and 9 yr data sets for comparison.
There was an improvement of about a factor of two between
the 5 yr and 9 yr data sets, and more than a factor of two
between the 9 yr and 11 yr data sets. Our upper limit based on
the 11 yr data set was about 1.4 times lower than that of
h0<10−14 set by the EPTA based on observations of 6 pulsars
observed for up to 17.7 yr (Babak et al. 2016; Desvignes et al.
2016). However, a direct comparison between the EPTA results
and the results in this paper is complicated by the fact that the
analysis in Babak et al. (2016) varied both the white and red

noise, whereas our analysis varied only the red noise and fixed
the white noise. Our upper limit is also about a factor of 2 lower
than that of < ´ -h 1.7 100

14 set by the PPTA using their Data
Release 1 (Manchester et al. 2013; Zhu et al. 2014)
We note that there is an increase in the strain upper limit

from the 9 yr data set at around =f 15 nHz;gw however,
there is not a significant Bayes factor at this frequency
( ( )= 1.4 110 ). Furthermore, this “bump” in the spectrum is
not present in the 11 yr data set. If it were caused by a GW, the
significance should have increased in the 11 yr data set. As
discussed in more detail in Section 4.3, this increase in the
strain upper limit is due to an unmodeled signal in a single
pulsar, PSRJ0613−0200.

Figure 1. Bayes factors for a GW signal from an individual circular SMBHB as
a function of GW frequency in the NANOGrav 11 yr data set. We found no
strong evidence for GWs in our data. The highest Bayes factor was at

=f 109 nHzgw , for which ( )= 15 610 . For all other frequencies searched, the
Bayes factors were close to 1.

Figure 2. p-statistic (top panel) and the corresponding FAP (bottom panel)
for –=f 2.8 317.8 nHzgw . There were no frequencies for which the FAP was
below our detection threshold of 10−4; therefore, we concluded there was no
evidence for GWs.

Figure 3. Sky-averaged 95% upper limit on the GW strain amplitude as a
function of GW frequency from the NANOGrav 5 yr data set (green), 9 yr data
set (orange), and 11 yr data set (blue). These analyses used BAYESEPHEM to
parameterize uncertainty in the SSB. The data were most sensitive
at =f 8 nHzgw , with a strain upper limit of approximately h0<1.51
(7)×10−14 from the 9 yr data set, and ( )< ´ -h 7.3 3 100

15 from the 11 yr
data set.
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In Figure 4, we compare the sky-averaged strain upper limits
computed with and without BAYESEPHEM, which allows for
uncertainties in the SSE. Including BAYESEPHEM in our model
resulted in a lower strain upper limit for <f 4 nHzgw , but did
not affect the strain upper limit at higher frequencies. This was
expected because BAYESEPHEM primarily augments the orbit
of Jupiter, which has an orbital period of 12 yr.

Our sensitivity to individual sources varied significantly with
the angular position of the source due to having a finite number
of pulsars distributed unevenly across the sky. Figure 5 shows
the 95% upper limit on the GW strain for =f 8 nHzgw as a
function of sky position, plotted in equatorial coordinates. The
upper limit varies from h0<2.0(1)×10−15 at the most
sensitive sky location to ( )< ´ -h 1.34 4 100

14 at the least
sensitive sky location.

4.3. “Dropout” Analyses

Our searches of the NANOGrav 9 yr and 11 yr data sets
found two low-S/N signals. In order to identify their sources,
we introduced a new type of analysis that used “dropout”
parameters to determine how much each individual pulsar
contributed to these signals. In a dropout analysis, the model
for a pulsar’s residuals [Equation (1)] is modified so that the
GW signal can be turned on or off in each individual pulsar:

( )d k= + + +t M n n s, 30white red

where κ ä {0, 1}. The GW parameters were held fixed at the
values that maximized the likelihood of a standard GW search,
and dropout parameters ka were introduced into the signal
model, which were drawn from a uniform prior between 0 and
1. These parameters determined whether the signal was turned
on or off in a particular pulsar:
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where kthreshold sets the prior on whether the signal should be
included in a pulsar. For the analyses in this paper, we used
kthreshold=1/2, meaning that the prior assumed it was equally
likely that the GW be turned on or off. At each iteration of the
MCMC, the astrophysical properties of the GW were fixed, and
the only thing that varied was which pulsars’ residuals

contained the GW signal. The posteriors of the dropout
parameters indicated how much support there was for the GW
in each pulsar.
The dropout method tests the robustness of the correlations

in the signal by determining whether evidence for the signal
comes from correlations between multiple pulsars, or if it only
originates from a single pulsar. It is similar to the dropout
technique in neural networks, where units are randomly
dropped during training in order to strengthen the network
(Srivastava et al. 2014). This method is also similar to jackknife
resampling (Efron & Stein 1981); however, in jackknifing,
samples are removed in order to estimate the bias in parameter
estimation, whereas in dropout analyses the parameter values
are held fixed, and the dropout parameters indicate how much
each pulsar is biasing the parameter estimation. An upcoming
paper will further describe and develop this method (S. J.
Vigeland et al. 2019, in preparation)
We performed two dropout analyses. The first was on the

9 yr data set at =f 15 nHzgw . The analysis of the 9 yr data
set found an increase in the 95% strain upper limit at

=f 15 nHzgw compared to the upper limits at neighboring
frequencies. Furthermore, as shown in Figure 6, we found that
the strain upper limit decreased significantly when PSRJ0613
−0200 was removed from the 9 yr data set. However, there was
very little difference in the Bayes factor: ( )= 1.4 110 with
all pulsars, and ( )= 1.11 410 excluding PSRJ0613−0200.
Figure 7 shows the results of a dropout analysis. We fixed the
GW signal parameters to the best-fit values from a detection
analysis including all pulsars, and only allowed the dropout
parameters to vary. We set kthreshold=1/2, so that there was an
equal prior probability of the signal being included or excluded
in the model for each pulsar’s residuals. PSRJ0613−0200 had
the largest Bayes factor while all other pulsars had Bayes
factors of order 1, from which we concluded that the increase in
the strain upper limit at =f 15 nHzgw was caused by an
unmodeled non-GW signal in PSRJ0613−0200. We have
applied advanced noise modeling techniques to this pulsar,
using more complex models for the red noise, and modeling

Figure 4. Sky-averaged 95% upper limit on the GW strain amplitude from a
circular SMBHB as a function of GW frequency, with and without
BAYESEPHEM (solid blue curve and dashed red curve, respectively). At the
lowest frequencies ( f 4 nHzgw ), the analysis with BAYESEPHEM was more
sensitive than the analysis without it, but there was no difference in sensitivity
at higher frequencies.

Figure 5. The 95% upper limit on the GW strain amplitude from a circular
SMBHB with =f 8 nHzgw as a function of sky position from an analysis of
the 11 yr data set, plotted in equatorial coordinates using the Mollweide
projection. We used the DE436 ephemeris model with BAYESEPHEM to model
uncertainty in the SSB. The positions of pulsars in our array are indicated by
stars, and the most sensitive sky location is indicated by a red circle. The 95%
upper limit ranged from 2.0(1)×10−15 at our most sensitive sky location to

( ) ´ -1.34 4 10 14 at our least sensitive sky location.
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time-dependent variations in the dispersion as a Gaussian
process rather than with DMX. These results will be discussed
in an upcoming paper.

We also performed a dropout analysis on the 11 yr data set at
=f 109 nHzgw , for which the detection searches had found

( )= 15 610 . Figure 8 shows the Bayes factors for each
pulsar’s dropout parameter. We found that PSR J1713+0747
had the strongest Bayes factor for including a GW signal at this
frequency, with ( )= 96.2 110 , indicating that most of the
evidence for this signal comes from the residuals of PSR J1713
+0747. We did not perform an analysis removing PSR J1713
+0747 because it is one of the most sensitive pulsars in the
NANOGrav PTA, and removing it always decreases our
sensitivity to GWs. Because J1713+0747 significantly con-
tributes to every GW analysis, it is unsurprising that noise in
this pulsar can be confused for a GW. A noise analysis of
J1713+0747 is underway using the advanced noise modeling
techniques that were also applied to J0613−0200, and the
results will be discussed in an upcoming paper. Future CW
analyses of PTA data will be able to definitively determine the
source of this signal with additional timing data and the

incorporation of advanced noise modeling techniques into the
data analysis pipeline.

5. Limits on Astrophysical Properties of Nearby SMBHBs

In this section, we discuss what we can infer about the
astrophysical properties of nearby SMBHBs from our limits on
the GW strain. We used the 95% upper limits on the GW strain to
place 95% lower limits on the distance to SMBHBs using
Equation (21) for a given chirp mass. Figure 9 shows the 95%
lower limit on the distances to individual SMBHBs as a function
of sky position, plotted in equatorial coordinates, for sources with

= M109 and =f 8 nHzgw . The limits on the luminosity
distance varied by a factor of 7 between the most sensitive and
least sensitive sky locations. At the most sensitive sky location,
we found dL>120Mpc for SMBHBs with = M109 and
dL>5.5 Gpc for SMBHBs with = M1010 .

Figure 6. Comparison between a search at =f 15 nHzgw performed on the
9 yr data set with all pulsars (orange) and excluding PSRJ0613−0200
(purple). There was very little difference between the Bayes factors
( ( )= 1.4 110 with all pulsars, and ( )= 1.11 410 excluding PSRJ0613
−0200), but there was a significant difference in the 95% strain upper limit.
We found an upper limit of 4.1(2)×10−14 with all pulsars, compared with 3.2
(3)×10−14 without PSRJ0613−0200.

Figure 7. Bayes factors for the presence of a GW signal in each pulsar’s
residuals, from an analysis of the 9 yr data set with =f 15 nHzgw . The GW
parameters are fixed to the maximum-likelihood values, as determined from a
detection analysis. PSRJ0613−0200 had the largest Bayes factor for the
signal, with ( )= 23.2 510 , indicating that PSRJ0613−0200 was the primary
source of this signal.

Figure 8. Bayes factors for the presence of a GW signal in each pulsar’s
residuals, from an analysis of the 11 yr data set with =f 109 nHzgw . The GW
parameters were fixed to the maximum-likelihood values, as determined from a
detection analysis. We concluded that this signal was primarily coming from
PSR J1713+0747, for which ( )= 96.2 110 .

Figure 9. The 95% lower limit on the distance to individual SMBHBs with
= M109 and =f 8 nHzgw as a function of sky position based on an

analysis of the 11 yr data set, plotted in equatorial coordinates using the
Mollweide projection. The stars indicate the positions of pulsars in our array,
and the diamonds indicate the positions of known SMBHB candidates or
galaxy clusters that may contain SMBHBs. At our most sensitive sky location,
we place a limit of dL>120 Mpc for SMBHBs with = M109 , and
>d 5.5 GpcL for SMBHBs with = M1010 .
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Figure 10 shows the limits on the chirp masses of any
SMBHBs in the nearby Virgo Cluster, which is at a distance of
16.5 Mpc. We found that there are no SMBHBs in the Virgo
Cluster with ( ) > ´ M1.6 1 109 emitting GWs in the
PTA band. Furthermore, there are no SMBHBs with

( ) > ´ M3.8 1 108 emitting GWs with =f 9 nHzgw .
These chirp-mass limits imply that none of the galaxies NGC
4472 (estimated black hole mass of 2.5× 109Me; Rusli et al.
2013), NGC 4486 (estimated black hole mass of ´ M6.6 10 ;9

Gebhardt et al. 2011), or NGC 4649 (estimated black hole mass
of 4.5× 109Me; Shen & Gebhardt 2010) could contain
binaries emitting GWs in this frequency range.

In order to assess how likely we were to have detected a
SMBHB given our current sensitivity, we compared our strain
upper limit curves to simulations of nearby SMBHBs. A
similar technique was introduced in Babak et al. (2016) to
estimate the detection probability from the strain upper limit
curve. We used simulated populations of SMBHBs from
Mingarelli et al. (2017), which are based on galaxies in the
Two Micron All-Sky Survey (Skrutskie et al. 2006) and merger
rates from the Illustris cosmological simulation project (Genel
et al. 2014; Rodriguez-Gomez et al. 2015). We estimated the
number of detectable sources as the number lying above our
sky-averaged 95% strain upper limit curve. Figure 11 shows
the loudest GW sources for a sample realization, plotted
alongside our 95% strain upper limit curve. We show both the
sky-averaged strain upper limit curve (solid, blue line) and the
strain upper limit curve at the most sensitive sky location
(dashed, red line). For this particular simulation, none of the
sources were above the sky-averaged strain upper limit curve;
therefore, we concluded there were no detectable sources in this
particular realization. Out of 75,000 realizations of the local
universe, 34 contained a source that lay above the sky-averaged
strain upper limit curve (i.e., 0.045% of realizations contained
an observable SMBHB), from which we concluded that our
non-detection was unsurprising given our current sensitivity.
We point out, though, that our sensitivity varies significantly
with sky location, therefore some sources that are below the
sky-averaged strain upper limit curve may be detectable
depending on their sky locations. In our simulations, we found
that a GW source lay above the strain upper limit curve at the
most sensitive sky location in 918 realizations (1.22%).

6. Summary and Conclusions

We searched the NANOGrav 11 yr data set for GWs from
individual circular SMBHBs. As we found no strong evidence
for GWs in our data, we placed limits on the GW strain. We
determined that the 11 yr data set was most sensitive to

=f 8 nHzgw , for which the sky-averaged strain upper limit
was h0<7.3(3)×10−15. We produced sky maps of the GW
strain upper limit at =f 8 nHzgw . At the most sensitive
sky location, we placed a strain upper limit of h0<
2.0(1)×10−15. These results are the first limits on GWs from
individual sources to be robust to uncertainties in the SSE due
to the incorporation of BAYESEPHEM in our model. As shown
in Figure 4, uncertainty in the SSE only affects our sensitivity
to GWs for <f 4 nHzgw .
We introduced a new detection technique that uses

“dropout” parameters to determine the significance of a
common signal in each individual pulsar. We applied this
technique to two low-S/N signals found in the 9 yr and 11 yr
data sets, and identified the pulsars contributing the most to
these signals. This technique is currently being used within
NANOGrav in other GW searches, and a methods paper
developing this technique is underway. Determining the
physical processes causing these low-S/N signals is beyond
the scope of this paper. Advanced noise analyses of all the
pulsars in the NANOGrav PTA are underway, using more
complicated models for the red noise and incorporating models
for time variations in the dispersion measure, and the methods
and results will be the subject of an upcoming paper.
We used our strain upper limits to place lower limits on

the luminosity distance to individual SMBHBs. At the most
sensitive sky location, we placed a limit of dL>120Mpc for

= M109 and dL>5.5 Gpc for = M1010 . Our non-
detection of GWs was not surprising given our current
sensitivity limits. Using simulated populations of nearby
SMBHBs from Mingarelli et al. (2017), we found that only
34 out of 75,000 realizations of the local universe contained a
SMBHB whose GW strain lay above our sky-averaged 95%
upper limit curve. These simulations also supported the
conclusion that the two low-S/N signals found in the 9 yr
and 11 yr data sets were not GW signals.

Figure 10. The 95% upper limit on the chirp mass of any SMBHBs in the
Virgo Cluster as a function of GW frequency. We found that there are no
SMBHBs in the Virgo Cluster with ( ) > ´ M1.6 1 109 emitting GWs in
this frequency band. At =f 9 nHzgw , we placed an upper limit of 3.8(1)×
108 Me.

Figure 11. GW frequency and strain for the loudest GW sources for a sample
realization of the local universe, plotted alongside our 95% strain upper limit
curve. This simulation used simulated populations of nearby SMBHBs from
Mingarelli et al. (2017) to determine the number of sources emitting GWs in
the PTA band. For this realization, there are 87 SMBHBs—none of them lie
above the sky-averaged strain upper limit curve, and there is one source that
lies above the strain upper limit curve at the most sensitive sky location. This
source could be detectable depending on its sky location.
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Although we have not yet made a positive detection of GWs
from individual SMBHBs, the NANOGrav PTA is sensitive
enough to place interesting limits on such sources. Based on
our non-detection of GWs, we have determined that there are
no SMBHBs in the Virgo Cluster with ( ) > ´ M1.6 1 109

emitting GWs in the PTA band. Furthermore, our sensitivity to
GWs from individual SMBHBs will continue to improve as we
increase our observation times, add MSPs to our array, and
develop improved pulsar noise models.

This paper is the result of the work of dozens of people over the
course of more than 13 years. We list specific contributions
below. Z.A., K.C., P.B.D., M.E.D., T.D., J.A.E., E.C.F., R.D.F.,
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and C.M.F.M. wrote the paper and generated the plots.
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Appendix
Jump Proposals from Empirical Distributions

In our data analysis pipelines, we computed the posterior
distributions using MCMC algorithms, which explore parameter
space through a random walk. The CW search for the 11 yr data
set included 154 parameters: 7 common GW parameters, 68
pulsar-term GW parameters, 68 pulsar red-noise parameters, and
11 BAYESEPHEM parameters. Exploring such a large parameter
space is computationally intensive, and many iterations are
required to burn-in the parameters and ensure the chains have
converged. Jump proposals determine how proposed samples are
generated, and using particularly good jump proposals can
significantly decrease the burn-in and convergence time.
Appendix C of NG5b discusses the jump proposals used in
the CW search of the NANOGrav 5 yr data set, which were also
used in the analyses described in this paper.
In the course of analyzing the 11 yr data set, we introduced

a new type of jump proposal for the pulsars’ red-noise
parameters and the BAYESEPHEM parameters. These jump
proposals chose new parameter values by drawing from
empirical distributions based on the posteriors from an initial
Bayesian analysis searching over all of the pulsars that included
only the pulsars’ red noise and BAYESEPHEM; i.e., excluding
any GW term. These jump proposals do not alter the likelihood
or the priors—they ensure that the sampler is choosing new
parameters that have a high probability of improving the fit, but
they do not affect the probability that the new parameter values
will be accepted or rejected.
This initial pilot run included only 79 parameters, therefore

the red noise and BAYESEPHEM parameters burned-in
relatively quickly. We constructed the empirical distributions
from histograms of the posteriors, adding one sample to all bins
so that the probability density function was nonzero at every
point in the prior. For the red-noise parameters, we constructed
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two-dimensional empirical distributions for the amplitude
Alog10 and spectral index γ for each pulsar. For the

BAYESEPHEM parameters, we constructed one-dimensional
empirical distributions for each of the six Jupiter orbital
elements, which describe perturbations to Jupiter’s orbit.

We have found that including jumps that draw from the
empirical distributions to the MCMC dramatically reduces the
number of samples needed for the chains to burn-in and
converge because the red noise and BAYESEPHEM parameters
converge almost immediately. Efficiently sampling the pulsars’
red-noise parameters will become increasingly important as the
number of pulsars in our PTA increase, as each pulsar added to
the PTA adds two red-noise parameters and two pulsar-term
parameters to the model.
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