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The NANOGrav Nine-year Data Set: Measurement and Analysis
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Abstract

We analyze dispersion measure (DM) variations of 37 millisecond pulsars in the nine-year North American
Nanohertz Observatory for Gravitational Waves (NANOGrav) data release and constrain the sources of these
variations. DM variations can result from a changing distance between Earth and the pulsar, inhomogeneities in
the interstellar medium, and solar effects. Variations are significant for nearly all pulsars, with characteristic
timescales comparable to or even shorter than the average spacing between observations. Five pulsars have
periodic annual variations, 14 pulsars have monotonically increasing or decreasing trends, and 14 pulsars show
both effects. Of the four pulsars with linear trends that have line-of-sight velocity measurements, three are
consistent with a changing distance and require an overdensity of free electrons local to the pulsar. Several
pulsars show correlations between DM excesses and lines of sight that pass close to the Sun. Mapping of the DM
variations as a function of the pulsar trajectory can identify localized interstellar medium features and, in one
case, an upper limit to the size of the dispersing region of 4 au. Four pulsars show roughly Kolmogorov structure
functions (SFs), and another four show SFs less steep than Kolmogorov. One pulsar has too large an uncertainty
to allow comparisons. We discuss explanations for apparent departures from a Kolmogorov-like spectrum, and
we show that the presence of other trends and localized features or gradients in the interstellar medium is the
most likely cause.

Key words: ISM: general – pulsars: general

1. Introduction

The principal goal of the North American Nanohertz Observa-

tory for Gravitational Waves (NANOGrav; McLaughlin 2013) is to

detect gravitational waves in the nanohertz regime of the

gravitational wave spectrum using a pulsar timing array (PTA).

Sensitivity improves as more millisecond pulsars (MSPs) are added

to the PTA, and therefore it is essential to have as many well-timed

MSPs as possible (Siemens et al. 2013; Vigeland & Siemens 2016).

For every MSP, we must construct an accurate timing model that

accounts for all known effects on the pulsar times of arrival

(TOAs) over decade timescales (Jenet et al. 2005; Cordes &

Shannon 2010). One of the parameters that must be fit in the timing

model is the dispersion measure (DM). As the pulsar signal travels
through the interstellar medium (ISM), it encounters ionized
plasma and electron density variations along the way. The DM is
the integrated column density of free electrons along the line of
sight (LOS) to a pulsar:

n l dlDM , 1
d

e
0
ò= ( ) ( )

where ne is the free electron density along a LOS l, and d is the

pulsar distance. When the pulsar signal propagates through the

ISM, interactions with these free electrons cause dispersion that

is characterized by a frequency-dependent time delay:
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where 1n and 2n are two different frequencies in MHz, and DM

is in pc cm−3. Observing at least two frequencies is necessary

to solve for the DM for a measured time delay. This time delay

can be significant when compared to the pulsar period, and

therefore the DM must be fit when creating a timing model and

corrected for at each epoch (e.g., Demorest et al. 2013;

Arzoumanian et al. 2015).
Inhomogeneities in the ISM and solar wind and differences

in the relative velocity of the pulsar and the Earth can change
the free electron density along the LOS (Lam et al. 2016). The
result is a DM that varies with time, changing on timescales of
hours to years. In this paper we discuss the variations seen in
the NANOGrav nine-year data release (Arzoumanian et al.
2015), constrain the possible sources of these variations, and
use these constraints to characterize the ISM along the LOS.

In Section 2, we discuss the data used for this analysis. In
Section 3, we discuss the significance and trends seen in the
DM time series. In Section 4, we perform a structure function
(SF) analysis on select MSPs and put the results in the context
of a Kolmogorov spectrum. In Section 5, we discuss the results
of these analyses, and in Section 6 we present conclusions.

2. Data

Our analysis uses data from the NANOGrav nine-year data
set (Arzoumanian et al. 2015). Pulsars were included in the data
set based on the anticipated stability of their timing, their TOA
precision, and their detection over a wide frequency range. Of
the 37 MSPs included in the data release, 17 were reported on
in Demorest et al. (2013). Observations took place roughly
once a month between 2004 and 2013 with observing time
spans of individual pulsars ranging from 0.6 to 9.0 years. Those
MSPs with declinations between 0° and 39° were observed
with the 305 m William E. Gordon Telescope at the Arecibo
Observatory, and the rest were observed with the 100 m Robert
C. Byrd Green Bank Telescope (GBT) of the National Radio
Astronomy Observatory (NRAO); PSRs J1713+0747 and
B1937+21 were observed with both telescopes. Every MSP
was observed at multiple frequencies to account for frequency-
dependent dispersion effects. Dual-frequency observations
occurred within ∼1 hr at Arecibo and within several days at
the GBT. The typical length of an observation was ∼25
minutes. A more detailed and thorough description of these
observations can be found in Arzoumanian et al. (2015).

For each pulsar, the DM was measured at nearly every
observing epoch and recorded using the DMX parameter as part
of the TEMPO software package, where DMX models DM as
constant over a chosen time window (14 days in this case). The
DMD , an offset from a globally fixed fiducial DM, is fit as a free

parameter in the timing model. The possible errors in DM(t)
estimation using this method are discussed in Lam et al. (2015).
Errors on DM are 1σ and are determined from the timing-
parameter covariance matrix after the least-squares timing model
fit. Data from early single-receiver observations were omitted for
PSRs J1741+1351, J1853+1303, J1910+1256, J1944+0907,
and B1953+29 as it was not possible to independently measure
DM and other timing properties. We plot DMs versus time
(i.e., DM(t)) for all of the pulsars in Figures 1 through 5. Values
from the nine-year data release used in this analysis can be seen
in Table 1. Partial DM(t) data spans have already been published
for 15 pulsars (PSRs J0340+4130, J0613–0200, J1614–2230,
J1713+0747, J1738+0333, J1741+1351, J1744–1134, B1855

+09, J1909–3744, J1910+1256, J1918–0642, B1937+21,
J1944+0907, J2010–1323, and J2302+4442) in Levin et al.
(2016).

3. Determining Significance and Trends in the Variations

Variability in the DM time series can be seen for many
pulsars; it has been a long known effect. The first detection of
temporal variations was for the Crab pulsar (Rankin &
Roberts 1971). These variations were later determined to be
most likely due to variations in the surrounding nebula
(Isaacman & Rankin 1977). The Vela pulsar exhibits a
decreasing time-dependent DM attributed to the pulsar motion
through the enveloping supernova remnant (Hamilton
et al. 1985).
We first determine whether the DM variations we see are

significant or if they are consistent (within errors) with a
constant DM value. We calculate the reduced 2c for each
pulsar as

N

t

t

1 DM DM
, 3

r
2

dof

2

2åc
s

=
-( ( ) )

( )
( )

where Ndof is the number of degrees of freedom, DM is the

average DM value for the data span for a pulsar (in this model),

and ts ( ) is the error associated with each DM(t) value. A large

r
2c value then signifies that the DM variations are much greater

than the measurement error and are significant when compared

to an unchanging fiducial DM. All but two of the pulsars (PSRs

J1923+2515 and J2214+3000) have 1
r
2 c . Of these, we

identify 15 pulsars as showing moderate variations (those with

1 10
r
2 c ), and 20 pulsars with significant variations

( 10
r
2 c ). We therefore conclude that the DMs are intrinsi-

cally variable for all of the MSPs in our sample, with the

possible exceptions of J1923+2515 and J2214+3000, which

both show visible variation at a low level despite the statistical

test. Both of these pulsars have short data sets (2.2 and 2.1

years, respectively).

3.1. Systematic Variations

DMs can vary in many ways, with components that appear
linear, periodic, or random. Here we consider systematic DM
variations such as linear trends and periodicities. Stochastic
contributions are discussed in Section 4. Sources of linear
trends and periodicities include a changing distance between
the Earth and the pulsar, a wedge with linear density changes in
the ISM or the orbital motion of the Earth, among others; the
possible geometries from which these trends arise are explained
in detail in Lam et al. (2016). Both linear and periodic trends
have been seen in Parkes Pulsar Timing Array (PPTA) data
(You et al. 2007; Keith et al. 2013; Petroff et al. 2013; Reardon
et al. 2016). Petroff et al. (2013) determined the significance of
a linear trend by calculating the error of a fit to the slope; linear
trends were deemed significant if the errors are less than 35%
of the slope value and highly significant if the errors on the
slope measurement are less than 20%. This method is not
applicable for the NANOGrav nine-year data set as a large
number of pulsars exhibit sinusoidal trends without linear
trends.

22
TEMPO software package: http://tempo.sourceforge.net.
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Figure 1. The top panel shows the DM time series with the best-fit function (if applicable) in blue. The zero point for the DM variations corresponds to the fiducial
DM for the data span. The error bars are 1s errors returned by TEMPO. The bottom panel shows the DM residuals after the trend has been removed from the time

series; an empty panel means no trend was found. The
r
2c values before and after these fits for each pulsar appear in the top and bottom panels, respectively, as well as

in Tables 1 and 2. PSR J0931–1902 has too short a data span for a trend to be determined. Partial DM(t) ranges were published in Levin et al. (2016) for PSRs J0340
+4130 and J0613–0200.
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In order to determine the scale and structure of the variations,
the options being linear, periodic, both, or variations consistent
with stochastic noise, we applied a nonlinear least-squares fit to
the data using three functions:

t mt b

t A t b

t A t mt b

DM ,

DM cos ,

DM cos , 4

1

2

3

w f
w f

= +
= + +
= + + +

( )

( ) ( )

( ) ( ) ( )

with the
r
2c calculated for the time series after each of these fits

was individually subtracted off. For each fit, N N Npdof » - ,

where N is the number of DM measurements and Np is the

number of free parameters being fit in that function (Np=1
when tDM( ) is a constant value). The three

r
2c values were then

compared to the original value; the result producing the lowest

r
2c was assigned as the trend. The results of these fits can be

seen in Table 2. There is a known complication when

Table 1

Properties of NANOGrav MSPs in the Nine-year Data Release

PSR ml mb ma md DM dDM dPX r
2c vT

(mas yr−1) (mas yr−1) (mas yr−1) (mas yr−1) (pc cm−3) (kpc) (kpc) (km s−1)

J0023+0923 –13.9(2) –1(1) –12.3(6) –6.7(9) 14.3 0.7(2) L 4.2 46(13)

J0030+0451 –5.52(1) 3.0(5) –6.3(2) 0.6(5) 4.3 0.3(1) 0.30(2) 11 8.9(7)

J0340+4130 –2.4(8) –4(1) –1.3(7) –5(1) 49.6 1.7(4) L 6.8 38(12)

J0613–0200 2.12(2) –10.34(4) 1.85(2) –10.39(4) 38.8 1.7(4) 1.1(2) 70 55(10)

J0645+5158 2.1(1) –7.3(2) 1.4(1) –7.5(2) 18.2 0.7(2) 0.8(3) 2.7 29(11)

J0931–1902 L L L L 41.5 1.8(5) L 2.2 L

J1012+5307 13.9(1) –21.7(3) 2.5(2) –25.6(2) 9.0 0.4(1) L 1.8 49(12)

J1024–0719 –14.36(6) –57.8(3) –35.2(1) –48.0(2) 6.5 0.4(1) L 15 113(28)

J1455–3330 8.16(7) 0.5(3) 7.9(1) –2.0(3) 13.6 0.5(1) L 2.4 19(4)

J1600–3053 0.47(2) –7.0(1) –0.95(3) –7.0(1) 52.3 1.6(4) 3.0(8) 42 100(27)

J1614–2230 9.46(2) –31(1) 3.8(2) –32(1) 34.5 1.3(3) 0.65(5) 20 100(8)

J1640+2224 4.20(1) –10.73(2) 2.09(1) –11.33(2) 18.5 1.2(3) L 295 66(16)

J1643–1224 5.56(8) 5.3(5) 6.2(1) 4.5(5) 62.4 2.3(6) L 112 84(22)

J1713+0747 5.260(2) –3.442(5) 4.918(2) –3.914(5) 16.0 0.9(2) 1.18(4) 29 35(1)

J1738+0333 6.6(2) 6.0(4) 6.9(2) 5.8(4) 33.8 1.4(4) L 5.0 59(17)

J1741+1351 –8.8(1) –7.6(2) –9.1(1) –7.2(2) 24.2 0.9(2) L 4.7 50(11)

J1744–1134 19.01(2) –8.68(8) 18.76(2) –9.20(8) 3.1 0.4(1) 0.41(2) 17 41(2)

J1747–4036 0.1(8) –6(1) 0(1) –6(1) 153.0 3.3(8) L 133 L

J1832–0836 L L L L 28.2 1.1(3) L 16 L

J1853+1303 –1.8(2) –2.9(4) –1.48(2) –3.1(4) 30.6 2.0(5) L 5.8 32(9)

B1855+09 –3.27(1) –5.10(3) –2.651(15) –5.45(3) 13.3 1.2(3) L 1335 34(9)

J1903+0327 –3.5(3) –6.2(9) –2.7(3) –6.5(9) 297.6 6(2) L 27 202(71)

J1909–3744 –13.868(4) –34.34(2) –9.518(4) –35.79(2) 10.4 0.5(1) 1.07(4) 1375 188(7)

J1910+1256 –0.7(1) –7.2(2) 0.3(1) –7.2(2) 38.1 2.3(6) L 2.7 79(21)

J1918–0642 –7.93(2) –4.85(9) –7.18(3) –5.90(9) 26.6 1.2(3) 0.9(2) 171 40(9)

J1923+2515 –9.5(2) –12.8(5) –6.6(2) –14.5(5) 18.9 1.6(4) L 0.9 121(30)

B1937+21 –0.02(1) –0.41(2) 0.07(1) –0.40(2) 71.0 3.6(7) L 1162 7(1)

J1944+0907 9.4(1) –25.5(4) 14.37(11) –23.1(4) 24.3 1.8(5) L 147 232(64)

J1949+3106 13(15) 10(13) 10(11) 13(16) 164.1 3.6(9) L 1.4 L

B1953+29 –1.8(9) –4.4(14) –0.4(12) –5(1) 104.5 5(1) L 6.6 113(24)

J2010–1323 1.16(4) –7.3(4) 2.71(9) –6.9(4) 22.2 1.0(3) L 70 35(11)

J2017+0603 2.3(6) –0.1(7) 2.2(7) 0.5(6) 23.9 1.6(4) L 2.8 L

J2043+1711 –8.97(7) –8.5(1) –5.85(7) –10.9(1) 20.7 1.7(4) 1.3(4) 6.3 100(23)

J2145–0750 –12.04(4) –3.7(4) –10.1(1) –7.5(4) 9.0 0.6(2) 0.8(2) 24 48(12)

J2214+3000 17.1(5) –10.5(9) 20.0(6) –1.7(8) 22.6 1.5(4) L 1.0 143(38)

J2302+4442 –3.3(6) –1(2) –2(1) –3(2) 13.7 1.1(3) L 1.5 L

J2317+1439 0.19(2) 3.80(7) –1.39(3) 3.55(6) 21.9 0.8(2) 1.3(4) 18732 14(4)

Notes. Columns are pulsar name, ecliptic proper motion (longitude and latitude), proper motion in R.A. and decl., the DM, the DM-derived distance, the parallax-

derived distance, the reduced chi-squared of the DM time series prior to any fitting, and the transverse velocity. The ecliptic proper motions and DMs were calculated

for the nine-year data release (Arzoumanian et al. 2015). Proper motion in R.A. and decl. as well as parallax distances were calculated through timing observations and

discussed in Matthews et al. (2016). Proper motion values that are smaller than their uncertainties were not used in subsequent analysis. The DM-derived distances

were calculated from the NE2001 model assuming 20% error (Cordes & Lazio 2002). The value for
r
2c was calculated using Equation (3). Dashes indicate that no

significant measurement was possible. The transverse velocity vT was calculated from the proper motion and the distance estimate with the smaller error (i.e., dDM
or dPX).
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estimating the number of degrees of freedom for a nonlinear

model (Andrae et al. 2010). The
r
2c is only used as a metric to

compare the fits of models we know to be incomplete; as stated

earlier, the ISM is more complicated than a purely linear trend

plus annual component. The fitting routine incorporates a

nonlinear least-squares fit that is locally linearized around the

Table 2

Fitted Trends in the DM Time Series for MSPs in the Nine-year Release

PSR Trend d dtDM Amplitude Period
r
2c PLS FAP Length td

(10−3 pc cm−3 yr−1) (10−4 pc cm−3) (days) (days) (%) (days) (days)

J0023+0923 None L L L L L L 841 L

J0030+0451 Periodic L 1.2(3) 373(5) 9.2 371 6.3 3204 33

J0340+4130 Linear 0.88(9) L L 1.7 241 6.3 613 73

J0645+5158 Periodic L 0.9(3) 377(29) 2.6 199 0.54 881 78

J0931–1902 None L L L L L L 235 L

J1012+5307 Linear 0.11(2) L L 0.94 L L 3368 2286

J1024–0719 Linear 0.39(2) L L 2.7 L L 1467 148

J1455–3330 Linear 0.15(2) L L 1.0 361 7.3 3368 904

J1614–2230 Periodic L 3.1(5) 370(9) 11 370 0.17 1860 14

J1643–1224 Both –1.02(3) 8(1) 387(4) 10 387 0.01 3293 104

J1738+0333 Linear –0.8(2) L L 1.4 L L 1456 213

J1741+1351 Linear –0.12(4) L L 1.9 L L 1224 287

J1744–1134 Both –0.069(7) 0.4(2) 383(16) 8.0 L L 3369 66

J1747–4036 Linear –7.3(4) L L 10.0 459 6.7 608 16

J1832–0836 None L L L L L L 231 L

J1853+1303 Linear 0.12(9) L L 5.2 L L 1468 361

B1855+09 Both 0.382(7) 0.5(3) 364(11) 15.7 L L 3240 27

J1903+0327 Both –3.0(4) 31(6) 375(11) 12 371 1.0 1456 99

J1909–3744 Both –0.239(4) 0.7(1) 366(5) 28 366 0.25 3306 9

J1910+1256 Linear 0.51(6) L L 0.90 404 2.9 2574 443

J1923+2515 None L L L L L L 803 L

J1944+0907 Linear 1.3(2) L L 44 L L 1467 43

J1949+3106 Periodic L 10(3) 391(37) 1.0 L L 455 51

B1953+29 Both –1.3(3) 3(2) 356(72) 2.1 L L 1967 136

J2010–1323 Both 0.38(2) 2.2(4) 372(9) 14 372 0.56 1490 16

J2017+0603 Both 0.23(7) 2.3(5) 440(37) 0.94 L L 609 38

J2043+1711 Both –0.12(4) 1.0(4) 390(38) 3.7 L L 834 189

J2145–0750 Linear 0.08(2) L L 18 L L 3318 568

J2214+3000 Periodic L 4(1) 319(25) 0.83 L L 755 17

J2302+4442 Linear –0.6(2) L L 1.5 L L 613 202

J2317+1439 Both –0.550(9) 0.9(3) 311(6) 321 L L 3243 5

PSR Trend d dtDM Amplitude Period
r
2c Start End Length td

(10−3 pc cm−3 yr−1) (10−4 pc cm−3) (days) (days) (days)

J0613–0200 Both 0.066(7) 1.8(1) 358(4) 0.72 53448 54970 3137 18

Both 0.161(7) 1.2(2) 352(5) 3.5 54970 56380 L 23

J1600–3053 Linear –0.73(4) L L 2.8 54400 55300 2184 40

None L L L L 55300 56585 L L

J1640+2224 Linear 0.145(3) L L 7.0 53344 55850 3254 78

None L L L L 55850 56599 L L

J1713+0747 Both –0.066(8) 0.5(1) 400(16) 2.0 53393 54730 3199 38

None L L L L 54730 54900 L L

Both –0.015(5) 0.52(9) 369(7) 5.5 54900 56592 L 26

J1918–0642 Both –0.49(1) 1.2(4) 385(11) 4.3 53292 56000 3293 24

Both 0.23(3) 1.2(3) 541(47) 2.9 56000 56585 L 31

B1937+21 Both –0.34(3) 3.2(4) 395(11) 28 53267 54550 3327 5

None L L L L 54550 55970 L L

Both 0.050(3) 3.7(2) 469(14) 10 55970 56594 L 5

Notes. Results of fitting periodic and linear trends to the DM variations, where 1σ uncertainty in the last significant digit is expressed in parentheses. The upper section

lists pulsars where a single fit was applied; columns are the detected trend, the slope, the amplitude of the periodic fit, the period of the fit, the reduced chi-squared after

the fitting, the period found by the Lomb–Scargle periodogram, the false-alarm probability for that period, the length of the data span for that pulsar, and the average

time it takes the DM time series to vary by 1s. Values and corresponding errors were found by implementing a nonlinear least-squares Marquardt–Levenberg

algorithm. Variations were determined to exhibit a trend if the post-fit
r
2c was lower than the pre-fit

r
2c value. The period found by the Lomb–Scargle periodogram

analysis, PLS, was omitted if it corresponded to the length of the data set or the cadence of observations. The resolution of the Lomb–Scargle analysis (and hence error

on PLS) is equal to the cadence of the observations for that particular pulsar. Those MSPs that are identified as having a linear trend had that trend subtracted off prior

to applying the periodogram analysis. The lower section contains pulsars where piecewise trends were applied. The two columns that differ from above give the final

start and end dates used in the fit. The Lomb–Scargle periodogram found a period for PSR J0613−0200 of 371 days with a false-alarm probability of 5.4%.
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minimum
r
2c . Later on, we describe

r
2c surfaces in the full

parameter space and analyze the degree of covariance between

fit parameters, finding it agrees with this fitting routine.
The periodic term in the function was fit using an initial

guess of 365 days. Due to a change in sign of d dtDM or the
appearance or disappearance of a trend partway through the
data span, PSRs J0613–0200, J1600–3053, J1640+2224,
J1918–0642, and B1937+21 are not well characterized by a
single fit. These MSPs were fit using piecewise functions, using

the
r
2c of the fit to identify the applicable MJD range for each

fit. The results of this partial fitting can be seen in Table 2. The
fits can be seen in Figures 1 through 5. The

r
2c values listed in

Table 2 are for the individual fit regions; these differ from the
values shown in Figures 1 through 5 because those values
incorporate both fits as well as any regions excluded from
the fit.

We applied a Lomb–Scargle periodogram analysis to
corroborate the best-fit periods, as an annual period was
suggested during the trend-fitting routine. The periodogram is
also useful in possibly identifying nonannual periodicities (also
seen in Table 2). This analysis is able to detect periodicities in
unevenly sampled data (Scargle 1982) for which a false-alarm
probability (FAP) may be calculated. The FAP is the likelihood
that these periods would occur as a result of random white
noise. We ignored periods found by the periodogram that
coincided with either the length of the data set or the observing
cadence. The resolution of the analysis is equal to the cadence
of the observations. Any linear trend in the DM variations will
mask the periodic effect and therefore was removed from those
identified to have linear effects before applying the period-
ogram analysis.

3.2. DM Variation Timescale

The DM value can vary on timescales of years, days, or even
hours. Therefore it is important to know on what timescale this
DM is accurate. The time td for DM to change by DMs , the rms
DM in the DM time series (prior to fitting any DM trends),
gives us a rough estimate for how long a single DM estimation
is valid. For a linear trend,

t

d

dt
m t

m

DM
, 5

DM DMs
d

d
s

= = =⟶ ( )

where m is the slope of the linear trend, seen also in

Equation (4). The time associated with a periodic trend

t

d

dt
A t

A

DM
, 6

DM DMs
d

w d
s
w

= » =⟶ ( )

where A and ω are the amplitude and angular frequency of the

periodic trend, respectively. The variation time for a DM time

series showing both trends combines the d dtDM components

from both the periodic and linear components:

t
m A t

m A
. 7

DM DMs
d

w d
s
w

» + »
+

⟶ ( )

The td values for the MSPs showing trends are seen in

Tables 2. This td can inform on what timescale our DM

measurement is constant and the importance of observing at

epochs with spacing smaller than this timescale.

3.3. Solar-angle Correlation

Pulsars that lie close to the ecliptic (within approximately
10°) will have their LOS pass near the Sun during Earth’s orbit.
This proximity can cause a sinusoidal trend in DM variations
due to the variation in ne along the LOS from the solar wind.
We examine the pulsar positions with respect to the ecliptic to

determine for which MSPs this effect could be significant. As
can be seen in Figure 6, PSRs J0023+0923, J0030+0451,
J1614–2230, and J2010–1323 reside close (within approxi-
mately 6°.3, 1°.5, 6°.8, and 6°.5, respectively, on closest approach
in the data set) to the ecliptic. The DM as a function of solar
elongation angle can be seen in Figure 7. PSRs J0023+0923 and
J2010–1323 show a slight peak in DM at the smallest pulsar–
Sun angles. PSRs J0030+0451 and J1614–2230 show sig-
nificant peaks at the minimal solar elongation angle. It should be
noted that the two highest DM points for J0030+0451 were
omitted from Arzoumanian et al. (2015) as outliers but were
included for this portion of the analysis.

3.4. Pulsar Trajectories

We have plotted the pulsar trajectories through the ISM as
seen from Earth, color coded to signify the DM value at each
epoch (Figures 8 through 11). For this, we assumed that all of
the free electrons along the LOS are sitting in a stationary phase
screen located halfway between the Earth and the pulsar. The
trajectories are the projected motions of the pulsar as seen on
this phase screen. Using proper motion and distance estimates
with errors from the NE2001 model (Cordes & Lazio 2002),
the transverse velocity can be calculated and used to track the
pulsar’s trajectory in the sky. Proper motions were taken from
the data release (seen in Table 1). These trajectory maps can be
useful in isolating features in the ISM as well as visualizing
trends in the DM time series.

4. Structure Functions

Turbulence in the ISM is typically described as having a
Kolmogorov power spectrum, meaning we expect to find larger
variations over longer timescales. The power spectrum used to
derive the SF has the form

P q q q q q, , 8outer inner µ b-( ) ( )

where q is the reciprocal of the size scale, and β is the power

spectrum exponent. A Kolmogorov medium corresponds to a β

value of 11/3, while the highest value expected for turbulence

in the ISM (for an inner scale shorter than 109m) is 4b =
(Rickett 1990). The outer scale is described as the size at which

the ISM ceases to be homogeneous, and the inner scale is the

point at which dissipation occurs in the material along the LOS.
The DM SF is an effective analytical tool for characterizing

interstellar turbulence over various time and size scales (Cordes
et al. 1990; Rickett 1990; You et al. 2007; Keith et al. 2013;
Fonseca et al. 2014; Lam et al. 2016). We compute SFs by
binning the change in time across all epochs into equally log-
spaced bins after calculating

D t tDM DM , 9DM
2t t= á + - ñ( ) [ ( ) ( )] ( )

where τ is the time lag in days. The diffractive timescale DtD ,

the scale during which the diffraction intensity varies as a result

of irregularities in the ionized plasma along the LOS, is used to
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Figure 2. The top panel shows the DM time series with the best-fit function (if applicable) in blue. The zero point for the DM variations corresponds to the fiducial
DM for the data span. The error bars are 1s errors returned by TEMPO. The bottom panel shows the DM residuals after the trend has been removed from the time

series; an empty panel means no trend was found. The
r
2c values before and after these fits for each pulsar appear in the top and bottom panels, respectively, as well as

in Tables 1 and 2. PSRs J1600–3053 and J1640+2224 were not found to have significant trends in the later parts of the DM time series. Partial DM(t) ranges were
published in Levin et al. (2016) for PSRs J1614–2230, J1713+0747, J1738+0333, and J1741+1351.
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Figure 3. The top panel shows the DM time series with the best-fit function (if applicable) in blue. The zero point for the DM variations corresponds to the fiducial
DM for the data span. The error bars are 1s errors returned by TEMPO. The bottom panel shows the DM residuals after the trend has been removed from the time

series; an empty panel means no trend was found. The
r
2c values before and after these fits for each pulsar appear in the top and bottom panels, respectively, as well as

in Tables 1 and 2. PSR J1832–0836 has too short a data span for a trend to be determined. Partial DM(t) ranges were published in Levin et al. (2016) for PSRs
J1744–1134, B1855+09, J1909–3744, and J1910+1256.
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Figure 4. The top panel shows the DM time series with the best-fit function (if applicable) in blue. The zero point for the DM variations corresponds to the fiducial
DM for the data span. The error bars are 1s errors returned by TEMPO. The bottom panel shows the DM residuals after the trend has been removed from the time

series; an empty panel means no trend was found. The
r
2c values before and after these fits for each pulsar appear in the top and bottom panels, respectively, as well as

in Tables 1 and 2. PSR B1937+21 could not be fit with a periodic trend throughout the data set. Partial DM(t) ranges were published in Levin et al. (2016) for PSRs
J1918–0642, B1937+21, J1944+0907, and J2010–1323.
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anchor the SF:

D A , 10DM
2

D
2t n t t= Dn

b-( ) ( ) ( ) ( )

where A 3.84 10 5= ´n
- MHz−2 s−1 pc cm−3 and ν is the

observing frequency; the somewhat unintuitive units on An
arise because of the relationship to the phase SF, which is used

to constrain the DM SF (Rickett 1990; Fonseca et al. 2014).

Epoch-to-epoch variations of DtD are expected to be of order

10% or more (Lam et al. 2016). The SF is poorly estimated at

large time lags, so some functions may appear Kolmogorov at

shorter timescales but fall below at longer time lags; this is an

indication of an underlying Kolmogorov spectrum (You

et al. 2007). This is also why SF values at high time lags

may have large errors on them. Quadratic SFs occur when the

time lag is smaller than the timescale necessary to adequately

probe the structure in a region, if any (Lam et al. 2016).
Several models were applied to the SF in order to constrain a

range for β. Fitting only for Equation (10) is problematic
because there are other contributions to the SF, such as trends
and noise, among other possibilities. However, overfitting the
SF will cause the fit to fail for a number of reasons, discussed in
this section. The models are of the form

D D D D D , 11DM sto lin per noiset t t t t= + + +( ) ( ) ( ) ( ) ( ) ( )

where the first term is the stochastic (e.g., from the electron

density wavenumber spectrum) component, the second term is

Figure 5. The top panel shows the DM time series with the best-fit function (if applicable) in blue. The zero point for the DM variations corresponds to the fiducial
DM for the data span. The error bars are 1s errors returned by TEMPO. The bottom panel shows the DM residuals after the trend has been removed from the time

series; an empty panel means no trend was found. The
r
2c values before and after these fits for each pulsar appear in the top and bottom panels, respectively, as well as

in Tables 1 and 2. Partial DM(t) ranges were published in Levin et al. (2016) for PSR 2302+4442.
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the linear component, the third term is the periodic component,

and the last term is the noise (e.g., measurement error)

component.
One method is to fit the stochastic and noise components while

fixing the linear trend and periodic components to the trend
values found in the time series analysis. However, we were only
able to successfully fit the SF for one pulsar (PSR J1643−1224)
using this model. In all other cases, the SF of the two trends is
higher than the calculated SF; fitting for a stochastic component
on top of that would only increase the chi-squared, and the fit
fails. This failure is evidence that there is contamination between
the stochastic and trend components. In many cases, a linear
trend fit over the time series will absorb part of the stochastic
component. Therefore, the “true” linear trend may be different
than the one we fit for in the time series, which will bias the
component in the SF high. Therefore, we are unable to obtain a
proper fit using this model.

To bypass this contamination between the trend and
stochastic aspects, we tried fitting for all parameters (stochastic,
noise, linear, and periodic) without using any prior information
in the hopes of allowing a fit and comparing values with those
previously found. Due to the covariant nature of the
parameters, we found values for the stochastic, periodic
amplitude, and noise components, but the amplitude of the
periodic trend was not much larger than its uncertainties, while
the linear trend component was found to be zero. The period

was then fixed to one year in order to eliminate some of the
covariance; fixing the period again gave significant values for
the stochastic, noise, and periodic amplitude components and
no significance for an additional linear component. This is
further evidence of the high covariance between the stochastic
and linear trend components. The periodic amplitudes found
here agree very well with those found previously by the trend
analysis. Simultaneously fitting both the stochastic and linear
components does not appear to yield significant values
for both.
The simplest model is then to only fit for stochastic and noise

components while not fitting for a linear trend component. This
model can be applied to all pulsars. Because the periodic
component was not found to be highly covariant with the
stochastic component, the periodic amplitudes were fitted as
well and compared to the values from the trend analysis. In
order to constrain a linear trend, we would need some prior
information on the shape of the stochastic component in the
time series relative to the true linear component that we do not
have at this time.
Diffractive timescales, listed in Table 3, were calculated by

creating a two-dimensional dynamic spectrum of each
1500MHz observation in the data set and computing the 2D
autocorrelation function of each spectrum, which in turn is
summed over time and frequency separately. A Gaussian
function is fitted to the 1D frequency-summed autocorrelation

Figure 6. MSP positions with respect to the ecliptic, shown in R.A. and decl. (left) as well as ecliptic coordinates (right). In the left plot, the ecliptic is depicted by the
dashed line. Sources that lie within 10~  of the ecliptic are signified by triangles. A number of pulsars pass near enough to the Sun for the line of sight to pass through
the densest parts of the solar wind, resulting in a variation in the number of free electrons over an annual cycle.

Figure 7. DM variations with respect to the solar elongation. The linear trend identified for PSR J2010–1323 has been subtracted in order to better identify any
correlation in the DM as a function of solar elongation. Note that the two highest DM points seen for PSR J0030+0451 were omitted from the nine-year data set as
outliers and are not plotted in Figure 1 (discussed in Section 3.3).
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Figure 8. MSP trajectories are plotted with color mapping the DM at each epoch. The trajectories are calculated assuming that all the free electrons along the LOS are
sitting in a phase screen halfway between the Earth and the MSP; the trajectory is then the projected motion of the pulsar on the phase screen. The axes depict the
space traversed at the phase screen in au in the R.A. and decl. directions. The pulsar’s motion starts at (0, 0). Pulsars closer to the ecliptic will show a tighter sinusoid
than those farther away. The trajectory plot can be used to show limited localized structure. For example, PSR J0613–0200 shows higher DM regions on one side of its
trajectory over time, suggesting the presence of a DM gradient that is transverse compared to the pulsar’s motion. PSR J1024–0719 shows a monotonically increasing
DM, which could be due to a DM gradient oriented in the same direction as the pulsar’s motion.
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function, and the scintillation timescale is defined as the half-

width at e 1- . This is following the same procedure as described

in Levin et al. (2016).

Most observations in the nine-year data set are around 30

minutes long, and for many pulsars, the scintillation timescale

is much longer than this integration time. Therefore, it was only

Figure 9. MSP trajectories are plotted with color mapping the DM at each epoch. The trajectories are calculated assuming that all the free electrons along the LOS are
sitting in a phase screen halfway between the Earth and the MSP; the trajectory is then the projected motion of the pulsar on the phase screen. The axes depict the
space traversed at the phase screen in au in the R.A. and decl. directions. The pulsar’s motion starts at (0, 0). Pulsars closer to the ecliptic will show a tighter sinusoid
than those farther away. The trajectory plot can be used to show limited localized structure. PSRs J1600–3053, J1640+2224, and J1643–1224 show a monotonically
increasing or decreasing DM, which could be due to a DM gradient along the direction of motion. PSR J1614–2230 has high DM regions in the same part of its
trajectory every year, suggesting a localized overdensity along the line of sight to the pulsar.
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Figure 10.MSP trajectories are plotted with color mapping the DM at each epoch. The trajectories are calculated assuming that all the free electrons along the LOS are
sitting in a phase screen halfway between the Earth and the MSP; the trajectory is then the projected motion of the pulsar on the phase screen. The axes depict the
space traversed at the phase screen in au in the R.A. and decl. directions. The pulsar’s motion starts at (0, 0). Pulsars closer to the ecliptic will show a tighter sinusoid
than those farther away. The trajectory plot can be used to show limited localized structure. PSRs B1855+09, J1909–3744, and J1918–0642 show a monotonically
increasing or decreasing DM, which could be due to a DM gradient along the direction of motion. PSR J1903+0327 has high DM regions in the same part of its
trajectory every year, suggesting a localized overdensity along the line of sight to the pulsar. PSR B1937+21 shows a distinct low DM region that is also evident in the
DM time series, indicative of a localized bubble in the ISM.
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possible to measure diffractive timescales in this way for a few
of the pulsars in the sample.

Lag bins are equally spaced in log space. Errors on the SF
were calculated by combining the propagated errors from the
DM time series values and the errors due to uncertainty in the
specific realizations in a stochastic process. To constrain those
errors, we used simulations of different spectral slopes and
different time spans of data, and the standard deviation of the
SF was calculated for 104 realizations at every time lag τ. This
was saved as a 3D grid of values (time span, β, τ), and then a
function was used to interpolate over that grid to give the
realization error of the SF value at each τ. We held β constant
to the value for a Kolmogorov medium because varying the
slope had a negligible effect on the derived errors.

5. Results

5.1. Linear Trends and Annual Periodicities

Of the 37 MSPs in the data release, 33 show the presence of
DM trends, of which six MSPs show piecewise trends over
different time spans. With the least-squares fitting procedure,
we find periods roughly consistent with an annual periodicity
of ±54 days for 18 pulsars; seven of these periods were also
detected by the periodogram. The periodogram found
significant periods that were not consistent with annual for

two pulsars (PSRs J0645+5158 and J1747–4036). A period of
199 days was found for J0645+5158; this roughly semiannual
period could be indicative of several effects in the DM time
series (ionosphere, refractive effects from a clump of material
along the LOS, or a solar wind event, among other possibilities;
Lam et al. 2016). More investigation (and probably more data)
would be needed to more definitively identify the source. The
power spectrum, seen in Figure 14, shows a significant peak at
the found period of 199 days and a secondary much less
significant annual period, where the uncertainty in both of these
periods is equivalent to the cadence of observations. A period
of 459 days was found for J1747–4036, but there are less than
two years of data for this pulsar, so this periodicity may not be
robust. Keith et al. (2013) predicted that annual modulations
would be seen based on the spectral analyses for PSRs
J1024–0719 and J1909–3744 and that they are dominated by
the steep linear trend. The authors suggest that a more
significant detection could occur by combining data sets. Our
trend analysis did not find an annual trend in PSR J1024–0719.
We did, however, calculate a period of 366±5 days for PSR
J1909–3744. A linear trend was found in 28 pulsars, 14 of
which also exhibit annual trends. Five pulsars exhibit annual
trends without a linear trend.
One possible cause of linear trends in DM(t) is an increasing or

decreasing distance between the Earth and the pulsar. For four of

Table 3

Diffractive Timescales for 18 MSPs

PSR
obsn DtD Source β

ns A

(MHz) (min) (10−4 pc cm−3) (10−4 pc cm−3)

J0030+0451 436 167.7 1 3.6(1.3) 1.6(1) 0.9(4)

J0613–0200 1400 75 2 3.87(3) 0.4(1) 1.5(2)

J1024–0719 1400 69.7 2 3.97(1) 1.6(5) L

J1455–3330 436 17.7 3 3.80(5) 3.8(4) L

J1600–3053 1400 4.5 2 3.51(1) 1.43(3) L

1373 4.7 4

J1614–2230 1400 12.5 3.6(1) 2.0(4) 3.4(8)

1500 8.1

J1643–1224 1400 9.7 2 3.85(2) 2.2(6) 8.9(7)

J1713+0747 1400 47.6 2 3.56(4) 0.52(8) 0.7(2)

430 14 4

436 28 4

J1744–1134 1400 34.5 2 3.56(4) 1.01(9) 0.5(4)

436 21 4

660 20 4

B1855+09 1500 20.3 3.90(3) 0.93(7) L

1500 24.4 2

J1909–3744 1300 30.6 3.72(1) 0.37(2) 0.63(7)

1400 37.6 2

B1937+21 1500 4.0 3.59(1) 0.7(2) 3.2(3)

1500 7.4

320 1.1 4

430 1.7 4

1400 7.4 4

1400 5.5 2

J1944+0907 1500 2.0 3.64(1) 1.7(2) L

J2145–0750 1400 56.6 2 3.75(7) 2.9(2) L

327 6.4 4

436 21-25 4

J2317+1439 436 13.5 3 3.94(1) 0.59(4) 0.5(2)

Notes. Diffractive timescales obtained from the PPTA and NANOGrav data sets. Values with no reference were calculated from the nine-year data set. The first value

listed for each MSP is the value used in calculating the structure function. The values β, ns , and A are produced by fitting the SF and correspond to the stochastic

power-law exponent, the white noise component, and the periodic amplitude component, respectively. Values in parentheses show the uncertainty in the last digit.

References. (1) Nicastro et al. (2001), (2) Keith et al. (2013), (3) Johnston et al. (1998), (4) You et al. (2007).

15

The Astrophysical Journal, 841:125 (21pp), 2017 June 1 Jones et al.



the pulsars in the nine-year data set, LOS velocities have been
measured with high precision. This allows us to solve for the free
electron density around the pulsar. Matthews et al. (2016)
calculated the velocity along the LOS for PSRs J1012+5307 and
J1903+0327 (44.0± 8.0 km s−1 and 42.1± 2.50 km s−1, respec-
tively), Kaplan et al. (2016) found a LOS velocity of
221±30 km s−1 for J1024–0719, and Antoniadis (2013) found
a velocity of −42±16 km s−1 for J1738+0333. We correct
these for the Sun’s motion by calculating the Sun’s velocity with
respect to the local medium along each of the three lines of sight,
given a velocity of 18.0±0.9 km s−1 in the direction
l 47 .9 3 .0=    and b 23 .8 2 .0=    (Frisch et al. 2011).
The corrected pulsar velocities are given in Table 4. Following
Lam et al. (2016), we calculate the corresponding free electron
density for each linear trend in DM as

x x
d

dt
n v n v

DM
, 12e p p e E E= -( ) ( ) ( )

where xne p( ) and xne E( ) are the free electron densities at the Earth

and the pulsar, and vp and vE are the LOS velocities of the Earth

and the pulsar through their local media. We calculate

ne=2.8±0.8 cm
−3 and ne=1.9±0.3 cm−3 for PSRs J1012

+5307 and J1024–0719, respectively. These are higher than the

typical value for our Galaxy (n 0.03e » cm−3), but local

environments can vary drastically, so the linear trends present

could be explained by the LOS velocities and could indicate

increased ionization as the pulsar is moving away from us. For

comparison, Lam et al. (2016) find n 7.6 2.9e =  cm−3 around

PSR J1909–3744 following the same method. For PSR J1738

+0333, we find ne=31±21 cm
−3, which is much higher than a

typical value but with high uncertainties given the uncertainties on

the pulsar velocity and d dtDM . For PSR J1903+0327, we

calculate a negative d dtDM , which is not as expected because

the pulsar is moving away from us. Using a typical ne, we would

expect a decreasing linear trend of order dDM/dt ≈ −7×
10−7 pc cm−3 yr−1. Therefore, the DM variations must be

dominated by another effect (such as refractive lensing, which

may also explain the quasi-periodicities seen for this pulsar; Lam

et al. 2016).
Reardon et al. (2016) modeled the DM variations for 20

PPTA-observed MSPs, nine of which are also included in the
NANOGrav nine-year data release (PSRs J0613−0200, J1024
−0719, J1600−3053, J1643−1224, J1744−1134, B1855+09,
J1909−3744, B1937+21, and J2145−0750). The trend assign-
ments agree between the NANOGrav and PPTA data for
PSRs 1024−0719, J1600−3053, J1643−1224, J1713+0747,

B1937+21, and J2145−0750. The PPTA data did not show a
linear trend for PSR J0613−0200 or periodic trends for PSRs
B1855+09 and J1909−3744. Discrepancies could arise due to
the difference in data spans, trends that continue or vary after
the end of the data set, variations in methods of DM fitting, as
well as differences in the trend-fitting algorithm; we fit for the
period, whereas it is fixed at one year by Reardon et al. (2016).
There is also the possibility that the DMs measured for the
observed epochs do not agree between the sites due to the
difference in observing frequencies used and spatial location;
the two data sets may essentially be sampling a different ISM
due to multipath scattering (Cordes et al. 2016).
Lentati et al. (2016) apply a Fourier-based method of DM

estimation (see also Lentati et al. 2014) that allows for robust
correction of DM variations during epochs without multi-
frequency data in the International Pulsar Timing Array (IPTA)

data release (Verbiest et al. 2016). The DM noise model used
by Lentati et al. (2016) assumes the power spectrum of the
variations is in the form of a frequency-dependent power law. It
also includes a term that provides power at a one-year period;
any periodicity found would be in addition to that already
included in the model. Lentati et al. (2016) do not find
significant annual components in the data set, but this is not
surprising as this effect is already being taken into account.
Lentati et al. (2017) find a covariance between temporal

variations in scattering and measured DM. By analyzing PSR
J1643–1224, identified here and in the literature as showing
periodic variations in DM, Lentati et al. (2017) show that
uncorrected temporal scattering variability introduces periodic
structures in the DM time series. This effect is a possible cause
of our measured variations for PSR J1643–1224 if the
scattering is also variable on roughly annual timescales. We
are not able to measure the scattering timescale for J1643–1224
in our nine-year data set due to insufficient frequency
resolution, and significant variations in scattering timescales
are not measurable for any pulsars (Levin et al. 2016). These
variations could, however, contribute to annual DM variations
for some pulsars. Future data releases using increased
frequency resolution will incorporate scattering corrections
(among others) and allow a comparison of the pre- and
postcorrected DM time series.
The DM is highly anticorrelated with the solar elongation

angle for PSRs J0030+0451 and J1614–2230, as can be seen in
Table 5. There is a moderate correlation in PSRs J0023+0923
and J2010–1323. It is worth noting that in Figure 7, the DM
measured for the second lowest solar elongation angle is higher
than that for the minimum angle; this could be due to a random

Table 4

Positions and Corrected Velocities for Three MSPs

PSR l b vE vp
(km s−1) (km s−1)

J1012+5307 160°. 35 50°. 86 –6.1(3) 38(8)

J1024–0719 251°. 70 40°. 52 –15.8(8) 205(30)

J1738+0333 27°. 72 17°. 74 16.8(8) –25(16)

J1903+0327 37°. 34 –1°. 01 16.0(8) 58(3)

Note. Columns are Galactic longitude and latitude of the pulsar, the LOS

component of the solar velocity, and the corrected velocity of the pulsar with

respect to its local medium. Galactic coordinates were taken from the ATNF Pulsar

Catalogue (Manchester et al. 2005, http://www.atnf.csiro.au/people/pulsar/
psrcat/).

Table 5

Significance of DM Peaks for MSPs within 10° of the Ecliptic

PSR σ DMpeak/σ θ

(10−3 pc cm−3)

J0023+0923 0.53 1.2 6°. 3

J0030+0451 0.12 44.4 1°. 5

J1614–2230 0.22 4.3 6°. 8

J2010–1323 0.18 4.2 6°. 5

Note. Columns are the rms σ of DM measurements with a solar elongation

greater than 30°, the ratio of the highest DM value in the data set over the rms,

and the minimal angle θ between the Sun and the pulsar in the nine-year data.

The rms was calculated using only DM measurements with 30q >  to avoid

contamination from the peak DM value.

16

The Astrophysical Journal, 841:125 (21pp), 2017 June 1 Jones et al.

http://www.atnf.csiro.au/people/pulsar/psrcat/
http://www.atnf.csiro.au/people/pulsar/psrcat/


Figure 11.MSP trajectories are plotted with color mapping the DM at each epoch. The trajectories are calculated assuming that all the free electrons along the LOS are
sitting in a phase screen halfway between the Earth and the MSP; the trajectory is then the projected motion of the pulsar on the phase screen. The axes depict the
space traversed at the phase screen in au in the R.A. and decl. directions. The pulsar’s motion starts at (0, 0). Pulsars closer to the ecliptic will show a tighter sinusoid
than those farther away. The trajectory plot can be used to show limited localized structure. PSRs J1944+0907 and J2317+1439 show a monotonically increasing or
decreasing DM, which could be due to a DM gradient along the direction of motion. PSR J2010–1323 shows an increasing DM in the direction of the pulsar’s motion
as well as high DM regions in the same part of its trajectory every year, suggesting a localized overdensity along the line of sight to the pulsar.
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solar outflow that was not present during subsequent passes

near the Sun. Comparison to an inverse square density model

for the solar wind is difficult here as the model is an average

and hence does not include solar events. The effects of the solar

wind are clear in the pulsars with an apparent anticorrelation

between the peak DM and solar elongation angle. However,

because the solar wind can vary stochastically, the previous

models may not represent the data fully.
The DM varies by one error bar over a timescale between one

month and one year (30 days td< < 365 days) for 18 MSPs. An

additional 11 MSPs had a td approximate to or smaller than the

cadence of our observations (about one month). Only four MSPs

showed no DM variations beyond measurement error on

timescales less than one year, with no measurement calculable

for four MSPs due to the absence of a predictable trend to use as

a model. This illustrates how quickly the DM can vary by a

significant amount and the necessity of observing at approxi-

mately week cadences and fitting for DM at every epoch.
The DM trajectory maps (Figures 8 through 11) are useful in

visualizing various ISM features that the pulsar is encountering. A

gradient in DM that is in the same direction as the pulsar’s motion,

as with PSRs J1024–0719 and J1643–1224, for example, could be

indicative of an increasing or decreasing distance between Earth
and the pulsar or of the pulsar moving through a density gradient.
A gradient across the trajectory that is not in line with the pulsar’s
motion, as with PSRs J0613–0200 and J1614–2230, cannot arise
solely from a change in distance. This coincides with the presence
of systematic variations: pulsars with linear trends presenting as
gradients along the direction of motion and periodic variations due
to an overdensity that the pulsar repeatedly probes as it passes
through the same LOS annually. Using PSR J0613–0200 as an
example, assuming there is a 2D gradient in DM crossing the LOS
in front of the pulsar, we find that the gradient has an amplitude of

xd dDM 2.6 10 4» ´ - pc cm−3 au−1 roughly perpendicular to
the direction of motion on the sky.

5.2. Structure Functions

We have computed SFs for MSPs whose diffractive
timescales could be calculated or obtained from the literature,
as seen in Table 3. SFs (see Figures 12 and 13) could be
calculated for 15 of 37 MSPs in the data release. Three MSPs
(PSRs J1832–0836, B1953+29, and J2017+0603) whose
diffractive timescales were available were omitted because
there was fewer than two years of continuous DM

Figure 12. Structure functions for the DM variations, calculated for the MSPs with measured diffractive timescales. Error bars extending to the bottom of the frame
signify an upper limit (in agreement with You et al. 2007). The solid gray lines signify a quadratic power law, and the dotted lines signify a Kolmogorov power law,
which are anchored to the diffractive timescale, while the solid black lines are the best fits for the model. The errors associated with β are 1s errors.
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measurements. Fit power spectral values can also be seen in

Table 3. PSRs J0030+0451 and J2145–0750 show fairly flat
SFs, which is most likely a result of a data set dominated by

white noise. Keith et al. (2013) show a SF for J2145–0750
exhibiting a similar structure at shorter time lags, but the error

bars are too large to allow a detailed comparison.
For J1600–3053, Keith et al. (2013) measure a Kolmogorov

SF; You et al. (2007) mention it as being quadratic at shorter
time lags and becoming less steep at higher lags. Our analysis

shows apparent white noise domination for time lags below

∼100 days, beyond which the SF is bit more shallow than
Kolmogorov for the majority of time lags.

PSRs J0613–0200, J1024–0719, J1643–1224, B1855+09,

and J2317+1439 show nearly quadratic power spectra. Our

calculated SF for J0613–0200 agrees with You et al. (2007).
The SF for J1643–1224 resembles that in Keith et al. (2013).

You et al. (2007) show a power-law exponent between the
expected values for a quadratic and Kolmogorov medium at

shorter time lags, with the SF exhibiting a power spectrum
below Kolomogorov at higher lags. Our analysis shows a

nearly quadratic power law with a distinct turnover present at a

time lag of one year before climbing again at higher lags. This
could be indicative of an underlying Kolmogorov medium.

You et al. (2007) do not calculate an SF for J1744–1134, but

they predict it would be Kolmogorov based on previous

d dtDM measurements. Our calculation compares well to
Keith et al. (2013), starting out dominated by white noise and

then ending roughly Kolmogorov at higher lags. Our analysis
finds a power spectrum below Kolmogorov.

PSRs J1614–2230, J2145–0750, J1909–3744, and J1944
+0907 are roughly Kolmogorov. PSR J1909–3744 compares

well to the calculation in Lam et al. (2016). PSRs J1600–3053,
J1713+0747, J1744–1134, and B1937+21 have power-law

indices lower than expected for a Kolmogorov medium. PSR
J0030+0451 has too large an uncertainty on β for a definitive
comparison.
The periods found by the SF fitting analysis agree within

errors with those found by the DM time series trend analysis
for all pulsars except one. A periodic trend was detected in the
DM time series PSR B1855+09 but was not found by the SF
analysis.
Here we discuss specific pulsars of interest.

5.2.1. PSR J1713+0747

You et al. (2007) show the SF for J1713+0747 as being less
steep than a quadratic power law at higher time lags, as do
Keith et al. (2013). The SF calculated here looks almost white
noise dominated; removing the DM event occurring around
MJD 54750 (2008–2009) and recalculating the SF still yields
what looks like a spectrum dominated by white noise. We do
not believe this is purely white noise because of the correlated
structure we see in the time series. However, if that power is
evenly distributed over the range of time lags we are concerned
with, then the SF will appear constant with lag.
Given the time of the observation immediately before the

sharp decrease in DM on MJD 54751 and the epoch at which
the DM is once again within 1s of the average value, we find
an upper limit for the DM event of ∼200 days; using the
transverse velocity and distance from Table 1 and assuming the
structure responsible is located at the pulsar give an upper limit
size to the dispersing region of 4.0±0.1 au. With the
increased amount of data in the IPTA data set, Lentati et al.
(2016) are able to sample the DM event more effectively. They
identify the DM event as spanning ∼100 days, with the
minimum DM occurring at ∼MJD 54757.

Figure 13. Structure functions for the DM variations, calculated for the MSPs with measured diffractive timescales. Error bars extending to the bottom of the frame
signify an upper limit (in agreement with You et al. 2007). The solid gray lines signify a quadratic power law, and the dotted lines signify a Kolmogorov power law,
which are anchored to the diffractive timescale, while the solid black lines are the best fits for the model. The errors associated with β are 1s errors.
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5.2.2. PSR B1855+09

PSR B1855+09 shows a linear SF that does not align with
the Kolmogorov or quadratic trend lines when using the
diffractive timescale listed in Table 3. This could be due to an
incorrect or varying diffractive timescale; adding the diffractive
timescale as another fitted parameter when fitting the SF gives a
value of 55 1DtD =  minutes, which is more than double
the calculated values. The resulting SF is nearly quadratic, with
some white noise dominating at small time lags.

5.2.3. PSR B1937+21

There is an extensive history of SF analysis for B1937+21.
Kaspi et al. (1994) found a power-law exponent of
β=3.874±0.011 with a little more than 8 years of data.
Cordes et al. (1990) found a similar β value that falls between a
Kolmogorov and quadratic power spectrum, which agrees with
our data at lower lags. Ramachandran et al. (2006) found a
lower value of β=3.66±0.04 (compared to our 3.59± 0.01)
from 1983 to 2004 that is consistent with a Kolmogorov
medium. As with previous studies, Keith et al. (2013) also
show a steady decrease in the DM through the end of 2010 and
show a similar Kolmogorov-consistent SF. However, in 2011,
the DM started to continuously increase through 2013, which is
not a date range that any of the previously calculated SFs
covered. It is likely that this latest increase in DM is the reason
for the dips at higher lags that are not present in previous
data sets.

6. Discussion

We examined a large set of DM time series from the
NANOGrav data set and found evidence on timescales as small
as weeks of variations in the vast majority of them. We found
evidence of linear trends and annual periodicities, in addition to
evidence for discrete ISM structures and one significant
nonannual periodicity. We calculated and interpreted SFs for
a subset of MSPs and examined DM variations due to LOS
motions. These SFs often appear non-Kolmogorov, but we
show that this can be due to the presence of trends in the data
and does not necessarily indicate a non-Kolmogorov medium.

DM measurements can inform us about the free electron
density along the LOS to a pulsar. In addition, trends due to the
changing LOS over time aid in investigating structure in the
ISM. Linear trends may be caused by parallel or transverse
motion when the free electron density may be changing to a
higher- or lower-than-average density in a region. Lam et al.
(2016) show that DM variations due to a changing distance
between Earth and the pulsar are dominated by parallel motion
and that the transverse motion is negligible, entering only as a
second-order consideration. The free electron density along a
particular LOS is typically assumed to be temporally invariant.

Examining the scintillation parameters and flux densities of
MSPs exhibiting linear DM trends can inform if this is an
accurate assumption for that particular LOS. Looking at the
LOS velocities for four pulsars, we expect that three of them
(PSRs J1012+5307, J1024–0719, and J1738+0333) are
consistent with exhibiting linear trends, due to the pulsar’s
increasing distance. The DM variation amplitude is much larger
than expected given the average Galactic free electron density,
indicating that the pulsars may be in overdense regions or
ionize the materials along their paths (Chatterjee &
Cordes 2004). A transverse gradient may also contribute to
the apparent DM variations; from our analysis we can only say
that a changing distance may be ruled out as the cause. The
velocity and direction of motion of PSR J1903+0327 suggest
that its increasing distance from the Earth cannot explain its
trend. Another effect (i.e., transverse component) must be
present for this pulsar. Annual variations may be due to a
variety of solar effects, and their amplitude is influenced by the
relative velocity of the MSP when compared to the Earth’s
orbital motion as well as the Sun’s velocity as it moves through
the Galaxy. We see specific cases where the solar wind is the
dominant factor in producing annual variations. For others,
variations could be due to a cloud or gradient along the LOS.
Scintillation parameters and fluxes could indicate whether
variations were due to clumps, refraction, scattering variability,
or local increases in electron density (such as solar wind;
Stinebring & Condon 1990; Clegg et al. 1998; Stinebring
et al. 2000; Lentati et al. 2017). Future work may result in some
determination, particularly if scintillation parameters over time
are available and incorporated.
The relationship between linear and periodic variations and

the direction of a gradient along the LOS can also be visualized
by DM trajectory maps. Five MSPs show only annual trends
and 14 show only linear trends, while 14 exhibit both trends.
More than one-half of the MSPs showed significant DM
variation beyond our measurement error over the timescale of
one month to one year. Eleven MSPs have timescales less than
31 days, which is on par with the average cadence of our
observations. Of those, four MSPs have timescales of 14 days
or less, which is the size of the fitting window used for DMX in
the nine-year data release. It is therefore imperative that we fit
for DM at every epoch because of the scale of the variations
over these timescales, as well as observe as often as possible to
minimize the time between DM measurements because of the
rapid variation seen in some MSPs.
For three PSRs, the SFs appear to be dominated by white

noise, resulting in a flat power spectrum. Three MSPs have
very nearly quadratic power spectra, with two (PSRs
J1024–0719 and J2317+1439) having a β value within 1%
of quadratic. Lam et al. (2016) suggest that discrete structures
in the ISM as well as the changing distance will contaminate

Figure 14. Lomb–Scargle periodogram for PSR J0645+5158, shown with frequency (left) as well as period (right). The highest peak occurs at a period of ∼200 days
with a false-alarm probability of 0.54%, with a secondary peak at an approximately annual period with ∼30% FAP. Large peaks at the minimum and maximum
possible periods correspond to the cadence of observations and the length of the data set, respectively, and are therefore artifacts of the data acquisition.
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the SF, resulting in a quadratic power spectrum. This steeper-
than-Kolmogorov value could indicate that the time lag is
smaller than the crossing time for the structure probed during
the time series. Values higher than consistent with a
Kolmogorov medium could be attributed to present trends or
systematic variations in addition to a Kolmogorov medium,
particularly with the previously discussed difficulties in
disentangling a linear trend component from a stochastic one.
We cannot impose priors without assuming something about
the contributions from the ISM that we are trying to constrain,
and which may not actually be the case. There are also more
possible sources of error in the calculation of the β values than
we have included. We have accounted for the random and
stochastic uncertainties but not systematic uncertainties, which
can result from variability of white noise statistics over time
from changing back ends, the variation in the diffractive
timescale, and the fact that the models used here could be
incomplete in describing the ISM. Therefore, while the β
values presented here are illustrative, their errors bars are likely
underestimated. In addition, care should be taken when using
these values to make inferences about the ISM because possible
covariances and systematics may be present.
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