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The “Narratives” collection aggregates a variety of functional MRI datasets collected while human 

subjects listened to naturalistic spoken stories. The current release includes 345 subjects, 891 functional 
scans, and 27 diverse stories of varying duration totaling ~4.6 hours of unique stimuli (~43,000 words). 
This data collection is well-suited for naturalistic neuroimaging analysis, and is intended to serve as 

a benchmark for models of language and narrative comprehension. We provide standardized MRI 

data accompanied by rich metadata, preprocessed versions of the data ready for immediate use, and 

the spoken story stimuli with time-stamped phoneme- and word-level transcripts. All code and data 

are publicly available with full provenance in keeping with current best practices in transparent and 

reproducible neuroimaging.

Background & Summary
We use language to build a shared understanding of the world. In speaking, we package certain brain states into 
a sequence of linguistic elements that can be transmitted verbally, through vibrations in the air; in listening, we 
expand a verbal transmission into the intended brain states, bringing our own experiences to bear on the inter-
pretation1. �e neural machinery supporting this language faculty presents a particular challenge for neurosci-
ence. Certain aspects of language are uniquely human2, limiting the e�cacy of nonhuman animal models and 
restricting the use of invasive methods (for example, only humans recursively combine linguistic elements into 
complex, hierarchical expressions with long-range dependencies3,4). Language is also very dynamic and contex-
tualized. Linguistic narratives evolve over time: the meaning of any given element depends in part on the history 
of elements preceding it and certain elements may retroactively resolve the ambiguity of preceding elements. �is 
makes it di�cult to decompose natural language using traditional experimental manipulations5–7.

Noninvasive neuroimaging tools, such as functional MRI, have laid the groundwork for a neurobiology of 
language comprehension8–14. Functional MRI measures local �uctuations in blood oxygenation—referred to as 
the blood-oxygen-level-dependent (BOLD) signal—associated with changes in neural activity over the course of 
an experimental paradigm15–18. Despite relatively poor temporal resolution (e.g. one sample every 1–2 seconds), 
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fMRI allows us to map brain-wide responses to linguistic stimuli at a spatial resolution of millimeters. A large 
body of prior work has revealed a partially le�-lateralized network of temporal and frontal cortices encoding 
acoustic-phonological19–22, syntactic23–25, and semantic features26,27 of linguistic stimuli (with considerable indi-
vidual variability28–30). �is work has historically been grounded in highly-controlled experimental paradigms 
focusing on isolated phonemes31,32, single words33–35, or contrasting sentence manipulations36–41 (with some 
exceptions42–44). While these studies have provided a tremendous number of insights, the vast majority rely 
on highly-controlled experimental manipulations with limited generalizability to natural language5,45. Recent 
work, however, has begun extending our understanding to more ecological contexts using naturalistic text46 and 
speech47.

In parallel, the machine learning community has made tremendous advances in natural language process-
ing48,49. Neurally-inspired computational models are beginning to excel at complex linguistic tasks such as 
word-prediction, summarization, translation, and question-answering50,51. Rather than using symbolic lexical 
representations and syntactic trees, these models typically rely on vectorial representations of linguistic content52: 
linguistic elements that are similar in some respect are encoded nearer to each other in a continuous embed-
ding space, and seemingly complex linguistic relations can be recovered using relatively simple arithmetic opera-
tions53,54. In contrast to experimental traditions in linguistics and neuroscience, machine learning has embraced 
complex, high-dimensional models trained on enormous corpora of real-world text, emphasizing predictive 
power over interpretability55–57.

We expect that a reconvergence of these research trajectories supported by “big” neural data will be mutually 
bene�cial45,58. Public, well-curated benchmark datasets can both accelerate research and serve as useful didactic 
tools (e.g. MNIST59, CIFAR60). Furthermore, there is a societal bene�t to sharing human brain data: fMRI data are 
expensive to acquire and the reuse of publicly shared fMRI data is estimated to have saved billions in public fund-
ing61. Public data also receive much greater scrutiny, with the potential to reveal (and rectify) “bugs” in the data or 
metadata. Although public datasets released by large consortia have propelled exploratory research forward62,63, 
relatively few of these include naturalistic stimuli (cf. movie-viewing paradigms in Cam-CAN64,65, HBN66, HCP 
S120063). On the other hand, maturing standards and infrastructure67–69 have enabled increasingly widespread 
sharing of smaller datasets from the “long tail” of human neuroimaging research70. We are beginning to see a 
proliferation of public neuroimaging datasets acquired using rich, naturalistic experimental paradigms46,71–84. �e 
majority of these datasets are not strictly language-oriented, comprising audiovisual movie stimuli rather than 
audio-only spoken stories.

With this in mind, we introduce the “Narratives” collection of naturalistic story-listening fMRI data for eval-
uating models of language85. �e Narratives collection comprises fMRI data collected over the course of seven 
years by the Hasson and Norman Labs at the Princeton Neuroscience Institute while participants listened to 27 
spoken story stimuli ranging from ~3 minutes to ~56 minutes for a total of ~4.6 hours of unique stimuli (~43,000 
words; Table 1). �e collection currently includes 345 unique subjects contributing 891 functional scans with 
accompanying anatomical data and metadata. In addition to the MRI data, we provide demographic data and 
comprehension scores where available. Finally, we provide the auditory story stimuli, as well as time-stamped 
phoneme- and word-level transcripts in hopes of accelerating analysis of the linguistic content of the data. �e 
data are standardized according to the Brain Imaging Data Structure86 (BIDS 1.2.1; https://bids.neuroimaging.io/; 
RRID:SCR_016124), and are publicly available via OpenNeuro87 (https://openneuro.org/; RRID:SCR_005031): 
https://openneuro.org/datasets/ds002345. Derivatives of the data, including preprocessed versions of the data 
and stimulus annotations, are available with transparent provenance via DataLad88,89 (https://www.datalad.org/; 
RRID:SCR_003931): http://datasets.datalad.org/?dir=/labs/hasson/narratives.

We believe these data have considerable potential for reuse because naturalistic spoken narratives are rich 
enough to support testing of a wide range of meaningful hypotheses about language and the brain5,7,45,90–95. �ese 
hypotheses can be formalized as quantitative models and evaluated against the brain data96,97 (Fig. 1a). For exam-
ple, the Narratives data are particularly well-suited for evaluating models capturing linguistic content ranging 
from lower-level acoustic features98–100 to higher-level semantic features47,101–103. More broadly, naturalistic data 
of this sort can be useful for evaluating shared information across subjects104,105, individual di�erences77,106–108, 
algorithms for functional alignment81,109–113, models of event segmentation and narrative context114–118, and func-
tional network organization119–122. In the following, we describe the Narratives data collection and provide several 
perspectives on data quality.

Methods
Participants. Data were collected over the course of roughly seven years, from October, 2011 to September, 
2018. Participants were recruited from the Princeton University student body as well as non-university-a�l-
iated members of the broader community in Princeton, NJ. All participants provided informed, written con-
sent prior to data collection in accordance with experimental procedures approved by Princeton University 
Institutional Review Board. Across all datasets, 345 adults participated in data collection (ages 18–53 years, mean 
age 22.2 ± 5.1 years, 204 reported female). Demographics for each dataset are reported in the “Narrative datasets” 
section. Both native and non-native English speakers are included in the dataset, but all subjects reported �uency 
in English (our records do not contain detailed information on �uency in other languages). All subjects reported 
having normal hearing and no history of neurological disorders.

Experimental procedures. Upon arriving at the fMRI facility, participants �rst completed a simple demo-
graphics questionnaire, as well as a comprehensive MRI screening form. Participants were instructed to listen 
and pay attention to the story stimulus, remain still, and keep their eyes open. In some cases, subject wake-
fulness was monitored in real-time using an eye-tracker. Stimulus presentation was implemented using either 
Psychtoolbox123,124 or PsychoPy125–127. In some cases a centrally-located �xation cross or dot was presented 
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throughout the story stimulus; however, participants were not instructed to maintain �xation. Auditory story 
stimuli were delivered via MRI-compatible insert earphones (Sensimetrics, Model S14); headphones or foam 
padding were placed over the earphones to reduce scanner noise. In most cases, a volume check was performed 
to ensure that subjects could comfortably hear the auditory stimulus over the MRI acquisition noise prior to 
data collection. A sample audio stimulus was played during an EPI sequence (that was later discarded) and the 
volume was adjusted by either the experimenter or subject until the subject reported being able to comfortably 
hear and understand the stimulus. In the staging/ directory on GitHub, we provide an example stimulus 
presentation PsychoPy script used with the “Pie Man (PNI)”, “Running from the Bronx (PNI)”, “I Knew You Were 
Black”, and “�e Man Who Forgot Ray Bradbury” stories (story_presentation.py), as well as an example 
volume-check script (soundcheck_presentation.py; see “Code availability”).

For many datasets in this collection, story scans were accompanied by additional functional scans including 
di�erent stories or other experimental paradigms, as well as auxiliary anatomical scans. In all cases, an entire 
story stimulus was presented in a single scanning run; however, in some cases multiple independent stories were 
collected in a single scanning run (the “Slumlord” and “Reach for the Stars One Small Step at a Time” stories, and 
the “Schema” stories; see the “Narrative datasets” section below). In scanning sessions with multiple stories and 
scanning runs, participants were free to request volume adjustments between scans (although this was uncom-
mon). Participants were debriefed as to the purpose of a given experiment at the end of a scanning session, and 
in some cases �lled out follow-up questionnaires evaluating their comprehension of the stimuli. Speci�cal proce-
dural details for each dataset are described in the “Narrative datasets” section below.

Stimuli. To add to the scienti�c value of the neuroimaging data, we provide waveform (WAV) audio �les 
containing the spoken story stimulus for each dataset (e.g. pieman_audio.wav). Audio �les were edited 
using the open source Audacity so�ware (https://www.audacityteam.org). �ese audio �les served as stimuli 
for the publicly-funded psychological and neuroscienti�c studies described herein. �e stimuli are intended for 
non-pro�t, non-commercial scholarly use—principally feature extraction—under “fair use” or “fair dealing” pro-
visions; (re)sharing and (re)use of these media �les is intended to respect these guidelines128. Story stimuli span 
a variety of media, including commercially-produced radio and internet broadcasts, authors and actors reading 
written works, professional storytellers performing in front of live audiences, and subjects verbally recalling pre-
vious events (in the scanner). Manually written transcripts are provided with each story stimulus. �e speci�c 
story stimuli for each dataset are described in more detail in the “Narrative datasets” section below. In total, the 
auditory stories sum to roughly 4.6 hours of unique stimuli corresponding to 11,149 TRs (excluding TRs acquired 
with no auditory story stimulus). Concatenating across all subjects, this amounts to roughly 6.4 days worth of 
story-listening fMRI data, or 369,496 TRs.

By including all stimuli in this data release, researchers can extract their choice of linguistic features for model 
evaluation7,129, opening the door to many novel scienti�c questions. To kick-start this process, we used Gentle 

Story Duration TRs Words Subjects

“Pie Man” 07:02 282 957 82

“Tunnel Under the World” 25:34 1,023 3,435 23

“Lucy” 09:02 362 1,607 16

“Pretty Mouth and Green My Eyes” 11:16 451 1,970 40

“Milky Way” 06:44 270 1,058 53

“Slumlord” 15:03 602 2,715 18

“Reach for the Stars One Small Step at a Time” 13:45 550 2,629 18

“It’s Not the Fall �at Gets You” 09:07 365 1,601 56

“Merlin” 14:46 591 2,245 36

“Sherlock” 17:32 702 2,681 36

“Schema” 23:12 928 3,788 31

“Shapes” 06:45 270 910 59

“�e 21st Year” 55:38 2,226 8,267 25

“Pie Man (PNI)” 06:40 267 992 40

“Running from the Bronx (PNI)” 08:56 358 1,379 40

“I Knew You Were Black” 13:20 534 1,544 40

“�e Man Who Forgot Ray Bradbury” 13:57 558 2,135 40

Total: 4.6 hours 11,149 TRs 42,989 words

Total across subjects: 6.4 days 369,496 TRs 1,399,655 words

Table 1. �e “Narratives” datasets summarized in terms of duration, word count, and sample size. Some 
subjects participated in multiple experiments resulting in overlapping samples. Note that for the “Milky Way” 
and “Shapes” datasets, we tabulate the duration and word count only once for closely related experimental 
manipulations, respectively (re�ected in the total durations at bottom). For the “Schema” dataset, we indicate 
the sum of the duration and word counts across eight brief stories. We do not include the temporally scrambled 
versions of the “It’s Not the Fall �at Gets You Dataset” in the duration and word totals.
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0.10.1130 to create time-stamped phoneme- and word-level transcripts for each story stimulus in an automated 
fashion. Gentle is a robust, lenient forced-alignment algorithm that relies on the free and open source Kaldi auto-
mated speech recognition so�ware131 and the Fisher English Corpus132. �e initial (non-time-stamped) written 
transcripts were manually transcribed by the authors and supplied to the Gentle forced-alignment algorithm 
alongside the audio �le. �e �rst-pass output of the forced-alignment algorithm was visually inspected and any 
errors in the original transcripts were manually corrected; then the corrected transcripts were resubmitted to the 
forced-alignment algorithm to generate the �nal time-stamped transcripts.

�e Gentle forced-alignment so�ware generates two principal outputs. First, a simple word-level transcript 
with onset and o�set timing for each word is saved as a tabular CSV �le. Each row in the CSV �le corresponds to a 
word. �e CSV �le contains four columns (no header) where the �rst column indicates the word from the written 
transcript, the second column indicates the corresponding word in the vocabulary, the third column indicates 
the word onset timing from the beginning of the stimulus �le, and the fourth column indicates the word o�set 
timing. Second, Gentle generates a more detailed JSON �le containing the full written transcript followed by a list 
of word entries where each entry contains �elds indicating the word (“word”) and whether word was found in the 
vocabulary (“alignedWord”), the onset (“start”) and o�set (“end”) timing of the word referenced to the beginning 
of the audio �le, the duration of each phone comprising that word (“phones” containing “phone” and “duration”), 
and a �eld (“case”) indicating whether the word was correctly localized in the audio signal. Words that were not 
found in the vocabulary are indicated by “<unk>” for “unknown” in the second column of the CSV �le or in the 
“alignedWord” �eld of the JSON �le. Words that are not successfully localized in the audio �le receive their own 
row but contain no timing information in the CSV �le, and are marked as “not-found-in-audio” in the “case” �eld 
of the JSON �le. All timing information generated by Gentle is indexed to the beginning of the stimulus audio �le. 
�is should be referenced against the BIDS-formatted events.tsv �les accompanying each scan describing 
when the story stimulus began relative to the beginning of the scan (this varies across datasets as described in the 
“Narratives datasets” section below). Some word counts may be slightly in�ated by the inclusion of dis�uencies 
(e.g. “uh”) in the transcripts. Transcripts for the story stimuli contain 42,989 words in total across all stories; 789 
words (1.8%) were not successfully localized by the forced-alignment algorithm and 651 words (1.5%) were not 
found in the vocabulary (see the get_words.py script in the code/ directory). Concatenating across all sub-
jects yields 1,399,655 words occurring over the course of 369,496 TRs.

Fig. 1 Schematic depiction of the naturalistic story-listening paradigm and data provenance. (a) At bottom, the 
full auditory story stimulus “Pie Man” by Jim O’Grady is plotted as a waveform of varying amplitude (y-axis) 
over the duration of 450 seconds (x-axis) corresponding to 300 fMRI volumes sampled at a TR of 1.5 seconds. 
An example clip (marked by vertical orange lines) is expanded and accompanied by the time-stamped word 
annotation (“I began my illustrious career in journalism in the Bronx, where I worked as a hard-boiled reporter 
for the Ram…”). �e story stimulus can be described according to a variety of models; for example, acoustic, 
semantic, or narrative features can be extracted from or assigned to the stimulus. In a prediction or model-
comparison framework, these models serve as formal hypotheses linking the stimulus to brain responses. At 
top, preprocessed fMRI response time-series from three example voxels for an example subject are plotted for 
the full duration of the story stimulus (x-axis: fMRI signal magnitude; y-axis: scan duration in TRs; red: early 
auditory cortex; orange: auditory association cortex; purple: temporoparietal junction). See the plot_
stim.py script in the code/ directory for details. (b) At bottom, MRI data, metadata, and stimuli 
are formatted according to the BIDS standard and publicly available via OpenNeuro. All derivative data are 
version-controlled and publicly available via DataLad. �e schematic preprocessing work�ow includes the 
following steps: realignment, susceptibility distortion correction, and spatial normalization with fMRIPrep; 
unsmoothed and spatially smoothed work�ows proceed in parallel; confound regression to mitigate artifacts 
from head motion and physiological noise; as well as intersubject correlation (ISC) analyses used for quality 
control in this manuscript. Each stage of the processing work�ow is publicly available and indexed by a commit 
hash (le�) providing a full, interactive history of the data collection. �is schematic is intended to provide a 
high-level summary and does not capture the full provenance in detail; for example, derivatives from MRIQC 
are also included in the public release alongside other derivatives (but are not depicted here).

https://doi.org/10.1038/s41597-021-01033-3
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Gentle packages the audio �le, written transcript, CSV and JSON �les with an HTML �le for viewing in 
a browser that allows for interactively listening to the audio �le while each word is highlighted (with its cor-
responding phones) when it occurs in the audio. Note that our forced-alignment procedure using Gentle was 
fully automated and did not include any manual intervention. �at said, the time-stamped transcripts are not 
perfect—speech dis�uencies, multiple voices speaking simultaneously, sound e�ects, and scanner noise provide 
a challenge for automated transcription. We hope this annotation can serve as a starting point, and expect that 
better transcriptions will be created in the future. We invite researchers who derive additional features and anno-
tations from the stimuli to contact the corresponding author and we will help incorporate these annotations into 
the publicly available dataset.

MRI data acquisition. All datasets were collected at the Princeton Neuroscience Institute Scully Center 
for Neuroimaging. Acquisition parameters are reproduced below in compliance with the guidelines put forward 
by the Organization for Human Brain Mapping (OHBM) Committee on Best Practices in Data Analysis and 
Sharing133 (COBIDAS), and are also included in the BIDS-formatted JSON metadata �les accompanying each 
scan. All studies used a repetition time (TR) of 1.5 seconds. Several groups of datasets di�er in acquisition param-
eters due to both experimental speci�cations and the span of years over which datasets were acquired; for exam-
ple, several of the newer datasets were acquired on a newer scanner and use multiband acceleration to achieve 
greater spatial resolution (e.g. for multivariate pattern analysis) while maintaining the same temporal resolution. 
�e “Pie Man”, “Tunnel Under the World”, “Lucy”, “Pretty Mouth and Green My Eyes”, “Milky Way”, “Slumlord”, 
“Reach for the Stars One Small Step at a Time”, “It’s Not the Fall that Gets You”, “Merlin”, “Sherlock”, and “�e 
21st Year” datasets were collected on a 3 T Siemens Magnetom Skyra (Erlangen, Germany) with a 20-channel 
phased-array head coil using the following acquisition parameters. Functional BOLD images were acquired in 
an interleaved fashion using gradient-echo echo-planar imaging (EPI) with an in-plane acceleration factor of 2 
using GRAPPA: TR/TE = 1500/28 ms, �ip angle = 64°, bandwidth = 1445 Hz/Px, in-plane resolution = 3 × 3 mm, 
slice thickness = 4 mm, matrix size = 64 × 64, FoV = 192 × 192 mm, 27 axial slices with roughly full brain cover-
age and no gap, anterior–posterior phase encoding, prescan normalization, fat suppression. In cases where full 
brain coverage was not attainable, inferior extremities were typically excluded (e.g. cerebellum, brainstem) to 
maximize coverage of the cerebral cortex. At the beginning of each run, three dummy scans were acquired and 
discarded by the scanner to allow for signal stabilization. T1-weighted structural images were acquired using a 
high-resolution single-shot MPRAGE sequence with an in-plane acceleration factor of 2 using GRAPPA: TR/
TE/TI = 2300/3.08/900 ms, �ip angle = 9°, bandwidth = 240 Hz/Px, in-plane resolution 0.859 × 0.859 mm, slice 
thickness 0.9 mm, matrix size = 256 × 256, FoV = 172.8 × 220 × 220 mm, 192 sagittal slices, ascending acquisi-
tion, anterior–posterior phase encoding, prescan normalization, no fat suppression, 7 minutes 21 seconds total 
acquisition time.

�e “Schema” and “Shapes” datasets were collected on a 3 T Siemens Magnetom Prisma with a 64-channel 
head coil using the following acquisition parameters. Functional images were acquired in an interleaved fash-
ion using gradient-echo EPI with a multiband (simultaneous multi-slice; SMS) acceleration factor of 4 using 
blipped CAIPIRINHA and no in-plane acceleration: TR/TE 1500/39 ms, �ip angle = 50°, bandwidth = 1240 Hz/
Px, in-plane resolution = 2.0 × 2.0 mm, slice thickness 2.0 mm, matrix size = 96 × 96, FoV = 192 × 192 mm, 60 
axial slices with full brain coverage and no gap, anterior–posterior phase encoding, 6/8 partial Fourier, no pres-
can normalization, fat suppression, three dummy scans. T1-weighted structural images were acquired using a 
high-resolution single-shot MPRAGE sequence with an in-plane acceleration factor of 2 using GRAPPA: TR/TE/
TI = 2530/2.67/1200 ms, �ip angle = 7°, bandwidth = 200 Hz/Px, in-plane resolution 1.0 × 1.0 mm, slice thickness 
1.0 mm, matrix size = 256 × 256, FoV = 176 × 256 × 256 mm, 176 sagittal slices, ascending acquisition, no fat sup-
pression, 5 minutes 52 seconds total acquisition time.

�e “Pie Man (PNI),” “Running from the Bronx,” “I Knew You Were Black,” and “�e Man Who Forgot Ray 
Bradbury” datasets were collected on the same 3 T Siemens Magnetom Prisma with a 64-channel head coil using 
di�erent acquisition parameters. Functional images were acquired in an interleaved fashion using gradient-echo 
EPI with a multiband acceleration factor of 3 using blipped CAIPIRINHA and no in-plane acceleration: TR/
TE 1500/31 ms, �ip angle = 67°, bandwidth = 2480 Hz/Px, in-plane resolution = 2.5 × 2.5 mm, slice thickness 
2.5 mm, matrix size = 96 × 96, FoV = 240 × 240 mm, 48 axial slices with full brain coverage and no gap, anterior–
posterior phase encoding, prescan normalization, fat suppression, three dummy scans. T1-weighted structural 
images were acquired using a high-resolution single-shot MPRAGE sequence with an in-plane acceleration factor 
of 2 using GRAPPA: TR/TE/TI = 2530/3.3/1100 ms, �ip angle = 7°, bandwidth = 200 Hz/Px, in-plane resolution 
1.0 × 1.0 mm, slice thickness 1.0 mm, matrix size = 256 × 256, FoV = 176 × 256 × 256 mm, 176 sagittal slices, 
ascending acquisition, no fat suppression, prescan normalization, 5 minutes 53 seconds total acquisition time. 
T2-weighted structural images were acquired using a high-resolution single-shot MPRAGE sequence with an 
in-plane acceleration factor of 2 using GRAPPA: TR/TE = 3200/428 ms, �ip angle = 120°, bandwidth = 200 Hz/
Px, in-plane resolution 1.0 × 1.0 mm, slice thickness 1.0 mm, matrix size = 256 × 256, FoV = 176 × 256 × 256 mm, 
176 sagittal slices, interleaved acquisition, no prescan normalization, no fat suppression, 4 minutes 40 seconds 
total acquisition time.

MRI preprocessing. Anatomical images were de-faced using the automated de-facing so�ware pydeface 
2.0.0134 prior to further processing (using the run_pydeface.py script in the code/ directory). MRI data 
were subsequently preprocessed using fMRIPrep 20.0.5135,136 (RRID:SCR_016216; using the run_fmriprep.
sh script in the code/ directory). FMRIPrep is a containerized, automated tool based on Nipype 1.4.2137,138 
(RRID:SCR_002502) that adaptively adjusts to idiosyncrasies of the dataset (as captured by the metadata) to 
apply the best-in-breed preprocessing work�ow. Many internal operations of fMRIPrep functional processing 
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work�ow use Nilearn 0.6.2139 (RRID:SCR_001362). For more details of the pipeline, see the section correspond-
ing to workflows in fMRIPrep’s documentation. The containerized fMRIPrep software was deployed using 
Singularity 3.5.2-1.1.sdl7140. �e fMRIPrep Singularity image can be built from Docker Hub (https://hub.docker.
com/r/poldracklab/fmriprep/; e.g. singularity build fmriprep-20.0.5.simg docker://pol-
dracklab/fmriprep:20.0.5). �e fMRIPrep outputs and visualization can be found in the fmriprep/ 
directory in derivatives/ available via the DataLad release. �e fMRIPrep work�ow produces two prin-
cipal outputs: (a) the functional time series data in one more output space (e.g. MNI space), and (b) a collection of 
confound variables for each functional scan. In the following, we describe fMRIPrep’s anatomical and functional 
work�ows, as well as subsequent spatial smoothing and confound regression implemented in AFNI 19.3.0141,142 
(RRID:SCR_005927).

The anatomical MRI T1-weighted (T1w) images were corrected for intensity non-uniformity with 
N4BiasFieldCorrection 143, distributed with ANTs 2.2.0144 (RRID:SCR_004757), and used as 
T1w-reference throughout the work�ow. �e T1w-reference was then skull-stripped with a Nipype implementa-
tion of the antsBrainExtraction.sh (from ANTs) using the OASIS30ANTs as the target template. Brain 
tissue segmentation of cerebrospinal �uid (CSF), white-matter (WM), and gray-matter (GM) was performed 
on the brain-extracted T1w using fast145 (FSL 5.0.9; RRID:SCR_002823). Brain surfaces were reconstructed 
using recon-all146,147 (FreeSurfer 6.0.1; RRID:SCR_001847), and the brain mask estimated previously was 
re�ned with a custom variation of the method to reconcile ANTs-derived and FreeSurfer-derived segmentations 
of the cortical gray-matter from Mindboggle148 (RRID:SCR_002438). Volume-based spatial normalization to 
two commonly-used standard spaces (MNI152NLin2009cAsym, MNI152NLin6Asym) was performed through 
nonlinear registration with antsRegistration (ANTs 2.2.0) using brain-extracted versions of both T1w 
reference and the T1w template. �e following two volumetric templates were selected for spatial normaliza-
tion and deployed using TemplateFlow149: (a) ICBM 152 Nonlinear Asymmetrical Template Version 2009c150 
(RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym), and (b) FSL’s MNI ICBM 152 Non-linear 
6th Generation Asymmetric Average Brain Stereotaxic Registration Model151 (RRID:SCR_002823; TemplateFlow 
ID: MNI152NLin6Asym). Surface-based normalization based on nonlinear registration of sulcal curvature was 
applied using the following three surface templates152 (FreeSurfer reconstruction nomenclature): fsaverage, fsav-
erage6, fsaverage5.

The functional MRI data were preprocessed in the following way. First, a reference volume and its 
skull-stripped version were generated using a custom methodology of fMRIPrep. A deformation �eld to cor-
rect for susceptibility distortions was estimated using fMRIPrep’s �eldmap-less approach. �e deformation 
field results from co-registering the BOLD reference to the same-subject T1w-reference with its intensity 
inverted153,154. Registration was performed with antsRegistration (ANTs 2.2.0), and the process was reg-
ularized by constraining deformation to be nonzero only along the phase-encoding direction, and modulated 
with an average �eldmap template155. Based on the estimated susceptibility distortion, a corrected EPI reference 
was calculated for more accurate co-registration with the anatomical reference. �e BOLD reference was then 
co-registered to the T1w reference using bbregister (FreeSurfer 6.0.1), which implements boundary-based 
registration156. Co-registration was con�gured with six degrees of freedom. Head-motion parameters with respect 
to the BOLD reference (transformation matrices, and six corresponding rotation and translation parameters) 
are estimated before any spatiotemporal �ltering using mcflirt (FSL 5.0.9)157–159. BOLD runs were slice-time 
corrected using 3dTshift from AFNI 20160207160. �e BOLD time-series were resampled onto the follow-
ing surfaces: fsaverage, fsaverage6, fsaverage5. �e BOLD time-series (including slice-timing correction when 
applied) were resampled onto their original, native space by applying a single, composite transform to correct for 
head-motion and susceptibility distortions. �ese resampled BOLD time-series are referred to as preprocessed 
BOLD in original space, or just preprocessed BOLD. �e BOLD time-series were resampled into two volumet-
ric standard spaces, correspondingly generating the following spatially-normalized, preprocessed BOLD runs: 
MNI152NLin2009cAsym, MNI152NLin6Asym. A reference volume and its skull-stripped version were �rst gen-
erated using a custom methodology of fMRIPrep. All resamplings were performed with a single interpolation 
step by composing all the pertinent transformations (i.e. head-motion transform matrices, susceptibility distor-
tion correction, and co-registrations to anatomical and output spaces). Gridded (volumetric) resamplings were 
performed using antsApplyTransforms (ANTs 2.2.0), con�gured with Lanczos interpolation to minimize 
the smoothing e�ects of other kernels161. Non-gridded (surface) resamplings were performed using mri_vol-
2surf (FreeSurfer 6.0.1).

Several confounding time-series were calculated based on the preprocessed BOLD: framewise displacement 
(FD), DVARS, and three region-wise global signals. FD and DVARS are calculated for each functional run, both 
using their implementations in Nipype162. �e three global signals are extracted within the CSF, the WM, and the 
whole-brain masks. Additionally, a set of physiological regressors were extracted to allow for component-based 
noise correction (CompCor)163. Principal components are estimated a�er high-pass �ltering the preprocessed 
BOLD time-series (using a discrete cosine �lter with 128 s cut-o�) for the two CompCor variants: temporal 
(tCompCor) and anatomical (aCompCor). �e tCompCor components are then calculated from the top 5% var-
iable voxels within a mask covering the subcortical regions. �is subcortical mask is obtained by heavily eroding 
the brain mask, which ensures it does not include cortical GM regions. For aCompCor, components are calcu-
lated within the intersection of the aforementioned mask and the union of CSF and WM masks calculated in T1w 
space, a�er their projection to the native space of each functional run (using the inverse BOLD-to-T1w transfor-
mation). Components are also calculated separately within the WM and CSF masks. For each CompCor decom-
position, the k components with the largest singular values are retained, such that the retained components’ time 
series are su�cient to explain 50 percent of variance across the nuisance mask (CSF, WM, combined, or tempo-
ral). �e remaining components are dropped from consideration. �e head-motion estimates calculated in the 
correction step were also placed within the corresponding confounds �le. �e confound time series derived from 
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head motion estimates and global signals were expanded with the inclusion of temporal derivatives and quadratic 
terms for each164. Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardised DVARS were annotated as 
motion outliers. All of these confound variables are provided with the dataset for researchers to use as they see �t. 
HTML �les with quality control visualizations output by fMRIPrep are available via DataLad.

We provide spatially smoothed and non-smoothed versions of the preprocessed functional data returned 
by fMRIPrep (smoothing was implemented using the run_smoothing.py script in the code/ directory). 
Analyses requiring voxelwise correspondence across subjects, such as ISC analysis165, can bene�t from spatial 
smoothing due to variability in functional–anatomical correspondence across individuals—at the expense of 
spatial speci�city (�ner-grained intersubject functional correspondence can be achieved using hyperalignment 
rather than spatial smoothing81,113,166). �e smoothed and non-smoothed outputs (and subsequent analyses) 
can be found in the afni-smooth/ and afni-nosmooth/ directories in derivatives/ available via 
DataLad. To smooth the volumetric functional images, we used 3dBlurToFWHM in AFNI 19.3.0141,142 which 
iteratively measures the global smoothness (ratio of variance of �rst di�erences across voxels to global variance) 
and local smoothness (estimated within 4 mm spheres), then applies local smoothing to less-smooth areas until 
the desired global smoothness is achieved. All smoothing operations were performed within a brain mask to 
ensure that non-brain values were not smoothed into the functional data (see the brain_masks.py script 
in the code/ directory). For surface-based functional data, we applied smoothing SurfSmooth in AFNI, 
which uses a similar iterative algorithm for smoothing surface data according to geodesic distance on the cortical 
mantle167,168. In both cases, data were smoothed until a target global smoothness of 6 mm FWHM was met (i.e. 
2–3 times original voxel sizes169). Equalizing smoothness is critical to harmonize data acquired across di�erent 
scanners and protocols170.

We next temporally �ltered the functional data to mitigate the e�ects of confounding variables. Unlike tra-
ditional task fMRI experiments with a well-de�ned event structure, the goal of regression was not to estimate 
regression coe�cients for any given experimental conditions; rather, similar to resting-state functional connec-
tivity analysis, the goal of regression was to model nuisance variables, resulting in a “clean” residual time series. 
However, unlike conventional resting-state paradigms, naturalistic stimuli enable intersubject analyses, which 
are less sensitive to idiosyncratic noises than within-subject functional connectivity analysis typically used with 
resting-state data119,171. With this in mind, we used a modest confound regression model informed by the rich 
literature on confound regression for resting-state functional connectivity172,173. AFNI’s 3dTproject was used 
to regress out the following nuisance variables (via the extract_confounds.py and run_regression.
py scripts in the code/ directory): six head motion parameters (three translation, three rotation), the �rst �ve 
principal component time series from an eroded CSF and a white matter mask163,174, cosine bases for high-pass 
�ltering (using a discrete cosine �lter with cuto�: 128 s, or ~0.0078 Hz), and �rst- and second-order detrend-
ing polynomials. �ese variables were included in a single regression model to avoid reintroducing artifacts by 
sequential �ltering175. �e scripts used to perform this regression and the residual time series are provided with 
this data release. �is processing work�ow ultimately yields smoothed and non-smoothed versions of the “clean” 
functional time series data in several volumetric and surface-based standard spaces.

Computing environment. In addition to so�ware mentioned elsewhere in this manuscript, all data process-
ing relied heavily on the free, open source GNU/Linux ecosystem and NeuroDebian distribution176,177 (https://
neuro.debian.net/; RRID:SCR_004401), as well as the Anaconda distribution (https://www.anaconda.com/) and 
conda package manager (https://docs.conda.io/en/latest/; RRID:SCR_018317). Many analyses relied on scienti�c 
computing so�ware in Python (https://www.python.org/; RRID:SCR_008394), including NumPy178,179 (http://
www.numpy.org/; RRID:SCR_008633), SciPy180,181 (https://www.scipy.org/; RRID:SCR_008058), Pandas182 
(https://pandas.pydata.org/; RRID:SCR_018214), NiBabel183 (https://nipy.org/nibabel/; RRID:SCR_002498), 
IPython184 (http://ipython.org/; RRID:SCR_001658), and Jupyter185 (https://jupyter.org/; RRID:SCR_018315), 
as well as Singularity containerization140 (https://sylabs.io/docs/) and the Slurm workload manager186 (https://
slurm.schedmd.com/). All surface-based MRI data were visualized using SUMA187,188 (RRID:SCR_005927). All 
other �gures were created using Matplotlib189 (http://matplotlib.org/; RRID:SCR_008624), seaborn (http://sea-
born.pydata.org/; RRID:SCR_018132), GIMP (http://www.gimp.org/; RRID:SCR_003182), and Inkscape (https://
inkscape.org/; RRID:SCR_014479). �e “Narratives” data were processed on a Springdale Linux 7.9 (Verona) sys-
tem based on the Red Hat Enterprise Linux distribution (https://springdale.math.ias.edu/). An environment.
yml �le specifying the conda environment used to process the data is included in the staging/ directory on 
GitHub (as well as a more �exible cross-platform environment-flexible.yml �le; see “Code availability”).

Narratives datasets. Each dataset in the “Narratives” collection is described below. �e datasets are listed in 
roughly chronological order of acquisition. For each dataset, we provide the dataset-speci�c subject demograph-
ics, a summary of the stimulus and timing, as well as details of the experimental procedure or design.

“Pie Man”. �e “Pie Man” dataset was collected between October, 2011 and March, 2013, and comprised 
82 participants (ages 18–45 years, mean age 22.5 ± 4.3 years, 45 reported female). �e “Pie Man” story was told 
by Jim O’Grady and recorded live at �e Moth, a non-pro�t storytelling event, in New York City in 2008 (freely 
available at https://themoth.org/stories/pie-man). �e “Pie Man” audio stimulus was 450 seconds (7.5 minutes) 
long and began with 13 seconds of neutral introductory music followed by 2 seconds of silence, such that the story 
itself started at 0:15 and ended at 7:17, for a duration 422 seconds, with 13 seconds of silence at the end of the scan. 
�e stimulus was started simultaneously with the acquisition of the �rst functional MRI volume, and the scans 
comprise 300 TRs, matching the duration of the stimulus. �e transcript for the “Pie Man” story stimulus con-
tains 957 words; 3 words (0.3%) were not successfully localized by the forced-alignment algorithm, and 19 words 
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(2.0%) were not found in the vocabulary (e.g. proper names). �e “Pie Man” data were in some cases collected 
in conjunction with temporally scrambled versions of the “Pie Man” stimulus, as well the “Tunnel Under the 
World” and “Lucy” datasets among others, and share subjects with these datasets (as speci�ed in the partici-
pants.tsv �le). �e current release only includes data collected for the intact story stimulus (rather than the 
temporally scrambled versions of the stimulus). �e following subjects received the “Pie Man” stimulus on two 
separate occasions (speci�ed by run-1 or run-2 in the BIDS �le naming convention): sub-001, sub-
002, sub-003, sub-004, sub-005, sub-006, sub-008, sub-010, sub-011, sub-012, sub-013, 
sub-014, sub-015, sub-016. We recommend excluding subjects sub-001 (both run-1 and run-2), 
sub-013 (run-2), sub-014 (run-2), sub-021, sub-022, sub-038, sub-056, sub-068, and 
sub-069 (as speci�ed in the scan_exclude.json �le in the code/ directory) based on criteria explained 
in the “Intersubject correlation” section of “Data validation.” Subsets of the “Pie Man” data have been previously 
reported in numerous publications109,115,119,190–198, and additional datasets not shared here have been collected 
using the “Pie Man” auditory story stimulus199–202. In the �lename convention (and �gures), “Pie Man” is labeled 
using the task alias pieman.

“Tunnel Under the World”. �e “Tunnel Under the World” dataset was collected between May, 2012, and 
February, 2013, and comprised 23 participants (ages 18–31 years, mean age 22.5 ± 3.8 years, 14 reported female). 
�e “Tunnel Under the World” science-�ction story was authored by Frederik Pohl in 1955 which was broadcast 
in 1956 as part of the X Minus One series, a collaboration between the National Broadcasting Company and 
Galaxy Science Fiction magazine (freely available at https://www.oldtimeradiodownloads.com). �e “Tunnel 
Under the World” audio stimulus is 1534 seconds (~25.5 minutes) long. �e stimulus was started a�er the �rst 
two functional MRI volumes (2 TRs, 3 seconds) were collected, with ~23 seconds of silence a�er the stimulus. �e 
functional scans comprise 1040 TRs (1560 seconds), except for subjects sub-004 and sub-013 which have 
1035 and 1045 TRs respectively. �e transcript for “Tunnel Under the World” contains 3,435 words; 126 words 
(3.7%) were not successfully localized by the forced-alignment algorithm and 88 words (2.6%) were not found 
in the vocabulary. �e “Tunnel Under the World” and “Lucy” datasets contain largely overlapping samples of 
subjects, though were collected in separate sessions, and were, in many cases, collected alongside “Pie Man” scans 
(as speci�ed in the participants.tsv �le). We recommend excluding the “Tunnel Under the World” scans 
for subjects sub-004 and sub-013 (as speci�ed in the scan_exclude.json file in the code/ 
directory). �e “Tunnel Under the World” data have been previously reported by Lositsky and colleagues203. In 
the �lename convention, “Tunnel Under the World” is labeled using the task alias tunnel.

“Lucy”. �e “Lucy” dataset was collected between October, 2012 and January, 2013 and comprised 16 partic-
ipants (ages 18–31 years, mean age 22.6 ± 3.9 years, 10 reported female). �e “Lucy” story was broadcast by the 
non-pro�t WNYC public radio in 2010 (freely available at https://www.wnycstudios.org/story/91705-lucy). �e 
“Lucy” audio stimulus is 542 seconds (~9 minutes) long and was started a�er the �rst two functional MRI volumes 
(2 TRs, 3 seconds) were collected. �e functional scans comprise 370 TRs (555 seconds). �e transcript for “Lucy” 
contains 1,607 words; 22 words (1.4%) were not successfully localized by the forced-alignment algorithm and 
27 words (1.7%) were not found in the vocabulary. �e “Lucy” and “Tunnel Under the World” datasets contain 
largely overlapping samples of subjects, and were acquired contemporaneously with “Pie Man” data. We recom-
mend excluding the “Lucy” scans for subjects sub-053 and sub-065 (as speci�ed in the scan_exclude.
json �le in the code/ directory). �e “Lucy” data have not previously been reported. In the �lename conven-
tion, “Lucy” is labeled using the task alias lucy.

“Pretty Mouth and Green My Eyes”. �e “Pretty Mouth and Green My Eyes” dataset was collected 
between March, 2013, and October, 2013, and comprised 40 participants (ages 18–34 years, mean age 21.4 ± 3.5 
years, 19 reported female). �e “Pretty Mouth and Green My Eyes” story was authored by J. D. Salinger for 
�e New Yorker magazine (1951) and subsequently published in the Nine Stories collection (1953). �e spoken 
story stimulus used for data collection was based on an adapted version of the original text that was shorter and 
included a few additional sentences, and was read by a professional actor. �e “Pretty Mouth and Green My Eyes” 
audio stimulus is 712 seconds (~11.9 minutes) long and began with 18 seconds of neutral introductory music 
followed by 3 seconds of silence, such that the story started at 0:21 (a�er 14 TRs) and ended at 11:37, for a dura-
tion of 676 seconds (~451 TRs), with 15 seconds (10 TRs) of silence at the end of the scan. �e functional scans 
comprised 475 TRs (712.5 seconds). �e transcript for “Pretty Mouth and Green My Eyes” contains 1,970 words; 
7 words (0.4%) were not successfully localized by the forced-alignment algorithm and 38 words (1.9%) were not 
found in the vocabulary.

�e “Pretty Mouth and Green My Eyes” stimulus was presented to two groups of subjects in two di�erent 
narrative contexts according to a between-subject experimental design: (a) in the “a�air” group, subjects read a 
short passage implying that the main character was having an a�air; (b) in the “paranoia” group, subjects read a 
short passage implying that the main character’s friend was unjustly paranoid (see Yeshurun et al., 2017, for the 
full prompts). �e two experimental groups were randomly assigned such that there were 20 subjects in each 
group and each subject only received the stimulus under a single contextual manipulation. �e group assign-
ments are indicated in the participants.tsv �le, and the scans.tsv �le for each subject. Both groups 
received the identical story stimulus despite receiving di�ering contextual prompts. Immediately following the 
scans, subjects completed a questionnaire assessing comprehension of the story. �e questionnaire comprised 27 
context-independent and 12 context-dependent questions (39 questions in total). �e resulting comprehension 
scores are reported as the proportion of correct answers (ranging 0–1) in the participants.tsv �le and 
scans.tsv �le for each subject. We recommend excluding the “Pretty Mouth and Green My Eyes” scans for 
subjects sub-038 and sub-105 (as speci�ed in the scan_exclude.json �le in the code/directory). �e 
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“Pretty Mouth and Green My Eyes” data have been reported in existing publications109,204. In the �lename conven-
tion, “Pretty Mouth and Green My Eyes” is labeled using the task alias prettymouth.

“Milky Way”. �e “Milky Way” dataset was collected between March, 2013, and April, 2017, and comprised 
53 participants (ages 18–34 years, mean age 21.7 ± 4.1 years, 27 reported female). �e “Milky Way” story stimuli 
were written by an a�liate of the experimenters and read by a member of the Princeton Neuroscience Institute 
not a�liated with the experimenters’ lab. �ere are three versions of the “Milky Way” story capturing three dif-
ferent experimental conditions: (a) the original story (labeled original), which describes a man who visits a 
hypnotist to overcome his obsession with an ex-girlfriend, but instead becomes �xated on Milky Way candy bars; 
(b) an alternative version (labeled vodka) where sparse word substitutions yield a narrative in which a woman 
obsessed with an American Idol judge visits a psychic and becomes �xated on vodka; (c) a control version (labeled 
synonyms) with a similar number of word substitutions to the vodka version, but instead using synonyms of 
words in the original version, yielding a very similar narrative to the original. Relative to the original version, both 
the vodka and synonyms versions substituted on average 2.5 ± 1.7 words per sentence (34 ± 21% of words 
per sentence). All three versions were read by the same actor and each sentence of the recording was temporally 
aligned across versions. All three versions of the “Milky Way” story were 438 seconds (7.3 min; 292 TRs) long and 
began with 18 seconds of neutral introductory music followed by a 3 seconds of silence (21 TRs total), such that 
the story started at 0:21 and ended at 7:05, for a duration 404 s, with 13 seconds of silence at the end of the scan. 
�e functional runs comprised 297 volumes (444.5 seconds). �e transcript for the original version of the 
stimulus contains 1,059 words; 7 words (0.7%) were not successfully localized by the forced-alignment algorithm 
and 16 words (1.5%) were not found in the vocabulary. �e vodka version contains 1058 words; 2 words (0.2%) 
were not successfully localized and 21 words (2.0%) were not found in the vocabulary. �e synonyms version 
contains 1,066 words; 10 words (0.9%) were not successfully localized and 13 words (1.2%) were not found in the 
vocabulary.

�e three versions of the stimuli were assigned to subjects according to a between-subject design, such that 
there were 18 subjects in each of the three groups, and each subject received only one version of the story. �e 
group assignments are indicated in the participants.tsv �le, and the scans.tsv �le for each subject. 
�e stimulus �lename includes the version (milkywayoriginal, milkywayvodka, milkywaysyno-
nyms) and is speci�ed in the events.tsv �le accompanying each run. �e data corresponding to the orig-
inal and vodka versions were collected between March and October, 2013, while the synonyms data were 
collected in March and April, 2017. Subjects completed a 28-item questionnaire assessing story comprehension 
following the scanning session. �e comprehension scores for the original and vodka groups are reported 
as the proportion of correct answers (ranging 0–1) in the participants.tsv �le and scans.tsv �le for 
each subject. We recommend excluding “Milky Way” scans for subjects sub-038, sub-105, and sub-123 (as 
speci�ed in the scan_exclude.json �le in the code/ directory). �e “Milky Way” data have been previ-
ously reported197. In the �lename convention, “Milky Way” is labeled using the task alias milkyway.

“Slumlord” and “Reach for the Stars One Small Step at a Time”. �e “Slumlord” and “Reach for the 
Stars One Small Step at a Time” dataset was collected between May, 2013, and October, 2013, and comprised 18 
participants (ages 18–27 years, mean age 21.0 ± 2.3 years, 8 reported female). �e “Slumlord” story was told by 
Jack Hitt and recorded live at �e Moth, a non-pro�t storytelling event, in New York City in 2006 (freely available 
at https://themoth.org/stories/slumlord). �e “Reach for the Stars One Small Step at a Time” story was told by 
Richard Garriott and also recorded live at �e Moth in New York City in 2010 (freely available at https://themoth.
org/stories/reach-for-the-stars). �e combined audio stimulus is 1,802 seconds (~30 minutes) long in total and 
begins with 22.5 seconds of music followed by 3 seconds of silence. �e “Slumlord” story begins at approximately 
0:25 relative to the beginning of the stimulus �le, ends at 15:28, for a duration of 903 seconds (602 TRs), and is 
followed by 12 seconds of silence. A�er another 22 seconds of music starting at 15:40, the “Reach for the Stars 
One Small Step at a Time” story starts at 16:06 (965 seconds; relative to the beginning of the stimulus �le), ends 
at 29:50, for a duration of 825 seconds (~550 TRs), and is followed by 12 seconds of silence. �e stimulus �le was 
started a�er 3 TRs (4.5 seconds) as indicated in the events.tsv �les accompanying each scan. �e scans were 
acquired with a variable number of trailing volumes following the stimulus across subjects, but can be truncated 
as researchers see �t (e.g. to 1205 TRs). �e transcript for the combined “Slumlord” and “Reach for the Stars One 
Small Step at a Time” stimulus contains 5,344 words; 116 words (2.2%) were not successfully localized by the 
forced-alignment algorithm, and 57 words (1.1%) were not found in the vocabulary. �e transcript for “Slumlord” 
contains 2,715 words; 65 words (2.4%) were not successfully localized and 25 words (0.9%) were not found in 
the vocabulary. �e transcript for “Reach for the Stars One Small Step at a Time” contains 2,629 words; 51 words 
(1.9%) were not successfully localized and 32 words (1.2%) were not found in the vocabulary. We recommend 
excluding sub-139 due to a truncated acquisition time (as speci�ed in the scan_exclude.json �le in the 
code/ directory).

A�er the scans, each subject completed an assessment of their comprehension of the “Slumlord” story. To 
evaluate comprehension, subjects were presented with a written transcript of the “Slumlord” story with 77 blank 
segments, and were asked to �ll in the omitted word or phrase for each blank (free response) to the best of their 
ability. �e free responses were evaluated using Amazon Mechanical Turk (MTurk) crowdsourcing platform. 
MTurk workers rated the response to each omitted segment on a scale from 0–4 of relatedness to the correct 
response, where 0 indicates no response provided, 1 indicates an incorrect response unrelated to the correct 
response, and 4 indicates an exact match to the correct response. �e resulting comprehension scores are reported 
as the proportion out of a perfect score of 4 (ranging 0–1) in the participants.tsv �le and scans.tsv 
�le for each subject. Comprehension scores for “Reach for the Stars One Small Step at a Time” are not provided. 
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�e “Slumlord” and “Reach for the Stars One Small Step at a Time” data have not been previously reported; how-
ever, a separate dataset not included in this release has been collected using the “Slumlord” story stimulus205. In 
the �lename convention, the combined “Slumlord” and “Reach for the Stars One Small Step at a Time” data are 
labeled slumlordreach, and labeled slumlord and reach when analyzed separately.

“It’s Not the Fall that Gets You”. �e “It’s Not the Fall that Gets You” dataset was collected between 
May, 2013, and October, 2013, and comprised 56 participants (ages 18–29 years, mean age 21.0 ± 2.4 years, 31 
reported female). �e “It’s Not the Fall that Gets You” story was told by Andy Christie and recorded live at �e 
Moth, a non-pro�t storyteller event, in New York City in 2009 (freely available at https://themoth.org/stories/
its-not-the-fall-that-gets-you). In addition to the original story (labeled intact), two experimental manipu-
lations of the story stimulus were created: (a) in one version, the story stimulus was temporally scrambled at a 
coarse level (labeled longscram); (b) in the other version, the story stimulus was temporally scrambled at a 
�ner level (labeled shortscram). In both cases, the story was spliced into segments at the level of sentences 
prior to scrambling, and segment boundaries used for the longscram condition are a subset of the boundaries 
used for the shortscram condition. �e boundaries used for scrambling occurred on multiples of 1.5 seconds 
to align with the TR during scanning acquisition. We recommend using only the intact version for studying 
narrative processing because the scrambled versions do not have a coherent narrative structure (by design). All 
three versions of the “It’s Not the Fall that Gets You” stimulus were 582 seconds (9.7 minutes) long and began 
with 22 seconds of neutral introductory music followed by 3 seconds of silence such that the story started at 0:25 
(relative to the beginning of the stimulus �le) and ended at 9:32 for a duration of 547 seconds (365 TRs), with 
10 seconds of silence at the end of the stimulus. �e stimulus �le was started a�er 3 TRs (4.5 seconds) as indicated 
in the events.tsv �les accompanying each scan. �e functional scans comprised 400 TRs (600 seconds). �e 
transcript for the intact stimulus contains 1,601 words total; 40 words (2.5%) were not successfully localized 
by the forced-alignment algorithm and 20 words (1.2%) were not found in the vocabulary.

�e scrambled stimuli were assigned to subjects according to a mixed within- and between-subject design, 
such that subjects received the intact stimulus and either the longscram stimulus (23 participants) or the 
shortscram stimulus (24 participants). �e group assignments are indicated in the participants.tsv �le, 
and the scans.tsv �le for each subject. Due to the mixed within- and between-subject design, the �les are 
named with the full notthefallintact, notthefalllongscram, notthefallshortscram task 
labels. We recommend excluding the intact scans for sub-317 and sub-335, the longscram scans for 
sub-066 and sub-335, and the shortscram scan for sub-333 (as speci�ed in the scan_exclude.json 
�le in the code/ directory). �e “It’s Not the Fall that Gets You” data have been recently reported206.

“Merlin” and “Sherlock”. �e “Merlin” and “Sherlock” datasets were collected between May, 2014, and 
March, 2015, and comprised 36 participants (ages 18–47 years, mean age 21.7 ± 4.7 years, 22 reported female). 
�e “Merlin” and “Sherlock” stimuli were recorded while an experimental participant recalled events from pre-
viously viewed television episodes during fMRI scanning. Note that this spontaneous recollection task (during 
fMRI scanning) is cognitively distinct from reciting a well-rehearsed story to an audience, making this dataset 
di�erent from others in this release. �is release contains only the data for subjects listening to the auditory verbal 
recall; not data for the audiovisual stimuli or the speaker’s fMRI data207. �e “Merlin” stimulus �le is 915 seconds 
(9.25 minutes) long and began with 25 seconds of music followed by 4 seconds of silence such that the story 
started at 0:29 and ended at 15:15 for a duration of 886 seconds (591 TRs). �e transcript for the “Merlin” stimulus 
contains 2,245 words; 111 words (4.9%) were not successfully localized by the forced-alignment algorithm and 
13 words (0.6%) were not found in the vocabulary. �e “Sherlock” stimulus �le is 1,081 seconds (~18 minutes) 
long and began with 25 seconds of music followed by 4 seconds of silence such that the story started at 0:29 and 
ended at 18:01 for a duration of 1,052 seconds (702 TRs). �e stimulus �les for both stories were started a�er 3 
TRs (4.5 seconds) as indicated in the events.tsv �les accompanying each scan. �e “Merlin” and “Sherlock” 
scans were acquired with a variable number of trailing volumes following the stimulus across subjects, but can be 
truncated as researchers see �t (e.g. to 614 and 724 TRs, respectively). �e transcript for “Sherlock” contains 2681 
words; 171 words (6.4%) were not successfully localized and 17 words (0.6%) were not found in the vocabulary. 
�e word counts for “Merlin” and “Sherlock” may be slightly in�ated due to the inclusion of dis�uencies (e.g. 
“uh”) in transcribing the spontaneous verbal recall.

All 36 subjects listened to both the “Merlin” and “Sherlock” verbal recall auditory stimuli. However, 18 sub-
jects viewed the “Merlin” audiovisual clip prior to listening to both verbal recall stimuli, while the other 18 
subjects viewed the “Sherlock” audiovisual clip prior to listening to both verbal recall stimuli. In the “Merlin” 
dataset, the 18 subjects that viewed the “Sherlock” clip (and not the “Merlin” audiovisual clip) are labeled with 
the naive condition as they heard the “Merlin” verbal recall auditory-only stimulus without previously having 
seen the “Merlin” audiovisual clip. �e other 18 subjects in the “Merlin” dataset viewed the “Merlin” audiovisual 
clip (and not the “Sherlock” clip) prior to listening to the “Merlin” verbal recall and are labeled with the movie 
condition. Similarly, in the “Sherlock” dataset, the 18 subjects that viewed the “Merlin” audiovisual clip (and 
not the “Sherlock” audiovisual clip) are labeled with the naive condition, while the 18 subjects that viewed 
the “Sherlock” audiovisual clip (and not the “Merlin” audiovisual clip) are labeled with the movie condition. 
�ese condition labels are indicated in both the participants.tsv �le and the scans.tsv �les for each 
subject. Following the scans, each subject performed a free recall task to assess memory of the story. Subjects 
were asked to write down events from the story in as much detail as possible with no time limit. �e quality of 
comprehension for the free recall text was evaluated by three independent raters on a scale of 1–10. �e resulting 
comprehension scores are reported as the sum across raters normalized by the perfect score (range 0–1) in the 
participants.tsv �le and scans.tsv �le for each subject. Comprehension scores are only provided for 
the naive condition. We recommend excluding the “Merlin” scan for subject sub-158 and the “Sherlock” 
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scan for sub-139 (as speci�ed in the scan_exclude.json �le in the code/ directory. �e “Merlin” and 
“Sherlock” data have been previously reported207. In the �lename convention, “Merlin” is labeled merlin and 
“Sherlock” is labeled sherlock.

“Schema”. �e “Schema” dataset was collected between August, 2015, and March, 2016, and comprised 31 
participants (ages 18–35 years, mean age 23.7 ± 4.8 years, 13 reported female). �e “Schema” dataset comprised 
eight brief (~3-minute) auditory narratives based on popular television series and movies featuring restaurants 
and airport scenes: �e Big Bang �eory, Friends, How I Met Your Mother, My Cousin Vinnny, �e Santa Clause, 
Shame, Seinfeld, Up in the Air; labeled bigbang, friends, himym, vinny, santa, shame, seinfeld, 
upintheair, respectively. �ese labels are indicated in the events.tsv accompanying each scanner run, and 
the corresponding stimuli (e.g. bigbang_audio.wav). Two of the eight stories were presented in each of 
four runs. Each run had a �xed presentation order of a �xed set of stories, but the presentation order of the four 
runs was counterbalanced across subjects. �e functional scans were acquired with a variable number of trailing 
volumes across subjects, and in each run two audiovisual �lm clips (not described in this data release) were also 
presented; the auditory stories must be spliced from the full runs according to the events.tsv �le. Overall, the 
transcripts for the auditory story stimuli in the “Schema” dataset contain 3,788 words; 20 words (0.5%) were not 
successfully localized by the forced-alignment algorithm and 69 words (1.8%) were not found in the vocabulary. 
�e “Schema” data were previously reported116. In the �lename convention, the “Schema” data are labeled using 
the task alias schema.

“Shapes”. �e “Shapes” dataset was collected between May, 2015, and July, 2016, and comprised 59 partici-
pants (ages 18–35 years, mean age 23.0 ± 4.5 years, 42 reported female). �e “Shapes” dataset includes two related 
auditory story stimuli describing a 7-minute original animation called “When Heider Met Simmel” (copyright 
Yale University). �e movie uses two-dimensional geometric shapes to tell the story of a boy who dreams about 
a monster, and was inspired by Heider and Simmel208. �e movie itself is available for download at https://www.
headspacestudios.org. �e two verbal descriptions based on the movie used as auditory stimuli in the “Shapes” 
dataset were: (a) a purely physical description of the animation (labeled shapesphysical), and (b) a social 
description of the animation intended to convey intentionality in the animated shapes (labeled shapesso-
cial). Note that the physical description story (shapesphysical) is di�erent from other stimuli in this 
release in that it describes the movements of geometrical shapes without any reference to the narrative embedded 
in the animation. Both stimulus �les are 458 seconds (7.6 minutes) long and began with a 37-second introduc-
tory movie (only the audio channel is provided in the stimulus �les) followed by 7 seconds of silence such that 
the story started at 0:45 and ended at roughly 7:32 for a duration of ~408 seconds (~272 TRs) and ended with 
~5 seconds of silence. �e stimulus �les for both stories were started a�er 3 TRs (4.5 seconds) as indicated in the 
events.tsv �les accompanying each scan. �e functional scans were acquired with a variable number of trail-
ing volumes following the stimulus across subjects, but can be truncated as researchers see �t (e.g. to 309 TRs). 
�e transcript for the shapesphysical stimulus contains 951 words; 9 words (0.9%) were not successfully 
localized by the forced-alignment algorithm and 25 words (2.6%) were not found in the vocabulary. �e tran-
script for the shapessocial stimulus contains 910 words; 6 words (0.7%) were not successfully localized and 
14 words (1.5%) were not found in the vocabulary.

Each subject received both the auditory physical description of the animation (shapesphysical), the 
auditory social description of the animation (shapessocial), and the audiovisual animation itself (not 
included in the current data release) in three separate runs. Run order was counterbalanced across participants, 
meaning that some participants viewed the animation before hearing the auditory description. �e run order 
for each subject (e.g. physical-social-movie) is speci�ed in the participants.tsv �le and the 
subject-speci�c scans.tsv �les. Immediately following the story scan, subjects performed a free recall task in 
the scanner (the fMRI data during recall are not provided in this release). �ey were asked to describe the story 
in as much detail as possible using their own words. �e quality of the recall was evaluated by an independent 
rater naive to the purpose of the experiment on a scale of 1–10. �e resulting comprehension scores are reported 
normalized by 10 (range 0–1) and reported in the participants.tsv �le and scans.tsv �le for each 
subject. Comprehension scores are only provided for scans where the subject �rst listened to the story stimulus, 
prior to hearing the other version of the story or viewing the audiovisual stimulus. We recommend excluding the 
shapessocial scan for subject sub-238 (as speci�ed in the scan_exclude.json �le in the code/ 
directory. �e “Shapes” data were previously reported209.

“The 21st Year”. �e “�e 21st Year” dataset was collected between February, 2016, and January, 2018, and 
comprised 25 participants (ages 18–41 years, mean age 22.6 ± 4.7 years, 13 reported female). �e story stimulus 
was written and read aloud by author Christina Lazaridi, and includes two seemingly unrelated storylines relayed 
in blocks of prose that eventually fuse into a single storyline. �e stimulus �le is 3,374 seconds (56.2 minutes) long 
and began with 18 seconds of introductory music followed by 3 seconds such that the story started at 0:21 and 
ended at 55:59 for a duration of 3,338 seconds (2,226 TRs) followed by 15 seconds of silence. �e functional scans 
comprised 2,249 volumes (3,373.5 seconds). �e story stimulus contains 8,267 words; 88 words (1.1%) were not 
successfully localized by the forced-alignment algorithm and 143 words (1.7%) were not found in the vocabulary. 
Data associated with “�e 21st Year” have been previously reported210. In the �lename convention, data for “�e 
21st Year” are labeled using the task alias 21styear.

“Pie Man (PNI)” and “Running from the Bronx”. �e “Pie Man (PNI)” and “Running from the Bronx” 
data were collected between May and September, 2018, and comprised 47 participants (ages 18–53 years, mean 
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age 23.3 ± 7.4 years, 33 reported female). �e “Pie Man (PNI)” and “Running from the Bronx” story stimuli were 
told by Jim O’Grady while undergoing fMRI scans at the Princeton Neuroscience Institute (PNI). �e spoken 
story was recorded using a noise cancelling microphone mounted on the head coil and scanner noise was min-
imized using Audacity. �e “Pie Man (PNI)” stimulus �le is 415 seconds (~7 minutes) long and begins with a 
period of silence such that the story starts at :09 and ends at 6:49 for a duration of 400 seconds (267 TRs) followed 
by 7 seconds of silence. �e “Pie Man (PNI)” stimulus conveys the same general story as the original “Pie Man” 
stimulus but with di�erences in timing and delivery (as well as poorer audio quality due to being recorded during 
scanning). �e “Running from the Bronx” stimulus �le is 561 seconds (9.4 minutes) long and begins with a period 
of silence such that the story starts at 0:15 and ends at 9:11 for a duration of 536 seconds (358 TRs) followed by 
10 seconds of silence. �e “Pie Man (PNI)” and “Running from the Bronx” functional scans comprised 294 TRs 
(441 seconds) and 390 TRs (585 seconds), respectively. Both stimulus �les were started a�er 8 TRs (12 seconds) 
as indicated in the accompanying events.tsv �les. �e program card on the scanner computer was organized 
according to the ReproIn convention211 to facilitate automated conversion to BIDS format using HeuDiConv 
0.5.dev1212. �e transcript for the “Pie Man (PNI)” stimulus contains 992 words; 7 words (0.7%) were not suc-
cessfully localized by the forced-alignment algorithm and 19 words (1.9%) were not found in the vocabulary. �e 
transcript for “Running from the Bronx” contains 1,379 words; 23 words (1.7%) were not successfully localized 
and 19 words (1.4%) were not found in the vocabulary.

At the end of the scanning session, the subjects completed separate questionnaires for each story to evaluate 
comprehension. Each questionnaire comprised 30 multiple choice and �ll-in-the-blank questions testing memory 
and understanding of the story. �e resulting comprehension scores are reported as the proportion of correct 
answers (ranging 0–1) in the participants.tsv �le and the scans.tsv �le for each subject. Data for both 
stories have been previously reported166,213. �e “Pie Man (PNI)” and “Running from the Bronx” data are labeled 
with the piemanpni and bronx task aliases in the �lename convention. �e “Pie Man (PNI)” and “Running 
from the Bronx” data were collected in conjunction with the “I Knew You Were Black” and “�e Man Who Forgot 
Ray Bradbury” data and share the same samples of subjects.

“I Knew You Were Black” and “The Man Who Forgot Ray Bradbury”. �e “I Knew You Were Black” 
and “�e Man Who Forgot Ray Bradbury” data were collected by between May and September, 2018, and com-
prised the same sample of subjects from “Pie Man (PNI)” and “Running from the Bronx” data (47 participants, 
ages 18–53 years, mean age 23.3 ± 7.4 years, 33 reported female). Unlike the “Pie Man (PNI)” and “Running 
from the Bronx” story stimuli, the “I Knew You Were Black” and “�e Man Who Forgot Ray Bradbury” stim-
uli are professionally recorded with high audio quality. �e “I Knew You Were Black” story was told by Carol 
Daniel and recorded live at �e Moth, a non-pro�t storytelling event, in New York City in 2018 (freely availa-
ble at https://themoth.org/stories/i-knew-you-were-black). �e “I Knew You Were Black” story is 800 seconds 
(13.3 minutes, 534 TRs) long and occupies the entire stimulus �le. �e “I Knew You Were Black” functional 
scans comprised 550 TRs (825 seconds). �e transcript for the “I Knew You Were Black” stimulus contains 1,544 
words; 5 words (0.3%) were not successfully localized by the forced-alignment algorithm and 4 words (0.3%) were 
not found in the vocabulary. “�e Man Who Forgot Ray Bradbury” was written and read aloud by author Neil 
Gaiman at the Aladdin �eater in Portland, OR, in 2011 (freely available at https://soundcloud.com/neilgaiman/
the-man-who-forgot-ray-bradbury). �e “�e Man Who Forgot Ray Bradbury” audio stimulus �le is 837 seconds 
(~14 minutes, 558 TRs) long and occupies the entire stimulus �le. �e “�e Man Who Forgot Ray Bradbury” 
functional scans comprised 574 TRs (861 seconds). �e transcript for “�e Man Who Forgot Ray Bradbury” 
contains 2,135 words; 16 words (0.7%) were not successfully localized and 29 words (1.4%) were not found in the 
vocabulary. For both datasets, the audio stimulus was prepended by 8 TRs (12 seconds) and followed by 8 TRs 
(12 seconds) of silence. �e program card on the scanner computer was organized according to the ReproIn con-
vention211 to facilitate automated conversion to BIDS format using HeuDiConv 0.5.dev1212.

Similarly to the “Pie Man (PNI)” and “Running from the Bronx” stories, the subjects completed separate ques-
tionnaires for each story to evaluate comprehension a�er scanning. Each questionnaire comprised 25 multiple 
choice and �ll-in-the-blank questions testing memory and understanding of the story. �e resulting comprehen-
sion scores are reported as the proportion of correct answers (ranging 0–1) in the participants.tsv �le 
and the scans.tsv �le for each subject. Data for both stories have been previously reported166,213. �e “I Knew 
You Were Black” and “�e Man Who Forgot Ray Bradbury” data are labeled with the black and forgot task 
aliases in the �lename convention.

Data Records
�e core, unprocessed NIfTI-formatted MRI data with accompanying metadata and stimuli are publicly avail-
able on OpenNeuro: https://openneuro.org/datasets/ds002345 (https://doi.org/10.18112/openneuro.ds002345.
v1.1.4)85. All data and derivatives are hosted at the International Neuroimaging Data-sharing Initiative (INDI)214 
(RRID:SCR_00536) via the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC)215 (https://
www.nitrc.org/; RRID:SCR_003430): http://fcon_1000.projects.nitrc.org/indi/retro/Narratives.html (https://doi.
org/10.15387/fcp_indi.retro.Narratives)216. �e full data collection is available via the DataLad data distribution 
(RRID:SCR_019089): http://datasets.datalad.org/?dir=/labs/hasson/narratives.

Data and derivatives have been organized according to the machine-readable Brain Imaging Data Structure 
(BIDS) 1.2.186, which follows the FAIR principles for making data findable, accessible, interoperable, and 
reusable217. A detailed description of the BIDS specification can be found at http://bids.neuroimaging.io/. 
Organizing the data according to the BIDS convention facilitates future research by enabling the use of automated 
BIDS-compliant so�ware (BIDS Apps)218. Brie�y, �les and metadata are labeled using key-value pairs where key 
and value are separated by a hyphen, while key-value pairs are separated by underscores. Each subject is identi�ed 
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by an anonymized numerical identi�er (e.g. sub-001). Each subject participated in one or more story-listening 
scans indicated by the task alias for the story (e.g. task-pieman). Subject identi�ers are conserved across data-
sets; subjects contributing to multiple datasets are indexed by the same identi�er (e.g. sub-001 contributes to 
both the “Pie Man” and “Tunnel Under the World” datasets).

�e top-level BIDS-formatted narratives/ directory contains a tabular participants.tsv �le where 
each row corresponds to a subject and includes demographic variables (age, sex), the stories that subject 
received (task), as well as experimental manipulations (condition) and comprehension scores where avail-
able (comprehension). Cases of omitted, missing, or inapplicable data are indicated by “n/a” according to the 
BIDS convention. �e top-level BIDS directory also contains the following: (a) a dataset_description.
json containing top-level metadata, including licensing, authors, acknowledgments, and funding sources; (b) a 
code/ directory containing scripts used for analyzing the data; (c) a stimuli/ directory containing the audio 
stimulus �les (e.g. pieman_audio.wav), transcripts (e.g. pieman_transcript.txt), and a gentle/ 
directory containing time-stamped transcripts created using Gentle (i.e.; described in “Stimuli” in the “Methods” 
section); (d) a derivatives/ directory containing all MRI derivatives (described in more detail in the “MRI 
preprocessing” and “Technical validation” sections); and (e) descriptive README and CHANGES �les.

BIDS-formatted MRI data for each subject are contained in separate directories named according to the 
subject identi�ers. Within each subject’s directory, data are segregated into anatomical data (the anat/ direc-
tory) and functional data (the func/ directory). All MRI data are stored as gzipped (compressed) NIfTI-1 
images219. NIfTI images and the relevant metadata were reconstructed from the original Digital Imaging and 
Communications in Medicine (DICOM) images using dcm2niix 1.0.20180518220. In instances where multiple 
scanner runs were collected for the same imaging modality or story in the same subject, the �les are di�erentiated 
using a run label (e.g. run-1, run-2). All anatomical and functional MRI data �les are accompanied by sidecar 
JSON �les containing MRI acquisition parameters in compliance with the COBIDAS report133. Identifying meta-
data (e.g. name, birth date, acquisition date and time) have been omitted, and facial features have been removed 
from anatomical images using the automated de-facing so�ware pydeface 2.0.0134. All MRI data and metadata are 
released under the Creative Commons CC0 license (https://creativecommons.org/), which allows for free reuse 
without restriction.

All data and derivatives are version-controlled using DataLad88,89 (https://www.datalad.org/; RRID:SCR_003931).  
DataLad uses git (https://git-scm.com/; RRID:SCR_003932) and git-annex (https://git-annex.branchable.com/; 
RRID:SCR_019087) to track changes made to the data, providing a transparent history of the dataset. Each stage 
of the dataset’s evolution is indexed by a unique commit hash and can be interactively reinstantated. Major sub-
divisions of the data collection, such as the code/, stimuli/, and derivative directories, are encapsulated as 
“subdatasets” nested within the top-level BIDS dataset. �ese subdatasets can be independently manipulated 
and have their own standalone version history. For a primer on using DataLad, we recommend the DataLad 
Handbook221 (http://handbook.datalad.org/).

Technical Validation
Image quality metrics. To provide an initial assessment of the data, we used MRIQC 0.15.1222,223 to derive 
a variety of image quality metrics (IQMs; via the run_mriqc.sh and run_mriqc_group.sh scripts 
in the code/ directory). MRIQC was deployed using Singularity140. �e MRIQC Singularity image can be 
built from Docker Hub (https://hub.docker.com/r/poldracklab/mriqc/; e.g. singularity build mri-
qc-0.15.1.simg docker://poldracklab/mriqc:0.15.1). �e MRIQC outputs can be found in 
the mriqc/ directory in derivatives/ available via the DataLad release, and includes dozens of IQMs per 
scan as well as a summary across the entire dataset. �ese IQMs can be visualized in a browser (e.g. group_
bold.html) and are aggregated in tabular format across the entire data collection (e.g. group_bold.tsv). 
Here we do not exclude any subjects based on IQMs, but subsequent researchers can use the available IQMs to 
exclude scans as they see �t.

We brie�y report three common metrics for functional images summarizing head motion, intrinsic spatial 
smoothness, and temporal signal quality (Fig. 2). To summarize head motion, we computed the mean frame-
wise displacement (FD)162,224 for each functional scan across all subjects and story stimuli (Fig. 2a). �e median 
framewise displacement across scans for all subjects and story stimuli was 0.132 mm (SD = 0.058 mm). Although 
this indicates relatively low head motion, some subjects have notably high motion; researchers may opt to cen-
sor time points with high FD (e.g. greater 0.5 mm) or omit entire scans with high overall FD as they see �t. To 
quantify the intrinsic spatial smoothness of the raw functional data, we used 3dFWHMx in AFNI 19.3.0, which 
computes the ratio of variance of �rst di�erences across voxels to global variance across the image and expresses 
smoothness as the full width at half-maximum (FWHM) of a 2D Gaussian �lter225. Smoothness was computed in 
each subject’s native brain space within an anatomically-de�ned brain mask, and the functional time series were 
temporally detrended prior to smoothness estimation (using the get_fwhm.py script in the code/ directory). 
Spatial smoothness varied considerably across datasets due to di�erent acquisition parameters used with di�erent 
scanner models (Fig. 2b). For example, scans acquired using older pulse sequences without multiband accelera-
tion are smoothest in the slice acquisition (z-) axis, whereas newer scans acquired using multiband acceleration 
have higher overall spatial resolution (resulting in lower smoothness), and are smoothest in anterior–posterior 
phase-encoding (y-) axis. Finally, we computed the temporal signal-to-noise ratio (tSNR) as a measure of func-
tional signal quality using MRIQC. A tSNR map was constructed for each scan by computing the voxelwise 
average of the signal magnitude over time divided by the standard deviation of the signal over time in each 
subject’s native space following realignment using 3dvolreg and brain extraction using 3dSkullStrip in 
AFNI226; the median of this tSNR map was used to summarize tSNR across voxels for a given scan (Fig. 2c). �e 
median tSNR across all subjects and story stimuli was 50.772 (SD = 13.854). We also computed vertex-wise tSNR 
in fsaverage6 space following preprocessing with fMRIPrep to visualize the spatial distribution of tSNR across 
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cortex (Fig. 2d; using the get_tsnr.py script in the code/ directory). Low tSNR in orbitofrontal and anterior 
medio-temporal cortex re�ects signal dropout due to the proximity of sinuses and ear canals227.

Intersubject correlation. To measure the reliability of stimulus-evoked responses across subjects, we per-
formed an intersubject correlation (ISC) analysis104,105,228. For each story stimulus, we computed ISC using the 
leave-one-out approach: for each subject, we averaged the response time series for the remaining subjects, then 
correlated this mean response time series for a given voxel or brain area with the response time series for the 
le�-out subject in that voxel or brain area. Note that this approach yields higher correlation values than com-
puting ISC between pairs of subjects. In large samples of subjects, leave-one-out ISC provides an estimate of the 
upper bound of variance that can be accounted for by between-subject models predicting voxel- or region-wise 
response time series (i.e. noise ceiling)105,229; that is, the mean data from other subjects serves as a surrogate 
for the optimal model that generalizes across subjects (within-subject models, however, may capture additional 
variance not shared across subjects). ISC was computed only on functional volumes corresponding to presenta-
tion of the story stimulus, and we trimmed the �rst 6 TRs (9 seconds) a�er story onset to reduce the impact of 

Fig. 2 Data quality summarized in terms of head motion, spatial smoothness, and temporal signal-to-noise 
ratio (tSNR). (a) Median framewise displacement (FD) summarizes head motion. Each black tick mark 
represents the median FD (x-axis) for a given scanning run and subject for each task (i.e. story; y-axis). Violin 
plots illustrate the distribution of median FDs across all runs and subjects for a given task. �e red markers 
indicate the median FD across all runs for a given task, and the red error bars indicate the 95% bootstrap 
con�dence interval for the median based on randomly sampling runs with replacement. At bottom, FD is 
summarized across all tasks. (b) Spatial smoothness is summarized using AFNI’s FWHM smoothness for each 
scanning run across each task. Spatial smoothness was computed in volumetric subject-speci�c functional (EPI) 
space using subject-speci�c whole-brain masks with minimal preprocessing (realignment and susceptibility 
distortion in fMRIPrep, detrending in AFNI). Each tick mark represents the spatial smoothness for a given run 
in a given acquisition axis (orange: x-axis, i.e. le�–right; yellow: y-axis, i.e. anterior–posterior; red: z-axis, i.e. 
inferior–superior). Violin plots capture the distribution of smoothness estimates for x-, y-, and z-axes across all 
runs and subjects in a given task. �e red markers indicate the median combined (i.e. geometric mean across x-, 
y-, and z-axes) smoothness across all runs and subjects for a given task (red error bars indicate 95% bootstrap 
con�dence interval of median). At bottom, smoothness is summarized across all tasks. �e multiple lobes of the 
distribution re�ect di�ering acquisition parameters used with the Skyra and Prisma scanner models. (c) tSNR 
maps were constructed by computing the voxelwise mean signal over time divided by the standard deviation 
over time. Each black tick mark represents the median of the tSNR map (x-axis) for a given scanner run and 
subject for each task (y-axis). Violin plots re�ect the distribution of tSNR values across all runs and subjects for 
a given task. �e red markers indicate the mean tSNR across all runs for a given task (red error bars indicate 
95% bootstrap con�dence interval of mean). At bottom, the tSNR is summarized across all tasks. �e two lobes 
of the distribution re�ect older pulse sequences with larger voxels (and higher tSNR) and newer multiband 
pulse sequences with smaller voxels (and lower tSNR). See the plot_qc.py script in the code/ directory for 
details. (d) Distribution of tSNR across cortex. �e color bar re�ects the median vertex-wise tSNR. Note that 
unlike panel c, here tSNR was computed in fsaverage6 space for vertex-wise summarization and visualization, 
which may in�ate the tSNR values.
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stimulus onset transients. All ISC values were Fisher z-transformed prior to averaging, and the mean was inverse 
Fisher z-transformed for visualization230. ISC analysis was implemented using the Brain Imaging Analysis Kit 
(BrainIAK)231–233 (RRID:SCR_014824).

ISCs were computed separately for di�erent experimental groups or manipulations; for example, ISCs were 
computed separately for the “a�air” and “paranoid” contextual manipulation conditions for “Pretty Mouth and 
Green My Eyes.” On the other hand, ISCs were computed as a single group for datasets where the only experimen-
tal manipulation was naively listening to the story stimulus versus listening to the story stimulus a�er viewing the 
audiovisual movie (“Merlin,” “Sherlock,” and “Shapes”). ISCs were computed separately for the “Slumlord” and 
“Reach for the Stars One Small Step at a Time” stories despite being presented in the same scanning run. �e brief 
“Schema” stories and the scrambled versions of “It’s Not the Fall that Gets You” were excluded from ISC analysis 
for the sake of simplicity.

To assess the temporal synchronization of responses to the story stimuli, we computed ISC in an early auditory 
cortex (EAC) region of interest (ROI). �e le�- and right-hemisphere EAC ROIs were de�ned on the cortical sur-
face in fsaverage6 space as combination of �ve areas (A1, MBelt, LBelt, PBelt, RI) from a multimodal cortical par-
cellation234,235 (see the roi_masks.py script in the code/ directory). �e non-smoothed response time series 
following preprocessing with fMRIPrep and confound regression with AFNI were averaged across vertices in 
the le� and right EAC ROIs (using the roi_average.py and roi_regression.py scripts in the code/ 
directory). We used two measures of temporal alignment in le� EAC as quality-control criteria for excluding 
scans. First, we computed leave-one-out ISCs and set an exclusion cut-o� at ISC < 0.10 in le� EAC (Fig. 3a; 
using the roi_isc.py script in the code/ directory). Second, we computed leave-one-out ISC at temporal 
lags ranging from −45 to 45 seconds; for each le�-out subject, we computed the correlation between the mean 
response time series for the remaining subjects and the le�-out subject’s response time series at 61 lags ranging 
from -30 to 30 TRs (Fig. 3b; using the roi_lags.py script in the code/ directory). We then set an exclusion 
cut-o� at a peak ISC at a lag >  ± 3 TRs (4.5 seconds) to accommodate some inter-individual variability in the 
hemodynamic response236,237. Both of these criteria are intended to exclude scans with poor entrainment to the 
stimulus (e.g. due to an error in acquisition), and yield a partly overlapping group of scans for exclusion. Overall, 
the combined criteria resulted in excluding 27 scans from 19 subjects, or 3.0% of the 891 total scans. We do not 
exclude these subjects from the dataset entirely because some analyses (e.g. comparing methods for mitigating 
artefacts) may in fact bene�t from the inclusion of lower-quality scans. Rather, we provide a scan_exclude.
json �le listing scans to exclude (and a convenience function exclude_scans.py) in the code/ directory 
so that researchers can easily exclude scans �agged as poor quality according to the criteria above. Note that 
some studies206 temporally shi� response time series to ensure that peak lags match across subjects; here, we 
do not shi� or edit the scans, but provide the lagged ISCs for all scans (group_roi-EAC_lags.json in 
derivatives/afni-nosmooth/) so that researchers can apply temporal shi�ing as they see �t. Ultimately, 
mean ISC in le� and right EAC across all scans was 0.549 (SD = 0.173) and 0.493 (SD = 0.179), respectively. �is 
analysis also revealed qualitatively higher ISC in le� EAC than right EAC across several stories (Fig. 3a). �is may 
re�ect a le�-lateralized preference for speech sounds observed in previous studies10,238,239.

Finally, we visualized the cortical distribution of ISCs (Fig. 4). Leave-one-out ISCs were computed on 
vertex-wise response time series in fsaverage6 surface space following preprocessing using fMRIPrep, spatial 

Fig. 3 Intersubject correlation (ISC) in early auditory cortex (EAC). (a) ISC in le� and right EAC across 
all subjects and tasks (i.e. stories). Each tick mark represents the leave-one-out ISC (x-axis) for a le�-out 
subject in either le�- (purple) or right- (orange) hemisphere EAC across tasks (y-axis). Violin plots illustrate 
the distribution of leave-one-out ISC across all le�-out subjects for each task. �e circular markers indicate 
the mean ISC across le�-out subjects for each task and hemisphere (error bars indicate the 95% bootstrap 
con�dence interval of the mean). At bottom, ISC for le� and right EAC is summarized across all tasks. (b) 
Lagged ISC captures temporal synchronization in le� EAC. Leave-one-out ISC (y-axis) was computed for le� 
EAC at 61 lags ranging from -30 to + 30 TRs (−45 to 45 seconds; x-axis). In the upper plot, each line represents 
the mean ISC across lags for each task. At bottom, all lagged ISCs are visualized in a single plot where each le�-
out subject corresponds to a semi-transparent gray line; the red line re�ects the average lagged ISC across all 
subjects and tasks. See the plot_isc.py script in the code/ directory for details.
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smoothing to 6 mm, and confound regression using AFNI (via the run_isc.py script in the code/ direc-
tory). ISCs were computed separately for each story stimulus (and experimental group or condition, as described 
above), then averaged across all stories to construct a summary ISC map (Fig. 4a). Here we are not interested in 
statistical testing and therefore arbitrarily threshold these ISC maps at a mean correlation of 0.10 for visualization; 
we refer researchers to other work for a detailed statistical treatment240–242. Cortical areas with high ISC during 
story-listening were largely bilateral, spanning temporal and frontal areas reported in the fMRI literature on lan-
guage, and extending into default-mode network (DMN) areas such as the angular gyrus and precuneus. Cortical 
ISC maps are strikingly similar across stories with considerable variability in sample size, duration, and content 
(Fig. 4b). We emphasize that a wide variety of stimulus content can drive cortical ISCs, and that decomposing the 
stimuli according to di�erent models will ultimately provide a window onto the linguistic and narrative features 
encoded across cortex.

Usage Notes
�e MRI data are organized according to the BIDS standard, and are therefore well-suited for automated process-
ing using BIDS Apps (e.g. MRIQC, fMRIPrep, FitLins243; https://bids-apps.neuroimaging.io/), the Brainlife cloud 
platform (https://brainlife.io/), and Neuroscout244 (https://neuroscout.org/). �e full data collection can be easily 
“installed” using DataLad (datalad install -r ///labs/hasson/narratives). �is clones the 
�le hierarchy without downloading any large content �les, which can be installed selectively as needed (data-
lad get). Particular subsets of the full dataset can be retrieved using datalad get with shell wildcards. 
For example, particular stories can be retrieved using, e.g. datalad get sub-*/func/*task-pieman*; 
or derivatives in a particular output space can be retrieved using, e.g. datalad get derivatives/
afni-nosmooth/sub-*/func/*task-pieman*space-fsaverage6*. For convenience, we also 
include the task_meta.json �le in the code directory, which contains a dictionary mapping from each task 
(i.e. story) to subjects and �lenames beloging to that task. We also recommend the Python-based PyBIDS tool for 
querying and manipulating BIDS data245.

Code availability
All code used for aggregating and analyzing the data is version-controlled and publicly available via the associated 
GitHub repository (https://github.com/snastase/narratives) and the code/ directory in the top-level BIDS 
directory distributed via DataLad (https://datasets.datalad.org/?dir=/labs/hasson/narratives). The GitHub 
repository contains both scripts used to prepare the data for sharing (staging/) and scripts used to analyze the 
BIDS-formatted data (code/). See Table S1 for a brief description of the scripts used to process the “Narratives” 
data.
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