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The Narrow Escape Problem∗

D. Holcman†

Z. Schuss‡

Abstract. The narrow escape problem in diffusion theory is to calculate the mean first passage time of
a diffusion process to a small target on the reflecting boundary of a bounded domain. The
problem is equivalent to solving the mixed Dirichlet–Neumann boundary value problem for
the Poisson equation with small Dirichlet and large Neumann parts. The mixed boundary
value problem, which goes back to Lord Rayleigh, originates in the theory of sound and is
closely connected to the eigenvalue problem for the mixed problem and for the Neumann
problem in domains with bottlenecks. We review here recent developments in the non-
standard asymptotics of the problem, which are based on several ingredients: a better
resolution of the singularity of Neumann’s function, resolution of the boundary layer near
the small target by conformal mappings of domains with bottlenecks, and the breakup of
composite domains into simpler components. The new methodology applies to two- and
higher-dimensional problems. Selected applications are reviewed.
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1. Introduction. The narrow escape problem in diffusion theory, which goes back
to Helmholtz (Helmholtz (1860)) and Lord Rayleigh (Rayleigh (1945)) in the context
of the theory of sound, is to calculate the mean first passage time (MFPT) of Brow-
nian motion to a small absorbing window on the otherwise impermeable (reflecting)
boundary of a bounded domain (see Figure 1.3). The renewed interest in the problem
is due to the emergence of the narrow escape time (NET) as a key to the determina-
tion of biological cell function from its geometrical structure. The NET is ubiquitous
in molecular and cellular biology and is manifested in stochastic models of chemical
reactions (Holcman and Schuss (2005); Dao Duc and Holcman (2010)), in the compu-
tation of the synaptic current (Chen et al. (2000); Bredt and Nicoll (2003); Adesnik,
Nicoll, and England (2005); Shi et al. (1999); Malinow and Malenka (2002); Mali-
now (2003); Earnshaw and Bressloff (2006); Holcman and Triller (2006); Ashby et al.
(2006); Bressloff and Newby (2012)), in modeling the early steps of viral infection in
cells, in the regulation of diffusion between the mother and daughter cells during di-
vision (Greber and Way (2006); Seisenberger et al. (2001); Gehlen et al. (2011)), and
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Fig. 1.1 A dumbbell-shaped domain consists of two large compartments Ω1 and Ω3 connected by a
narrow neck Ω2. The bottleneck is the interval AB.

in many other models (see Holcman and Schuss (2013) and references therein). The
NET coarse-grains diffusion from the molecular to the cellular scale: rare molecular
events, such as ionic permeation through a protein channel of a biological membrane,
give rise to channel current on the time scale of the NET.

The need to simulate several interacting species in a confined microdomain is
manifested in the context of calcium dynamics in neuronal synapses. The number
of molecules involved in the reaction is of the order of tens to hundreds. They are
tracked with fluorescent dyes that drastically interfere with the reaction and diffusion
processes. A similar situation arises in the simulation of synaptic transmission, start-
ing with the arrival of neurotransmitter molecules at receptors on the postsynaptic
membrane.

The microscopic model of reaction and diffusion, which is sensitive to geometrical
features of the domain, can be coarse-grained into a Markovian jump process using the
NET approximation. This approach takes advantage of the fact that the arrival pro-
cess of Brownian particles from a practically infinite continuum to an absorbing target
is Poissonian with rate that is the total flux on the absorbing boundary (Nadler, Naeh,
and Schuss (2001); Schuss, Singer, and Holcman (2007); Schuss (2013)). The case of an
absorbing sphere in an infinite domain with a fixed density of diffusers was worked out
by Smoluchowski (Chandrasekhar (1943)). The rate constant, which is the reciprocal
of the NET, coarse-grains the entire geometry to a single parameter. It is possible
then to coarse-grain the binding and unbinding processes in microdomains into a
Markov jump process, thus opening the way to full analysis of stochastic chemical
reactions by providing closed-form formulas for the mean, variance, and any moments
of interest of the process. This approach circumvents the complex reaction-diffusion
partial differential equations that are much harder to solve.

Diffusion in structures interconnected by narrow passages, such as dumbbell-
shaped domains (see Figure 1.1), is coarse-grained by the NET into a two-state
Markovian jump process, whose transition rates are the reciprocals of the correspond-
ing MFPTs. Specifically, in the symmetric case that Ω1 = Ω3 = Ω and the neck Ω2

is of length L and radius a, the transition rate is given by

1

λI⇄II
=
√
2

[

(

Rc

a

)3/2 |Ω|
RcD

]

[1 + o(1)] +
L2

4D
+

|Ω|L
πa2D

(1.1)
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where D is the diffusion coefficient and Rc is the curvature of the boundary at the
cusp. In this case the leading-order approximation to the principal eigenvalue of the
Neumann problem for the Laplace equation in the dumbbell is −(λI→II + λII→I) (the
general case is worked out in section 8.1.2).

The two-dimensional diffusion of receptors on a membrane crowded with obstacles
can be modeled as diffusion outside a lattice of obstacles of radius a (see Figure 8.1).
Figure 1.2(left) shows an elementary cell Ω. The NET from Ω, which is a domain with
four cusp-like narrow passages of the type shown in Figure 4.1, is given in section 4.1 as

τ̄ =
π|Ω|

2D
√

ε/a
(1 + o(1)) for ε ≪ |∂Ω|, a,(1.2)

where ε = L − 2a is the gap between obstacles. The diffusion outside the lattice is
coarse-grained by the NET into a Markovian jump process lattice of step L, whose
rate is the reciprocal of the MFPT from one cell to another. The Markov process is
coarse-grained, in turn, into a two-dimensional coarse diffusion process with an effec-
tive diffusion coefficient D = 2L2/τ̄ , where τ̄ is the MFPT to a single window ∂Ωa

when the others are closed (see Figure 1.2 and section 8.2).

Fig. 1.2 An elementary lattice cell Ω in a model of two-dimensional diffusion on a crowded mem-
brane. Left: Brownian motion in Ω. Right: NET as a function of r = a/L interpolated
between three regions: constant, logarithmic, and (1.2).

The main mathematical effort in the NET problem is to develop asymptotic meth-
ods for the approximate evaluation of the NET in the various geometries of cellular
structures (see section 2). The problem is equivalent to the construction of an asymp-
totic solution to the homogeneous mixed Neumann–Dirichlet boundary value problem
for the Poisson equation in a bounded domain.

The NET diverges as the Dirichlet part of the boundary shrinks, thus rendering
the computation a singular perturbation problem. In two dimensions the problem is
not the same as in higher dimensions, because the singularity of the Neumann func-
tion in two dimensions is logarithmic, while that in higher dimensions is algebraic.
The computation is related to the calculation of the principal eigenvalue of the mixed
Dirichlet–Neumann problem for the Laplace equation in the domain, when the Dirich-
let boundary is only a small patch on the otherwise Neumann boundary. Specifically,
the principal eigenvalue is asymptotically the reciprocal of the NET in the limit of
shrinking patch. In this limit the escape of a Brownian trajectory becomes a rare
event and is thus hard to track by Brownian dynamics simulations or other numerical
methods due to the high dimension of the parameter space (see Figure 1.3). The pur-
pose of this review is to present new singular perturbation methods that have been
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Fig. 1.3 Brownian trajectory escaping through a small absorbing window in a domain with otherwise
reflecting boundary.

developed for the derivation of explicit analytical asymptotic approximations of the
NET in this singular limit. Relevant references and history are reviewed at the end
of each section.

1.1. References to Section 1. The narrow escape problem in diffusion theory
was considered first by Lord Rayleigh in Rayleigh (1945) and elaborated upon in
Fabrikant (1989, 1991); the terminology NET was introduced in Singer et al. (2006).
A recent review of early results on the NET problem with many biological applications
is given in Bressloff and Newby (2012) and in Holcman and Schuss (2013).

2. Formulation of the Narrow Escape Problem.

2.1. The Mixed Boundary Value Problem. Consider free Brownian motion in
a bounded domain D ⊂ R

d (d = 2, 3), whose boundary ∂Ω is sufficiently smooth (the
analysis in higher dimensions is similar to that for d = 3). The Brownian trajectory
x(t) is reflected at the boundary, except for a small hole ∂Ωa, where it is absorbed,
as shown in Figures 1.3 and 2.1(left). The reflecting part of the boundary is ∂Ωr =
∂Ω − ∂Ωa. The lifetime in Ω of a Brownian trajectory that starts at a point x ∈ Ω
is the first passage time (FPT) τ of the trajectory to the absorbing boundary ∂Ωa.
The NET

v(x) = E[τ |x(0) = x](2.1)

is finite under quite general conditions (Schuss (2010b)). As the size (e.g., the diam-
eter) of the absorbing hole decreases to zero, while that of the domain remains finite,
the NET increases indefinitely. A measure of smallness can be chosen as the ratio
between the surface area of the absorbing boundary and that of the entire boundary,
for example,

ε =

( |∂Ωa|
|∂Ω|

)1/(d−1)

≪ 1,(2.2)

provided that the isoperimetric ratio remains bounded,

|∂Ω|1/(d−1)

|Ω|1/d = O(1) for ε ≪ 1(2.3)
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Fig. 2.1 Mathematical idealizations of the cross-sections of neuronal spine morphologies as com-
posite domains. Left: The bulky head Ω1 is connected smoothly by an interface ∂Ωi = AB
to a narrow neck Ω2. The entire boundary is ∂Ωr (reflecting), except for a small absorbing
part ∂Ωa = CD. Right: The head, shown separately in Figure 1.3, is connected to the neck
without a funnel.

(see the pathological example below when (2.3) is violated). The NET v(x) satisfies
the Pontryagin–Andronov–Vitt (PAV) mixed boundary value problem for the Poisson
equation (Pontryagin, Andronov, and Vitt (1933, 1989); Schuss (2010b)),

∆v(x) = − 1

D
for x ∈ Ω,(2.4)

v(x) = 0 for x ∈ ∂Ωa,(2.5)

∂v(x)

∂n(x)
= 0 for x ∈ ∂Ωr,(2.6)

where D is the diffusion coefficient and n(x) is the unit outer normal vector to the
boundary at x ∈ ∂Ω. If Ω is a subset of a two-dimensional Riemannian manifold, as
in Figure 2.2, the Laplace operator is replaced with the Laplace–Beltrami operator.
The compatibility condition

(2.7)

∫

∂Ωa

∂v(x)

∂n
dSx = −|Ω|

D

is obtained by integrating (2.4) over Ω and using (2.5) and (2.6).
The solution v(x) diverges to infinity as the hole shrinks to zero, e.g., as ε → 0,

except in a boundary layer near ∂Ωa, because the compatibility condition (2.7) fails
in this limit. Our purpose here is to find an asymptotic approximation to v(x) for
small ε.

A Pathological Example. The following pathological example shows that when
(2.3) is violated the NET does not necessarily increase to infinity as the relative area
of the hole decreases to zero. This is illustrated by the following example. Consider a
cylinder of length L and radius a. The boundary of the cylinder is reflecting, except
for one of its bases (at z = 0, say), which is absorbing. The NET problem becomes
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Fig. 2.2 Receptor movement on the neuronal membrane.

one-dimensional and its solution is

(2.8) v(z) = Lz − z2

2
.

Here there is neither a boundary layer nor a constant outer solution; the NET grows
gradually with z. The NET, averaged against a uniform initial distribution in the
cylinder, is Eτ = L2/3 and is independent of a; that is, the assumption that the NET
becomes infinite is violated. It holds, however, if the domain is sufficiently thick, e.g.,
when a ball of radius independent of ε can be rolled on the reflecting boundary inside
the domain.

2.2. Neumann’s Function and a Helmholtz Integral Equation. First, we prove
the following theorem.

Theorem 2.1 (the Helmholtz integral equation). Under the assumption that the
solution v(x) of (2.4)–(2.6) diverges to infinity for all x ∈ Ω as ε → 0, the leading-
order approximation to the boundary flux density

(2.9) g(x) =
∂v(x)

∂n
for x ∈ ∂Ωa

is the solution of the Helmholtz integral equation

(2.10)

∫

∂Ωa

N(x, ξ))g(x) dSx = −Cε for ξ ∈ ∂Ωa

for some constant Cε.
Proof. To calculate the NET v(x), we use the Neumann function N(x, ξ), which

is a solution of the boundary value problem

∆xN(x, ξ) = − δ(x− ξ) for x, ξ ∈ Ω,(2.11)

∂N(x, ξ)

∂n(x)
= − 1

|∂Ω| for x ∈ ∂Ω, ξ ∈ Ω,
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and is defined up to an additive constant. Green’s identity gives

∫

Ω

[N(x, ξ)∆v(x)− v(x)∆N(x, ξ)] dx =

∫

∂Ω

[

N(x, ξ)
∂v(x)

∂n
− v(x)

∂N(x, ξ)

∂n

]

dSx

=

∫

∂Ω

N(x, ξ)
∂v(x)

∂n
dSx +

1

|∂Ω|

∫

∂Ω

v(x) dSx.

On the other hand, (2.4) and (2.11) imply that
∫

Ω

[N(x, ξ)∆v(x)− v(x)∆N(x, ξ)] dx = v(ξ)− 1

D

∫

Ω

N(x, ξ) dx,

hence

v(ξ)− 1

D

∫

Ω

N(x, ξ) dx =

∫

∂Ω

N(x, ξ)
∂v(x)

∂n
dSx+

1

|∂Ω|

∫

∂Ω

v(x) dSx.(2.12)

Note that the second integral on the right-hand side of (2.12) is an additive constant.
The integral

Cε =
1

|∂Ω|

∫

∂Ω

v(x) dSx(2.13)

is the average of the NET on the boundary. Now (2.12) takes the form

(2.14) v(ξ) =
1

D

∫

Ω

N(x, ξ) dx+

∫

∂Ωa

N(x, ξ)
∂v(x)

∂n
dSx + Cε,

which is an integral representation of v(ξ). We use the boundary condition (2.5) and
(2.9) to write (2.14) as

(2.15) 0 =
1

D

∫

Ω

N(x, ξ) dx+

∫

∂Ωa

N(x, ξ)g(x) dSx + Cε

for all ξ ∈ ∂Ωa. Equation (2.15) is an integral equation for g(x) and Cε. To construct
an asymptotic approximation to the solution, we note that the first integral in (2.15)
is a regular function of ξ on the boundary. Indeed, due to the symmetry of the
Neumann function, we have from (2.11)

(2.16) ∆ξ

∫

Ω

N(x, ξ) dx = −1 for ξ ∈ Ω

and

(2.17)
∂

∂n(ξ)

∫

Ω

N(x, ξ) dx = − |Ω|
|∂Ω| for ξ ∈ ∂Ω.

Equation (2.16) and the boundary condition (2.17) are independent of the hole ∂Ωa,
so they define the first integral on the right-hand side of (2.15) as a regular function
of ξ, up to an additive constant, also independent of ∂Ωa.

The assumption that for all x ∈ Ω the NET v(x) diverges to infinity as ε → 0 in
(2.13) implies that Cε → ∞ in this limit. This means that for ξ ∈ ∂Ωa the second
integral in (2.15) must also become infinite in this limit, because the first integral is
independent of ∂Ωa. Therefore, the leading-order approximation to the solution g(x)
of the integral equation (2.15) is the solution of (2.10).
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3. NET on a Two-Dimensional Riemannian Manifold. We consider a Brownian
trajectory x(t) in a bounded domain Ω on a two-dimensional Riemannian manifold
(Σ, g) (see relevant references in section 1.1). For a domain Ω ⊂ Σ with a smooth
boundary ∂Ω (at least C1), we denote by |Ω|g the Riemannian surface area of Ω and
by |∂Ω|g the arclength of its boundary, computed with respect to the metric g. As in
the previous section, the boundary ∂Ω is partitioned into an absorbing arc ∂Ωa and
the remaining part ∂Ωr = ∂Ω − ∂Ωa is reflecting for the Brownian trajectories. We
assume that the absorbing part is small, that is, (2.2) holds in the form

ε =
|∂Ωa|g
|∂Ω|g

≪ 1;

however, Σ and Ω are independent of ε, and only the partition of the boundary ∂Ω into
absorbing and reflecting parts varies with ε. The FPT τ of the Brownian motion from
Ω to ∂Ωa has a finite mean u(x) = E[τ |x(0) = x] and the function u(x) satisfies the
mixed Neumann–Dirichlet boundary value problem (2.4)–(2.6), which is now written
as

D∆gu(x) = − 1 for x ∈ Ω,(3.1)

∂u(x)

∂n
=0, for x ∈ ∂Ω− ∂Ωa,(3.2)

u(x) = 0 for for x ∈ ∂Ωa,(3.3)

where D is the diffusion coefficient and ∆g is the Laplace–Beltrami operator on Σ

(3.4) ∆gf =
1√

detG

∑

i,j

∂

∂ξi

(

gij
√
detG

∂f

∂ξj

)

,

with

(3.5) ti =
∂|x|
∂ξi

, gij = 〈ti, tj〉, G = (gij), gij = g−1
ij .

Obviously, u(x) → ∞ as ε → 0, except for x in a boundary layer near ∂Ωa.
Theorem 3.1. Under the assumptions spelled out at the beginning of this section,

the NET is given by

E[τ |x] = u(x) =
|Ω|g
πD

[

log
1

ε
+O(1)

]

for ε ≪ 1.(3.6)

Proof. We fix the origin 0 ∈ ∂Ωa and represent the boundary curve ∂Ω in terms
of arclength s as (x(s), y(s)) and rescale s so that

∂Ω =

{

(x(s), y(s)) : −1

2
< s ≤ 1

2

}

,

(

x

(

−1

2

)

, y

(

−1

2

))

=

(

x

(

1

2

)

, y

(

1

2

))

.

We assume that the functions x(s) and y(s) are real analytic in the interval 2|s| < 1
and that the absorbing part of the boundary ∂Ωa is the arc

∂Ωa = {(x(s), y(s)) : |s| < ε} .
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The Neumann function can be written as

N(x, ξ) = − 1

2π
log d(x, ξ) + vN (x, ξ) for x ∈ Bδ(ξ),(3.7)

where Bδ(ξ) is a geodesic ball of radius δ centered at ξ and vN (x; ξ) is a regular
function (Garabedian (1964); Aubin (1998); Gilbarg and Trudinger (2001)). We con-
sider a normal geodesic coordinate system (x, y) at the origin, such that one of the
coordinates coincides with the tangent coordinate to ∂Ωa. We choose unit vectors
e1, e2 as an orthogonal basis in the tangent plane at 0 so that for any vector field
X = x1e1 + x2e2, the metric tensor g can be written as

gij = δij + ε2
∑

kl

aklijxkxl + o(ε2),(3.8)

where |xk| ≤ 1, because ε is small. It follows that for x,y inside the geodesic ball of
radius ε, centered at the origin, d(x,y) = dE(x,y)+O(ε2), where dE is the Euclidean
metric.

To construct an asymptotic expansion of the solution of (2.10) for small ε, we
recall that when both x and ξ are on the boundary, vN (x, ξ) becomes singular (see
Garabedian (1964, p. 247, equation (7.46))) and the singular part gains a factor of 2,
due to the singularity of the “image charge.” Denoting by ṽN the new regular part,
(2.10) becomes

∫

|s′|<ε

[

ṽN (x(s′); ξ(s))− log d(x(s), ξ(s′))

π

]

f(s′)S(ds′) = Cε,(3.9)

where S(ds′) is the induced measure element on the boundary, x = (x(s), y(s)),
ξ = (ξ(s), η(s)), and f(s′) = g0(x(s

′)). Expanding all functions in powers of ε and
then in powers of s and s′ for |s|, |s′| < ε, the integrals give at the leading order (see
Holcman and Schuss (2004); Singer, Schuss, and Holcman (2006b); Schuss (2013) for
details of the computation)

ε (log ε− 1) f0 +
∑

p

(

ε2p+1

2p+ 1
log ε− ε2p+1

(2p+ 1)2

)

f2p =
π

2

∫ ε

−ε

v0(s
′) ds′ + Cε,(3.10)

where fn are the Taylor coefficients of f(s) and vn(s) are the coefficients in the
expansion of v(s) in powers of ε. Equation (3.10) and

1

2

∫ ε

−ε

f(s)S(ds) =
∑

p

ε2p+1

(2p+ 1)
f2p

determine the leading-order term in the expansion of Cε. Indeed, the compatibility
condition (2.7) gives

∫ ε

−ε

f(s)S(ds) = −|Ω|g,(3.11)

so using the fact that
∫ ε

−ε
v0(s

′)S(ds′) = O(ε), we find that the leading-order expan-
sion of Cε in (3.10) is

Cε =
|Ω|g
π

[

log
1

ε
+O(1)

]

for ε ≪ 1.(3.12)
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Fig. 3.1 Left: A small opening near a corner of angle α. Right: The point (0, 0) is a cusp point of
the dotted domain bounded between the two circles. The small absorbing arc of length ε is
located at the cusp point.

If the diffusion coefficient is D, (2.10) gives the NET from a point x ∈ Ω, outside the
boundary layer, as

E[τ |x] = u(x) =
|Ω|g
πD

[

log
1

ε
+O(1)

]

for ε ≪ 1.(3.13)

Note that it is enough to assume that the boundary is of class C1 and the metric is
of class C2 to obtain a leading-order expansion.

3.1. Exit near Singularities of the Boundary. If the window is at a corner of an
opening angle α in the boundary (see Figure 3.1(left)), the NET is to leading order

(3.14) Eτ =
|Ω|
Dα

[

log
1

ε
+O(1)

]

.

Indeed, putting the origin at the apex of the angle and the real axis on one of the
rays of the angle, the conformal mapping z �→ zπ/α of Ω flattens the corner and leaves
∂Ωa small. The Neumann function for the upper half plane, π−1 log z, is transformed
into α−1 log z, so (3.13) gives (3.14).

To see that the area factor |Ω| remains unchanged under any conformal map-
ping f : (x, y) �→ (u(x, y), v(x, y)), we note that this factor is a consequence of the
compatibility condition (2.7), which relates the area to the integral

∫

Ω

∆(x,y)w dxdy = −|Ω|
D

,

where w(x, y) = E[τ |x(0) = x, y(0) = y] satisfies ∆(x,y)w = −1/D. According to the
Cauchy–Riemann equation the Laplacian transforms as

∆(x,y)w = (u2
x + u2

y)∆(u,v)w

and the Jacobian of the transformation is J = u2
x + u2

y. Therefore,
∫

Ω

∆(x,y)w dxdy =

∫

f(Ω)

∆(u,v)w du dv.

This means that the compatibility condition remains unchanged and gives the area
of the original domain. Higher-order asymptotics are given in Singer, Schuss, and
Holcman (2006b).



THE NARROW ESCAPE PROBLEM 223

If the absorbing arc is at a cusp of the boundary, the leading-order term of the
asymptotic expansion of the NET can be found by mapping the domain conformally
onto the upper half plane. A cusp can be viewed as a corner with opening angle α = 0,
so a different asymptotic expansion than (3.14) should be expected. Consider, for
example, Brownian motion in a domain enclosed between the circles (x−1/2)2+y2 =
1/4 and (x− 1/4)2 + y2 = 1/16 (see Figure 3.1(right)).

The conformal mapping z �→ exp{πi(1/z − 1)} maps this domain onto the upper
half plane. Therefore, the NET is to leading order

(3.15) Eτ =
|Ω|
D

[

1

ε
+ O(1)

]

.

3.2. NET on a Two-Dimensional Sphere. Another example is that of Brownian
motion on the surface of a 3-sphere of radius R, described by the spherical coordinates
(θ, φ),

x = R sin θ cosφ, y = R sin θ sinφ, z = R cos θ.

In spherical coordinates (3.4) and (3.5) give (John (1982))

(3.16) gθθ = R2, gφφ = R2 sin2 θ, gθφ = gφθ = 0.

Therefore, for a function on the 3-sphere w = w(θ, φ) the Laplace–Beltrami operator
∆M is given by

∆Mf = R−2

(

∂2f

∂θ2
+ cot θ

∂f

∂θ
+

1

sin2 θ

∂2f

∂φ2

)

.

If the Brownian motion is absorbed when it reaches a small spherical cap centered at
the north pole θ = 0 with a small opening angle δ (see Figure 3.2), the MFPT to the
cap, v(θ), satisfies the PAV boundary value problem

∆Mv =R−2 (v′′ + cot θ v′) = −1,(3.17)

v′(π) = 0, v(δ) = 0,(3.18)

because, due to rotational symmetry, the FPT to the spherical cap is independent of
the initial angle φ. The solution of the boundary value problem (3.17)–(3.18) is given
by

v(θ) = 2R2 log
sin θ

2

sin δ
2

.(3.19)

A different approach to the calculation of the MFPT of Brownian motion on the 3-
sphere is based the stereographic projection of the sphere onto the plane (Hille (1976)).
A related problem is that of entering a circular corral on the 3-sphere through a small
arc. These cases are discussed in Singer, Schuss, and Holcman (2006a) and Schuss
(2013). A general approach leading to explicit asymptotic computations and valid for
several holes uses matched asymptotics (see Cheviakov, Ward, and Straube (2010)
and the next section).
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d

ee

Fig. 3.2 A sphere of radius R without a spherical cap at the north pole with central angle δ. The
Brownian motion is absorbed at the boundary of the cap or only at an arc of length 2ε on
the boundary of the cap.

3.3. The Matched Asymptotics Approach. In the matched asymptotics ap-
proach to the NET problem from a domain Ω in R

2, a boundary layer solution is
constructed near an absorbing window ∂Ωa of size 2ε (Ward, Henshaw, and Keller
(1993); Pillay et al. (2010)). First, the mixed boundary value problem (2.4)–(2.6) is
converted to local coordinates (η, s), where η is the distance of a point x ∈ Ω from
the boundary ∂Ω and s is arclength from the center of the window to the orthogonal
projection of x on ∂Ω. If ∂Ω is sufficiently smooth in a neighborhood of the window
∂Ωa, (2.4) for the MFPT v(x) is converted locally to

wηη −
κ

1− κη
wη +

1

1− κη

(

1

1− κη
ws

)

s

= − 1

D
,(3.20)

where w(η, s) = v(x) and κ is the boundary curvature at the projection of x on ∂Ω. If
s is measured from the center of the arc ∂Ωa, the stretching η = εη̂, s = εŝ, ŵ(η̂, ŝ) =
w(η, s) maps a boundary strip near ∂Ωa into the upper half plane. Assuming, as we
may, that the origin x = 0 is at the center of ∂Ωa, we set y = x/ε = (η̂, ŝ). An expan-
sion in powers of ε gives the leading-order boundary layer problem for (2.4)–(2.6) as

ŵbl,η̂η̂ + ŵbl,ŝŝ =0 for 0 < η̂ < ∞, −∞ < ŝ < ∞,(3.21)

ŵbl,η̂(0, ŝ) = 0 for |ŝ| > 1, ŵbl(0, ŝ) = 0 for |ŝ| < 1.(3.22)

We specify the growth condition ŵbl ∼ A log |y| as |y| → ∞, where A is an as yet un-
determined constant. Setting z = ŝ+ iη̂, the transformation ζ = u+ iv = Arcsin z =
−iLog [iz +

√
1− z2] maps the upper half plane η̂ > 0 onto the semi-infinite strip

Ω̂ = {−π/2 < u < π/2, 0 < v < ∞}. The mixed boundary value problem (3.21)–
(3.22) is transformed into

Ŵuu(u, v) + Ŵvv(u, v) = 0 for (u, v) ∈ Ω̂,

Ŵu

(

±π

2
, v
)

=0 for 0 < v < ∞,

Ŵ (u, 0) =0 for − π

2
< u <

π

2
,

where Ŵ (u, v) = ŵbl(η̂, ŝ). The solutions Ŵ (u, v) = Av have the required logarithmic
behavior for |y| → ∞, specifically,

ŵbl ∼ A log |y|+ log 2 + o(1) as |y| → ∞.(3.23)

The constant A is related to the boundary flux by A = 2π−1
∫ 1

0 ŵbl,η̂(0, ŝ) dŝ.
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The leading term wout(x) in the outer expansion satisfies the original equation
with the reduced boundary condition and the matching condition

∆xwout(x) = − 1

D
for x ∈ Ω,

∂wout(x)

∂n
=0 for x ∈ ∂Ω− {0},

wout(x) ∼A

[

log

(

1

ε

)

+ log 2 + log |x|
]

for x → 0.

Then the compatibility condition (2.7) gives (3.13).

3.4. References to Sections 2 and 3. In the matched asymptotics approach to
the NET problem from a domain Ω in R

2, a boundary layer solution is constructed
near an absorbing window ∂Ωa of size 2ε (Ward, Henshaw, and Keller (1993); Pillay et
al. (2010)). The method was developed in Ward and Keller (1993); Ward, Henshaw,
and Keller (1993); Ward and Van De Velde (1992); Kolokolnikov, Titcombe, and
Ward (2005); and Cheviakov, Ward, and Straube (2010). In three dimensions the
method was used in Ward and Keller (1993), where the boundary layer problem is
the classical electrified disk problem (Jackson (1975)). Further refinements of (3.13)
are given in Ward and Keller (1993); Ward, Henshaw, and Keller (1993); Ward and
Van De Velde (1992); Kolokolnikov, Titcombe, and Ward (2005); Cheviakov, Ward,
and Straube (2010); Singer, Schuss, and Holcman (2006a); and Schuss, Singer, and
Holcman (2007).

The NET calculated in section 2 was calculated for small absorbing windows in a
smooth reflecting boundary in Ward and Keller (1993); Ward, Henshaw, and Keller
(1993); Ward and Van De Velde (1992); Kolokolnikov, Titcombe, and Ward (2005);
Cheviakov, Ward, and Straube (2010); Coombs, Straube, and Ward (2009); Grigoriev
et al. (2002); Holcman and Schuss (2004); Singer et al. (2006); Singer, Schuss, and
Holcman (2006a,b); Singer and Schuss (2006); Bénichou and Voituriez (2008); Schuss,
Singer, and Holcman (2007); Gandolfi, Gerardi, and Marchetti (1985); and others.
Several more complex cases, such as the NET through a window at a corner or at
a cusp in the boundary and the NET on Riemannian manifolds, were considered in
Singer et al. (2006) and Singer, Schuss, and Holcman (2006a,b). Exit through many
holes is discussed in Holcman and Schuss (2008b,a); Holcman and Schuss (2012);
Cheviakov, Ward, and Straube (2010); and references therein.

4. Brownian Motion in Dire Straits. In this section we consider Brownian mo-
tion in two-dimensional domains whose boundaries are smooth and reflecting, except
for a small absorbing window at the end of a cusp-shaped funnel, as shown in Figures
2.1(left) and 4.1 (see references in section 4.5). The cusp can be formed by a partial
block of a planar domain, as shown in Figure 4.2(left). The MFPT from x ∈ Ω to
the absorbing boundary ∂Ωa, denoted τ̄x→∂Ωa , is the NET from the domain Ω to the
small window ∂Ωa (of length a), such that

ε =
π|∂Ωa|
|∂Ω| =

πa

|∂Ω| ≪ 1.(4.1)

4.1. The MFPT to a Bottleneck. We consider the NET problem in an asym-
metric planar domain, as in Figure 4.2(left) or in an asymmetric version of the (di-
mensional) domain Ω′ in Figure 4.1(left). We use the (dimensional) representation of
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Fig. 4.1 Left: The planar (dimensional) domain Ω′ is bounded by a large circular arc connected
smoothly to a funnel formed by moving two tangent circular arcs of radius Rc ε apart
(i.e., AB = ε). Right: Blowup of the cusp region. The solid, dashed, and dotted necks
correspond to ν± = 1, 0.4, and 5 in (4.3), respectively.

Fig. 4.2 Left: Narrow straits formed by a partial block (solid disk) of the passage from the head to
the neck of the domain enclosed by the black line. Inside the circle the narrow straits can
be approximated by the gap between adjacent circles. Right: A surface of revolution with
a funnel. The z-axis points down.

the boundary curves for the upper and lower parts, respectively,

y′ = r±(x
′), Λ′ < x′ < 0,(4.2)

where the x′-axis is horizontal with x′ = Λ′ at AB. We assume that the parts of the
curve that generate the funnel have the form

r±(x
′) = O(

√

|x′|) near x′ = 0,(4.3)

r±(x
′) = ±a′ ± (x′ − Λ′)1+ν±

ν±(1 + ν±)ℓ
ν±
±

(1 + o(1)) for ν± > 0 near x′ = Λ′,

where a′ = 1
2AB = ε′/2 is the radius of the gap, and the constants ℓ± have dimension

of length. For ν± = 1 the parameters ℓ± are the radii of curvature R±
c at x′ = Λ′.

To simplify the conformal mapping, we first rotate the domain by π/2 clockwise to
assume the shape in Figure 4.2(right). The rotated axes are renamed (x′, y′) as well.

Theorem 4.1 (the MFPT to a bottleneck). The NET of Brownian motion to
the end of the bottleneck at x′ = Λ′ in the domain Ω′ bounded by the curves (4.2) and
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(4.3) is given by

τ̄ ∼ π|Ω′|
2D

√
ε̃
,(4.4)

where ε̃ = 2rcε/(Rc + rc). In dimensional units (4.4) is

τ̄ =

√

Rc(Rc + rc)

2rcε′
π|Ω′|
2D

(1 + o(1)) for ε′ ≪ |∂Ω′|, Rc, rc.(4.5)

In the symmetric case Rc = rc (4.5) reduces to

τ̄ =
π|Ω′|

2D
√

ε′/Rc

(1 + o(1)) for ε′ ≪ |∂Ω′|, Rc.(4.6)

Proof. We consider Brownian motion in a domain Ω′ with diffusion coefficient D
and with reflection at the boundary ∂Ω′, except for an absorbing boundary ∂Ω′

a at
the bottom of the neck. The MFPT from a point x′ = (x′, y′) inside the domain Ω′ to
∂Ω′

a is the solution of the PAV boundary value problem (2.4)–(2.6), which we rewrite
in dimensional variables as

D∆ū(x′) = − 1 for x′ ∈ Ω′,(4.7)

∂ū(x′)

∂n
=0 for x′ ∈ ∂Ω′ − ∂Ω′

a, ū(x′) = 0 for x′ ∈ ∂Ω′
a.

Converting to dimensionless variables by setting x′ = ℓ+x, Λ′ = ℓ+Λ, the domain Ω′

is mapped into Ω and we have (see (4.8) below)

|Ω′| = ℓ2+|Ω|, |∂Ω′| = ℓ+|∂Ω|, |∂Ω′
a| = ε′ = ℓ+|∂Ωa| = ℓ+ε.(4.8)

Setting ū(x′) = u(x), we write (4.7) as

D

ℓ2+
∆u(x) = − 1 for x ∈ Ω,(4.9)

∂u(x)

∂n
=0 for x ∈ ∂Ω− ∂Ωa, u(x) = 0 for x ∈ ∂Ωa.

First, we consider the case ν± = 1, ℓ+ = Rc, and l− = rc, radius 1, where A has
dimensionless radius rc/Rc. This case can represent a partial block described in Figure
4.2(left). Under the scaling (4.8) the bounding circle B has dimensionless radius 1.
We construct an asymptotic solution for small gap ε by first mapping the domain Ω
in Figure 4.1(left) conformally into its image under the Möbius transformation of the
two osculating circles A and B into concentric circles. To this end we move the origin
of the complex plane to the center of the osculating circle B and set

w = w(z) =
z − α

1− αz
,(4.10)

where

α =− 2εRc + 2Rc + ε2Rc + 2rcε+ 2rc
2(εRc + rc +Rc)

±
√

ε(8Rcrc + 4εR2
c + 12εRcrc + 4ε2R2

c + 8r2c + 4ε2Rcrc + ε3R2
c + 4εr2c)

2(εRc + rc +Rc)

=− 1±
√

2rcε

Rc + rc
+O(ε).(4.11)
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Fig. 4.3 The image Ωw = w(Ω) of the (dimensionless) domain Ω in Figure 4.1 (left) under the
conformal mapping (4.10). The different necks in Figure 4.1 (right) are mapped onto the
semi-annuli enclosed between the like-style arcs and the large disk in Ω is mapped onto the
small black disk. The short black segment AB in Figure 4.1 (right) (of length ε) is mapped
onto the thick black segment AB (of length 2

√
ε + O(ε)). The rays from the origin are

explained in the text below.

The Möbius transformation (4.10) maps circle B into itself and Ω is mapped onto the
domain Ωw = w(Ω) in Figure 4.3. The straits in Figure 4.1(left) are mapped onto the
ring enclosed between the like-style arcs and the large disk is mapped onto the small
black disk. The radius of the small black disk and the elevation of its center above
the real axis are O(

√
ε). The short black segment of length ε in Figure 4.1(right) is

mapped onto a segment of length 2
√
ε+O(ε).

Setting u(z) = v(w) and ε̃ = 2rcε/(Rc + rc), the system (4.9) is converted to

∆wv(w) = − ℓ2+
D|w′(z)|2 = − (4ε̃+O(ε̃3/2))ℓ2+

D|w(1 −
√
ε̃)− 1 +O(ε̃)|4

for w ∈ Ωw,(4.12)

∂v(w)

∂n
=0 for w ∈ ∂Ωw − ∂Ωw,a, v(w) = 0 for w ∈ ∂Ωw,a.

The MFPT is bounded above and below by that from the inverse image of a circular
ring cut by lines through the origin, tangent to the black disk at polar angles θ = c1

√
ε̃

(top) and θ = c2
√
ε̃ (bottom) for some positive constants c1, c2, independent of ε̃.

Therefore, the MFPT from Ω equals that from the inverse image of a ring cut by an
intermediate angle θ = c

√
ε̃ (middle).

The asymptotic analysis of (4.12) begins with the observation that the solution
of the boundary value problem (4.12) is to leading order independent of the radial
variable in polar coordinates w = reiθ . Fixing r = 1, we impose the reflecting
boundary condition at θ = c

√
ε̃, where c = O(1) is a constant independent of ε̃ to

leading order, and the absorbing condition at θ = π. The outer solution, obtained by
a regular expansion of v(eiθ), is given by

v0(e
iθ) = A(θ − π),(4.13)
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where A is an as yet undetermined constant. It follows that

∂v0(e
iθ)

∂θ

∣

∣

∣

∣

θ=π

= −A.(4.14)

To determine A, we integrate (4.12) over the domain to obtain at the leading order

2
√
ε̃
∂v0(e

iθ)

∂θ

∣

∣

∣

∣

θ=π

= −2
√
ε̃A ∼ −|Ω′|

D
,(4.15)

hence

A ∼ |Ω′|
2D

√
ε̃
.(4.16)

Now (4.13) gives for θ = c
√
ε̃ the leading-order approximation (4.4). Returning to

dimensional units, (4.4) becomes (4.5) and in the symmetric case Rc = rc (4.5) reduces
to (4.6).

Corollary. In the symmetric case with ν+ = ν− > 1 the curvature vanishes, that
is, Rc = rc = ∞. After scaling the boundary value problem (2.4)–(2.6) with (4.8), we
can choose the bounding circles at A and B to have radius 1 and repeat the above
analysis in the domain Ωw enclosed by the dashed curves, shown in Figure 4.3. The
result (4.6) becomes

τ̄ =
π|Ω′|

2D
√

ε′/ℓ+
[1 + o(1)] for ε′ ≪ |∂Ω′|, ℓ+.(4.17)

A more direct resolution of the boundary layer, based on the observation that the
boundary layer equation (4.12) is an ordinary differential equation, is given in Holc-
man, Hoze, and Schuss (2011); Holcman and Schuss (2011); and Schuss (2013).

4.2. Exit from Several Bottlenecks. In the case of exit through any one of N
well-separated necks with dimensionless curvature parameters lj and widths ε̃j , we
construct the outer solution (4.13) at any one of the N absorbing windows so that
(4.14) holds at each window. The integration of (4.12) over Ω gives the following
analogue of (4.15):

N
∑

j=1

2
√

ε̃j
∂v0(e

iθ)

∂θ

∣

∣

∣

∣

θ=π

= −
N
∑

j=1

2
√

ε̃jA ∼ −|Ω′|
D

;(4.18)

hence

A ∼ |Ω′|
2D
∑N

j=1

√

ε̃j
.(4.19)

Equation (4.17) is then generalized to

τ̄ =
π|Ω′|

2D
∑N

j=1

√

ε′j/ℓj
[1 + o(1)] for ε′j/ℓj ≪ |∂Ω|.(4.20)

Equations (4.6) and (4.17) are generalized in a similar manner.
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To calculate the exit probability through any one of the N necks, we apply
the transformation (4.10) separately for each bottleneck at the absorbing images
∂Ωw,a1

, . . . , ∂Ωw,aN
to obtain images Ωwj

for j = 1, 2, . . . , N . Then the probabil-
ity of exiting through ∂Ωw,ai

is the solution of the mixed boundary value problem
(see Schuss (2010b, p. 185))

∆wv(w) = 0 for w ∈ Ωwi
,

∂v(w)

∂n
= 0 for w ∈ ∂Ωwi

−
N
⋃

i=1

∂Ωw,ai
,(4.21)

v(w) = 1 for w ∈ ∂Ωw,ai
, v(w) = 0 for w ∈ ∂Ωw,aj

, j = i.

The outer solution, which is the exit probability through window ∂Ωw,i, is an unknown
constant pi. We construct boundary layers at each absorbing boundary ∂Ωw,aj

for
j = i by solving the boundary value problem in Ωwj

, which is of the type shown in
Figure 4.3 with a neck of width εj. In each case the boundary layer is a linear function

vj(θ) = δi,j −Aj(θ − π) for all j,(4.22)

such that

vj(0) ∼ δi,j +Ajπ = pi for all j.(4.23)

To determine the value of the constant pi, we note that

∂v
(

eiθ
)

∂n

∣

∣

∣

∣

∣

∂Ωw,a

=
∂vj(θ)

∂θ

∣

∣

∣

∣

θ=π

= −Aj ,(4.24)

so the integration of (4.21) over Ωwi
gives to leading order

N
∑

j=1

Aj |∂Ωw,aj
| =

N
∑

j=1

2Aj

√

ε̃j = 0.(4.25)

The N + 1 equations (4.23) and (4.25) for the unknowns pi, A1, . . . , AN give the exit
probability from an interior point in the planar case as

pi =

√

ε′/ℓi
∑N

j=1

√

ε′j/ℓj
.(4.26)

4.3. Bottlenecks. To calculate the MFPT τ̄x→∂Ωa, we need the following lemma.
Lemma 4.2. The MFPT from a point x ∈ Ω1 to ∂Ωa satisfies the renewal

equation

τ̄x→∂Ωa
= τ̄x→∂Ωi

+

∫

∂Ωi

G(x | ξ)τ̄ξ→∂Ωa
dSξ,(4.27)

where G(x | ξ) is Green’s function for the mixed boundary value problem

∆u(x) = 0 for x ∈ Ω1,(4.28)

∂u(x)

∂n
=0 for x ∈ ∂Ω1 − ∂Ωi, u(x) = ϕ(x) for x ∈ ∂Ωi.

Proof. The identity follows from the fact that both sides of (4.27) satisfy (4.28)
for x ∈ Ω1 and coincide on ∂Ωi (see Schuss (2010b, 2013)).



THE NARROW ESCAPE PROBLEM 231

Composite Domains. A planar composite domain with a bottleneck Ω consists
of a head Ω1 connected through a small interface ∂Ωi to a narrow strip (neck) Ω2.
The boundary of Ω is assumed reflecting to Brownian particles, except the far end of
Ω2, denoted ∂Ωa, which is absorbing. For example, in Figure 2.1(left) the interface
∂Ωi is the black segment AB and the absorbing boundary ∂Ωa is the segment CD at
the bottom of the strip. In higher dimensions the head Ω1 is connected to a narrow
cylindrical neck Ω2.

Theorem 4.3 (the NET from a domain with a long neck). The MFPT of
Brownian motion from a composite domain Ω with reflecting boundary to an absorbing
boundary at the end of a narrow cylindrical neck of length L is given by

τ̄x→∂Ωa = τ̄x→∂Ωi
+

L2

2D
+

|Ω1|L
|∂Ωa|D

.(4.29)

Proof. Consider the domain Ω in Figure 2.1. Lemma 4.2 indicates how to sum the
MFPTs. To calculate τ̄∂Ωi→∂Ωa

and the absorption flux at the interface the boundary
value problem

∆v(x) = − 1

D
for x ∈ Ω,(4.30)

v(x) = 0 for x ∈ ∂Ωa,(4.31)

∂v(x)

∂n(x)
= 0 for x ∈ ∂Ωr(4.32)

has to be solved in the narrow neck Ω2. A straightforward regular expansion of the
solution in the cylindrical neck in powers of the neck radius shows that the solution
can be approximated by that of the one-dimensional boundary value problem

Duzz = −1 for 0 < z < L, u(0) = 0, u(L) = uH ,

where the value at the interface u(L) = uH is as yet unknown. The solution is given
by

u(z) = − z2

2D
+Bz,(4.33)

so that

u(L) = uH = − L2

2D
+ b.l.,(4.34)

where b.l. is a boundary layer term. Equation (4.34) relates the unknown constants
B and uH . The constant B is found by multiplying (2.4) by the Neumann func-
tion N(x,y), integrating over Ω1, applying Green’s formula, and using the boundary
conditions (4.31) and (4.32). Specifically, we obtain for all y ∈ ∂Ωi

v(y) = − 1

D

∫

Ω1

N(x,y) dx−
∫

∂Ωi

N(x,y)
∂v(x)

∂n
dSx +

1

|Ω1|

∫

Ω1

v(x) dx.(4.35)

Approximating, as we may, v(y) ≈ u(L) and using (4.34), we obtain

− L2

2D
+ b.l. = − 1

D

∫

Ω1

N(x,y) dx−
∫

∂Ωi

N(x,y)
∂v(x)

∂n
dSx +

1

|Ω1|

∫

Ω1

v(x) dx.

(4.36)
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Because v(x) is the solution of the boundary value problem (2.4)–(2.6) in the entire
domain Ω = Ω1

⋃

Ω2, the meaning of (4.36) is the connecting rule

τ̄x→∂Ωa = τ̄x→∂Ωi
+ τ̄∂Ωi→∂Ωa ,(4.37)

where

τ̄x→∂Ωa =
1

|Ω1|

∫

Ω1

v(x) dx,(4.38)

τ̄∂Ωi→∂Ωa
= u(L),(4.39)

τ̄x→∂Ωi
= − 1

D

∫

Ω

N(x,y) dx−
∫

∂Ωi

N(x,y)
∂v(x)

∂n
dSx.(4.40)

Equation (4.38) gives the MFPT, averaged over Ω1. The averaging is a valid approx-
imation, because the MFPT to ∂Ωi is constant to begin with (except in a negligible
boundary layer). Equation (4.39) is the MFPT from the interface to the absorbing
end ∂Ωa of the strip, and (4.40) follows from the identity (Singer et al. (2006); Schuss
(2013))

(4.41) 0 =
1

D

∫

Ω

N(x, ξ) dx+

∫

∂Ωa

N(x, ξ)g(x) dSx + Cε

for all ξ ∈ ∂Ωa. Matching the solutions in Ω1 and Ω2 continuously across ∂Ωi, we
obtain the total flux on ∂Ωi as

J = D

∫

∂Ωi

∂v(x)

∂ν
dSx = − (|Ω1|+ |Ω2|) .(4.42)

Noting that ∂v(x)/∂n = −u′(0) = −B, we get from (4.42) for the different interfaces
that

B = −

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

|Ω1|
aD

+
L

D
for a line segment,

|Ω1|
2πaD

+
L

D
for a circle,

|Ω1|
πa2D

+
L

D
for a circular disk.

(4.43)

Finally, we put (4.37)–(4.43) together to obtain (4.29).

4.4. Two-Dimensional Bottlenecks. The expression (4.29) for the NET from a
domain with a bottleneck in the form of a one-dimensional neck, such as a dendritic
spine, can be summarized as follows. Consider a domain Ω with head Ω1 and a narrow
cylindrical neck Ω2 of length L and radius a, connected smoothly to the head. The
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radius of curvature at the connection is Rc. In the two-dimensional case,

τ̄x→∂Ωa
=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

|Ω1|
πD

ln
|∂Ω1|
a

+
O(1)

D
+

L2

2D
+

|Ω1|L
aD

planar spine connected to the neck at a right angle,

π|Ω1|
D

√

Rc

a
(1 + o(1)) +

L2

2D
+

|Ω1|L
2πaD

planar spine with a smooth connecting funnel,

|Ω1|
2πD

log
sin θ

2

sin δ
2

+
L2

2D
+

|Ω1|L
2πaD

spherical spine surface connected to the neck at a right angle,

|Ω1|
2D

(

ℓ

(1 + ν)a

)ν/1+ν

ν1/1+ν

sin
νπ

1 + ν

+
L2

2D
+

|Ω1|L
2πaD

spherical spine surface with a smooth connecting funnel (4.3),

(4.44)

where R is the radius of the sphere, a = R sin δ/2, and θ is the initial elevation angle
on the sphere. If |Ω1| ≫ aL and L ≫ a, the last term in (4.44) is dominant, which is
the manifestation of the many returns of Brownian motion from the neck to the head
prior to absorption at ∂Ωa. Further cases are considered in Schuss (2013). Note that
modulation of neck length changes the residence time significantly.

4.5. References to Section 4. Section 4 develops a boundary layer theory for
the solution of the mixed Neumann–Dirichlet problem for the Poisson equation in
geometries in which the methodologies of Ward and Keller (1993); Ward, Henshaw,
and Keller (1993); Ward and Van De Velde (1992); Kolokolnikov, Titcombe, and Ward
(2005); Cheviakov, Ward, and Straube (2010); Coombs, Straube, and Ward (2009);
Grigoriev et al. (2002); Holcman and Schuss (2004); Singer et al. (2006); Singer,
Schuss, and Holcman (2006a,b); Singer and Schuss (2006); Bénichou and Voituriez
(2008); and Schuss, Singer, and Holcman (2007) fail. In the case of sufficiently smooth
boundaries near the absorbing window considered in Ward and Keller (1993); Ward,
Henshaw, and Keller (1993); Ward and Van De Velde (1992); Kolokolnikov, Titcombe,
and Ward (2005); Cheviakov, Ward, and Straube (2010); Coombs, Straube, and Ward
(2009); and Bénichou and Voituriez (2008), the leading-order boundary layer problem
is that of the exactly solvable electrified disk problem (Jackson (1975)), which gives
no indication that the second-order asymptotics ansatz should be logarithmic. The
Neumann function approach of Holcman and Schuss (2004); Singer et al. (2006);
Singer, Schuss, and Holcman (2006a,b); Singer and Schuss (2006); and Schuss, Singer,
and Holcman (2007), which is based on the standard leading-order singularity of
Neumann’s function (Garabedian (1964)), also fails to indicate the ansatz for second-
order boundary layer expansion. It is the insight that Popov’s Theorem 6.1 gives about
the asymptotics of Neumann’s function that points at the correct ansatz for both the
boundary layer method and the Neumann function method in the smooth case.

In the geometries considered in section 4 the small Dirichlet part is located at the
end of narrow straits with an absorbing end, connected smoothly to the Neumann
boundary of the domain. The boundary layer near the absorbing boundary is not
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mapped in an obvious way to an exactly solvable problem as in the smooth case.
Conformal mapping replaces the standard local stretching in resolving the boundary
layer in narrow necks. Additional problems related to Brownian motion in composite
domains that contain a cylindrical narrow neck connected smoothly or sharply to the
head are considered in Holcman and Schuss (2011). These include the asymptotic
evaluation of the NET and of the leading eigenvalue in dumbbell-shaped domains and
domains with many heads interconnected by narrow necks, the escape probability
through any one of several narrow necks, and more.

The effect of obstacles on the diffusion constant has been studied in the biological
context for the last two decades (Edidin, Kuo, and Sheetz (1991); Sheetz (1993);
Suzuki and Sheetz (2001); Kusumi et al. (2005); Kusumi, Sako, and Yamamoto (1993);
Saxton (1995); Saxton and Jacobson (1997); Eisinger, Flores, and Petersen (1986))
and more recently it was demonstrated, using single-particle imaging (Borgdorff and
Choquet (2002); Tardin et al. (2003); Triller and Choquet (2003); Choquet (2010)),
that the effective diffusion constant can span a large spectrum of values, from 0.001
to .2 μm2/sec (Choquet (2010)).

The calculation of the NET in composite domains with long necks was attempted
in Korkotian, Holcman, and Segal (2004); Schuss, Singer, and Holcman (2007); Grig-
oriev et al. (2002); and Berezhkovskii, Barzykin, and Zitserman (2009), and ultimately
accomplished in Holcman and Schuss (2011). The NET problem in a planar domain
with an absorbing window at the end of a funnel was considered in Holcman, Hoze,
and Schuss (2011). The case of planar domains that consist of large compartments
interconnected by funnel-shaped bottlenecks was also considered in that paper, and
the result (4.6) is found there too. The coarse-graining of diffusion into a Markov
chain is discussed in Hänggi, Talkner, and Borkovec (1990) (see also Holcman and
Schuss (2005); Holcman, Hoze, and Schuss (2011)). Finally, section 4 is based on
Holcman, Hoze, and Schuss (2011).

5. A Brownian Needle in Dire Straits. As an application of the methodology
described above, we study the planar diffusion of a stiff thin rod (needle) of length
l in an infinite horizontal strip of width l0 > l. This problem arises in modeling the
repair process of a broken strand of DNA (Minsky (2004)). We assume that the rod
is a long thin right circular cylinder with radius a ≪ l0 (Figure 5.1(left)). The planar
motion of the rod is described by two coordinates of the centroid and the rotational
angle θ between the axes of the strip and the rod. The y-coordinate of the center
of the rod is measured from the axis of the strip. The motion of the rod is confined
to the dumbbell-shaped domain Ω shown in Figure 5.1(right). The rod turns around
if the point (θ, y) crosses from the left domain L into the right domain R or in the
reverse direction, as described in Schuss (2010a). If

ε =
l0 − l

l0
≪ 1,(5.1)

the window AB becomes narrow and the MFPTs τL→AB and τR→AB , from the left
or right domains to the segment AB, which is the stochastic separatrix SS, become
much longer than those from AB to L or R. They also become independent of the
starting position outside a boundary layer near the segment AB. Thus the definition
of the time to turn around is independent of the choice of the domains L and R as
long as they are well separated from the segment AB. The neck near the segment is
the boundary layer region near θ = π/2. We neglect henceforward the short times
relative to the long ones.
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To turn across the vertical position the rod has to reach the segment AB from
the left domain L for the first time and then reach the right domain R for the first
time, having returned to L any number of times prior to reaching R. The mean time
to turn, τL→R, is given asymptotically by Schuss (2010a) as

τL→R ∼ 2τL→AB for ε ≪ 1.(5.2)

The time to turn around is invariant to translations along the strip (the x-axis);
therefore, it suffices to describe the rod movement by its angle θ and the y-coordinate
of its center. The position of the rod is defined for θ mod π. Therefore, the motion
of the rod in the invariant strip can be mapped into that in the (θ, y) planar domain
Ω (see Figure 5.1(right)):

Ω =

{

(θ, y) : |y| < l0 − l sin θ

2
, 0 < θ < π

}

.(5.3)

Our purpose is to calculate the mean turnaround time τL→R.

Fig. 5.1 Rod in strip. Left: The strip width is l0 and the rod length is l < l0. The position of
the rod is characterized by the angle θ and the fixed coordinates x and y and the rotating
system of coordinates (X, Y, θ). Right: The motion of the rod is confined to the domain Ω
in the (θ, y) plane.

5.1. The Diffusion Law of a Brownian Needle in a Planar Strip. In a rotating
system of coordinates (X,Y, θ), where the instantaneous X-axis is parallel to the long
axis of the rod and the Y -axis is perpendicular to it, the diffusive motion of the rod
is an anisotropic Brownian motion and can be described by the stochastic equations

Ẋ =
√

2DXẇ1, Ẏ =
√

2DY ẇ2, θ̇ =
√

2Drẇ3,

where DX is the longitudinal diffusion coefficient along the axis, DY the transversal
diffusion constant, and Dr the rotational diffusion coefficient. Due to the anisotropy,
the rod makes in general larger excursions in the X-direction than in the Y -direction,
and this usually characterized by the ratio DY /DX . Transforming into a fixed system
of Cartesian coordinates (x, y), the translational and rotational motion of the centroid
(x(t), y(t)) and the angle of rotation θ(t) of the rod are governed by the Itô equations

ẋ = cos(θ)
√

2DX ẇ1 − sin(θ)
√

2DY ẇ2,

ẏ = sin(θ)
√

2DX ẇ1 + cos(θ)
√

2DY ẇ2,(5.4)

θ̇ =
√

2Drẇ3,



236 D. HOLCMAN AND Z. SCHUSS

with conormal reflection at the boundary of the domain in Figure 5.1(bottom panel).
Putting (5.4) in the matrix form

ẋ(t) = B(θ) ẇ,(5.5)

where

x =

⎛

⎝

x
y
θ

⎞

⎠ , w =

⎛

⎝

w1

w2

w3

⎞

⎠ ,

and

B(θ) =
√
2

⎛

⎝

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎞

⎠

⎛

⎝

√
DX 0 0
0

√
DY 0

0 0
√
Dr

⎞

⎠ ,

we define the probability density function (pdf) p(t, x, y, θ) of the rod in the (x, y, θ)
space by

p(t, x, y, θ) dx = Pr{(x(t), y(t), θ(t)) ∈ x+ dx},(5.6)

which satisfies the Fokker–Planck equation (Schuss (2010b))

∂p(t,x)

∂t
= −∇ · J(t,x),

where the flux is given by

J(t,x) =−

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

[

DX cos2 θ +DY sin2 θ
] ∂p

∂x
+

1

2
[(DX −DY ) sin 2θ]

∂p

∂y

[

DX sin2 θ +DY cos2 θ
] ∂p

∂y
+

1

2
[(DX −DY ) sin 2θ]

∂p

∂x

Dr
∂p

∂θ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.(5.7)

Because J(t,x) is π-periodic in θ and the position of the rod is defined modulo π, the
boundary conditions are π-periodic in θ and the normal flux −Dr∂p(t, x, y, θ)/∂θ is
π-antiperiodic in θ.

The MFPT τL→AB is the solution u(θ, y) of the PAV (Schuss (2010b)) boundary
value problem

Dr
∂2u(θ, y)

∂θ2
+Dy(θ)

∂2u(θ, y)

∂y2
= −1 for (θ, y) ∈ Ω1,(5.8)

where Dy(θ) = DX sin2 θ + DY cos2 θ and Ω1 = Ω ∩ {θ < π/2}, with the mixed
boundary conditions

∂u

∂ñ
=0 for (θ, y) on the curved boundary and at θ = 0,(5.9)

u
(π

2
, y
)

=0 for |y| < l0 − l,(5.10)
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where the conormal derivative of u(θ, y) is given by

∂u

∂ñ
= ∇u(θ, y) · ñ(θ) for (θ, y) on the curved boundary(5.11)

and the conormal vector ñ(θ) is given by

ñ(θ) =

(

Dr 0
0 Dy(θ)

)

n(θ),(5.12)

with n(θ) the unit outer normal vector at the curved boundary.
The MFPT is the solution of the PAV boundary value problem for (5.8)–(5.10),

which corresponds to the stochastic system (5.5). Because the equation is translation-
invariant with respect to x, it reduces to (5.8). The boundary conditions at a curved
boundary for anisotropic diffusion with state-dependent diffusion tensor follow from
Singer et al. (2008) and Schuss (2013, section 2.6.2).

5.2. The Turnaround Time. Equation (5.2) shows that it suffices to calculate
the MFPT τL→AB in order to calculate the turnaround time τL→R.

Theorem 5.1 (the turnaround time). The mean turnaround time of a Brownian
needle of length l in a narrow strip of width l0, such that ε = (l0 − l)/l0 ≪ 1, is given
by

τL→R =
π(π − 2)

Dr

√

l0(l0 − l)

√

DX

Dr

(

1 +O

(

√

l0 − l

l0

))

.(5.13)

Proof. Introducing the dimensionless variables

X ′ =
X

l0
, Y ′ =

Y

l0
, ξ(t) =

x(t)

l0
, η(t) =

y(t)

l0

and the normalized diffusion coefficients

D′
X =

DX

l20
, D′

Y =
DY

l20
, Dη(θ) =

Dy(θ)

l20
,

we find that the domain Ω in (5.3) is mapped into

Ω′ =

{

(θ, η) : |η| < 1− (1− ε) sin θ

2
, 0 < θ < π

}

.(5.14)

To convert (5.8) to canonical form, we introduce the variable

ϕ(θ) =

∫ θ

0

√

Dη(θ′)

Dr
dθ′,(5.15)

which defines the inverse function θ = θ(ϕ), and set u(θ, y) = U(ϕ, η) to obtain

Uϕϕ(ϕ, η) + Uηη(ϕ, η) = Uϕ(ϕ, η)
√

Dr
dD

−1/2
η (θ)

dθ
− 1

Dη(θ)
.(5.16)

The domain Ω′, defined in (5.14), is mapped into the similar domain

Ω′′ =

{

(ϕ, η) : |η| < 1− (1 − ε) sin θ(ϕ)

2
, 0 < ϕ < ϕ(π)

}

(5.17)
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in the (ϕ, η) plane. Because the conormal direction at the boundary becomes normal,
so does the conormal derivative. The curved boundary in the scaled Figure 5.1(right)
is denoted ∂Ω′′. It follows that the no-flux boundary condition (5.9) and the absorbing
condition (5.10) become

∂U(ϕ, η)

∂n
=0 for (θ(ϕ), η) on ∂Ω′′,(5.18)

∂U(0, η)

∂ϕ
=0 for |η| < 1

2
, U

(

ϕ
(π

2

)

, η
)

= 0 for |η| < ε

2
,

respectively. The gap at θ = π/2 is preserved and the (dimensionless) radius of
curvature of the boundary at the gap is

R′ =
2Dη

(π

2

)

(1− ε)Dr
=

2DX

(1 − ε)l20Dr
.(5.19)

First, we simplify (5.16) by setting

g(ϕ) =
√

Dr
dD

−1/2
η (θ)

dθ
, U(ϕ, η) = f(ϕ)V (ϕ, η)(5.20)

and choosing f(ϕ) such that f ′(ϕ) = 1
2f(ϕ)g(ϕ). Note that

dD
−1/2
η (θ)

dθ

∣

∣

∣

∣

∣

θ=0,π/2,π

= 0.(5.21)

Equation (5.16) becomes

Vϕϕ + Vηη =
1

f(ϕ)

{

[g(ϕ)f ′(ϕ) − f ′′(ϕ)]V − 1

Dη(θ(ϕ))

}

.(5.22)

Next, we move the origin to the center of curvature of the lower boundary by setting

ζ = −
(

η −R′ − ε

2

)

+ i
[

ϕ− ϕ
(π

2

)]

and use the conformal mapping (4.10),

ω =
ζ −R′α

R′ − αζ
,(5.23)

with ω = ρeiψ . We also have

w′(ζ) =
1

R′
(1 + αw)2

1− α2
,(5.24)

|w′(ζ)|2 =
1

R′2

∣

∣

∣

∣

(1 + wα)2

1− α2

∣

∣

∣

∣

2

=
|1 − w +

√
εw|4

4εR′2 (1 +O(
√
ε)).(5.25)

The image Ωω of the domain Ω is given in Figure 5.2 and is similar to Ωw in Figure
4.3, except for a small distortion near ψ = c

√
ε, which we neglect, as we may. Setting
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Fig. 5.2 The image Ωω of the domain Ω under the mapping (5.23). The values of the parameters
are ε = 0.01 with the approximation DY ≪ DX . The domain is enclosed by the real
segment AB, the dashed arcs, and the small closing cap. The solid circular arcs are the
conformal images of arcs of the osculating circles at the narrow neck, as in Figure 4.3.

V (ϕ, η) = W (ρ, ψ), fixing ρ = 1 in Ωω, as in section 4, and abbreviatingW = W (ψ, 1),
(5.22) becomes to leading order

Wψψ +
h(ψ)

|ω′(ζ|2W = − 1

|ω′(ζ)|2k(ψ) ,(5.26)

where

h(ψ) =
f ′′(ϕ)− g(ϕ)f ′(ϕ)

f(ϕ)

∣

∣

∣

∣

ρ=1

, k(ψ) = f(ϕ)Dη(θ(ϕ))|ρ=1.(5.27)

Using (4.12) and neglecting terms of order O(ε), we rewrite (5.26) as

Wψψ +
4εR′2h(ψ)

|eiψ(1−√
ε)− 1|4W = − 4εR′2

|eiψ(1−√
ε)− 1|4k(ψ) .(5.28)

In view of (5.21), the boundary conditions (5.18) become

Wψ(c
√
ε) = 0, W (π) = 0.(5.29)

The outer solution of (5.28) is a linear function Wouter(ψ) = aψ+ b, where a and
b are as yet undetermined constants. The uniform approximation is constructed as
Wuniform(ψ) = Wouter(ψ) + Wbl(ψ), where the boundary layer Wbl(ψ) is a function
Y (ξ) of the boundary layer variable ξ = ψ/

√
ε. The boundary layer equation is

Y ′′(ξ) +
4R′2h(0)

(1 + ξ2)2
Y (ξ) = − 4R′2

(1 + ξ2)2k(0)
,(5.30)

which is simplified by the substitution Y (ξ) = Ỹ (ξ) + 1/h(0)k(0) to

Ỹ ′′(ξ) +
4R′2h(0)

(1 + ξ2)2
Ỹ (ξ) = 0.(5.31)

The boundary conditions (5.29) become Ỹ ′(c) = 0 and Ỹ (∞) = 1/h(0)k(0).
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Fig. 5.3 Two linearly independent solutions of (5.31). The linearly growing solution Y1(ξ) satisfies
the initial conditions Y1(0) = 0, Y ′

1
(0) = 2. The asymptotically constant solution Y2(ξ)

satisfies the initial conditions Y2(0) = −4.7, Y ′
2
(0) = −1. The asymptotic value is Y2(∞) ≈

−5.

The boundary layer equation (5.31) has two linearly independent solutions, Ỹ1(ξ)
and Ỹ2(ξ), which are linear for sufficiently large ξ. Initial conditions for Ỹ1(ξ) and
Ỹ2(ξ) can be chosen so that Ỹ2(ξ) → const as ξ → ∞ (e.g., Ỹ2(0) = −4.7, Ỹ ′

2(0) = −1;
see Figure 5.3). Thus the boundary layer function is given by

Wbl(ψ) = AỸ1

(

ψ√
ε

)

+BỸ2

(

ψ√
ε

)

+ C,(5.32)

where A and B are constants to be determined and C is related to the constant
1/h(0)k(0) and is also determined below from the boundary and matching conditions.

The matching condition is that Wbl(ψ) = AỸ1 (ψ/
√
ε)+BỸ2 (ψ/

√
ε)+C remains

bounded as ξ → ∞, which implies A = 0. It follows that at the absorbing boundary
ψ = π we have

Wunif(π) = aπ + b′ = 0,(5.33)

W ′
unif(π) = a,

where the constant b′ incorporates all remaining constants. At the reflecting boundary
we have to leading order

W ′
unif(c

√
ε) =W ′

outer(c
√
ε) +W ′

bl(c
√
ε) = a+B

Ỹ ′
2(c)√
ε

= 0,(5.34)

which gives

B = − a
√
ε

Ỹ ′
2(c)

, b′ = −aπ.(5.35)

The uniform approximation to W (ω) is given by

Wunif(ρe
iψ) = a

(

ψ − π −
√
ε

Ỹ ′
2(c)

)

,(5.36)
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so that using (5.20), (5.21), and (5.24) we obtain from (5.36)

∂u

∂n

∣

∣

∣

∣

ζ∈∂Ωa

= f
(

ϕ
(π

2

)) ∂W (ρeiψ)

∂ψ

∣

∣

∣

∣

ψ=π

ω′(ζ)
∣

∣

∣

ζ=−1

∂ϕ

∂θ

∣

∣

∣

∣

θ=π/2

= a

√

2

εR′ (1 +O(
√
ε)).(5.37)

Because W (ω) scales with 1/f(ϕ) relative to V (ϕ, η), we may choose at the outset
f(ϕ(π/2)) = 1.

Finally, to determine the value of a, we integrate (5.8) over Ω and use (5.37) and
the fact that

∫

∂Ωa

dy = l0ε

to obtain a = −|Ω|
√
R′/l0Dr

√
2ε. Now (5.36) gives the MFPT at any point x in the

head as

τL→AB = u(x) ∼ W
(

ρeic
√
ε
)

∼ −aπ =
π|Ω|

√
R′

l0Dr

√
2ε

(1 +O(
√
ε) for ε ≪ 1.(5.38)

Reverting to the original dimensional variables, we get

τL→AB =
π
(π

2
− 1
)

Dr

√

l0(l0 − l)

√

DX

Dr

(

1 +O

(

√

l0 − l

l0

))

,(5.39)

which, together with (5.2), is (5.13).

6. NET in Bounded Domains in R
3. The NET problem in three dimensions is

more complicated than that in two dimensions, primarily because the singularity of
Neumann’s function for a regular domain is more complicated than (2.2).

6.1. The Neumann Function in Regular Domains in R
3. The Neumann func-

tion N(x,y) for a bounded domain Ω ⊂ R
3 with a sufficiently smooth boundary ∂Ω

is the solution of the boundary value problem

∆xN(x,y) = − δ(x− y) +
1

|Ω| for x,y ∈ Ω,(6.1)

∂N(x,y)

∂νx
=0 for x ∈ ∂Ω, y ∈ Ω,(6.2)

where ν(x) is the outer unit normal to the boundary ∂Ω. If x or y (or both) are in ∂Ω,
then only half of any sufficiently small ball about a boundary point is contained in Ω,
which means that the singularity of Neumann’s function is (2π|x− y|)−1. Therefore,
Neumann’s function for y ∈ ∂Ω can be written as

(6.3) N(x,y) =
1

2π|x− y| + v(x,y),

where v(x,y) satisfies

(6.4) ∆xv(x,y) =
1

|Ω| for x ∈ Ω, y ∈ ∂Ω.
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In general, the Neumann function has the form (Garabedian (1964))

(6.5) N(x, ξ) =
1

4π|x− ξ| + vS(x, ξ),

where vS(x, ξ) has a weaker singularity at x = ξ when x ∈ ∂Ω and ξ ∈ Ω ∪ ∂Ω (see
Theorem 6.1 below). It follows that only the singular part of the Neumann function
contributes to the leading-order approximation to the solution of the integral equation
(2.10). Thus we obtain for the leading-order approximation to the absorption flux
density g0(x) on ∂Ωa and for the leading-order approximation C0 of the MFPT C the
Helmholtz integral equation (2.10)

(6.6)
1

2π

∫

∂Ωa

g0(x)

|x− ξ| dSx = −C0.

Here C0 is a constant that represents the first approximation to the MFPT. It is also
the electrostatic capacity of the window (Jackson (1975)).

The structure of Neumann’s function for a regular domain in R
3 is described in

the following theorem (Popov (1992)).
Theorem 6.1 (Popov). Assume Ω ∈ R

3 is a bounded domain whose boundary ∂Ω
has continuous partial derivatives up to order three. Then, for z ∈ ∂Ω, y ∈ Ω ∪ ∂Ω,
the structure of the Neumann function (in dimensionless variables) is

N(y, z) =
1

2π|y − z| −
1

8π
[L(z) +N(z)] ln |y − z|+ vS(y, z),(6.7)

where L(z) and N(z) are the principal curvatures of ∂Ω at z, and vS(y, z) is a
bounded function of x,y in Ω.

Thus Neumann’s function for a ball in R
3 is found from the canonical rep-

resentation of a hemisphere of (dimensionless) radius R at the south pole, x3 =
R−

√

R2 − (x2
1 + x2

2). We find that L(z) = N(z) = 1
R , so for |z| = R we have

(6.8) N(y, z) =
1

2π|y − z| +
1

4πR
ln

1

|y − z| +O(1).

Further analysis of the O(1) term is given in Silbergleit, Mandel, and Nemenman
(2003). The structure of Neumann’s function for a ball is given in Kellog (1954,
p. 247, Exercise 4).

6.2. Elliptic Absorbing Window. An explicit solution to the Helmholtz equation
(6.6) can be found when the hole ∂Ωa is an ellipse (Rayleigh (1945); Lurie (1964)).
Consequently, the MFPT from a large cavity of volume |Ω| to a small elliptic absorbing
window on an otherwise reflecting boundary ∂Ω can be calculated explicitly to leading
order.

Theorem 6.2. Assume the boundary ∂Ω of a bounded domain Ω ⊂ R
3 is suffi-

ciently regular and the absorbing boundary ∂Ωa is the ellipse

x2

a2
+

y2

b2
≤ 1, z = 0 (b ≤ a).(6.9)

If

ε =

( |∂Ωa|
|∂Ω|

)1/2

≪ 1
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and

|Ω|2/3
|∂Ω| ,

|∂Ω|
|Ω|2/3 = O(1) for ε ≪ 1,

then the MFPT from a Ω to ∂Ωa is to leading order

(6.10) Eτ(a, b) ∼ |Ω|
2πDa

K(e),

where K(·) is the complete elliptic integral of the first kind and e =
√

1− b2/a2 is the
eccentricity of the ellipse.

If the hole is circular, e = 0 and K(0) = π/2, so that

(6.11) Eτ(a, a) ∼ |Ω|
4Da

= O

(

1

ε

)

.

If the hole is an elongated ellipse with b ≪ a, the eccentricity is e =
√

1− b2/a2 ≃ 1,
which gives the following asymptotic expansion for the elliptic integral (see Abramowitz
and Stegun (1972, p. 591)):

K(e) ≈ 1

2
log

(

16

1− e

)

.(6.12)

Then (6.10) becomes

(6.13) Eτ(a, b) ∼ |Ω|
2πDa

log

(

4a

b

)

,

showing that for b ≪ 1 and b ≪ a, the NET depends logarithmically on the short
axis b.

A related problem is that of reaching a narrow spine-like absorbing or partially
absorbing protrusion of the boundary into the domain. For the case of an ellipsoidal
protrusion with transversal semiaxes a2 ≥ a1 and height a3, the eccentricity is e =
√

1− a21/a
2
2 with f = a3/a1. With the elliptic integral

K(e, f) =
2

π

∫ π/2

0

dθ
√

(1 − e2 sin2 θ)(1 + f2 tan2 θ)
,(6.14)

the NET is given by Reingruber, Abad, and Holcman (2009) as

τ̄ =
|V |
4a1D

K(e, f).(6.15)

For a1 = a2 and f = a3/a1, the NET is

τ̄ =
|V |

2πa1D

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

arccos f
√

1− f2
, f ≤ 1,

arccoshf
√

f2 − 1
, f ≥ 1.

(6.16)
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In the limit f ≫ 1, we obtain the approximation

τ̄ ≈ |V |
2πa1D

ln(2f)

f
.

If the narrow protrusion is reflecting, except for N absorbing circular disks of radius
s on its surface, the NET is given approximately by Reingruber, Abad, and Holcman
(2009) as

τpart−spine =
|V |
4a1D

K(e, f)Ns+ (1− σ)a1
Ns

.(6.17)

The proof of Theorem 6.2 is based on the following lemma (see Lurie (1964)).
Lemma 6.3 (Helmholtz (1860)). Assume ∂Ωa is the ellipse

x2

a2
+

y2

b2
≤ 1, z = 0 (b ≤ a);

then the solution of the Helmholtz equation (6.6) is

(6.18) g0(x) =
g̃0

√

1− x2

a2
− y2

b2

,

where g̃0 is a constant.
The explicit solution of the Helmholtz equation for a general shaped window, such

as a rectangle, is as yet unknown.

6.3. Second-Order Asymptotics for a Circular Window. To obtain higher-
order asymptotics of the MFPT, we use Popov’s Theorem 6.1 and Helmholtz’s Lemma
6.3 in (2.10). We obtain the following theorem.

Theorem 6.4. Under the assumptions of Theorems 6.1 and 6.2 for a circular
window of radius a ≪ |∂Ω|1/2,

Eτ =
|Ω|

4aD

[

1 +
L(0) +N(0)

2π
a log a+ o(a log a)

] for a ≪ |∂Ω|1/2.(6.19)

Proof. To obtain higher-order asymptotics of the MFPT, we us Popov’s Theorem
6.1 and Helmholtz’s Lemma 6.3 in (2.10), which, in view of (6.7), now becomes the
generalized Helmholtz equation

∫

∂Ωa

g(x)

[

1

2π|x− y| +H(x,y) log |x− y|+O(1)

]

dSx = −C for y ∈ ∂Ωa,

(6.20)

H(x,y) = − 1

8π
[L(y) +N(y)] ∼− 1

8π
[L(0) +N(0)] for x,y ∈ ∂Ωa, ε ≪ 1,

where L(0), N(0) are the principal curvatures at the center 0 of ∂Ωa. To solve (6.20),
we expand g(x) = g0(x) + g1(x) + g2(x) + · · · , where gi+1(x) ≪ gi(x) for ε ≪ 1, and
choose

g0(x) =
−2C

aπ

√

1− |x|2
a2

.(6.21)
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According to Lemma 6.3, if ∂Ωa is a circular disk of radius a, then

(6.22)
1

2π

∫

∂Ωa

g0(x)

|x− y| dSx = C for all y ∈ ∂Ωa.

It follows that g1(x) satisfies the integral equation

(6.23)
1

2π

∫

∂Ωa

g1(x)

|x− y| dSx =
2C

aπ

∫

∂Ωa

H(x,y) log |x− y|
√

1− |x|2
a2

dSx.

Setting y = aη, x = aξ, and changing to polar coordinates in the integral on the
right-hand side of (6.23), we obtain

(6.24)
1

2π

∫

∂Ωa

g1(x)

|x− y| dSx =
2Ca2

aπ

∫ 2π

0

dθ

∫ 1

0

H(aξ, aη) [log a+ log |ξ − η|]√
1− r2

r dr,

which gives in the limit ε → 0 (e.g., keeping |Ω| fixed and a → 0) that

(6.25)
1

2π

∫

∂Ωa

g1(x)

|x− y| dSx = −C[L(0) +N(0)]

2π
a log a+ o(a log a).

As in the pair (6.21), (6.22), we obtain that

g1(x) =
−C[L(0) +N(0)]

π2

√

1− |x|2
a2

log a+ o(log a).(6.26)

To determine the asymptotic value of the constant C, we recall that g(x) = ∂u(x)/∂ν
and use in (2.7) the approximation

g(x) ∼ g0(x) + g1(x) ∼
−2C

aπ

√

1− |x|2
a2

[

1 +
L(0) +N(0)

2π
a log a

]

.

We obtain the NET (in dimensionless variables) as

Eτ =
|Ω|

4aD

[

1 +
L(0) +N(0)

2π
a log a+ o(a log a)

] ,

which is (6.19).
Higher-order asymptotics of the principal eigenvalue of the Laplace equation in Ω

with the mixed Dirichlet–Neumann boundary conditions (2.5)–(2.6) are derived from
the asymptotic representation λ1(a) ∼ (Eτ)−1 for a ≪ |∂Ω|1/2, which gives

λ1(a) =
4aD

|Ω|

[

1 +
L(0) +N(0)

2π
a log a+ o(a log a)

]

.(6.27)

If Ω is a ball of radius R, then L(0)+N(0) = 2/R and the NET Eτ = C is given
(in dimensional variables) by

Eτ =
|Ω|

4aD

[

1− a

πR
log

R

a
+ o

(

a

R
log

R

a

)]

=
|Ω|
4aD

[

1 +
a

πR
log

R

a
+ o

(

a

R
log

R

a

)]

.(6.28)
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Higher-order asymptotics for a ball can be obtained from Silbergleit, Mandel, and
Nemenman (2003) and Kellog (1954, p. 247, Exercise 4). The principal eigenvalue for
the Dirichlet problem in a domain with a small hole was considered in Ozawa (1981,
1983a,b).

7. The NET in a Solid Funnel-Shaped Domain. We consider now the NET
problem in the solid of revolution obtained by rotating the symmetric domain Ω′ in
Figure 4.1(left) about its axis of symmetry. The absorbing end of the neck becomes
a circular disk of radius a′ = ε′/2.

Theorem 7.1. The MFPT to the absorbing boundary at the end of the funnel of
a solid of revolution obtained by rotating the symmetric planar domain (4.3) of section
4.1 is given by

τ̄ =
1√
2

(

ℓ+
a′

)3/2
V

ℓ+D
(1 + o(1)) for a′ ≪ ℓ+,(7.1)

where V = |Ω′| is the volume of the domain.
Proof. Due to cylindrical symmetry of the mixed boundary value problem (4.9),

the MFPT in cylindrical coordinates centered on the axis of symmetry is independent
of the angle. It follows that with the scaling (4.8) the boundary value problem (4.9)
in the scaled spatial domain Ω can be written in cylindrical coordinates as

∆u =
∂2u

∂r2
+

1

r

∂u

∂r
+

∂2u

∂z2
= − ℓ2+

D
.(7.2)

Equation (7.2) can be considered as a two-dimensional problem in the planar cross-
section by a plane through the axis of symmetry of Ω in the (r, z) plane. Here r is
the distance to the axis of symmetry of Ω, the z-axis is perpendicular to that axis,
and the origin is inside the cross-section of Ω, at the intersection of the axis with the
tangent to the osculating circle to the cross-section at the gap. Setting u1 = ur1/2,
the MFPT equation (7.2) takes the form

∂2u1(r, z)

∂r2
+

∂2u1(r, z)

∂z2
= − ℓ2+

D

(

r1/2 +
u1(r, z)

4r2

)

(7.3)

in the cross-section, with mixed Neumann–Dirichlet boundary conditions, as in the
planar case. We assume that in dimensionless variables AB = ε ≪ 1 < |Ω|1/3, so
the funnel is a narrow passage. The transformation to the rotated and translated
coordinates is given by r̃ = r − 1 − ε/2, z̃ = −z + 1. Setting u1(r, z) = ũ(r̃, z̃), (7.3)
becomes

∂2ũ(r̃, z̃)

∂r̃2
+

∂2ũ(r̃, z̃)

∂z̃2
= − ℓ2+

D

⎛

⎜

⎝

(

r̃ + 1 +
ε

2

)1/2

− ũ(r̃, z̃)

4
(

r̃ + 1 +
ε

2

)2

⎞

⎟

⎠
.(7.4)

The construction of the asymptotic expansion of the solution of the boundary layer
equation (5.28) is similar to that in section 5.2. We construct an asymptotic solution
for small gap ε by first mapping the cross-section in the (r, z) plane conformally into
its image under the Möbius transformation (4.10),

w(ζ) = ρeiη =
ζ − α

1− αζ
,(7.5)
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where α is given in (4.11) for the symmetric case Rc = rc = 1. Setting ũ(ζ) = v(w),
(7.4) becomes

∆wv(w) =
ℓ2+

D|w′(ζ)|2

⎛

⎜

⎜

⎜

⎝

−
∣

∣

∣

∣

Re
w + α

1 + αw
+ 1 +

ε

2

∣

∣

∣

∣

1/2

− v

4

∣

∣

∣

∣

Re
w + α

1 + αw
+ 1 +

ε

2

∣

∣

∣

∣

2

⎞

⎟

⎟

⎟

⎠

.

(7.6)

Because the normalized head of Figure 4.1(left) is mapped into the narrow hot dog–
shaped region in Figure 4.3 of width

√
ε at ρ = 1, we approximate

w = eiη +O(
√
ε),

∣

∣

∣

∣

w + α

1 + αw

∣

∣

∣

∣

= 1 +O(
√
ε).(7.7)

We also have

w′(ζ) =
(1 + αw)2

α2 − 1
, |w′(ζ)|2 =

|1− w +
√
εw|4

4ε
(1 +O(

√
ε)),(7.8)

so that (7.3) reduces to

∆wv = − ℓ2+
D

4ε(1 +O(
√
ε))

|1− w +
√
εw|4

(√
2 +

1

16
v

)

(7.9)

or, equivalently,

v′′ +
ε

4|eiη − 1− eiη
√
ε|4 v =

ℓ2+
D

4
√
2ε

|eiη − 1− eiη
√
ε|4
(

1 +O(
√
ε)
)

.(7.10)

Setting v = ℓ2+(y − 16
√
2)/D, we obtain the leading-order equation

y′′(η) +
ε

4|eiη − 1− eiη
√
ε|4 y(η) = 0.(7.11)

The boundary conditions are

y′(c
√
ε) = 0, y(π) = 16

√
2.(7.12)

The outer solution is the linear function

youter(η) = Mη +N,(7.13)

where M and N are as yet undetermined constants. The absorbing boundary condi-
tion in (7.12) gives

youter(π) = Mπ +N = 16
√
2.(7.14)

A boundary layer correction is needed to satisfy the boundary conditions at the
reflecting boundary at η = c

√
ε. To resolve the boundary layer at η = c

√
ε, we set

η =
√
εξ and expand

ε2

|eiη − 1− eiη
√
ε|4 =

1

(1 + ξ2)2
+O(

√
ε).
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Writing ybl(η) = Y (ξ), we obtain to leading order the boundary layer equation

Y ′′(ξ) +
1

4(1 + ξ2)2
Y (ξ) = 0,(7.15)

which has two linearly independent solutions, Y1(ξ) and Y2(ξ), that are linear functions
for sufficiently large ξ. Initial conditions for Y1(ξ) and Y2(ξ) can be chosen so that
Y2(ξ) → const as ξ → ∞ (e.g., Y2(0) = −4.7, Y ′

2(0) = −1; see Figure 5.3). Setting

ybl(η) = AY1

(

η√
ε

)

+BY2

(

η√
ε

)

,(7.16)

where A and B are constants to be determined, we seek a uniform approximation
to y(η) in the form yunif(η) = youter(η) + ybl(η). The matching condition is that
AY1 (η/

√
ε) + BY2 (η/

√
ε) remains bounded as ξ → ∞, which implies A = 0. It

follows that at the absorbing boundary η = π we have

yunif(π) = Mπ + β − 5B = 16
√
2, y′unif(π) = M.(7.17)

At the reflecting boundary we have to leading order

y′unif(c
√
ε) = y′outer(c

√
ε) + y′bl(c

√
ε) = M +B

Y ′
2(c)√
ε

= 0,(7.18)

which gives

B = −M
√
ε

Y ′
2(c)

, N = 16
√
2− 5M

√
ε

Y ′
2(c)

−Mπ.(7.19)

The uniform approximation to v(w) is given by

vunif(ρe
iη) = M

(

η − π − 5
√
ε

Y ′
2(c)

)

,(7.20)

so that, using (7.8), we obtain from (7.20)

∂u

∂n

∣

∣

∣

∣

ζ∈∂Ωa

=
∂v(ρeiη)

∂η

∣

∣

∣

∣

η=π

w′(ζ)
∣

∣

∣

ζ=−1
=

2M√
ε
(1 +O(

√
ε)).(7.21)

To determine the value of M , we integrate (4.9) over Ω and use (7.21) and the
fact that

∫

∂Ωa

dS =
πε2

4
(7.22)

to obtain M = −2ℓ2+|Ω|/Dπε3/2. Then (7.20) gives the MFPT at any point x in the
head as

τ̄ = u(x) ∼ v
(

ρec
√
ε
)

∼ 2ε−3/2 ℓ
2
+|Ω|
D

= 2ε−3/2 |Ω′|
ℓ+D

for ε ≪ 1.(7.23)

The dimensional radius of the absorbing end of the funnel is a′ = ℓ+ε/2 (see (4.8)),
so (7.23) can be written in physical units as (7.1).
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The generalization of (7.1) to exit through N well-separated necks is found by
noting that (7.22) becomes

∫

∂Ωa

dS =
N
∑

j=1

πε2j
4

,(7.24)

and the integration of (4.7) over Ω′ gives the compatibility condition (dimensional)

∫

∂Ω′

∂u(x′)

∂n′ dS′ = M
N
∑

j=1

ℓjπε
2
j

4
√
εj

= −|Ω′|
D

,(7.25)

which determines

M = − 4|Ω′|
D
∑N

j=1 ℓjπε
3/2
j

.(7.26)

Hence, using the dimensional a′j = ℓjεj/2, we obtain

τ̄ = −Mπ =
1√
2

|Ω′|

D
∑N

j=1 ℓj

(

a′j
ℓj

)3/2
.(7.27)

To calculate the exit probability from one of N necks, we note that the boundary
layer function is to leading order linear, as in section 4.2. Therefore, in the three-
dimensional case the exit probability is given by

pi =
ε
3/2
i ℓi

∑N
j=1 ε

3/2
j ℓj

=
a′i

3/2
ℓ
−1/2
i

∑N
j=1 a

′
j
3/2ℓ

−1/2
j

.(7.28)

8. Selected Applications. A thorough review of the applications of the NET is
given in Holcman and Schuss (2013). We illustrate below how the NET facilitates the
analysis of certain chemical and biological models by coarse-graining the time scale
and thus reducing the dimension of the parameter space. References for this section
are given in section 8.3.

8.1. Transition Rate and the Principal Eigenvalue in Composite Domains.

Consider, for simplicity, the sojourn time of Brownian motion in a compartment
interconnected by a narrow neck with another compartment in a composite domain,
as shown in Figure 1.1. The sojourn time is the MFPT from that compartment
to another one. In the limit of shrinking neck, the sojourn time is to leading order
independent of the initial point of the escaping trajectory and equals twice the MFPT
from the compartment to the narrowest passage in the bottleneck (e.g., the interval
AB in Figure 1.1). Indeed, the reciprocal of this MFPT is to leading order the rate at
which trajectories reach the bottleneck from the first compartment, so the reciprocal
of the MFPT is the lowest eigenvalue of the mixed Neumann–Dirichlet boundary value
problem in the first compartment with Dirichlet conditions on the cross-section of the
neck.

There is a spectral gap of order one from the smallest eigenvalue to the next
one. Thus, it follows that long transition times of Brownian trajectories between
compartments connected by bottlenecks are exponentially distributed and, therefore,
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the leading eigenvalues of Neumann’s problem for the Laplace equation in a domain
that consists of compartments interconnected by narrow necks are to leading order
the eigenvalues of a Markov chain with transition rates that are the reciprocals of the
MFPTs through the narrow necks, as is the case for diffusion in a potential landscape
with several deep wells (high barriers) (Schuss (2010b)). The evaluation of the lead-
ing eigenvalues of the Neumann problem for the Laplace equation in domains with
bottlenecks reduces to the computation of the leading-order eigenvalues for the mixed
Neumann–Dirichlet boundary value problem for the Laplace equation in domains with
reflecting (Neumann) boundary, except for a small absorbing (Dirichlet) window at
the end of a funnel.

8.1.1. The Principal Eigenvalue in a Domain with a Head and Narrow Neck.

The composite domain Ω in Figure 2.1(left) consists of a head Ω1 connected by a
funnel to a narrow cylindrical neck Ω2. The boundary of the domain is reflecting
(Neumann) and only the far end of the cylinder ∂Ωa is absorbing (Dirichlet). The
left half of the dumbbell-shaped domain shown in Figure 1.1 is a composite domain
of this type if the interval AB is an absorbing boundary. In the three-dimensional
case the Dirichlet boundary ∂Ωa is a small absorbing disk at the end of the cylinder.
The domain Ω1 is the one shown in Figure 4.1, and it is connected to the cylinder at
an interface ∂Ωi, which in this case is the interval AB in Figure 4.1.

Using (4.29) and the fact that the principal eigenvalue of the mixed two- and
three-dimensional Neumann-Dirichlet problems in domains with small Dirichlet and
large Neumann parts of a smooth boundary is asymptotically the reciprocal of the
MFPT, we find that the principal eigenvalue λ1 in a domain with a single bottleneck
is related to the MFPT through (Schuss (2010b, section 6.1))

λ1 ∼ 1

τ̄x→∂Ωi
+

L2

2D
+

|Ω1|L
|∂Ωa|D

,(8.1)

where τ̄x→∂Ωi
is any one of the MFPTs given in (4.43), depending on the geometry of

Ω1. If a composite domain consists of a single head and N well-separated bottlenecks
of different radii and neck lengths, then the reciprocal of the MFPT is the sum of
the reciprocals of the NETs from a domain with a single bottleneck. That is, the
principal eigenvalue λP is given by λP ∼∑N

j=1 λj . This can be interpreted as the fact
that the total efflux is the sum of N independent effluxes through the bottlenecks.

8.1.2. The Principal Eigenvalue and Coarse-Grained Diffusion in a Dumbbell.

A dumbbell-shaped domain Ω consists of two- or three-dimensional compartments Ω1

and Ω3 and a connecting neck Ω2 that is effectively one-dimensional, as shown in
Figure 1.1. The stochastic separatrix (SS) in Ω is the locus of initial points for
Brownian trajectories that are as equally likely to reach Ω1 before Ω3 as they are to
reach Ω3 before Ω1. In Figure 1.1 the SS is the interval AB. Consider the eigenvalue
problem for the Laplace equation in Ω with Neumann boundary conditions.

Theorem 8.1 (the principal eigenvalue in a dumbbell). The smallest positive
eigenvalue λ of the Neumann problem for the Laplace equation in the dumbbell is to
leading order that of the two-state Markov process,

λ = −(λI→II + λII→I),

where the transition rates from I to II and from II to I are, respectively,

λI→II =
1

2τ̄Ω1→SS
, λII→I =

1

2τ̄Ω3→SS
.(8.2)
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Proof. We assume, as we may, that the SS is the cross-section of the neck at its
center. Therefore the mean time to traverse the neck from Ω1 to Ω3 is asymptotically
twice the MFPT τ̄x→SS from x ∈ Ω1 to the SS (see Schuss (2010a)). This MFPT
is to leading order independent of x ∈ Ω1 and can be denoted τ̄Ω1→SS . Note that
when the neck is narrow the mean residence time of a Brownian trajectory in Ω1 or
in Ω3 is much longer than that in Ω2. Also note that the FPT τx→SS for x ∈ Ω1 is
exponentially distributed for long times and so is τx→SS for x ∈ Ω3 (Schuss (2010b)).
Therefore, the Brownian motion in Ω can be coarse-grained into a two-state Markov
process (a telegraph process), which is in State I when the Brownian trajectory is in
Ω1 and is in State II when it is in Ω3. The state Ω2 and the residence time there can
be neglected relative to those in Ω1 and Ω3. The transition rates from I to II and
from II to I, given in (8.2), can be found from (8.1), with L half the length of the
neck and SS = ∂Ωa. The radii of curvature Rc,1 and Rc,3 at the two funnels may be
different, and the domain is either Ω1 or Ω3.

The asymmetric Markovian random telegraph process jumps between two states,
I and II, at independent exponentially distributed waiting times with rates λI→II

and λII→I, respectively. The transition pdf satisfies the linear differential equations1

(Schuss (2010b))

∂P{I, t |x, t0}
∂t

= − λI→IIP{I, t |x, t0}+ λII→IP{II, t |x, t0},

(8.3)

∂P{II, t |x, t0}
∂t

=λI→IIP{I, t |x, t0} − λII→IP{II, t |x, t0},

which can be written in the obvious matrix notation as ṗ = Ap with

A =

(

−λI→II λII→I

λI→II −λII→I

)

.

The eigenvalues of A are 0 with the normalized eigenvector (12 ,
1
2 )

T , and −(λI→II +
λII→I) with the eigenvector (1,−1)T . It follows that the nonzero eigenvalue of the
system (8.3) is λ = λI→II + λII→I. Hence the theorem follows.

For example, if the solid dumbbell consists of two general heads connected smoothly
to the neck by funnels, the two rates are given by

1

λI⇄II
=
√
2

[

(

Rc,1/3

a

)3/2 |Ω1/3|
Rc,1/3D

]

[1 + o(1)] +
L2

4D
+

|Ω1/3|L
πa2D

.(8.4)

Next, we consider the Neumann problem for the Laplace equation in a domain
that consists of any number of heads interconnected by narrow necks. The Brownian
motion can be coarse-grained into a Markovian random walk that jumps between the
connected domains at exponentially distributed times with rates determined by the
FPTs and exit probabilities, as described in section 8.1.1. This random walk can in
turn be approximated by an effective coarse-grained anisotropic diffusion, as done,
for example, for atomic migration in crystals, for effective diffusion on a surface with
obstacles (see the next section), and for a general diffusion on a potential landscape
with deep wells.

1See http://en.wikipedia.org/wiki/Telegraph process.
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8.2. Coarse-Grained Diffusion on a Membrane Crowded with Obstacles. The
second example is the organization of a cellular membrane, which is the determinant
of molecular trafficking (e.g., receptors, lipids, etc.) to their destination. After decades
of intense research on membrane organization it was demonstrated recently by single-
particle imaging that the effective diffusion constant can span a large spectrum of
values, from 0.001 to .2 μm2/sec, yet it is still unclear how the heterogeneity of the
membrane controls diffusion.

The degree of crowding of a membrane with obstacles can be estimated from
diffusion data and from an appropriate model and its analysis, as explained below.
The key to assessing the crowding is to estimate the local diffusion coefficient from
the measured molecular trajectories and from the analytical formula for the MFPT
through a narrow passage between obstacles. In a simplified model of crowding, the
circular obstacles are as in Figure 8.1(a), which shows a square lattice of circular
obstacles of radius a centered at the corners of lattice squares of side L. The MFPT

Fig. 8.1 A model of diffusion on a crowded membrane. (a) Schematic representation of a Brownian
particle diffusing in a crowded microdomain. (b) Mean square displacement (MSD) of the
particle in a domain paved with microdomains. The MSD is linear, showing that crowding
does not affect the nature of diffusion. The effective diffusion coefficient is computed
from 〈MSD(t)/4t〉. (c) Effective diffusion coefficient computed from the MSD for different
radii of the obstacles. Brownian simulations (continuous curve): there are three regions
(separated by the dashed lines). While there is no crowding for a < 0.2, the decreasing
of the effective diffusion coefficient for 0.2 < a < 0.4 is logarithmic, and like square root
for a > 0.4. (d) Effective diffusion coefficient of a particle diffusing in a domain as a
function of the fraction of the occupied surface. An AMPAR has a diffusion coefficient of
0.2µm2/sec in a free membrane.
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τ̄4 from a lattice box to the stochastic separatrix is (see Figure 8.1(a))

τ̄4 =
τ̄

4
,(8.5)

where τ̄ is the MFPT to a single absorbing window in the narrow straits with the
other windows closed (reflecting instead of absorbing) (see Figure 2.1(left) or Figure
4.1(left)); thus τ̄ is the MFPT from the head to the segment AB. It follows that
the waiting time in the cell enclosed by the obstacles is approximately exponentially
distributed with rate

λ =
2

τ̄4
.(8.6)

The asymptotic approximation to τ̄ is given by

τ̄ ≈

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

c1 for 0.8 < ε < 1,

c2|Ω| log
1

ε
+ d1 for 0.55 < ε < 0.8,

c3
|Ω|√
ε
+ d2 for ε < 0.55,

(8.7)

with ε = (L − 2a)/a and d1, d2 = O(1) for ε ≪ 1 . The constants ci (i = 1, 2, 3) are
calculated in Holcman, Hoze, and Schuss (2011). Thus the diffusion on the crowded
membrane is coarse-grained into a symmetric Markovian jump process on a lattice
with rate λ and step L. This, in turn, can be coarse-grained into a diffusion process
in the plane with the effective diffusion coefficient D = λL2/4 = 2L2/τ̄ (see Figure
8.1) (Schuss (1980); Hänggi, Talkner, and Borkovec (1990)).

8.3. References and Supplement to Section 8. The models and simulations of
synaptic transmission are given in Freche et al. (2011); Taflia and Holcman (2011);
and Holcman and Triller (2006). The microscopic model of reaction and diffusion
follows Holcman and Schuss (2005) and Dao Duc and Holcman (2010). The results of
section 8.1, concerning the principal eigenvalue in composite domains, are derived in
Schuss (2013) and reviewed in Holcman and Schuss (2013). The stochastic separatrix
is discussed in Ryter (1987a,b); and Schuss (2010a, 2013).

The principal eigenvalue for the Neumann problem in a dumbbell was derived
in Schuss (2013) and reviewed in Holcman and Schuss (2013). The coarse-grained
diffusion that describes atomic migration in crystals, mentioned at the end of this
section, was derived in Schuss (1980, Chapter 8, section 2) and that for effective
diffusion on a surface with obstacles, described in section 8.2, was derived in Holc-
man, Hoze, and Schuss (2011). A general coarse-graining of diffusion on a potential
landscape with deep wells is given in Hänggi, Talkner, and Borkovec (1990). Some
estimates of the asymptotic behavior of the leading eigenvalue in dumbbell-shaped
domains are given in Arrieta (1995); Ward and Stafford (1999); Jimbo and Kosugi
(2009); Dagdug et al. (2003); and references therein.

Membrane organization, as described in section 8.2, tries to explain what was
recognized after decades of intense research (Edidin, Kuo, and Sheetz (1991); Sheetz
(1993); Suzuki and Sheetz (2001); Kusumi et al. (2005); Kusumi, Sako, and Yamamoto
(1993); Saxton (1995); Saxton and Jacobson (1997)) and demonstrated recently by
single-particle imaging (Borgdorff and Choquet (2002); Tardin et al. (2003); Triller
and Choquet (2003); Choquet (2010)), that the effective diffusion constant on the
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membrane surface spans a wide range of values. The model shows how the hetero-
geneity of the membrane controls diffusion.

Applications to the calculation of the synaptic current, as described in Kandel,
Schwartz, and Jessell (2000), are given in Taflia and Holcman (2011) and Freche et
al. (2011). This current plays a fundamental role in neuronal communication: it is
the direct and fast signal of synaptic transmission. It is argued that possible changes
in the current dynamics are the result of synaptic plasticity, a process that underlies
learning and memory (Kerchner and Nicoll (2008)).

Mathematical and physical models of the early steps of viral infection are con-
structed for the purposes of predicting and quantifying infectivity and the success of
gene delivery (Holcman (2007); Lagache and Holcman (2008a,b); Amoruso, Lagache,
and Holcman (2011); Lagache, Dauty, and Holcman (2009a)). The models give rise
to rational Brownian dynamics simulations for the study of sensitivity to parameters
and, eventually, for testing the increase or the drop in infectivity by using simulta-
neously a combination of various drugs. The modeling approach can be used for the
optimization of the delivery in a high-dimensional parameter space (Lagache, Danos,
and Holcman (2012)).
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