NVESA-TM- B

NASA Technical Memorandqm 86711
NASA-TM-86711 19850024482

The NAS Kernel Benchmark
Program

David H. Bailey and John T. Barton

August 1985

LBy rany

AUG 2 51985

LAHGLE Y RUSCARCH CENTER
LIZRARY, (IASA
HEMPLION, VIRGINIA

NASAN

National Aeronautics and

Space Adminiration IIHHIIIlIllIHIllllHIlIIHIIHIIIHIIHHI

NASA Technical Memorandum 86711

The NAS Kernel Benchmark
Program

David H. Bailey, Informatics General Corporation, Palo Alto, California
John T. Barton, Ames Research Center, Moffett Field, California

August 1985

NASAN

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035

MO RD-DANYSH

THE NAS KERNEL BENCHMARK PROGRAM
David H. Bailey! and John T. Barton?

Ames Research Center

SUMMARY

A benchmark test program that measures supercomputer performance has been de-
veloped for the use of the NAS (Numerical Aerodynamic Simulation) Projects Office at
NASA Ames Research Center. This benchmark program is described in detail and the
specific ground rules for running the program as a performance test are discussed.

1Employee of Informatics General Corp., Palo Alto, California, under contract NAS2-11555.
2Employee of NASA Ames Research Center in the NAS Projects Office.

1

INTRODUCTION

A benchmark test program has been developed for use by the NAS program at NASA
Ames Research Center to aid in the evaluation of supercomputer performance. This pro-
gram consists of seven Fortran test kernels that perform calculations that are typical of
Ames supercomputing. It is expected that the performance of a supercomputer system
on this program will provide an accurate projection of the performance of the system on
actual NAS program computer codes. This paper describes the test program in detail and
lists the specific ground rules that have been established for running the program as a

performance test.

PROGRAM DESCRIPTION

The NAS Kernel Benchmark Program consists of approximately 1000 lines of Fortran
code, organized into seven separate tests. Each individual test consists of a loop that
iteratively calls a certain subroutine. These subroutines were chosen after review of many
of the calculations currently being performed on Ames supercomputers and by recommen-
dations from a number of Ames scientists and programmers, particularly those working
on computational fluid dynamics problems. In most cases, these subroutines have been
extracted from actual programs currently in use, and they have been incorporated into
the NAS Kernel Benchmark Program with only minor changes. Thus it is felt that these
test kernels are a representative cross section of expected NAS program supercomputing,
and the performance of a computer system (both its hardware and its Fortran compiler)
on these tests should be a reliable predictor of the actual system performance on NAS
user programs. '

The seven selected programs all emphasize the vector performance of a computer sys-
tem. Almost all of the floating-point operations indicated in these Fortran subroutines are
contained in loops that are computable by vector operations, provided that the Fortran
compiler of the computer system being tested is sufficiently powerful in its vectorization
analysis, and provided that the hardware design of the computer includes the necessary
vector instructions. Most serious supercomputer programs currently in use at Ames are
fairly highly vectorized, and it is expected that programs to be developed in the future
will virtually all be designed to effectively use the vector processing capabilities of super-
computers. Some programs that have substantial scalar processing will continue to be
used, but it is expected that their numbers will decline as algorithms and codes that are
more suitable for vector processing are developed. Another reason for emphasizing vector
performance in these benchmark kernels is that it is not very meaningful to average, even
in a harmonic average sense, the performance of a supercomputer on a scalar code with
its performance on a vector code.

This program not only tests the hardware execution speed of a computer, but it
also tests the effectiveness of the Fortran compiler. It is clear that a phenomenally fast
hardware design is worthless unless it is coupled with a Fortran compiler that can fully

2

utilize the advanced hardware design. Furthermore, it is becoming increasingly clear that
vectorization and other optimizations must either be completely automatic or be very
easy to direct. If effective utilization of a computer requires massive redesign of otherwise
well-written, standard Fortran-77 code, or if a high level of performance is possible only by
considerable human intervention, then the actual usable power of the computer is severely
reduced.

The seven test kernels of the NAS Kernel Benchmark Program have, for the most part,
been developed quite recently. As a result, they represent Fortran programs that have been
designed and written for modern vector computation, as opposed to the somewhat dated
code that is used for other popular benchmark programs. It might be argued that there
is some inherent bias in the test towards the Cray computers, since most of these kernels
were written on a Cray X-MP. However, substantial care was exercised in the selection of
these kernels to insure that none of them had any constructs that would unduly favor the
Cray line. As much as possible, subroutines were selected that were merely straightforward
Fortran code, intelligently coded with loops that are capable of being executed with vector
operations, but otherwise neutral towards any particular machine. In fact, in the process
of selecting these kernels for testing, it was discovered that some of them actually caused
unforeseen difficulties for the Cray compiler. Nevertheless, they were left in the test suite
to maintain objectivity.

Performance is measured by the NAS Kernel Benchmark Program in MFLOPS (mil-
lions of floating-point operations per second). The precise number of floating-point opera-
tions for the various functions used in the test kernels is shown in Table 1. These numbers
are based on actual counts of 64-bit floating-point operations in published algorithms.

It should be noted that this program only measures MFLOPS rates. Disk I/O, operat-
ing system efficiency, and other important factors of overall performance are not measured
by this benchmark program. Also, several of the test subroutines perform a significant
amount of memory move, integer, and logical operations, none of which is included in the
floating-point operation count.

The following is a description of the seven proposed Fortran test kernels. Other fea-
tures are summarized in Table 2.

1. MXM - This subroutine performs the usual matrix product on two input matrices.
The subroutine employs a four-way unrolled, outer product matrix multiply algo-
rithm that is especially effective for most vector computers. See [1] for a discussion
of this algorithm.

2. CFFT2D - This test performs a complex radix 2 FFT on a two dimensional in-
put array, returning the result in place. The test kernel actually consists of two
subroutines that perform FFTs along the first and second dimension of the array,
respectively, taking advantage of the parallel structure of the array. See [2] for a
discussion of the FFT algorithm used.

3. CHOLSKY - This subroutine performs a Cholesky decomposition in parallel on
3

Table 1: Floating-point Operation Counts

FIRST SECOND [FLOATING
ARGUMENT | FUNCTION | ARGUMENT | PT. OPS.
Real + Real 1
Real - Real 1
Real * Real 1
1 / Real 2
Real / Real 3
Real *k 2 1
Real ok Real 45
Complex * Real 2
Complex / Real 4
1 / Complex 7
Real / Complex 9
Complex + Complex 2
Complex - Complex 2
Complex * Complex 6
Complex / Complex 13
Real SQRT 12
Real EXP 18
Real LOG 25
Real SIN 25
Real ATAN 25
Complex ABS 15
Complex EXP 70
Complex LOG 65

Table 2: Kernel Features

KERNEL
FEATURE 1 2 3 4 5 6 7
Two dimensional arrays XX X X X
Multidimensional arrays X | X X
Dimensions with colons X
Integer arrays X X X
Integer functions in indices X X
IF statements in inner loops X
Scientific function calls X[X X X
Complex arithmetic X X X
Complex function calls X X
Inner loop memory strides 1 1 1 1 1 1 |128
2 4 2 2
256 750 | 500
900
Inner loop vector lengths 256 1128|1250 | 28 [5 | 100 | 128
256 100 | 500
500 | 1000

a set of input matrices, which are actually input to the subroutine as a single
three-dimensional array. '

4. BTRIX - This kernel performs a block tridiagonal matrix solution along one di-
mension of a four dimensional array.

5. GMTRY - This subroutine sets up arrays for a vortex method solution and per-
forms Gaussian elimination on the resulting array. This kernel is noted for a number
of loops that are challenging to vectorize.

6. EMIT - Also extracted from a vortex code, this subroutine creates new vortices
according to certain boundary conditions.

7. VPENTA - This subroutine simultaneously inverts three matrix pentadiagonals in
a highly parallel fashion.

In each of the above test subroutines, the input data arrays are filled by a portable
pseudorandom number generator in the calling program. This feature insures that all
computers running the NAS Kernel Benchmark Program will perform the required calcu-
lations on the same numbers. It also permits the output results to be checked for accuracy.
Each of the seven tests is independent from the others — none depends on results calculated
in a previous test program, Thus program alterations to improve the execution speed of
one of the test kernels may be made without fear of affecting the other kernels.

- GROUND RULES FOR PERFORMANCE TESTING

Worlton’s recent article [3] pointed out some of the difficulties that are involved in
supercomputer performance testing. Most of these problems are a result of the lack of
well-defined controls on these tests. For instance, in some recent test results, one vendor
was apparently allowed to perform some minor tuning and insertion of compiler directives,
whereas the other was not. In other cases confusion has resulted from researchers not
carefully noting exactly which version of a vendor’s compiler was being used in their tests.
Some vendors have claimed amazingly high performance rates for their computers, which,
upon closer analysis, have been achieved only by massive recoding of the test kernels
and by the usage of assembly code. As a result of these difficulties, many of the recent
comparisons of supercomputer performance have degenerated into shouting matches that
have generated more heat than light.

In consideration of such problems, some strict ground rules have been established for
using the NAS Kernel Benchmark Program to evaluate supercomputer performance. Also,
four levels of tests have been defined, so that the effects of varying amounts of tuning may
be assessed. These different levels will also enable the NAS program to differentiate the
performance of the hardware from that of the compiler. If the compiler is truly effective,
then a relatively small amount of tuning should be sufficient to achieve close to the full
potential of the hardware. The four test levels are defined as follows:

1. Level 0 (“dusty deck”): For this test, the NAS Kernel Benchmark Program must be
run without any changes to improve performance. If any alterations are required
for compatibility purposes (for example, to define the timing function), they must
be made by NAS program personnel.

2. Level 20 (“minor tuning”): For this test, a few minor alterations may be made
to the code to enhance performance. These changes may include, for example,
compiler directives to assist the compiler’s vectorization analysis or changes to
array dimensions to avoid disadvantageous memory strides. No more than 20 lines
of code in the entire program file may be inserted or modified. '

3. Level 50 (“major tuning®): For this test, more extensive modifications may be made
to the code to enhance performance. For example, some loops may be rewritten to
avoid constructs that cause difficulties for the compiler or the hardware. A total
of up to 50 lines of the program file may be inserted or modified for this test.

4. Level 1000 (“customized code”): For this test, large scale coding changes are al-
lowed to improve performance. Entire subroutines may be rewritten to avoid dif-
ficult constructs. There is no limit to the number of lines of code that may be
inserted or modified. :

For all four levels of tests, any modifications made to the program code must conform

6

to the ANSI Fortran-77 standard [4]. In particular, absolutely no assembly code will
be allowed within the program file, and no external programs may be referenced other
. than the standard Fortran functions. Fortran subprograms may be referenced only if the
Fortran code for the subprograms is included in the program file and conforms to the other
requirements mentioned in this paper. Finally, no modification to the algorithms in the
code may change the number of floating-point operations performed.

The precision level of all floating-point data and operations in the program must be
64 bits, with at least 47 mantissa bits. As a test of the hardware precision, and to ensure
that any modifications made to the program file have not fundamentally changed the
calculations being performed, an accuracy check is included with each of the seven tests.
These checks are performed by comparing a selected result from each of the programs with
a reference value stored in the program code and then computing the fractional error. The
total of the fractional errors from the seven programs must be less than 5 x 10-10,

The NAS Kernel Benchmark Program automatically calculates performance statistics
and outputs this report on Fortran unit 6. This report includes the results of the accuracy
checks, the number of floating-point operations performed, the CPU run times, and the
resulting MFLOPS rates. The total error, total floating-point operation count, total CPU
time, and the overall MFLOPS rate are also included.

Normally only uniprocessor results are tabulated. If desired, multiprocessor perfor-
mance may be estimated by simultaneously running the benchmark program on each of
the individual processors. A multiprocessing performance figure may then computed by
averaging the timings from the runs on the individual processors. Although no explicit
multiprocessing is performed in this manner, such an exercise measures the amount of
interprocessor resource contention, which is a significant factor in multiprocessing. In this
way the performance increase that can be expected from multiple processor computation
can be estimated without making the laborious modifications that are usually required to
invoke true multiprocessing.

REFERENCES

. Hockney, R. W., and Jesshope, C. R., Parallel Computers, Adam Hilger, Bristol,
England, 1981. :

. Brigham, E. Oran, The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs,
N.J., 1974,

. Worlton, Jack, “Understanding Supercomputing Benchmarks”, Datamation, Sep-
tember 1, 1984, p- 121.

. American National Standards Institute, ANSI Fortran X3.9-1978, ANSI, New York,
1978.

APPENDIX:

PROGRAM LISTING

[glalplsl

2)

188

a0 o anoOon O

ano o

PROGRAM NASKER

NAS KERNEL BENCHMARK PROGRAM
12/17/84 DAVID H BAILEY

CHARACTERsS PN(8)

REAL ER(8), FP(8), TN(8), RT(8)

COMMON /ARRAYS/ DATA (360080)

DATA PN/°MXM*, *CFFT20°, °CHOLSKY®, °*BTRIX®, °GMTRY', °EMIT’,
$ "VPENTA®, °*TOTAL'/

HRITE (6, 1)
FORMAT (/16X, °*THE NAS KERNEL BENCHMARK PROGRAM®//)

CALL MMTST (ER(1), FP{1}, TH(1))
CALL FFTTST (ER(2), FP(2), TNI(2))
CALL CHOTST (ER(3), FP(3), TN(3))
CALL BTRTST (ER(4)}, FP(4), TH(4))
CALL GNMTTST (ER(S), FP(S), TNM(S5))
CALL EMITST (ER(B), FP(E), TM(BE))
CALL VPETST (ER(7), FP(7), TH(7))

FP{I)} 7 THD)

lIEE = TF /7 TT

WRITE (B, 2) (PN(I). ER(D), FP(I), TH(D), RTII), 1 = 1, 8)
FORMAT (¢ PROGRAM®, 8X, *ERROR’, 18X, °FP OPS*, 7X, *SECONDS’

8 6X, ’FFLOF'S 77 74X, ‘a8, 1PZEiS. 4, BPF12.4, F12.2/}7
$ 1X, A8, 1PE15.4, BPF12.4, F12.2/7)

STOP
END

FUNCTION CPTITE ()
RETURNS THE CPU TNE SlM:E THE LAST CALL TO CPTIME.
THIS SUBPROGRAM MAY BE CHANGED AS NEEDED FOR A PARTICULAR COMPUTER
SYSTEM H1THOUT PENAL'I’V. PROVHEU 1T PERFORMS THIS FUNCTION.

DATA TX/8./

= SECOND ()

CPTII‘E =T-M

TX =T

RETI.RN

END

SUBROUTINE COPY (N, A, 8)
ARRAY COPY ROUTINE

REAL A(N), B(N)

DO 1681 &« 1, N

B(I) e A(l)

CONTINUE

RETURN

END

SUBROUTINE MXMTST (ER, FP, TM)
FLOATING-POINT PATRIX MULTIPLY TEST

PARA'ETER (L=256, N=128, NeB4, F7-7812S., 130-10873741824.)

[21slslelslgialalslnlel

188

118

[21slg]

120
c

(2]

Qo000

1e8

110
[

o0 o

onn

COMMON /ARRAYS/ A{L,M), S1, B{M,N), S2, C(L,N)
DATA 17/188/, ANS/35.20826173738722/

INITIALIZATION

THE ARRAYS A AND B ARE FILLED WITH PSEUDO-RANDOM (8., 1.} DATA
USING A RANDOM NUMBER GENERATCR BASED ON THE RECURSION

X{N+1} = Sx47 ® X(IN) (MOD 2%x30)
THIS RECURSIUN WILL GENERATE 2xx28 (APPROX. 268 MILLION) NUMBERS
BEFORE REPEATING. FOR THIS SCHEME TO WORK PROPERLY, THE HARDUARE
RULTIPLY OPERATION MUST BE CORRECT 10 47 BITS OF PRECISION
THIS SAME SCHEME 1S USED TO INITIALIZE DATA ARRAYS FOR ALL TESTS.

T =F7/ 130

T=-HMOD (F7T, 1.)
All.J) =7
CONTINUE
00 118 Je=1, N
0011861 «1, 1
1«MO (F7T, 1.)

B(l,J) =T
CONTINUE

™« CPTIME ()
TIMING TEST

Do 120 Il = 1, IT
CALL "MXM (A, B, C, L, 11, N)
CONTINUE

T = CPTIME (
ER = ABS ucus 19) - ANS) / ANS)
FP-Z.tITtL-HtN

RETURN
END

SUBROUTINE MM (A, B, C, L,
DIMENSION A(L,M}, 81N}, ClL N)

4-UAY UNROLLED MATRIX MULTIPLY ROUTINE FOR VECTOR COMPUTERS.
M MUST BE A MULTIPLE OF 4. CONTIGUOUS DATA ASSUMED.
D H BAILEY 11/15/84

00 188K = 1, N

=z

) = B(J,K
+1,K) + Ml J+2) & B(U42,K)
03.K)

[

SUBROUTINE FFTTST (ER, FP, TH)
2-D FFT TEST PROGRAN
PARAMETER (r1-128. N-256, H1=128, F7.78125., T30-1073741824.)
COMPLEX X, Y,
COMMoN /ARRAYS/ X(M1,N), UMM}, H2(N), IP(2aN})
DATA 1T/188/, ANS/B.894793941218277/
INITIALIZE

AN «MeN

10

RN =« 1. 7 AMN . X{IM,K) = CT = CX
T2 =« F7./ T30 130 CONTINUE
00180 J =1, N L=2slL
001881 =1, M 11 = 12
Tl = MOD (F7 x 72, 1.} IF (L .LE. M2} GOTO 120
12 = MOD (F7 = T1, 1.) c
X(I,J) = OPLX (T, T2) DO 158 | = 1,
188 CONTINUE Il = IP
CALL CFFT201 (9, n, M1, N, X, U1, IP) IF (11 GT. l) THEN
CALL CFFT202 (@, M, M1, N, X, W2, P} . 00 148 K = 1 N
T « CPTIME () Cl = X(l
[X(1,K) = X(ll.K)
C TEST ITERATIONS X(1i,k) = CT
c 148 CONTINUE
no 126 K « 1, IT ENDIF
118 J - 1. N 158 CONTINUE
Do 118] = - C
X({,0) = Rr'N = X(I,0) RETURN
‘1:19 CONTINUE END
c
CALL CFFT2D1 (1, M, Mi, N, X, M1, IP) SUBROUTINE CFFT202 (IS, M, M1, N, X, U, IP)
CALL CFFT2D2 (1, B, M1, N, X, W2, IP) [+
CALL CFFT202 (-1, M, M1, N, X, W2, IP) C PERFORMS COMPLEX RADIX 2 FFTS ON THE SECOND DIMENSION OF THE 2-D ARRAY X
CALL CFFT201 (-1, M, M1, N, X, U1, IP) C D H BAILEY 11/15/84
128 CONTINUE c
c COMPLEX X(M1,N), W(N), CT, CX
TH = CPTIME D) ’ INTEGER IP(2,N)
ER = ABS ({REAL(X(19,19)) - ANS) / ANS) DATA P1/3.1415926535839733/
FP = IT = AMN = (2. + 10. = LOG (AMN)/LOG €2.)) [+
c ' C IF IS =8 THEN INITIALIZE ONLY
RETURN c
END N2 =N/ 2
c IF (1S .EQ. @) THEN
c SUBROUTINE CFFT2D1 (IS, M, M1, N, X, W, IP) Tl%zl - lgl N2 -1y
- Zl, % L -
C PERFORMS COMPLEX RADIX 2 FFTS ON THE FIRST DIMENSION OF THE 2-D ARRAY X H(I) « CMPLX (COS (7). SlN [¢3)]
C D HBAILEY 11/15/84 189 CONTINUE
c RETURN
COMPLEX X(M1,N), W(M), CT, CX ENDIF
INTEGER 1P(2,M) C
c DATA P1/3.141592653583793/ E PEFORM FORWARD OR BACKWARD FFTS ACCORDING TO IS « 1 OR -1
C IF IS =@ THEN INITIALIZE ONLY po1181 -1, N
c IPU,D) =1
M2 eN/2 . 118 CONTINUE
IF (1S .EQ. 8) THEN Le1
0o 108 1 =1, M2 I1=1
Te2. 2Pl n (l -1) c
R(I) = Cr‘PLX (T). SIN m) 126 12=-3-11
180 CONTINUE DO 138 J « L, N2, L
RETURN CX = H{J-L+1)
ENDIF IF (IS .LT. B) CX « CONJG (CX)
[D0 138 1 = J-L+1,
C PERFORM FORWARD OR BACKWARD FFTS ACCORDING TO IS « 1 OR -1 11 = 1P(I1, 1)
c 1P(12,144-0) = 11
on11el -1, M IN = (P11, 14N2)
1P{1,1) = | IP(12,14J) = IN
118 CONTINUE DD136K 1, M
L1 CT » XK, II) - X(K,IM)
1 =1 XK, 11) = X(K,II) + XK, 1M}
C X{K,IM) = CT = CX
126 12 .3-11 138 CONTINUE
DO 138 J =L, M2, . L=2xlL
CX = H(J-L+1) 11 =12
IF (1S .LT. B) CX = CONJSG (CX) IF L .LE. N2} GOTO 120
DO 138 1 = J-L+1, J- [.
11 =« IP(11,1) DO1Se 1 « 1, N
IP(12,14J-1) = 11 11 - IP(11,1)
IM = IP¢I1,14M2) IF (11 .GT. I) THEN
1P(12,1+J} = IN DO 148K « 1, M
DO 138K = 1, N CT « X,
CT « X{I1,K) - X(IM,K) X(K,1) = XIK,11)
XUL,K) = X{I1,K} + X(IM,K) X(K,I1) = CT

11

140 CONTINUE
ENDIF
150 CONTINUE '

RETURN
END

SUBROUTINE CHOTST (ER, FP, TI)
CHOLSKY TEST PROGRAM

PARAMETER (IDA=258, M1AT=258, M=4, N=48, NRHS3, F7-7812S.,
$ T30=1073741824.)

COMMON /ARRAYS/ A(8:IDA, -M:8, 8:N), B(B:NRHS, B:NMAT, 8:N),
$ AX{8:10A, -M:8, 8:N), BX{B:NAHS, B:NMAT, 8:N)

DATA 17/208/, ANS/5177.88531774562/
INITIALIZE

LA » (IDA+1) = {M+1) = (N+1)
NRHS+1) = (N1AT+1) = (N+1)

oo0 0

[x1x1g]

c ™ = CPTIME O
(é BEGIN TIMING TEST

D0 128 J = 1, IT
CALL COPY {LA, AX, A)
CALL COPY (L8, BX, B)
CALL CHOLSKY (DA, NMAT, M, N, A, NRHS, IDA, B}
(1:20 CONTINUE

™ « CPTItE ()
ER ABS ((8(1,19,19) - ANS) / ANS)
- 1T » (NAT +'1) & 4483,

c
RETURN
¢ END
c SUBROUTINE CHOLSKY (IDA, NMAT, M, N, A, NRHS, 108, B)
té CHOLESKY DECOMPOSITION/SUBSTITUTION SUBROUTINE.
E 11/28/84 D H BAILEY MOOIFIED FOR NAS KERNEL TEST
REAL A{B:1DA, -M:8, 8:N), B(O:NRHS, 81108, 8:N), EPSS(@:256)
c DATA EPS/1E-13/
E CHOLESKY DECOMPOSITION
001Je0, N
c 10 e MAX (M1, -J)
E OFF DIAGONAL ELEMENTS
0021 «10, -1
no INeIB-1, -
003L =0, A
3 00 2A(L J.0) e ALLLLY) - AWLLUL T4) & AL, 1400, 00

A(L.l..l) « AL, 1,0 & A(L,0,140)

» OO0

O0O00= 0

o000 O on o~

o000

189

110

[g1z1g]

STORE INVERSE OF DIAGONAL ELEMENTS

DO 4 L = 8, NMAT

EPSS(L) « EPS = A(L,8,J)

D0S JJ) =18, -1

POS L =8, NHAT
1A(LBJ)-A(LBJ)-A(LJJJ).:Z
L

A(LBJ) = 1. /7 SORT (ABS (EPSS(L) + A(L,8,00))

NAT
= B(I,L,K) = AlL,8,K)
JJ e 1, HIN {1, N-K)

= @, NMA
BII,L,K+JJ) = BU,L,KedJ) - AlL,-JJ,KeJJ) & BUL,LK)
N, 8, -1
- 0, NMAT
LL.X) = B(, L Kl = A(L,8,K)
D06 JJ = 1, RNIN (N, K
EBLe
RETURN

SUBROUTINE BTRTST (ER, FP, TH)
BTRIX TEST PROGRAN
PARM"ETER (J0=38, KD=38, LD=38, MD-39, F7=78125., T38.1873741824.)
COfﬁUN ARRAYS/ S{J0,KD,LD,S), A(S,S, m), B(s.s.m.m).
S,M0,M0), SX(J0.KD,LD,5), BX(5,5,M0
DATA JS/Z/. X1297,7 18721, LEIZS/ lTIZBI. NG/-H.ZSSZSZGSMZI

INITIALIZATION

T, 1.}
T, 1.
T

T, 1.}

1, 1.)
T

TINING TEST

00128 11 « 3, IT
CALL COPY (NS, SX, S)

8)
CALL BTRIX (J5, X, LS, LE, K)

120 CONTINUE

12

TH = CPTIME ()
ER = ABS ((5(15,19,19,1) - ANS) / ANS)
FP = IT s MD & (LE - 1) = 1391865.

[
RETURN
c END .
c SUBROUTINE BTRIX (JS, JE, LS, LE, K)
[VECTORIZED BLOCK TRI-DIAGONAL SOLVER IN THE J DIRECTION
tc: OR K = CONSTANT PLANES
E 11/15/84 D H BAILEY MODIFIED FOR NAS KERNEL TEST
PARAMETER (JD«38, KD=38, LD=38, MD=30}
COMMON /ARRAYS/ S(JD,KD,LD,S), A(S,S5,MO,MD), B(S5,5,MD,MD),
L C(s,5,M0,MD)
DIMENSION u12010), U13(MD), U14(M0), UIS(MD), L23(MD),
c 4 U24(1D), U25(MO), U34(MD), U3S(MD), U4S(MD)
REAL L11(MD), L21(MD}, L31(MD), L41(MOD), LS1(MD),
3 L22(MD), L32(MD), L42(MD), LS2(MD), L33(MD),
c | L63(P‘ID). L53(l10). L“(ﬂ)). LSb(l‘ﬂ). LeS (M0}
E PART 1. FORWARD BLOCK SWEEP
c
c DO 190 J = JS,E
gm STEP 1. CONSTRUCT L(I) INB
IF(J.EQ.JS) GO 10 4
DO3Ma1l.5
DO 3Ne-1,5
DO 3 L = LS,LE
B{M,N,J,L) «» BIMN,JL) - A(H,1,J,L)e8(1,N,J-1,L)
s - A(M,2,J,L)e8(2,N,J-1,L) - AM,3,J,L)8(3,N,J-1,L)
- A(M,4,J,L)e8(4,N,J-1,L) - A(M,5,J,L)eB(S,N,J-1,1)
3 CONTINUE
c 4 CONTINUE
gm STEP 2. CONPUTE L INVERSE
c
E A. DECOMPOSE L(I} INTO L AND U
DO 20 L = LS,LE
Li1(l) - 1. 7 B(1,1,J,L)
Ui2(L) = 811, 2 J. L)nd.ll(L)
Ul13(L) = B(1,3
Ul4(L) =
UIS({L) =
L21(L) « L)
L224L) = 1. / (B(2,2,4,L) - L21(L)=J12(L)}
U23{L) =« (8{(2,3,4,L) - L21{(L}sU13{L))} = L22(L)
U24(L) = (B(2,4,J.,L) - L21{L)=U14(L)) = L22(L)
U25(L) « (B{2,5,J,L) - L21(L)sU1S(L}) = L22(L)
L31(L) = B(3,1,J,L)
L32(L) = B(3,2,J4,L) - L31{L)YeN12(L)
L33{L) = 1.7 (B8(3,3,J,L) - L31(L)sU13(L) - L32(L)=U23(L))
U34(L) = (B(3,4,J,L) - L31{L)=N14(L) - L32(L)=U24(L)) = L33(L)
U3s(= (B(3,5,J,L) « L31(L)IsU2S(L) - L32(L)}xU2S(L)) = L33{(L)
20 CONTINUE
D0 25 L = LS,LE .
L4l(L) = B(4,1,J,0L)
L42{L) = B{4,2,J,L) - L4l(L)sJ12(L)
L43(L) = B(4,3,4,L) - L41{IL)aUI3(L) - L42(L)=U23(L)
L44(L) = 1. 7 (Bl4,4,0,L) - LAL(L)sUL4(L) - L42(L)sU24(L)
- L43(L)nJ3410L))

UsS(L) = (B(4,5,4,L) - LAL(LI=UISIL) - L42(L)=U251(L)
] - L3S L) & LG4 (L)

t51{L) = B(5,1,J4.L)

L52(L) = B(5,2,4,0) - LS1{L)}sU121L)

LS3(L} = B(5,3,J,L) - LSL{L)sl13(L)} - LE2(L)sl23(L)
LS4{L) = B(5,4,J,0) - LS1(L)sU14(L} - LS2(L)=l24 (L}
s - LS31(L)sU34(L)

LSS(L) = 1, 7 (B(5,5,J,L) - LS1(L)&UIS(L) - LS2(L}=U25(L)
$ ~ LS3(L)IsU3S({L) - LS4{L)sU45(L))
25 CONTINUE

C oot STEP 3. SOLVE FOR INTERMEDIATE VECTOR AR

c A. CONSTRUCT RHS

n,1,J, L)tG(
2) - A(N,3,
3 4) - A(n,S,
33 CONTINUE
B. INTERMEDIATE VECTOR
34 CONTINUE
FUD SUBSTITUTION

m35L

OooO0 O0MOO

LS,LE
S(J,K,L,1)s11(L)
(S(,K,0,2) - L21(L)=D1} « L22(L)
(S(J,K,L,3) - L31{L)sD1 ~ L32(L)»02) = L33(L)

KR8

(S(J,K,L,5) - L51(L)sD1 - LS2(L)sD2 - LS3(L)=03
] - LS4 (1404} » LESIL)

BUD SUBSTITUTION

zlale)

D4 - U4S(L)sDS
U34 (L) 2S5 (J,K,L,4) (L)0S

» 02 - U23(L)aS{J,K,L,3) - U24(L)aS(J,K,L,4)
s - U25(L) S

S(J.K,L 1) = Dl - U12(L}eS(J,K,L,2) ~ U13(L)s5(J,K,L,3)
lb(L)ﬁ(J K,L,4) - U15(L)s0S
35 CONTINUE

[=]
w
L)

S{J.K,L,5)
S{J,K,L,4)
S{J.K,L,3)
S{J.K,L,2)

Corrrrreres STEP 4. CONSTRUCT U{l) o L{I}sx(-1)2C(1+1) TOREEETRER
INB SO

C ot 8Y COLUMNS AND STORE

IF {J. ED JE) GO TO 108
DO 48 N - 1,5
00 49 L = LS,LE

C
E FWD SUBSTITUTION
Cl = C{1,N,J,L)sl11(L)
€2 = (C2,N,3,L) - L21(L)aC1) = L22(L)
C3 = (C(3,N,J,L) - L31(L)=C1 - L32(L)=C2) = L33(L)
C4 = (C{4,N,J,L) - L41(L)aC]l - L42{L)aL2 - L43(L)eC3)
s * L4 (L)
€S » (C(5,N,J,L) - L51(L)}aC]l - L52(L)aC2 - LS3(L)=L3
s - LS4 (L)»C4) = LSSIL)
[
c BWD SUBSTITUTION
c

B(5,N,J.L} = CS

N,J,L} = Cé4 - U4S(L)=CS

N,J,L} = C3 - U34(L)eB(4,N,J,L) - U3S(L)oCS

N,J,L) e €2 - U23(L)#8(3,N,J,L) - U24(L)aB(4,N,J,L)
N

(1,N,J,L} = C1 - Ul2(L)aB(2,K,J,L) - U13{L)sB(3,N,J,L)

(S(J,K,L,4) - L61(L)2D] - L42(L)s02 - L43(L)s03) = L44 (L)

13

$ - U14(L)8B(4,N,J,L) - UIS(LI*CS
48 CONTINUE
188 CONTINUE ‘
PART 2. BACKWARD BLOCK SHEEP
N - JE -1
00 280 J = JEM1,JS,~1
00 288

O Oon 00

DO 288 L = LS,LE
S(J,K,L,M = S(J,K,L, 1M - B(M,1,J,L)s5(J+1,K,L
- B8i4,2,4,L)95(J+1,K,L,2) - B(1,3,4, .
L - BiN,4,J,L)25(J+1,K,L,4) - B(K,S,J .
c 208 CONTINUE '

RETURN

END

SUBROUTINE GNTTST (ER, FP, TH)

PARAMETER (NUJ-188, NBaS, F7-78125.. 730-1073741824.)

COMPLEX WALL,

COMMON /ARRAYS/ NUALL (NS, NALL(MJ NB), RMATRX(NLsNB,NUaNB) ,
$ ZCR(NM,NB), PROJINW,NB), XMAX(NB)

DATA 17727, ANS/-2.57754233214174/
INITIALIZATION

=2z N xND
TZ F7 7/ T3B

o000

186 CONTINUE

118 CONTINUE
™ « CPTHE O

TINING TEST

[21s]2]

™ = CPTIME O
ER = ABS ((RMATRX(19,13) -~ ANS) / ANS)
FP = IT = (120. = (NBaNU)} == 2 + ©.666 = (NBsi) == 3)

RETURN
END

SUBROUTINE GMTRY

COMPUTE SOLID-RELATED ARRAYS, GAUSS ELIMINATE THE MATRIX OF WALL
INFLUENCE COEFFICIENTS.

11/36/8% D H BAILEY REVISED CODE FOR NAS KERNEL TEST
PARAMETER (NU=188, NB«5)

COPLEX WALL, ZCR, PROJ, 21, 21, 22

COMMON /ARRAYS/ NUALL (NS), HALL(NH NB8), RMATRX (NUsNS,NUsNB),
8 ZCR(NU,NB), PROJ(NM,NB)}, XMAX(NB

DATA ARCL /5.7, Pl /3.1415926535838793/, PER100/3./

COMPUTE ARCLENGTH.

[}

oaoonnn o

om0 O

o00w

[gXz)z}

[21s121z1ell)]

OO0 OO00000000n

oo~

MATODIM = @

8.
= 1,E+50
YMAX = -1,E+58

= Pl / PERIOO

p09L =1, M
MATODIM = MATDIM + NUALL (L)
00 9 K « },NUALL (L)
ARCL = ARCL + ABS{UALLI(K,L) ~ HALL(1+M0D(K,NUALL(L)), L))
CONTINUE

COMPUTE CORE RADIUS.

RO = ARCL / (MATDIMs2.)
SIGMA = R /7 2.

DEFINE CREATION POINTS.

DOBL =1,N8
DO S K = 1,NUALL (L)
2 - HALL(IM(KML(L)-Z NUALL (L)), L)
- HALL (141100 (K, NHALL (L)), L
ZCRIK,L) = HALLIK,L} + CIPLX(8., RB/ABS(ZZ)) s 2Z
CONTINUE

CHECK THAT WALL AND CREATION POINTS ARE NOT CROSSED DUE TO
TOO SHARP A CONCAVE KINX OR AN ERROR IN DEFINING THE BOOY.
ALSO FIND HIGHEST, LOWEST AND RIGHT-MOST POINT.

XMAX(L) = REAL(ZCR(1,L))

LS =
00 6 K = 1,NUALL(L)
YMIN = MIN (YMIN, AIMAG(ZCR(K,L)))
YHMAX « MAX (YMAX, AIMAG{ZCR(X,L)})
XHAX(L) = MAX (XMAX(L}, REAL(ZCR(K,L})}
=] + MOOIK, NUALL{L))
lF (REAL ({ZCR(KP,L)} - ZCR(K,L)) =

& LSCmLB(HALL(KP .L) - HAU.(K L)}}).GT.8.) THEN
KS » K
ENDIF
CONTINUE

IF (LS .NE. @) THEN
WRITE (5, 182) LS, KS
2 FORMAT(* ON BODY NUMBER *, 13, * YOU HAVE TOO SHARP A®,
] ® KINK NEAR POINT =, 14)
ST0P
ENDIF

THE "MAIN PERICD" WILL BE BETUEEN YLIMIT AND YLIMIT + PERIOO.
YLIMIT = (YMIN - PERIOD + YMAX)/2
PROJECT CREATION PGINTS INTG MAIN PERIOO. THIS IS TECHNICAL.

DO1lL-1,N8
001Kae I.NNALL(L)
PROJIK .L) ZCR{K,L) - CIPLX(B., PERIODs
8 (INT(S. + (AIHAG(ZCR(K Lh - YLINIT) / PERIOD) - 5.0
CONTINUE

COMPUTE MATRIX,
'.15362 ; (2, = PIDP = SIGHA) == 2
002L1 -1,M8
JB =0
DO 412 = 1,NB
KRON » @
IF (L1 .EQ. L2) KRON « 1
D0 3 J e 1,NIALLIL2)

14

1. Report No. 2. Government Accession No.
NASA TM-86711

3. Recipient’s Catalog No.

4. Title and Subtitle
THE NAS KERNEL BENCHMARK PROGRAM

6. Report Date

July 1985

7. Author(s)
David H. Bailey and John T. Barton

85195

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

9. Performing Organization Name and Address

Ames Research Center
Moffett Field, CA 94035

11. Contract or Grant No,

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546

13. Type of Report and Period Covered
Technical Memorandum

14. Sponsoring Agency Code
536-01-11

15. Supplementary Notes

Point of contact: John T. Barton, Ames Research Center, MS 233-1,
Moffett Field, CA 94035, (415)694-6837 or FTIS 464-6837

16. Abstract

A collection of benchmark test kernels that measure supercomputer
performance has been developed for the use of the NAS (Numerical Aero-
dynamic Simulation) program at the NASA Ames Research Center. This

article describes this benchmark program in detail and gives the specific

ground rules for running the program as a performance test.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement
Supercomputers Unlimited
Benchmark

Subject Category - 61

19. Security Classif. {of this report) 20. Security Classif. (of this page)
Unclassified Unclassified

20

*For sale by the National Technical Information Service, Springfield, Virginia 22161

21. No. of Pages 22. Price”

End of Document

