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Summary
A new set of benchmarks has been developed for the
performance evaluation of highly parallel supercom-
puters. These consist of five "parallel kernel" bench-
marks and three "simulated application" benchmarks.
Together they mimic the computation and data move-
ment characteristics of large-scale computational fluid
dynamics applications. The principal distinguishing
feature of these benchmarks is their "pencil and
paper" specification&mdash;all details of these benchmarks
are specified only algorithmically. In this way many of
the difficulties associated with conventional bench-
marking approaches on highly parallel systems are
avoided.

Introduction
The Numerical Aerodynamic Simulation (NAS) Pro-
gram, which is based at NASA Ames Research Center,
is a large-scale effort to advance the state of computa-
tional aerodynamics. Specifically, the NAS organization
aims &dquo;to provide the Nation’s aerospace research and
development community by the year 2000 a high-
performance, operational computing system capable of
simulating an entire aerospace vehicle system within a
computing time of one to several hours&dquo; (NAS Systems
Division, 1988, p. 3). The successful solution of this

&dquo;grand challenge&dquo; problem will require the develop-
ment of computer systems that can perform the re-
quired complex scientific computations at a sustained
rate nearly 1,000 times greater than current generation
supercomputers can achieve. The architecture of com-

puter systems able to achieve this level of performance
will likely be dissimilar to the shared memory multipro-
cessing supercomputers of today. While no consensus
yet exists on what the design will be, it is likely that the
system will consist of at least 1,000 processors comput-
ing in parallel.

Highly parallel systems with computing power
roughly equivalent to that of traditional shared mem-
ory multiprocessors exist today. Unfortunately, for var-
ious reasons, the performance evaluation of these sys-
tems on comparable types of scientific computations is
very difficult. Relevant data for the performance of al-
gorithms of interest to the computational aerophysics
community on many currently available parallel systems
are limited. Benchmarking and performance evalua-
tion of such systems have not kept pace with advances in
hardware, software, and algorithms. In particular,
there is as yet no generally accepted benchmark pro-
gram or even a benchmark strategy for these systems.

The popular &dquo;kernel&dquo; benchmarks that have been

used for traditional vector supercomputers, such as the
Livermore Loops (McMahon, 1986), the LINPACK
benchmark (Dongarra, 1988a, 1988b), and the original
NAS Kernels (Bailey and Barton, 1985), are clearly in-
appropriate for the performance evaluation of highly
parallel machines. First of all, the tuning restrictions of
these benchmarks rule out many widely used parallel
extensions. More importantly, the computation and
memory requirements of these programs do not do jus-

1 This author is an employee of NASA Ames Research Center.
2 This author is an employee of Computer Sciences Corporation.
This work is supported through NASA contract NAS 2-12961.
3 This author is an employee of the Research Institute for Ad-
vanced Computer Science (RIACS). This work is supported by the
NAS Systems Division via Cooperative Agreement NCC 2-387 be-
tween NASA and the Universities Space Research Association.
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&dquo;Highly parallel systems with com-
puting power roughly equivalent to
that of traditional shared memory

multiprocessors exist today. Unfortu-
nately, for various reasons, the per-
formance evaluation of these sys-
tems on comparable types of scien-
tific computations is very difficult &dquo;

tice to the vastly increased capabilities of the new par-
allel machines, particularly those systems that will be
available by the mid-1990s.

On the other hand, a full-scale scientific application
is similarly unsuitable. Porting a large program to a new
parallel computer architecture requires a major effort,
and it is usually difficult to justify a major research task
simply to obtain a benchmark number. For that reason
we believe that the otherwise very successful PERFECT
Club benchmark (Berry et al., 1989) is not suitable for
highly parallel systems. This is demonstrated by the
sparse performance results for parallel machines in re-
cent reports (Pointer, 1989, 1990; Cybenko et al., 1990).

Alternatively, an application benchmark could as-
sume the availability of automatic software tools for
transforming &dquo;dusty deck&dquo; source into efficient parallel
code on a variety of systems. However, such tools do not
exist today, and many scientists doubt that they will ever
exist across a wide range of architectures.

Some other considerations for the development of
a meaningful benchmark for a highly parallel super-
computer are the following:
Advanced parallel systems frequently require new

algorithmic and software approaches, and these
new methods are often quite different from the
conventional methods implemented in source code
for a sequential or vector machine.

Benchmarks must be &dquo;generic&dquo; and should not favor
any particular parallel architecture. This
requirement precludes the usage of any
architecture-specific code, such as message-passing
code.

The correctness of results and performance figures
must be easily verifiable. This requirement implies
that both input and output data sets must be kept
very small. It also implies that the nature of the
computation and the expected results must be
specified in great detail.

The memory size and run-time requirements must be
easily adjustable to accommodate new systems with
increased power.

The benchmark must be readily distributable.
In our view, the only approach that satisfies all of

these constraints is a &dquo;paper-and-pencil&dquo; benchmark.
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The idea is to specify a set of problems only algorith-
mically. Even the input data must be specified only on
paper. Naturally, the problem has to be specified in
sufficient detail that a unique solution exists, and the
required output has to be brief yet detailed enough to
certify that the problem has been solved correctly. The
person or persons implementing the benchmarks on a
given system are expected to solve the various problems
in the most appropriate way for the specific system. The
choices of data structures, algorithms, processor alloca-
tion, and memory usage are all (to the extent allowed by
the specification) left to the discretion of the imple-
menter. Some extension of Fortran or C is required,
and reasonable limits are placed on the usage of assem-
bly code and the like, but otherwise programmers are
free to utilize language constructs that give the best per-
formance possible on the particular system being
studied.

To this end, we have devised a number of relatively
simple &dquo;kernels,&dquo; which are specified completely in Bai-
ley et al. (1991). However, kernels alone are insufficient
to completely assess the performance potential of a par-
allel machine on real scientific applications. The chief
difficulty is that a certain data structure may be very
efficient on a certain system for one of the isolated ker-

nels, yet inappropriate if incorporated into a larger ap-
plication. In other words, the performance of a real
computational fluid dynamics (CFD) application on a
parallel system is critically dependent on data motion
between computational kernels. Thus, we consider the
complete reproduction of this data movement to be of
critical importance in a benchmark.

Our benchmark set therefore consists of two major
components: five parallel kernel benchmarks and three
simulated application benchmarks. The simulated ap-
plication benchmarks combine several computations in
a manner that resembles the actual order of execution

in certain important CFD application codes. (This is

discussed in more detail in Bailey et al., 1991.)
We feel that this benchmark set successfully ad-

dresses many of the problems associated with bench-
marking parallel machines. Although we do not claim
that this set is typical of all scientific computing, it is

based on the key components of several large aero-

-Our benchmark set consists of two

major components: five parallel ker-
nel benchmarks and three simulated

application benchmarks. The simu-
lated application benchmarks com-
bine several computations in a man-
ner that resembles the actual order

of execution in certain important
CFD application codes.&dquo;
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science applications used by scientists on supercomput-
ers at NASA Ames Research Center. These bench-

marks will be used by the NAS Program to evaluate the
performance of parallel computers.

Benchmark Rules

DEFINITIONS

In the following, the term &dquo;processor&dquo; is defined as a

hardware unit capable of integer and floating-point
computation. The &dquo;local memory&dquo; of a processor refers
to randomly accessible memory with an access time (la-
tency) of less than I [Lsec. The term &dquo;main memory&dquo; 

11

refers to the combined local memory of all processors.
This includes any memory shared by all processors that
can be accessed by each processor in less than I ~Lsec.

The term &dquo;mass storage&dquo; refers to nonvolatile randomly
accessible storage media that can be accessed by at least
one processor within 40 msec. A &dquo;processing node&dquo; is

defined as a hardware unit consisting of one or more
processors plus their local memory, which is logically a
single unit on the network that connects the processors.

The term &dquo;computational nodes&dquo; refers to those

processing nodes primarily devoted to high-speed float-
ing-point computation. The term &dquo;service nodes&dquo; refers
to those processing nodes primarily devoted to system
operations, including compilation, linking, and commu-
nication with external computers over a network.

GENERAL RULES

Implementations of these benchmarks must be based
on either Fortran-77 or C, although a wide variety of
parallel extensions are allowed. This requirement stems
from the observation that Fortran and C are the most

commonly used programming languages by the scien-
tific parallel computing community at present. If in the
future other languages gain wide acceptance in this
community, they will be considered for inclusion in this
group. Assembly language and other low-level lan-
guages and constructs may not be used, except that cer-
tain specific vendor-supported assembly-coded library
routines may be called (see below).

Such language restrictions are necessary, because
otherwise considerable effort would be made by bench-

markers in low-level or assembly-level coding. Then the
benchmark results would tend to reflect the amount of

programming resources available to the benchmarking
organization, rather than the fundamental merits of the
parallel system. Certainly the mainstream scientists that
these parallel computers are intended to serve will be
coding applications at the source level, almost certainly
in Fortran or C, and thus these benchmarks are de-

signed to measure the performance that can be ex-
pected from such code.

Accordingly, the following rules must be observed
in any implementations of the NAS Parallel Bench-
marks : ’

All floating-point operations must be performed
using 64-bit floating-point arithmetic.

All benchmarks must be coded in either Fortran-77

(American National Standards Institute, 1990a) or
C (American National Standards Institute, 1990b),
with certain approved extensions.

Implementations of the benchmarks may not mix
Fortran-77 and C code-one or the other must be

used.

Any extension of Fortran-77 that is in the Fortran-90
draft dated June 1990 or later (American National
Standards Institute, 1990c) is allowed.

Any extension of Fortran-77 that is in the Parallel

Computing Forum (PCF) draft dated March 1990
or later (Parallel Computing Forum, 1990) is ,

allowed.

Any language extension or library routine that is used
in any of the benchmarks must be supported by the
vendor and available to all users.

Subprograms and library routines not written in
Fortran or C may perform only certain functions,
as indicated in the next section.

All rules apply equally to subroutine calls, language
extensions, and compiler directives (i.e., special
comments).

LANGUAGE EXTENSIONS AND

LIBRARY ROUTINES

The following language extensions and library routines
are permitted:
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Constructs that indicate sections of code that can be

executed in parallel or loops that can be distributed
among different computational nodes.

Constructs that specify the allocation and organization
of data among or within computational nodes.

Constructs that communicate data between processing
nodes.

Constructs that communicate data between the

computational nodes and service nodes.
Constructs that rearrange data stored in multiple
computational nodes, including constructs to
perform indirect addressing and array
transpositions.

Constructs that synchronize the action of different
computational nodes.

Constructs that initialize for a data communication or

synchronization operation that will be performed or
completed later.

Constructs that perform high-speed input or output
operations between main memory and the mass
storage system.

Constructs that perform any of the following array
reduction operations on an array either residing
within a single computational node or distributed
among multiple nodes: +, x, MAX, MIN, AND,
OR, XOR.

Constructs that combine communication between

nodes with one of the operations listed in the
previous item.

Constructs that perform any of the following
computational operations on arrays either residing
within a single computational node or distributed
among multiple nodes: dense matrix-matrix
multiplication, dense matrix-vector multiplication,
and one-dimensional, two-dimensional, or
three-dimensional fast Fourier transforms (FFTs).
Such routines must be callable with general array
dimensions.

The Benchmarks:

A Condensed Overview

After an evaluation of a number of large-scale CFD and
computational aeroscience applications on the NAS su-
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&dquo;After an evaluation of a number of

large-scale CFD and computational
aeroscience applications on the
NAS supercomputers, five medium-
sized computational kernels were
selected as the &dquo;parallel kernels. &dquo; In
addition to these problems, three
different implicit solution schemes
were added to the benchmark set.&dquo;

percomputers at NASA Ames Research Center, five
medium-sized computational problems were selected as
the &dquo;parallel kernels.&dquo; In addition to these problems,
three different implicit solution schemes were added to
the benchmark set. These schemes are representative
of CFD codes currently in use at NASA Ames Research
Center in that they mimic the computational activities
and data motions typical of real CFD applications. They
do not include the typical preprocessing and postpro-
cessing of real applications, nor do they include I/O.
Boundary conditions are also handled in a greatly sim-
plified manner. For a detailed discussion on the differ-
ences between the simulated application benchmarks
and real CFD applications, see Chapter 3 of Bailey et al.
(1991).

Even the five parallel kernel benchmarks involve
substantially larger computations than many previ-
ous benchmarks, such as the Livermore Loops or
LINPACK; therefore they are more appropriate for
the evaluation of parallel machines. They are suffi-
ciently simple that they can be implemented on a new
system without unreasonable effort and delay. The
three simulated application benchmarks require some-
what more effort to implement but constitute a rigorous
test of the usability of a parallel system to perform state-
of-the-art CFD computations.

THE EIGHT BENCHMARK PROBLEMS

The following gives an overview of the benchmarks.
The first five are the parallel kernel benchmarks, and
the last three are the simulated application benchmarks.
Space does not permit a complete description for all of
these. A detailed description of these benchmark prob-
lems is given in Bailey et al. ( 1991 ).

EP: an &dquo;embarrassingly parallel&dquo; kernel, which
evaluates an integral by means of pseudorandom
trials. This kernel, in contrast to others in the list,

requires virtually no interprocessor communication.
MG: a simplified multigrid kernel. This requires

highly structured long-distance communication and
tests both short- and long-distance data
communication.

CG: a conjugate gradient method used to compute an
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approximation to the smallest eigenvalue of a large,
sparse, symmetric positive definite matrix. This
kernel is typical of unstructured grid computations
in that it tests irregular long-distance
communication, using unstructured matrix-vector
multiplication.

FT: a three-dimensional partial differential equation
solution using FFTS. This kernel performs the
essence of many &dquo;spectral&dquo; codes. It is a rigorous
test of long-distance communication performance.

IS: a large integer sort. This kernel performs a
sorting operation that is important in &dquo;particle
method&dquo; codes. It tests both integer computation
speed and communication performance.

LU: a regular-sparse, block (5 X 5) lower and upper
triangular system solution. This problem represents
the computations associated with the implicit
operator of a newer class of implicit CFD
algorithms, typified at NASA Ames by the code
INS3D-LU. This problem exhibits a somewhat
limited amount of parallelism compared to the next
two.

SP: solution of multiple, independent systems of
non-diagonally-dominant, scalar, pentadiagonal
equations. SP and the following problem BT are
representative of computations associated with the
implicit operators of CFD codes such as ARC3D at
NASA Ames. SP and BT are similar in many

respects, but there is a fundamental difference with

respect to the ratio of communication to

computation.
BT: solution of multiple, independent systems of

non-diagonally-dominant, block tridiagonal
equations with a (5 x 5) block size.

THE EMBARRASSINGLY
PARALLEL BENCHMARK

In order to give the reader a flavor of the problem
descriptions in Bailey et al. (lq9l), a detailed definition
will be given for the first problem, the embarrassingly
parallel benchmark:

Set n = 228 and s = 271828183. Generate the

pseudorandom floating-point values r¡ in the interval
(0, 1) for 1 % j % 2n using the scheme described below.

http://hpc.sagepub.com/
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&dquo;The intent of the NAS Parallel

Benchmarks report is to specify
completely the computation to be
caffied out. Theoretically, a com-
plete implementation, including the
generation of the correct input data,
could be produced from the informa-
tion in this paper. 

&dquo;

Then for 1 ~ j ~ n setxj = 2 r 2j - I - 1 and y3 = 2r2i -
1. Thus, X and y, are uniformly distributed on the in-
terval ( -1,1 ).

Next set k = 0, and beginning with j = 1, test to see

if t, &horbar; ~ + y~ ; 1. If not, reject this pair and proceed
to the next j. If this inequality holds, then set k - k + 1,
Xk = ~V(-2 log~, and Yk - yj (- 2 log~,
where log denotes the natural logarithm. Then Xk and
Yk are independent Gaussian deviates with mean 0 and
variance 1. Approximately n1T/4 pairs will be con-
structed in this manner.

Finally, for 0 ~ 1 % 9 tabulate Q, as the count of the
pairs (Xk, Yk) that lie in the square annulus I %

max(lxk 1, 1 Yk 1) < I + 1, and output the 10 Q, counts.
Each of the 10 Q, counts must agree exactly with ref-
erence values.

The 2n uniform pseudorandom numbers rj men-
tioned above are to be generated according to the fol-
lowing scheme: Set a = 513 and let xo --- s be the spec-
ified initial &dquo;seed.&dquo; Generate the integers xk for 1 ~ k ~
2n using the linear congruential recursion

xk + ~ = ax, (mod 2 46)

and return the numbers rh = 2-46xk as the results. Ob-
serve that 0 < r~ < 1 and they are very nearly uni-
formly distributed on the unit interval.

An important feature of this pseudorandom num-
ber generator is that any particular value xk of the se-
quence can be computed directly from the initial seed s
by using the binary algorithm for exponentiation, tak-
ing remainders modulo 246 after each multiplication.
The importance of this property for parallel processing
is that numerous separate segments of a single, repro-
ducible sequence can be generated on separate proces-
sors of a multiprocessor system. Many other widely
used schemes for pseudorandom number generation
do not possess this important property.

Additional information and references for this

benchmark problem are given in Bailey et al. (1991).

Sample Codes
The intent of the NAS Parallel Benchmarks report is to

specify completely the computation to be carried out.
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Theoretically, a complete implementation, including
the generation of the correct input data, could be pro-
duced from the information in Bailey et al. (1991).
However, the developers of these benchmarks are
aware of the difficulty and time required to generate a
correct implementation from scratch in this manner.
Furthermore, despite several reviews, ambiguities in the
technical paper may exist that could delay implementa-
tions.

In order to reduce these difficulties and to aid the

benchmarking specialist, Fortran-77 computer pro-
grams implementing the benchmarks are available.
These codes are to be considered examples of how the
problems could be solved on a single-processor system,
rather than statements of how they should be solved on
an advanced parallel system. The sample codes actually
solve scaled-down versions of the benchmarks that can
be run on many current-generation workstations. In-
structions are supplied in comments in the source code
on how to scale up the program parameters to the full-
size benchmark specifications.

These programs, as well as the benchmark docu-
ment itself, are available (write to Applied Research
Branch, NAS Systems Division, Mail Stop T045-1,
NASA Ames Research Center, Moffett Field, CA
94035, Attention: NAS Parallel Benchmark Codes).
The sample codes are provided on Macintosh floppy
disks and contain the Fortran source codes, &dquo;ReadMe&dquo;
files, input data files, and reference output data files for
correct implementations of the benchmark problems.
These codes have been validated on a number of com-

puter systems ranging from conventional workstations
to supercomputers.

Table I lists approximate run times and memory
requirements of the sample code problems, based on
implementations using one processor of the CRAY
Y-MP. Table 2 contains similar information for the full-

sized benchmark problems. The unit &dquo;Mw&dquo; in Tables 1
and 2 refers to one million 64-bit words. Note that per-
formance in MFLOPS is meaningless for the integer
sort (IS) benchmark and therefore is not given. An ex-
planation of the entries in the problem size column can
be found in the corresponding sections describing the
benchmarks in Bailey et al. (1991).

Table 1

NAS Parallel Benchmarks Sample Codes:
Times and MFLOPS four One Processor of the

CRr4Y Y-MP 
_________________________
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Table 2

NAS Parallel Benchmarks Problem Sizes: Times and MFLOPS for One
Processor of the CRAY Y-MP

Submission of Benchmark Results

It should be emphasized again that the sample codes
described in the above section are not the benchmark

codes, but only implementation aids. For the actual
benchmarks, the sample codes must be scaled to larger
problem sizes. The sizes of the current benchmarks
were chosen so that implementations are possible on
currently available supercomputers. As parallel com-
puter technology progresses, future releases of these
benchmarks will specify larger problem sizes.

The authors and developers of these benchmarks
encourage submission of performance results for the
problems listed in Table 2. Periodic publication of the
submitted results is planned. Benchmark results should
be submitted to the Applied Research Branch, (NAS
Systems Division, Mail Stop T045-1, NASA Ames Re-
search Center, Moffett Field, CA 94035, Attention:
NAS Parallel Benchmark Results). A complete submis-
sion of results should include the following:

a detailed descripton of the hardware and software
configuration used for the benchmark runs

a description of the implementation and algorithmic
techniques used

source listings of the benchmark codes
output listings from the benchmarks

http://hpc.sagepub.com/
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