

The NASA Aircraft Noise Prediction Program Improved Propeller Analysis System

L. Cathy Nguyen
Lockheed Engineering \& Sciences Company
Hampton, Virginia

Prepared for
Langley Research Center
under Contract NAS1-19000

National Aeronautics and Space Administration
Office of Management
Scientific and Technical
Information Program

Abstract

This report describes the improvements and the modifications of the NASA Aircraft Noise Prediction Program (ANOPP) and the Propeller Analysis System (PAS). Comparisons of the predictions and the test data are included in the case studies for the flat plate model in the Boundary Layer Module, for the effects of applying compressibility corrections to the lift and pressure coefficients, for the use of different weight factors in the Propeller Performance Module, for the use of the improved retarded time equation solution, and for the effect of the number of grids in the Transonic Propeller Noise Module. The DNW tunnel test data of a propeller at different angles of attack and the Dowty Rotol data are compared with ANOPP predictions. The effect of the number of grids on the Transonic Propeller Noise Module predictions and the comparison of ANOPP TPN and DFP-ATP codes are studied. In addition to the above impact studies, the transonic propeller noise predictions for the SR-7, the UDF front rotor, and the support of the enroute noise test program are included.

TABLE OF CONTENTS

Page

1. Introduction 1
2. Functional Modules
2.1 Improved Blade Shape Module 6
2.2 Improved Blade Section Aerodynamics Module 9
2.3 Improved Blade Section Boundary-Layer Module 14
2.4 Transonic Propeller Noise Module 19
2.5 Additional Modifications in ANOPP-PAS 23
Functional Modules
3. Impact Studies
3.1 Impact Study of Boundary Layer Models 24
3.2 Impact Study of the Effects of Applying Compressibility 26
Corrections to Pressure and Lift Coefficients
3.3 Impact Study of the Propeller Performance Module 28
3.4 Impact Study of the Improved Retarded Time Equation 30
Solution
3.5 A Comparison of ANOPP Predictions with Dowty 32
Rotol Data
3.6 Impact Study of Propellers at Different Angles of Attack 34
3.7 Impact Study of the Effect of the Number of Grids on 36
Transonic Propeller Noise Module Predictions
3.8 The Comparison of ANOPP TPN and DFP-ATP Codes 38
3.9 Impact Study of the SR-7 and the UDF Front Rotor 39
3.10 Impact Study from the Support of the Enroute Noise Test 42 Program
4. Example Problems 44
5. Conclusions 51

1. Introduction

The NASA Aircraft Noise Prediction Program (ANOPP) Propeller Analysis System (PAS) is a set of computational modules for the prediction of the aerodynamics, performance, and noise of subsonic and transonic propellers. The theoretical manual for the ANOPP-PAS was published as NASA TM-83199, Part 3 in June 1986. This report documents the additions and improvements that have been made to the modules in this system.

Three additional functional modules are available in the ANOPP-PAS for the aerodynamic prediction analysis. They are the Improved Blade Shape Module (IBS), the Improved Blade Section Aerodynamics Module (IBA), and the Improved Blade Section Boundary Layer Module (IBL). These modules are modified versions of functional modules RBS, RBA, and BLM in the original system. The IBS module includes a revised blade geometry input format and an additional output table for the maximum thickness location and trailing edge thickness. The IBA module includes options to use compressibility corrections to compute section lift coefficients and local pressure coefficients. The IBL module includes an option to use a zero pressure gradient flat plate model to compute the boundary layer and a separation of section lift and drag coefficient output tables. Also, the boundary-layer thickness is added to the thickness table to match with the Rotor Broadband Noise Module (RBN) input table.

Modifications have also been made to some of the original functional modules in the ANOPP-PAS. The Transonic Propeller Noise Module uses a revised method for solving the retarded time equation. The Performance Module, the Propeller Loads Module, the

Subsonic Propeller Noise Module, and the Transonic Propeller Noise Module have been modified to include an option to use the output created by the improved blade aerodynamics modules, IBS, IBA, and IBL. A detailed theoretical description of the new functional modules and the revisions in each original functional module are presented in Chapter 2.

Impact studies on the changes to the ANOPP-PAS are documented in Chapter 3. The Subsonic Propeller Noise Comparison of the Flat Plate and the Integral Formulation Boundary Layer Models presents the thickness and loading noise for each model using test case AN5 for the " N " propeller from the FAA DNW Test (reference 1). The effects of different combinations of compressibility corrections for pressure loading and lift coefficients on total noise and the effect of using different weighing factors on the Propeller Performance Module are presented using test case AN5 for the " N " propeller from the FAA DNW Test. Loading noise comparisons were made using the output of both the original and improved blade aerodynamics modules and TPN with and without the new retarded time solver. Subsonic propeller noise predictions are made for the R212 propeller (NACA 16 series blade sections) and compared with the Dowty Rotol data (reference 2). In addition to the subsonic propeller noise study, the comparisons of ANOPP predictions and the FAA DNW test data are presented for the propellers at different angles of attack. Transonic propeller noise predictions are made to study the noise effect of the chosen number of grids. The chosen grid combinations are then used for the ANOPP TPN prediction and compared with the DFP-ATP (now called ASSPIN) predictions. Further use of the grid combinations is made in support of the SR-7 propeller, the UDF front rotor, and the enroute noise test program.

The conclusions from these validation studies are presented in the final chapter.

SYMBOLS

b	Joukowski transformation parameter, re R
C	chord length, re R
C_{f}	skin friction coefficient
C	section lift coefficient
C_{6}	incompressible lift coefficient
C_{∞}	ambient speed of sound, $\mathrm{m} / \mathrm{s}(\mathrm{ft} / \mathrm{s}$)
C_{p}	pressure coefficient
$\mathrm{C}_{\mathrm{p}_{\mathrm{c}}}$	corrected pressure coefficient
$\mathrm{C}_{\mathrm{Plim}}$	limiting pressure coefficient
g	function defining blade surface S
M	local Mach number
M_{∞}	ambient Mach number
R	blade length measured from axis to tip, m(ft)
$\mathrm{R}_{\text {inf }}$	Reynold's number based on blade length, speed of sound, and kinematic
	viscosity
r_{l}	leading edge radius, re C
R_{n}	Reynold's number

$t_{t e} \quad$ trailing edge bluntness, re C
$U_{\infty} \quad$ free stream velocity, $\mathrm{m} / \mathrm{s}(\mathrm{tt} / \mathrm{s})$
$x, y \quad$ surface coordinate, re C
$x_{t} \quad$ maximum thickness location, re C
$x_{2, \operatorname{tr}, \ell \quad \text { lower trip location, re } C}$
$x_{2, t r} \quad u \quad$ upper trip location, re C
$\alpha \quad$ angle of attack, deg
δ
time at which noise signal is received by observer, s maximum thickness, re C
boundary layer thickness, re C
displacement thickness, re C
momentum thickness, re C
ratio of specific heats
kinematic viscosity, $\mathrm{m}^{2} / \mathrm{s}\left(\mathrm{ft}^{2} / \mathrm{s}\right)$
angular velocity of blade, rad/s
blade surface elliptical radial coordinates, rad
solution of retarded time equation as solved by Newton's method $\Omega(\tau-t)$
time at which noise signal is emitted at source position, s
ξ_{1}
ξ_{2}

Subscripts
ℓ
te
tr
u
∞
$\xi_{2, s} \quad$ leading edge stagnation point, rad
spanwise surface coordinate, $0 \leq \xi_{1} \leq 1$
chordwise surface coordinate, $0 \leq \xi_{2} \leq 1$
lower surface
trailing edge
trip location
upper surface
ambient

2. Functional Modules

2.1 Improved Blade Shape Module

INTRODUCTION

The Improved Blade Shape Module generates a functional representation of the airfoil surface using the same methods as the Blade Shape Module (reference 3), with input and output table modifications. The improved module incorporates a more concise blade section input table and produces an additional output table containing maximum thickness location and trailing edge thickness.

SYMBOLS

C chord length, re R
$R \quad$ blade length measured from axis to tip, $m(\mathrm{ft})$
$t_{\text {max }} \quad$ maximum thickness, re $C\left(\eta_{2}\right)$
$t_{t e} \quad$ trailing edge bluntness, re $C\left(\eta_{2}\right)$
$x, y \quad$ surface coordinates in complex z-plane
$x_{t} \quad$ maximum thickness location, re $C\left(\eta_{2}\right)$
Subscripts:
$\iota \quad$ lower surface
u
upper surface

INPUT
This module requires a description of the airfoil surface using the same methods as the Blade Shape Module (reference 3).

Blade Section Table

The description of the airfoil is entered as a sequence of cross sections defined in a Cartesian coordinate system (reference 3). For each cross section, a description array containing the spanwise coordinate, leading edge abscissa, leading edge ordinate, chord length, leading edge radius, and number of (x, y) pairs on the upper and lower surfaces is entered. In the Improved Blade Shape Module, the first four entries in this description array are entered normalized with respect to blade length. If the (x, y) coordinates of the upper and lower surfaces of a cross section are not identical to the coordinates of the next cross section, then the (x, y) coordinates are entered directly after the description array. (i.e. upper and lower surface (x, y) coordinates for adjacent identical cross sections are not repeated.)

OUTPUT

The outputs for this module include all of the outputs produced by the Blade Shape Module (reference 3) and an additional table containing the maximum thickness location and the trailing edge thickness for each cross section.

Blade Thickness Table

$\xi_{1} \quad$ array of spanwise coordinates, re R
$x_{1}\left(\xi_{1}\right) \quad$ chordwise location where maximum thickness occurs, re $C\left(\xi_{1}\right)$
$t_{t e}\left(\xi_{1}\right) \quad$ thickness of the airfoil cross section at the trailing edge, re $C\left(\xi_{1}\right)$

METHOD

Maximum Thickness Location and Trailing Edge Thickness Table
The maximum thickness of an airfoil section is given by

$$
t_{\text {max }}=\left(y_{u}-y_{l}\right)_{\text {max }}
$$

The maximum airfoil thickness location x_{t} is the chordwise location where maximum thickness occurs. The trailing edge thickness $t_{t e}$ is the thickness of the airfoil cross section at the trailing edge (i.e. $x=1$).

2.2 Improved Blade Section Aerodynamics Module

INTRODUCTION

The Improved Blade Section Aerodynamics Module is a modified version of the Blade Section Aerodynamics Module (reference 4).

The improved module includes the following modifications:

- The number of Fourier series terms used in evaluating the conformal mapping coefficients has been increased.
- An option to use the Glauert compressibility correction, the Karman-Tsien compressibility correction (reference 5), or no correction when computing the pressure coefficients has been added.
- An option to use the Glauert compressibility correction (reference 5) or no compressibility correction when computing the lift coefficient has been added.
- A limiting pressure coefficient check for high negative pressure coefficients based on the Carlson and Walkley method has been added (reference 6).
- Separate tables for the lift coefficients and stagnation points are produced.
C chord length, re R
C_{p} pressure coefficient

C_{pc}	corrected pressure coefficient
$\mathrm{C}_{\mathrm{p}_{\mathrm{lim}}}$	limiting pressure coefficient
C_{10}	incompressible lift coefficient
C_{l}	section lift coefficient
$C_{p_{0}}$	incompressible pressure coefficient
C	ambient speed of sound, m/s (ft/s)
M_{∞}	ambient Mach number
M	local Mach number
R	blade length, m (ft)
R_{n}	Reynold's number
$\mathrm{R}_{\text {inf }}$	Reynold's number based on blade length, sound speed, and kinematic
	viscosity
x_{t}	maximum thickness location, re $\mathrm{C}\left(\eta_{2}\right)$
γ	ratio of specific heats
v	kinematic viscosity, $\mathrm{m}^{2} / \mathrm{s}\left(\mathrm{ft}^{2} / \mathrm{s}\right)$
ξ_{1}	spanwise surface coordinate, $0 \leq \xi_{1} \leq 1$
ξ_{2}	chordwise surface coordinate, $0 \leq \xi_{2} \leq 1$

INPUT

This module requires the airfoil elliptical coordinates produced by the Improved Blade Shape Module (IBS) and arrays of Mach numbers and angles of attack. It requires all of the user parameters required by the Blade Section Aerodynamics Module (reference 4) and the following additional user parameters.
$C_{\infty} \quad$ ambient speed of sound, m / s (ft/s)
ratio of specific heats
$R_{\text {inf }}$
Reynold's number, based on blade length, speed of sound, and kinematic viscosity

OUTPUT

This module produces the same output as the Blade Section Aerodynamics Module (reference 4) but creates a separate lift coefficient table and separate stagnation point table.
array of spanwise surface coordinates, $0 \leq \xi_{1} \leq 1$
α array of angles of attack, deg

M array of Mach numbers
$C_{l}\left(\xi_{1}, \alpha, M\right)$ section lift coefficient
$\xi_{2, \mathrm{~s}}\left(\xi_{1}, \alpha, M\right)$ leading edge stagnation point, rad

METHOD

Coefficient of Pressure

Three options are now available for applying compressibility effects adjustments to the pressure coefficients C_{p} found from Bernoulli's equation (equation 26 in reference 4). The first option is to use equation 26 with no compressibility correction. The second option applies Glauert's pressure correction formula

$$
\begin{equation*}
C_{p}=\frac{C_{p_{0}}}{\sqrt{1-M^{2}}} \tag{1}
\end{equation*}
$$

where M in the equation is set at 0.7 if the actual Mach number is greater than 0.7 , because the Glauert compressibility correction is not valid at Mach numbers greater than 0.7.

The third option applies the Karman-Tsien pressure correction formula (equation 27 in reference 4).

Limiting Pressure Coefficient

The limiting pressure coefficient is applied to replace extremely high negative pressure coefficients on the upper surface of an airfoil. The Reynold's number based on the maximum thickness location is

$$
R_{n}=2 x_{t} C M_{\infty} R_{i n f}
$$

The relation of the limiting pressure coefficient, Mach number and Reynold's number is

$$
\begin{equation*}
C_{P_{\text {lim }}}=\frac{-2}{\gamma^{M_{\infty}^{2}}}\left[\frac{R_{n} \times 10^{-6}}{R_{n} \times 10^{-6}+10^{6}}\right]^{E} \tag{2}
\end{equation*}
$$

where

$$
e=4-3 M_{\infty}+4\left(1-M_{\infty}\right)^{15}
$$

and

$$
\mathrm{E}=0.05+.35\left(1-\mathrm{M}_{\infty}\right)^{2}
$$

If the pressure coefficient is negative and less than $2 \mathrm{P}_{\mathrm{P}_{\text {lim }}}$ then

$$
C_{p c}=2 C_{p_{\text {lim }}}
$$

The method for calculating the pressure coefficients continues as described for the Blade Section Aerodynamics Module (reference 4).

Coefficient of Lift

The coefficient of lift for the section is calculated as described in reference 4. There are now two options for applying compressibility effects adjustments to the lift coefficients C_{1} (equation 25 in reference 4). The first option is to use the lift coefficient with no compressibility correction, C_{l}. The second option applies Glauert's compressibility correction formula

$$
C_{1}=\frac{C_{10}}{\sqrt{1-M^{2}}}
$$

where M in the equation is set at 0.7 if the actual Mach number is greater than 0.7 , because the Glauert compressibility correction is not valid at Mach numbers greater than 0.7 .

2.3 Improved Blade Section Boundary-Layer Module

INTRODUCTION

The Improved Blade Section Boundary-Layer Module is a modified version of the Blade Section Boundary-Layer Module (reference 7). The improved module computes the twodimensional boundary-layer on airfoil sections using either the integral formulations for the boundary-layer thickness (reference 7) or the zero pressure gradient flat plate model (reference 8). The user-designated trip locations which locate the transition points are input in \times coordinates normalized by chord length instead of the elliptical coordinates required by the original module. The improved module creates a separate table which contains the section drag coefficients.

SYMBOLS
b Joukowski transformation parameter, re R
C chord length, re R
$C_{f} \quad$ skin friction coefficient
$\mathrm{C}_{\infty} \quad$ ambient speed of sound, $\mathrm{m} / \mathrm{s}(\mathrm{t} / \mathrm{s})$
$R \quad$ blade length, m (t)
$\mathrm{R}_{\mathrm{n}} \quad$ Reynold's number
$r_{1} \quad$ leading edge radius, re C
$\mathrm{U}_{\infty} \quad$ free stream velocity, $\mathrm{m} / \mathrm{s}(\mathrm{tt} / \mathrm{s})$
chordwise transition point location, re C
$x_{2, \operatorname{tr}, \ell}$
$x_{2, t r, u}$
lower trip location, re C
upper trip location, re C
$\psi \quad$ blade surface elliptical radial coordinates, rad
δ
boundary-layer thickness, re C
δ_{1}
δ_{2}
v
ξ_{1}
spanwise surface elliptical coordinate, $0 \leq \xi_{1} \leq 1$
ξ_{2}
chordwise surface elliptical coordinate, $0 \leq \xi_{2} \leq 1$
Subscripts:
1
lower surface
tr
trip location
u
upper surface
ambient

INPUT

This module requires the same input as the Blade Section Boundary-Layer Module (reference 7). If the trip locations are required, the \times coordinates for the upper surface and the lower surface of the trip locations normalized by chord length are input.
$x_{2, t r, u}\left(\xi_{1}\right) \quad$ upper trip location, re C
$\mathrm{x}_{2, \mathrm{tr}, \ell}\left(\xi_{1}\right) \quad$ lower trip location, re C

OUTPUT

This module creates the same output as the Blade Section Boundary-Layer Module (reference 7). The section drag coefficients are stored in a separate table.
$\xi_{1} \quad$ array of spanwise surface coordinates, $0 \leq \xi_{1} \leq 1$
$\alpha \quad$ array of angles of attack, deg
M array of Mach numbers
$C_{d}\left(\xi_{1}, \alpha, M\right)$ profile drag coefficient

METHOD
 Boundary-Layer Equation

There are two methods that may be used to compute the boundary-layer thickness: the integral formulations method described in reference 7 and the zero pressure gradient flat plate model.

Zero Pressure Gradient Flat Plate Model

For a zero pressure gradient flat plate model, the skin friction coefficients C_{f} increase with the distance from the leading edge \times (normalized by chord length) and are computed
from the Reynold's number

$$
\begin{equation*}
C_{f}=0.0576\left(\frac{U_{\infty} x}{v}\right)^{-1 / 5} \tag{4}
\end{equation*}
$$

or

$$
C_{f}=0.0576\left(R_{n} \cdot x\right)^{-1 / 5}
$$

At the trailing edge, the turbulent boundary layer thickness

$$
\delta(x)=0.37\left(\frac{U_{\infty} x}{v}\right)^{-1 / 5}
$$

or

$$
\delta(x)=0.37\left(R_{n} x\right)^{-1 / 5}
$$

the displacement thickness

$$
\delta_{1}(x)=\frac{\delta(x)}{8}
$$

and the momentum thickness

$$
\delta_{2}(x)=\frac{7}{72} \delta(x)
$$

are computed using the Reynold's number

$$
R_{n}=\frac{U_{\infty} C}{v}
$$

or
where

$$
\begin{aligned}
& R_{n}=R_{i n f} M C \\
& R_{i n f}=\frac{C_{\infty} R}{v}
\end{aligned}
$$

Trip Locations in \times Coordinates Normalized by Chord
For convenience, the trip locations are input in \times coordinates normalized by chord and converted to elliptic coordinates ξ_{2}.

With the input trip location in \times coordinates normalized by chord and the assumption that the initial elliptical radial coordinates are equal to 0 , the elliptic coordinates are
computed using

$$
\begin{equation*}
x=\left(2 b \cdot \cosh \psi \cdot \cos 2 \pi \xi_{2}+2 b+r_{l} / 2\right) / C \tag{5}
\end{equation*}
$$

The new value of the elliptical radial coordinate is then interpolated for the calculated elliptic coordinate. The \times coordinate is obtained using equation (5) and the whole procedure is repeated until the computed \times coordinate is equal to the input trip location.

2.4 Transonic Propeller Noise Module

INTRODUCTION

The Transonic Propeller Noise Module has been modified to include an improved retarded time equation solution method developed by Dunn (reference 9). The module also includes an option to use the output from the original blade geometry and aerodynamics modules, RBS, RBA, and BLM or the improved blade geometry and aerodynamics modules, IBS, IBA and IBL.

SYMBOLS

$g \quad$ function defining blade surface S
time at which noise signal is received by observer, s
time at which noise signal is emitted at source position, s
solution to retarded time equation as solved by Newton's method, $\Omega(\tau-\mathrm{t})$ angular velocity of blade, rad/s

METHOD

Roots of the Retarded Time Equation

The retarded time equation is written as

$$
\begin{equation*}
g(\phi)=A \phi^{2}+B \phi+C+\cos (\phi+D)=0 \tag{6}
\end{equation*}
$$

where $\phi=\Omega(\tau-t)$ and only the roots $(\phi / \Omega)<0$ are of interest. In order to solve numerically for the roots by Newton's method, the number of roots and a close approximation for each root must be determined.

Step 1 - Define the interval [ϕ_{0}, ϕ_{1}] containing all solutions (Bracket the roots):
Figure 1.1 illustrates that the roots of equation (6) are the points of intersection of the parabola $A \phi^{2}+B \phi+C$ and the sinusoidal curve $-\cos (\phi+D)$. Since $|\cos (\phi+D)| \leq 1$, then the roots of g are bounded by the negative roots of $A \phi^{2}+B \phi+C= \pm 1$, defined to be ϕ_{0} and ϕ_{1}.

Step 2 - Determine the inflection points of g that lie in $\left[\phi_{0}, \phi_{1}\right]$:

Subintervals $\left[\phi_{i}, \phi_{i+1}\right]$ are formed by the endpoints and/or the adjacent inflection points in $\left[\phi_{0}, \phi_{1}\right]$. In each subinterval the curvature of g does not change sign, therefore g exhibits parabolic behavior.

The inflection points $\phi_{i}, \phi_{i+1} \ldots \phi_{N}$ are found by solving

$$
\begin{align*}
& g^{\prime \prime}(\phi)=2 A-\cos (\phi+D)=0, \\
& \phi=\left\{\begin{array}{l}
\cos ^{-1}(2 A)-D \pm 2 n \pi \\
-\cos ^{-1}(2 A)-D \pm 2 m \pi
\end{array},\left(\phi_{0} \leq \phi \leq \phi_{1}\right),(n, m=1,2,3 \ldots .)\right. \tag{7}
\end{align*}
$$

Step 3 - Determine the number of roots that exist in each subinterval $\left[\phi_{i}, \phi_{i+1}\right]$:

Several tests are made to determine if there are 1,2 , or no roots in each
subinterval $\left[\phi_{i}, \phi_{i+1}\right]$.
(1) if $g\left(\phi_{i}\right) \cdot g\left(\phi_{i+1}\right)=0$ then check the end points of the interval $\left[\phi_{i}, \phi_{i+1}\right]$ for roots
if $g\left(\phi_{i}\right)=0$, there is a root at ϕ_{i}
if $g\left(\phi_{i+1}\right)=0$, then there is a root ϕ_{i+1}
(2) if $g\left(\phi_{i}\right) \bullet g\left(\phi_{i+1}\right)<0$, then there is exactly one root in $\left[\phi_{i}, \phi_{i+1}\right]$
(3) if $g\left(\phi_{i}\right) \bullet g\left(\phi_{i+1}\right)>0$, then more work has to be done to find roots in $\left[\phi_{i}, \phi_{i+1}\right]$:
(a) if $g^{\prime}(\phi) \cdot g^{\prime}\left(\phi_{i+1}\right)>0$, then there are zero roots in $\left[\phi_{j}, \phi_{i+1}\right]$, if not:
(b) on $\left[\phi_{i}, \phi_{i+1}\right], \mathrm{g}(\phi)$ is approximated by a parabola, $\mathrm{p}(\phi)$, with extreme point

$$
\phi_{e x t}^{*}
$$

(c) find the root of g^{\prime} in $\left[\phi_{i}, \phi_{i+1}\right], \phi_{\text {ext }}$, by the hybrid Newton/Bisection method using $\phi_{e x t}^{*}$ as the initial guess
(d) if $g\left(\phi_{e x t}\right)=0$, then there is exactly one double root in $\left[\phi_{i}, \phi_{i+1}\right]$
(e) if $g\left(\phi_{i}\right) \bullet g\left(\phi_{\text {ext }}\right)<0$, then there are two roots in $\left[\phi_{i}, \phi_{i+1}\right]$:
(i.e. 1 root in $\left[\phi_{i}, \phi_{\text {ext }}\right]$ and

1 root in $\left.\left[\phi_{\text {ext }}, \phi_{i+1}\right]\right)$

$$
\text { if } g\left(\phi_{i}\right) \cdot g\left(\phi_{\text {ex }}\right)>0 \text { then no roots. }
$$

Step 4 - Determine an initial guess for each root:

If roots are detected in $\left[\phi_{i}, \phi_{i+1}\right]$, then $g(\phi)$ is approximated by a parabola $p(\phi)$, in the subinterval, and the roots of $p(\phi)$ are used as an initial guess for the roots of g.

Step 5 - Test each initial guess for stability in Newton's method:

Newton's method can be unstable if $\frac{d g}{d \phi}$ is small in some neighborhood of a root.
If $g^{\prime}(\phi)$ is less than a given tolerance at the initial estimate of a root then the Bisection method is used to further refine the estimate.

Step 6 - Newton's method is used to determine the roots:
The roots of equation (6) are determined through an iterative process,

$$
\phi_{n+1}=\phi_{n}-\frac{\left[A \phi_{n}^{2}+B \phi_{n}+C+\cos \left(\phi_{n}+D\right)\right]}{\left[2 A \phi_{n}+B-\sin \left(\phi_{n}+D\right)\right]}
$$

which terminates when $\left|\phi_{n+1}-\phi_{n}\right|$ is smaller than a user-specified convergence criterion or if the number of iterations exceeds a limit set by the user.

2.5 Additional Modifications in ANOPP-PAS Functional Modules

The Propeller Performance Module (PRP), the Propeller Loading Module (PLD), the Subsonic Propeller Noise Module (SPN), and the Propeller Trailing Edge Module (PTE) each include an option to use the output from the original blade geometry and aerodynamics modules, RBS, RBA, and BLM, or the output from the improved blade geometry and aerodynamics modules, IBS, IBA, and IBL.

3. Impact Studies

3.1 Impact Study of Boundary Layer Models

Predictions using the Subsonic Propeller Noise Module for the test case AN5 from the FAA DNW test, as described in reference 1, were made with the following parameters:

Pitch Angle	$=20.8 \mathrm{deg}$	
RPM	$=2700$	
Flow Velocity	$=$	$77.0 \mathrm{~m} / \mathrm{s}$
Power	$=184.6 \mathrm{~kW}$	
Thrust	$=1907 \mathrm{~N}$	
Attitude Angle	$=0.0 \mathrm{deg}$	
Flow Temp	$=16^{\circ} \mathrm{C}$	
Flow Pressure	$=99480 \mathrm{~Pa}$	
Flow Density	$=1.194 \mathrm{~kg} / \mathrm{m}^{3}$	
Advance Ratio	$=0.2680$	
Angle of Attack	$=1.134 \mathrm{deg}$	
Power Coefficient	$=0.0490$	
Thrust Coefficient	$=0.0463$	
Helical Tip Mach No.	0.8720	

The " N " propeller, used in the FAA DNW test case, is the F8475 D-4 Hartzell, 2-bladed, 2.03 m diameter propeller with Clark Y airfoil sections, identical to the propeller used on the Piper Cherokee Lance aircraft, and has a thin round tip with a thickness ratio of 6.4 percent at the $3 / 4$ radius position. The two observer coordinates are shown in figure 2.1 following the ANOPP convention and the DNW tunnel convention.

The predictions were made using both the flat plate zero pressure gradient boundarylayer model and the integral formulation boundary-layer model. The thickness noise and loading noise predictions using each model were compared. The predictions at two observer positions are presented in table 1. Figures 3.1 and 3.2 show comparisons of flat plate and integral formulation data with the DNW data. The results show that the predictions using the two models are almost identical and very good in comparison with the DNW data. The CPU times required for each of the two models in the Improved Boundary-Layer Module are quite different. On MicroVAX, the CPU times required for the execution of the Boundary-Layer Module using the integral formulation model is approximately about 30 minutes. Functional module IBL executes 70 times faster when using the flat plate model than it executes when using the integral formulation model. The results of this study indicate that the zero pressure gradient flat plate model can be used to decrease execution time with little or no loss of accuracy.

3.2 Impact Study of the Effects of Applying Compressibility Corrections to Pressure and Lift Coefficients

The Improved Blade Section Aerodynamics Module (IBA) has an option to include the effects of Mach number on the lift coefficients using the Glauert theories or to use the lift coefficient independent of Mach number. The variation of the pressure coefficients with Mach number can be expressed in terms of Glauert or Karman theories, or the pressure coefficient can be determined independent of Mach number. For Mach numbers greater than 0.7 , the Glauert compressibility correction is not valid and the correction for 0.7 Mach number is used.

Predictions for test case AN5 using the " N " propeller from the DNW test were made for all possible option combinations. Table 2 provides a summary of the total noise predications made for two observer positions using the following option combinations:

CASE	Lift Coefficient	Pressure Coefficient
CASE A	CONSTANT (ICL=0)	CONSTANT (ICP=0)
CASE B	CONSTANT (ICL=0)	Glauert theory applied (ICP=1)
CASE C	CONSTANT (ICL=0)	Karman theory applied (ICP=2)
CASE D	Glauert theory applied (ICL=1)	CONSTANT (ICP=0)
CASE E	Glauert theory applied (ICL=1)	Glauert theory applied (ICP=1)
CASE F	Glauert theory applied (ICL=1)	Karman theory applied (ICP=2)

The two observer positions are at 60° and 90° polar directivity angles as shown in figure 2.1. Figure 4.1 and figure 4.2 show the total noise comparisons of the six cases and DNW data for the two observers. Figure 4.3 and figure 4.4 present the overall noise of observer 1 when the Glauert theory is used for the lift coefficients (figure 4.3) and no compressibility correction is used for the lift coefficients (figure 4.4). The same for observer 2 is shown in figure 4.5 and figure 4.6.

The Glauert compressibility correction applied to the lift coefficients provided lower noise levels compared to the results from using the lift coefficients independent of the Mach number (figures 4.3 and 4.4 for observer 1 ; figures 4.5 and 4.6 for observer 2). For the pressure coefficients, the Karman theory provided higher noise compared to the noise results from using the Glauert theory. The variation of pressure coefficients with Mach number may be expressed by either theory. The Karman correction is more accurate than the Glauert correction; however, it is more cumbersome in application.

3.3 Impact Study of the Propeller Performance Module

The Newton iteration method for the induced axial and tangential velocity components in the Propeller Performance Module did not always converge when Glauert compressibility correction was applied for the lift coefficient.

The following modifications of the Propeller Performance Module have been accomplished:

- The interval of the derivatives of the lift and drag coefficients with respect to the angle of attack and Mach number is reduced to a smaller interval (from 0.1 to 0.01) for better accuracy.
- The induced axial velocity component a_{1} and the induced tangential velocity component a_{2} are initialized for each spanwise station when originally a_{1} and a_{2} were initialized only for the first spanwise station.
- The weighting factor for the Newton iteration was initially set to 0.5 for the first iteration and set to 1.0 for the next iteration. Now the weighting factor is set as a user parameter and can be varied from 0.1 to 0.8 with a default value of 0.25 .

The effect of using different weighting factors in the functional module is studied using the test case AN5 and "N" propeller for observer 1. Several weighting factors, wt, are used for the convergence of the induced velocity. The reference power coefficient, Cp ,
is 0.049 . The thrust coefficient C_{T}, power coefficient $C p$, efficiency η, and advanced ratio J values are listed in table 3 for comparison. Table 4 presents overall noise in dB for the use of different weighting factors.

The results show that the effects of the weighting factor are insignificant on the convergence of power and thrust coefficients and on the predicted noise levels. Therefore, the weighting factor can be varied for the convergence of Newton's iteration without affecting the results. Convergence has been achieved in problems with the Glauert compressibility correction applied to the lift coefficient.

3.4 Impact Study of the Improved Retarded Time Equation Solution

Predictions were done to study the effects of using the improved retarded time equation solution. The pressure coefficients in terms of Glauert and Karman theories were also used to provide variable test cases.

Predictions for the study used the SR-3 propeller which has 4 blades with a 45° tip sweep distribution tailored for noise reduction. It also showed the lowest noise level, about 5 decibels less than the straight-blade SR-2 at Mach 0.8 cruise, and yielded the highest propulsive efficiency, 78.7 percent - an improvement of approximately 3 percent over the straight-blade SR-2 (reference 10).

ANOPP coordinates for the two observers located just behind the disk plane in meters are as follows:

The following prediction test case combinations were used:

Case	Pressure Coefficient	Retarded Time Equation Solution
A	Glauert theory applied	Old
B	Karman theory applied	Old
C	Glauert theory applied	New
D	Karman theory applied	New

and the following operating conditions:
Flight Mach Number, $\mathrm{M}_{\mathrm{z}}=0.80$

$$
\begin{aligned}
\text { Helical Tip Mach Number, } M_{h} & =0.854 \\
\text { RPM } & =7878.4
\end{aligned}
$$

The total noise results for the two observers are shown in table 5. There is less than a 0.5 dB difference in the first 6 harmonics comparing case A and case C of observer $1, a$ 1.5 dB difference in the seventh harmonic, and a 4 dB difference in the eighth harmonic. For other cases of the two obsevers, the results from using the old Transonic Propeller Noise Module (TPN) and from the modified TPN are identical. The solutions from the improved retarded time equation solution method have been successfully achieved in all demonstration problems.

Newton's method usually converges in 3 to 5 iterations. The example function is shown in figure 5.1. For the function which is flat as shown in figure 5.2 and has a first derivative as shown in figure 5.3, more than 10 iterations were required. Therefore, a call to the Bisection method was added before a call to Newton's method, and the number of permitted iterations was increased to 20 to solve for the flat functions.

3.5 A Comparison of ANOPP Predictions with Dowty Rotol Data

Predictions were made for the 4-bladed Dowty Rotol R212 propeller having NACA 16 -series blade sections. The Improved Blade Shape Module (IBS), the Improved Blade Section Aerodynamic Module (IBA), the Improved Boundary-Layer Module (IBL), the Propeller Performance Module (PRP), the Propeller Loading Module (PLD), and the Subsonic Propeller Noise Module (SPN) were used for the predictions.

The propeller is 3.66 meters in diameter and the blade chord, thickness/chord ratio, and the blade twist distributions are show in figure 6.1. Predictions were done for the operating conditions as follows:

| Parameter | Case 1 | Case 2 | Case 3 |
| :--- | :---: | :---: | :---: | :---: |
| RPM | 1250 | 1401 | 1400 |
| Flow velocity, m/s | 48 | 48 | 30 |
| Power coefficient | .024 | .036 | .024 |
| Thrust coefficient | .023 | .044 | .036 |
| Helical Tip Mach | .71 | .794 | .787 |
| 3/4 span blade pitch, deg. | 14.03 | 14.03 | 8.68 |

The near-field microphone is 2.44 m from the propeller hub and the far-field microphone is 5.49 m from the propeller hub.

The Dowty Rotol data were from experiments run in the RAE 24 -foot anechoic wind tunnel (reference 2). Predictions are compared with the experimental data in figure 6.2 for case 1 , figure 6.3 for case 2 where the near field and far field microphones are included, and figure 6.4 for case 3 . Figure 6.2 shows the test case where the propeller helical tip

Mach number is moderate and the rpm is low. The first two harmonics show good agreement, and a difference of 4 dB is shown at higher harmonics. Only the first eight harmonics are presented since the data does not extend beyond the frequency of 672 Hz for this case. The overall agreement of prediction is good over the range of available experimental data. Figure 6.3 shows the case where the helical tip Mach number and rotational speed are higher than case 1. Agreement is good between experimental data and prediction across all harmonics. The third case has a higher propeller speed and a lower power coefficient than the first case. Figure 6.4 shows good agreement at lower harmonics and fair agreement at higher harmonics.

3.6 Impact Study of Propellers at Different Angles of Attack

Noise predictions were done using the Subsonic Propeller Noise Module (SPN) to study the effects of noise for a propeller at different angles of attack. The angles of attack are in terms of the propeller shaft inclination and are those from the nacelle axis which were tested in the DNW tunnel.

The " N " propeller was used for this test case. The two microphone positions at 60° and 90° polar directivity angles according to ANOPP convention, and the nacelle attitudes are shown in Figure 7.1.

The operating conditions for the DNW tunnel test cases are as follows:

Parameter	Case 1	Case 2	Case 3	Case 4	Case 5	
	RPM	2700	2700	2700	2700	2700
Flow velocity, m/s	77.3	76.9	77.2	77.0	77.3	
Power, kW	152.1	145.9	151.6	149.9	154.9	
Thrust, N	1500	1422	1432	1476	1530	
Nacelle Attitude Angle, deg	0	-3.8	3.6	-7.4	7.3	
3/4 Span blade pitch, deg	19.9	19.9	19.9	19.9	19.9	

The results are compared with the experimental DNW data. For the microphone at 90° polar directivity angle, figures 7.2 and 7.3 present the total noise at $0^{\circ},-3.8^{\circ}, 3.6^{\circ},-7.4^{\circ}$, and 7.3° nacelle attitudes. Similarly, figure 8.1 and figure 8.2 present the total noise for the 60° polar directivity angle microphone at the same above nacelle attitudes. Case 1 is the case where the propeller shaft is at 0°. The agreement is good for the first six harmonics with the exception of the second harmonic where there is a slight overprediction for both mi-
crophones. For the 90° microphone, underprediction appears to be less than 3 dB for the higher harmonics. Furthermore, predictions seem to agree better with data for the 90° microphone than for the 60° microphone. Cases 2 and 4 are those where the propeller shaft is at -3.8° and -7.4°, respectively. In the above two cases for the 90° microphone, with the exception of overprediction for the second harmonic, the overall agreement is excellent for the first 13 harmonics. For higher harmonics, the agreement is still good for the -7.4° attitude, and less than 5 dB overpredicted for -3.8° attitude. For both the 60° and 90° microphones, the prediction and the DNW data are in good agreement. For the cases where the propeller shaft is at 3.6° and 7.8°, the DNW data are higher than the predictions for all harmonics for both microphone positions. This significant diference may due to the non-uniform inflow calculations which is not included in ANOPP. Further study needs to be done to determine the possible causes of this underprediction.

3.7 Impact Study of the Effect of the Number of Grids on Transonic Propeller Noise Module (TPN) Predictions

The pressure time history is affected by the number of propeller blade computation grid points and the number of time points per revolution. It is important that a large number of propeller grid points near the leading edge be used and enough time points be used to give sufficient accuracy of the pressure time history.

Sixteen combinations of propeller blade computation grids and number of time points per revolution were selected for the study as follows:

	Spanwise Stations		Chordwise Stations				
			Time Points				
Case 1	8	21	100	200	500	1000	
Case 2	12	31	100	200	500	1000	
Case 3	19	41	100	200	500	1000	
Case 4	25	51	100	200	500	1000	

The two observer coordinates were chosen as follows:

x_{1}	x_{2}	x_{3}

Observer 1
3.06
0.0
0.833
Observer 2
3.06
0.0
0.000

The SR-7 propeller, one of the propellers used in the Advanced Turboprop Project (ATP), was used for these preliminary studies. This propeller is similar to the SR-3 but has less sweep (41° versus 45°). The flight conditions for this study were a Mach number of 0.8 , a flight altitude of 35000 feet, and a propeller speed of 1692 RPM.

In order to determine the minimum required number of time points for accuracy, the first three harmonics of each observer with the four grid cases for each time point number were compared. Figures 9.1 to 9.3 and figures 10.1 to 10.3 show that for the time points of 500 and 1000, the difference in the total noise is insignificant. For the four cases, especially cases 1 and 2 where there are less propeller grid points, the same noise levels are produced. Therefore, the minimum required number of time points for the analysis was chosen to be 500 .

A large number of propeller grid points in the regions where the blade is highly curved is recommended. In the combination grid cases, the difference in amplitude between cases 3 and 4 is fairly small compared to that between cases 1 and 2 . Therefore, case 3 , where there are 19 spanwise and 41 chordwise grid points, was selected as having the optimum number of grid points to save computation time.

3.8 The Comparison of ANOPP TPN and ASSPIN Codes

The ASSPIN code is the latest theoretical acoustic result for the transonic/supersonic sources developed by Mark H. Dunn, F. Farassat, and Sharon L. Padula (reference 9). For the noise comparison of the two codes, the same aerodynamic loads generated from Adamczyk's Euler code are used for input to ANOP TPN code. The propeller grid combination of 19 grid points for the span and 41 grid points for the chord with 500 time points was used for ANOPP TPN.

A comparison of the ANOPP TPN and the ASSPIN codes was done for the SR-7 at $\mathrm{l}=1$ and $\mathrm{k}=1-20$ grid points (figure 11.1). The flight conditions for this study are a Mach number of 0.8 , a flight altitude of 35000 feet, and a propeller speed of 1692 RPM. The first harmonic of the ANOPP TPN and ASSPIN (figure 12.1) shows that the maximum difference of 1.5 dB is in the area behind the propeller plane. However, in figure 12.2, for the second harmonic, the noise from ASSPIN prediction is about 2 dB higher than the noise from ANOPP TPN in the area in front the propeller plane. The opposite effect is shown in the area behind the propeller. For the third harmonic, ASSPIN produces almost 5 dB higher noise in the aft area of the propeller (figure 12.3). The noise difference seems to be greater at higher harmonics. Since there is not a great difference in the sound pressure level between ANOPP TPN and ASSPIN especially for the first harmonic, either ANOPP TPN or ASSPIN can be chosen for transonic noise prediction. Further study should be done for the noise comparison at higher harmonics.

3.9 Impact Study of the Improved TPN Using the SR-7 on the ATP and the UDF Front Rotor on the 727

The pressure amplitude and phase data for the exterior noise levels were computed using the ANOPP predictions. The area of interest was $k=5$ to 20 and $\mathrm{l}=1$ to 10 (figure 11.1) for the SR-7. The predictions were used for input to the Propeller Aircraft Interior Noise (PAIN) program. A propeller grid having 19 grid points spanwise and 41 grid points chordwise combined with 500 time points was used for computation.

The grid is specified by coordinates x_{1}, x_{2}, and x_{3} as shown in figure 11.1. The coordinate positions are then given by the following relations for $k=1,20$ and $\mathrm{l}=1,10$:

$$
\begin{aligned}
& x_{1}=\left(r_{p}-a\right)=a\{1-\cos [(1-1) \pi / 18]\} \\
& x_{2}=-a \sin [(1-1) \pi / 18] \\
& x_{3}=(\pi a / 18)\left[k_{p}-k\right]
\end{aligned}
$$

where
k_{p} is the k index of the grid point $(k, I)=\left(k_{p}, 1\right)$, that is, where the coordinate x_{1} penetrates the fuselage
r_{p} is the radial distance from the center of the fuselage cylinder to the axis of rotation of the propeller
a is the radius of the fuselage

$$
\begin{aligned}
& k_{p}=8 \\
& r_{p}-4.25615 \mathrm{~m} \\
& a=1.1938 \mathrm{~m}
\end{aligned}
$$

The operating conditions were:

Flight Mach Number	Flight Altitude(tt)	Propeller RPM	Power Coefficient
0.8	35,000	1692	1.787
0.8	25,000	1777	1.560
0.5	15,000	1692	1.33

The refined grid, which is the mid-point of the space between the two grid points, is again used in the prediction for the first flight case.

The same grid point combination is used for the prediction of the UDF front rotor with the following flight conditions:

Flight Mach Number
0.8
0.72

Propeller
RPM
1267.5

1275

Thrust
lbf
2100
2100

The coordinate positions (figure 14.1) are given by the following relations for $k=1$ to 16 and $I=1$ to 10 :

$$
\begin{aligned}
& x_{1}=r_{p}-a \cos [(1-1) \pi / 18]\left[1-\frac{z_{p}}{a} \cot \alpha\right]\left[1+\frac{\pi}{18}\left(k_{p}-k\right) \cot \alpha\right] \\
& x_{2}=a \sin [(1-1) \pi / 18]\left[1-\frac{z_{p}}{a} \cot \alpha\right]\left[1+\frac{\pi}{18}\left(k_{p}-k\right) \cot \alpha\right] \\
& x_{3}=(\pi a / 18)\left[k_{p}-k\right]\left[1-\frac{z_{p}}{a} \cot \alpha\right] \\
& \alpha=\cos ^{-1}\left(a / s_{2}\right)
\end{aligned}
$$

where
r_{p} is the radial distance from the center of the fuselage cylinder to the axis of rotation of the propulser
a is the radius of the fuselage
s_{2} is the meridian distance to the apex of the frustum

$$
\begin{aligned}
& r_{p}=3.3782 \mathrm{~m} \\
& a=1.880 \mathrm{~m} \\
& z_{p}=3.91 \mathrm{~m} \\
& s_{2}=9.40 \mathrm{~m}
\end{aligned}
$$

The first harmonics for the 3 cases of the SR-7 at $L=1$ are shown in figure 13.1. Case 1 , with a power coefficient greater than that of case 2, provides higher amplitude. Case 3 , which is the subsonic case, has the lowest amplitude compared to cases 1 and 2. The overall predictions for case 1 (figure 13.2), case 2 (figure 13.3), and case 3 (figure 13.4) show that moving from $L=1$ (closest to the propeller) to $L=10$ (further away from the propeller), result in amplitude decreases in front the propeller plane. However, in the area aft of the propeller (starting at $k=12$), the amplitude increases going from $L=1$ to 10 .

For the UDF (figure 15.1) at longitudinal positions $k=1$ to 9 , the amplitude is low at $L=1$ and progressively increases at $L=10$. The trend is opposite from position $k=9$ to the plane of the propeller and continues aft to $k=13$. Aft of $k=13$ the trend with changing L returns to that found forward of $k=9$. Case 2 (figure 15.2) has the same trends with L as seen in figure 15.1 but shifted to different longitudinal positions.

The amplitude and phase trends seen in figures 15.1 and 15.2 have an impact on results from the Interior Noise Prediction Program (PAIN).

3.10 Impact Study from the Support of the Enroute Noise Test Program

Predictions of the PTA propfan noise to be used as input to the ray tracing propagation code were made. These predictions used the same propeller computation grid and the same number of time points per revolution as were used for the predictions of the PTA noise for the Propeller Interior Noise Program (PAIN) study.

The propeller speed is 1697.65 RPM for all of the following flight conditions:

Case	Altitude (ft) (Above Sea Level)		Mach Number	
1	7,000	0.5		Power Coefficient
2	14,000	0.5	1.28	
3	20,000	0.5	1.34	
4	20,000	0.7	1.37	
4	35,000	0.7	1.55	
5			1.48	

An atmospheric absorption table was built (using the ATM and ABS modules) with a reference altitude of 5,000 feet and 70% relative humidity for the White Sands standard day meteorological conditions. The flight altitudes were therefore set relative to the White Sands test level.

For each flight condition, the PTA propfan predictions were done for 25 observer positions starting at a polar directivity angle of 30° with 5° intervals and at a source-to-observer distance of 500 ft (figure 16.1).

The first and the second harmonics of the eight requested harmonics were examined for the above five cases as shown in figures 17.1 to 17.5. Cases 1,2 , and 3 , where the flight Mach number was 0.5 , provide smooth curves compared to cases 4 and 5 , where the flight Mach number was 0.7 . First harmonic noise comparisons for each of the five flight
conditions are presented in figure 18.1 and those for the second harmonic are presented in figure 18.2. For the first harmonic, the first three cases show very similar noise levels (figures 17.1, 17.2, and 17.3).

4. Example Problem

Usually, the predictions are made in two steps for the use of the subsonic propeller or in three steps for the use of the transonic propeller. If the computation requires a large number of chordwise and spanwise stations for the airfoil sections, a large number of grid points or observers, and a large number of time points per revolution; then the prediction should be made in three steps.

The first step is to build the blade library from the execution of IBS, IBA, and IBL as illustrated below:

```
CREATE GRID $
UPDATE NEWU=GRID SOURCE=^ $
    -ADDR OLDM=* NEWM=PSI FORMAT=4H*RS$ MNR=1 $
        0.0$
    -ADDR OLDM=* NEWM=XI2 FORMAT=4H*RS$ MNR=1 $
        0.0 0.0417 0.0833 0.1250 0.1667 0.2083 0.2500
        0.2917 0.3333 0.37509 0.41667 0.45804 0.50000
        0.54167 0.58333 0.62500 0.66667 0.70833 0.75000
        0.79167 0.83333 0.87500 0.91667 0.95833 1.00000 $
END* $
PARAM IUNIT=2HSI $
    CREATE GEOM $
    UPDATE NEWU=GEOM SOURCE=* $
    -ADDR NEWM=BLADE OLDM=* FORMAT=0 $
        10 $
        1,1,1,1,1,1,2,2 $
.3 -.0324 . 1762 .340 6.85E-3 79.6 24 23 $
        1.000000 0.000000 $
        . }990000.002020 
        .980000 .004044 $
            980000 . 000660 $
            .990000 . 000356 $
            1.000000 0.000000 $
.4 -.0571 . 2159 . 374 2.50E-3 75.2 24 23 $
            1.000000 0.000000 $
            .990000 . 001677 $
            .980000 . 003347 $
```



```
        .990000 . 000506 $
        1.000000 -.000000 $
    .85 -.0066 .0106 . .304 2.15E-4 57.9 50 49 $
    .9 .0312 -.0468 . 258 2.15E-4 56.3 50 49 $
    1.000000 .000000 $
        .990000 .001822 $
        .980000 . 003531 $
        !
        !
        !
        .980000 . 001136 $
        .990000 . 000536 $
        1.000000 -.000000 $
    .95 .0748 -.1063 .204 1.95E-4 54.9 50 49 $
    .99 . 1143 -. 1568 .154 1.95E-4 53.9 50 49 $
    1.000000 .000000 $
    .990000 . 001792 $
    .980000 . 003474 $
        .980000 . 001192 $
        .990000 . 000566 $
        1.000000 -.000000 $
    END* $
    EXECUTE IBS $
    PARAM IPRINT=3 NORDER=4 $
PARAM ICL=0 $ NO COMPRESSIBILITY CORRECTION FOR
            $ LIFT COEFFICIENT
PARAM ICP=2 $ KARMAN COMPRESSIBILITY CORRECTION
$ FOR PRESSURE COEFFICIENT
    CREATE IBA $
    UPDATE NEWU=IBA SOURCE=* $
    -ADDR NEWM=MACH OLDM=* FORMAT=4H*RS$ MNR=1$
        . }
-ADDR NEWM=ALPHA OLDM=* FORMAT=4H*RS$ MNR=1 $
        -1. 1. 3. $
    END* $
PARAM CA = 309.7073 $ SPEED OF SOUND IN M/S
PARAM VNU = .000028026 $ VISCOSITY IN M**2/S
PARAM B = 1.3716 $ BLADE LENGTH IN M
EVALUATE RINF = CA*B/VNU $
EXECUTE IBA $
EXECUTE IBL \$
UNLOAD /SR3LIB1/ \$
PARAM ICL=1 ICP=2 \$ GLAUERT CORRECTION FOR LIFT,
\$ KARMAN CORRECTION FOR PRESSURE
```

```
EXECUTE IBA $
EXECUTE IBL $
UNLOAD / SR3LIB2 / $
ENDCS $
```

- The second step is to use the libraries built in the first step to build the Loads library for the noise calculation.

LOAD/SR3LIB1 / \$ LOAD IN THE GEOM LIBRARY BUILT IN THE FIRST STEP PARAM EPSILON=0.01 $\$$ ERROR CRITERION FOR \$
STOPPING THE ITERATION
ON THE INDUCED ANGULAR
AND AXIAL VELOCITIES
\$
\$
$\$$
$\$$
\$
\$
\$
\$
\$
\$
\$ OPTION, METHODOLOGY
OPTION
$=0: B L A D E$ ELEMENT-
MOMENTUM THEORY
= 1:PRANDTL TIP RELIEF
CORRECTION
UNIFORM, INFLOW OPTION
$=$ TRUE :UNIFORM INFLOW
SPECIFIED BY MZ
$=$ FALSE:RADIALLY VARYING
INELOW SPECIFIED
BY RBF (FLOW)
PARAM IMPROV $=$.TRUE. $\$$ FLAG TO USE THE IMPROVED VERSION
\$ OF ANOPP
CREATE GRIDA \$
UPDATE NEWU=GRIDA SOURCE=^ \$
$-A D D R$ NEWM $=P S I$ OLDM $=\star$ FORMAT $=4 H^{\star} R S \$ \$$
0.0 \$
$-\operatorname{ADDR}$ NEWM=XI1 OLDM=* FORMAT $=4 \mathrm{H}^{*} \mathrm{RS} \$ \quad$ MNR $=1 \quad \$$
$.300 \quad .3380 \quad .4334 \quad .4669$
$.5004 .5980 .6956 \quad .7337 \quad .7718 \quad .8060$
.8402 .8706 .9010 . 9277 . 9544 . 9772 . 99 \$
-ADDR NEWM=XI2 OLDM=* FORMAT=4H*RS\$ MNR=1 \$
$.0000 \quad .0933 \quad .1602 \quad .2337 \quad .2836 \quad .3225 \quad .3536 \quad .3789$
$.3940 .4002 \quad .4186 \quad .4267$. 4348 . 4421 . $4494 \quad .4562$
$.4629 .4693 \quad .4757 \quad .4819 \quad .4880 \quad .4940 \quad .5000 \quad .5060$
$.5120 \quad .5182 \quad .5243 \quad .5307$. $5371 \quad .5439 \quad .5506 \quad .5652$
$.5814 \quad .6211 \quad .6464 \quad .6775 \quad .7164 \quad .7663 \quad .8302 \quad .9096$
1.000 \$
END* \$
$\$$
PARAM B=1.3716, IUNITS=2HSI IPRINT=3 \$
PARAM ALPHAP $=0$.
\$ SET PROPELLER ANGLE OF
ATTACK IN DEGREES
PARAM IDPDT $=0$
$\$$ PROPELLER LOADING IS STEADY
PARAM BETA75 $=60.31$
INITIAL GUESS FOR PROPELLER
$3 / 4$ SPAN

```
    PARAM RPM = 1777.
    PARAM NBLADE = 4
    PARAM ORIG = 61.15
    $ PITCH ANGLE IN DEGREES
    $ PROPELLER RPM
    $ NUMBER OF PROPELLER BLADES
    $ BLADE TWIST FROM ROOT TO 3/4
$ SPAN
EVALUATE RHOA=.149616E-2*32.1726*16.02 $ DENSITY IN KG/M**3
PARAM IUNITS = 2HSI $ SI UNITS
PARAM IPRINT = 3
$ REQUEST INPUT AND OUTPUT
$ PRINT
$
EVALUATE CONTROL STATEMENTS ARE USED TO COMPUTE
ADDITIONAL REQUIRED QUANTITIES
$
$
EVALUATE RPS = RPM / 60.
                            $ COMPUTE REVOLUTIONS PER SECOND
PARAM PI = 3.1415926
    $ SET VALUE OF PI
PARAM CPREF = 1.56 $
EVALUATE BETA = BETA75 - ORIG
    $ COMPUTE ROOT PITCH IN DEGREES
EVALUATE THETAR = BETA * PI / 180.
    $ CONVERT ROOT PITCH TO RADIANS
EVALUATE ALPHAP = ALPHAP * PI / 180.
                                    $ CONVERT PROPELLER ANGLE OF
                                    $ ATTACK TO RADIANS
PARAM CA = 309.70728
    $ SPEED OF SOUND IN M/S
PARAM VF = 247.766
        $ VELOCITY IN M/SEC
EVALUATE MZ = VF / CA
    $ COMPUTE FORWARD MACH NUMBER
EVALUATE OMEGA = 2. * PI * RPS
    $ COMPUTE ANGULAR VELOCITY
EVALUATE MACHRF = B * OMEGA / CA
    $ COMPUTE ROTATIONAL TIP MACH
    $ NUMBER
$
$ ADDITIONAL OUTPUT CONTROL PARAMETERS ARE
$
$
$
\$ THE 3/4 SPAN BLADE PITCH MUST BE ADJUSTED SO THAT THE \$ COMPUTED POWER COEFFICIENT MATCHES THE MEASURED \$ POWER. THIS REQUIRE AN ITERATIVE SOLUTION OF THE \$ PROPELLER PERFORMANCE (PRP) MODULE. THE SECANT \$ METHOD IS USED TO FIND THE ROOT TO THE EQUATION \(F(Z)=\) \$ CPREF - CP. CONVERGENCE IS ASSUMED COMPLETE WHEN THE \$ COMPUTED VALUE IS WITHIN ONE PERCENT OF THE MEASURE \$ VALUE.
```

 PARAM Z1 = THETAR $
 EXECUTE PRP GRID=GRIDA $
 EVALUATE FZ1 = CPREF - CP $
 EVALUATE THETAR = THETAR + PI / 180. $
 PARAM Z2 = THETAR $
 PARAM COUNT = 1 $
 LAB1 CONTINUE \$
EXECUTE PRP GRID=GRIDA \$
EVALUATE FZ2 = CPREF - CP \$
EVALUATE DIFF = FZ2 / CPREF \$
EVALUATE DIFF=ABS(DIFF) \$
EVALUATE COUNT = COUNT + 1 \$
IF (DIFF .LT. 0.01) GOTO LAB2 \$
EVALUATE Z = Z2 - FZ2 * (Z2 - Z1) / (FZ2 - FZ1) \$
PARAM Z1 = Z2 \$
PARAM Z2 = Z \$
PARAM FZ1 = FZ2 \$
PARAM THETAR = Z \$
EVALUATE COUNT = COUNT + 1 \$
IF (COUNT .GT. 10) GOTO LAB3 \$
GOTO LAB1 \$
LAB2 CONTINUE \$
EXECUTE PLD GRID=GRIDA \$
LAB3 CONTINUE \$
UPLIST \$
UNLOAD /PRPLIB1/ PLD \$

```
- Finally, the third step is where the noise is calculated. The blade geometry library which is built in the first step and the load library which is built in the second step are used in this step as shown:
```

 LOAD /SR3LIB1/ $
 LOAD /PRPLIBI/ $
 PARAM IMPROV=.TRUE. $
 EVALUATE Z = 25000.*0.3048 $
 EVALUATE RHOA =.106626E-2 * 32.1726 * 16.02 $
 PARAM PI=3.1415926, REV=1777.,IPRINT=3 $
 EVALUATE CA=1016.10 * . }3048\mathrm{ $
 EVALUATE OMEGA=2. *PI * REV / 60. $
 PARAM MZ = 0.8 $
 EVALUATE B=4.5 * 0.3048 $
 EVALUATE MACHRF = B * OMEGA / CA $
 PARAM THETAR=0.0, EPSILON=0.001, NBLADE=4 $
 CREATE TPN $
 UPDATE NEWU=OBSERV SOURCE=* $
 -ADDR NEWM=COORD OLDM=* FORMAT=4H3RS$ $
 3.34 -.77 1.46 $
 END* $
    ```
\$
```

\$ BLADE SECTIONS USE A GRID WITH EXTRA POINTS NEAR
\$
\$
THE LEADING EDGE (IE WHERE XI2 = PI)
CREATE GRIDA\$
UPDATE NEWU=GRIDA SOURCE=* \$
-ADDR OLDM=GRID (XI1) \$
-ADDR OLDM=GRID(PSI) \$
-ADDR NEWM=XI2 OLDM=* FORMAT=4H*RS\$ MNR=1 \$
0.0000 0.0933 0.1602 0.2337 0.2836 0.3225 0.3536 0.3789
0.4002 0.4186 0.4348 0.4494 0.4629 0.4757 0.4880 0.5000
0.5120 0.5243 0.5371 0.5506 0.5652 0.5814 0.5998 0.6211
0.6464 0.6775 0.7164 0.7663 0.8302 0.9096 1.0000 \$
END* \$
\$
PARAM PSI0=0., NT=200 \$
PARAM NTIME = 500 \$
PARAM NHARM=8, IPRES=1 \$
PARAM TRANS=0.98,FRACDT=1.0 \$
\$
EXECUTE TPN GRID=GRIDA \$

```

If the job is small and there is no need to reuse the blade geometry library and load library then the second and the third step can be combined, or all three steps can be combineci into one job.

\section*{5. Conclusions}

The modified version of ANOPP contains three additional modules which are improved versions of the Blade Shape Module (IBS), the Rotating Blade Aerodynamic Module (IBA), and the Boundary-Layer Module (IBL). In addition, the Propeller Performance Module, the Propeller Loading Module, and the Subsonic Propeller Noise Module have been modified and improved.

For the Blade Shape Module, there is no repetition for airfoil sections with the same coordinates. For the Rotating Blade Aerodynamic Module, more options are available for the compressibility correction of the lift and the pressure coefficients. For the BoundaryLayer Module, the addition of the flat plate model option provides no loss in accuracy and less amount of computation time. Due to the modification of the Propeller Performance Module, the convergence of the Newton method in the Propeller Performance Module is fairly rapid, including the case where the Glauert theory is applied for the lift coefficient. As a result, the Propeller Loading Module, the Subsonic Propeller Noise Module, and the Transonic Propeller Noise Module with the changed retarded time solver work properly now.

Besides having more options, the improved version of ANOPP can also give the same results as the original version if the compressibility correction of the lift coefficient is set to 0 , and that of the pressure coefficient is set to 2 .

The study comparing the predictions of the improved version of ANOPP, the old version of ANOPP, and the available test data shows good agreement between predictions and test data. Therefore, the improved version of ANOPP should be used to save execution time when necessary with no loss in accuracy.

\section*{References}
1. Dobrzynski, W. M.; Heller, H. H.; Powers, J. O.; and Densmore, J. E. : DFVLR/FAA Propeller Noise Tests in the German-Dutch Wind Tunnel DNW. Executive Data Report No. AEE 86-3, 1986.
2. Trebble, W. J. G. : Investigation of the Aerodynamic Performance and Noise Characteristics of a Dowty Rotol R212 Propeller at Full-Scale in the 24-foot Wind Tunnel. Aeronautical Journal, June/July 1987, pp.275-284.
3. Rawls, John W., Jr. : 10.2 Blade Shape Module. Aircraft Noise Prediction Program Theoretical Manual - Propeller Aerodynamics and Noise, William E. Zorumski and Donald S. Weir, eds., NASA TM-83199, Part 3, June 1986, pp. 10.2-1-10.2-25.
4. Zorumski, William E. : 10.3 Blade Section Aerodynamics Module. Aircraft Noise Prediction Program Theoretical Manual - Propeller Aerodynamics and Noise, William E. Zorumski and Donald S. Weir, eds., NASA TM-83199, Part 3, June 1986, pp. 10.3-1 10.3-13.
5. Dommasch, E. E. et al, : Airplane Aerodynamics, Third Edition. Pitman Publishing Corporation, 1961.
6. Carlson, H. W. and Walkely, K. B. : An Aerodynamic Analysis Computer Program and Design Notes for Low Speed Wing Flap Systems. NASA CR3675, March 1983.
7. Weir, Donald S. : 10.4 Blade Section Boundary-Layer Module. Aircraft Noise Prediction Program Theoretical Manual - Propeller Aerodynamics and Noise, William E. Zorumski and Donald S. Weir, eds., NASA TM-83199, Part 3, June 1986, pp. 10.4-1 -10.4-18.
8. Schlichting, Herman (J. Kestin, transl.): Boundary-Layer Theory, Seventh Edition. McGraw-Hill Book Co., 1979.
9. Dunn, M. H. and Tarkenton, G. M.: User's Manual for the Langley High Speed Propeller Noise Prediction Program (DFP-ATP). NASA CR-4208, January 1989.
10. Hager, R. D. and Vrabel, D.: Advanced Turboprop Project. NASA SP-495, 1988.

Table 1. Subsonic Propeller Noise Comparison of the Zero Pressure Gradient Flat Plate and the Integral Formulations for the Boundary-Layer of Thickness Models

OBSERVER \(1-\theta=90^{\circ}, \phi=0^{\circ}, r=4 \mathrm{~m}\)
OBSERVER 2- \(\theta=60^{\circ}, \phi=0^{\circ}, r=4 \mathrm{~m}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{OBSERVER NUMBER 1} & \multicolumn{4}{|c|}{OBSERVER NUMBER 2} \\
\hline & \multicolumn{2}{|l|}{FLAT PLATE} & \multicolumn{2}{|l|}{NON-FLAT PLATE} & \multicolumn{2}{|l|}{Flat plate} & \multicolumn{2}{|l|}{NON-FLAT PLATE} \\
\hline HARMONIC NUMBER & THICKNESS NOISE dB & LOADING NOISE dB \\
\hline 1 & 104.02 & 115.23 & 104.02 & 114.98 & 101.10 & 110.68 & 101.10 & 110.89 \\
\hline 2 & 108.40 & 114.51 & 108.40 & 114.25 & 103.41 & 109.86 & 103.41 & 110.06 \\
\hline 3 & 109.79 & 112.96 & 109.79 & 112.68 & 102.82 & 107.96 & 102.82 & 108.13 \\
\hline 4 & 110.19 & 111.24 & 110.19 & 110.96 & 101.32 & 105.53 & 101.32 & 105.69 \\
\hline 5 & 110.14 & 109.49 & 110.14 & 109.21 & 99.40 & 102.82 & 99.40 & 102.96 \\
\hline 6 & 109.81 & 107.75 & 109.81 & 107.47 & 97.23 & 99.93 & 97.23 & 100.06 \\
\hline 7 & 109.28 & 106.02 & 109.28 & 105.75 & 94.87 & 96.92 & 94.87 & 97.05 \\
\hline 8 & 108.60 & 104.30 & 108.60 & 104.03 & 92.38 & 93.83 & 92.38 & 93.94 \\
\hline 9 & 107.80 & 102.59 & 107.80 & 102.33 & 89.77 & 90.67 & 89.77 & 90.77 \\
\hline 10 & 106.90 & 100.88 & 106.90 & 100.64 & 87.06 & 87.45 & 87.06 & 87.55 \\
\hline 11 & 105.91 & 99.17 & 105.91 & 98.95 & 84.26 & 84.19 & 84.26 & 84.27 \\
\hline 12 & 104.84 & 97.47 & 104.84 & 97.26 & 81.37 & 80.88 & 81.37 & 80.95 \\
\hline 13 & 103.69 & 95.76 & 103.69 & 95.58 & 78.40 & 77.53 & 78.40 & 77.59 \\
\hline 14 & 102.46 & 94.06 & 102.46 & 93.90 & 75.35 & 74.15 & 75.35 & 74.19 \\
\hline 15 & 101.17 & 92.35 & 101.17 & 92.22 & 72.22 & 70.73 & 72.22 & 70.77 \\
\hline 16 & 99.81 & 90.64 & 99.81 & 90.54 & 69.01 & 67.29 & 69.01 & 67.31 \\
\hline 17 & 98.39 & 88.93 & 98.39 & 88.87 & 65.72 & 63.82 & 65.72 & 63.84 \\
\hline 18 & 96.89 & 87.22 & 96.89 & 87.19 & 62.35 & 60.34 & 62.35 & 60.34 \\
\hline 19 & 95.33 & 85.50 & 95.33 & 85.51 & 58.89 & 56.85 & 58.89 & 56.84 \\
\hline 20 & 93.69 & 83.79 & 93.69 & 83.82 & 55.35 & 53.35 & 55.35 & 53.34 \\
\hline
\end{tabular}

Table 2. Subsonic Propeller Noise Comparison from the use different theories for the computations of Lift and Pressure Coefficients: Karman-Tsien (ICL=2, \(I C P=2\) ), Glauert ( \(I C L=1, I C P=1\) ), and Independent of Mach number (ICL=0, ICP=0).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& \text { ICL }=0 \\
& \text { ICP }=0 \\
& \text { CASE A }
\end{aligned}
\] & \[
\begin{aligned}
& I C L=0 \\
& I C P=0 \\
& \text { CASE B }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{ICL}=0 \\
& \mathrm{ICP}=2 \\
& \text { CASE }
\end{aligned}
\] & \[
\begin{array}{r}
\text { ICL }=1 \\
\text { ICP }=0 \\
\text { CASE } \\
\hline
\end{array}
\] & \[
\begin{array}{r}
I C L=1 \\
I C P=1 \\
C A S E E \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \mathrm{ICL}=1 \\
& \mathrm{ICP}=2 \\
& \mathrm{CASEF} \\
& \hline
\end{aligned}
\] & DNW Data \\
\hline HARMONIC NUMBER & \multicolumn{7}{|l|}{OBSERVER \(1 \quad \theta=90^{\circ}, \phi=0^{\circ}, \mathrm{r}=4 \mathrm{~m}\)} \\
\hline 1 & 112.150 & 114.210 & 115.430 & 110.400 & 112.330 & 113.380 & 115.0 \\
\hline 2 & 112.370 & 114.070 & 115.390 & 111.170 & 112.610 & 113.670 & 113.1 \\
\hline 3 & 112.020 & 113.330 & 114.620 & 111.230 & 112.240 & 113.190 & 115.1 \\
\hline 4 & 111.570 & 112.540 & 113.710 & 111.030 & 111.730 & 112.530 & 113.5 \\
\hline 5 & 111.030 & 111.750 & 112.770 & 110.660 & 111.150 & 111.800 & 113.2 \\
\hline 6 & 110.410 & 110.940 & 111.810 & 110.150 & 110.500 & 111.010 & 111.2 \\
\hline 7 & 109.690 & 110.100 & 110.830 & 109.510 & 109.770 & 110.150 & 113.0 \\
\hline 8 & 108.890 & 109.200 & 109.800 & 108.760 & 108.950 & 109.230 & 110.0 \\
\hline 9 & 108.000 & 108.240 & 108.730 & 107.900 & 108.050 & 108.240 & 109.9 \\
\hline 10 & 107.040 & 107.220 & 107.610 & 106.960 & 107.070 & 107.190 & 109.4 \\
\hline 11 & 105.990 & 106.130 & 106.440 & 105.940 & 106.010 & 106.070 & 107.3 \\
\hline 12 & 104.880 & 104.980 & 105.210 & 104.830 & 104.890 & 104.890 & 106.3 \\
\hline 13 & 103.690 & 103.770 & 103.930 & 103.660 & 103.690 & 103.650 & 106.2 \\
\hline 14 & 102.440 & 102.490 & 102.600 & 102.410 & 102.430 & 102.340 & 102.7 \\
\hline 15 & 101.120 & 101.150 & 101.200 & 101.100 & 101.100 & 100.960 & 103.1 \\
\hline 16 & 99.740 & 99.750 & 99.750 & 99.710 & 99.700 & 99.530 & 102.0 \\
\hline 17 & 93.290 & 98.280 & 98.230 & 98.260 & 98.240 & 98.020 & 99.5 \\
\hline 18 & 96.770 & 96.750 & 96.650 & 96.740 & 96.700 & 96.440 & 97.8 \\
\hline 19 & 95.180 & 95.140 & 95.000 & 95.140 & 95.090 & 94.790 & 97.3 \\
\hline 20 & 93.510 & 93.470 & 93.270 & 93.480 & 93.410 & 93.060 & 95.7 \\
\hline
\end{tabular}
CASE A CASE B CASE C CASED CASE E CASE F DNW
\begin{tabular}{rrrrrrrr}
\multicolumn{7}{c}{ OBSERVER 2 } & \multicolumn{2}{c}{\(=60^{\circ}, \phi=0^{\circ}, r=4 m\)} \\
1 & 107.350 & 109.170 & 111.850 & 106.180 & 107.730 & 109.910 & 111.9 \\
2 & 107.210 & 108.690 & 111.250 & 106.410 & 107.600 & 109.550 & 108.2 \\
3 & 105.650 & 106.940 & 109.380 & 105.100 & 106.100 & 107.890 & 109.0 \\
4 & 103.530 & 104.660 & 107.000 & 103.180 & 104.050 & 105.710 & 106.2 \\
5 & 101.160 & 102.140 & 104.340 & 100.980 & 101.740 & 103.260 & 104.4 \\
6 & 98.620 & 99.480 & 101.520 & 98.590 & 99.270 & 100.650 & 100.0 \\
7 & 95.970 & 96.710 & 98.590 & 96.070 & 96.670 & 97.930 & 101.1 \\
8 & 93.230 & 93.860 & 95.570 & 93.440 & 93.980 & 95.110 & 100.0 \\
9 & 90.410 & 90.940 & 92.480 & 90.710 & 91.200 & 92.230 & 93.9 \\
10 & 87.510 & 87.960 & 89.320 & 87.910 & 88.350 & 89.270 & 94.4 \\
11 & 84.550 & 84.910 & 86.100 & 85.020 & 85.420 & 86.240 & 91.9 \\
12 & 81.520 & 81.810 & 82.810 & 82.060 & 82.430 & 83.160 & 85.5 \\
13 & 78.410 & 78.640 & 79.460 & 79.030 & 79.360 & 80.010 & 85.4 \\
14 & 75.240 & 75.400 & 76.050 & 75.930 & 76.230 & 76.810 & 82.0 \\
15 & 72.000 & 72.100 & 72.570 & 72.750 & 73.030 & 73.530 & 78.1 \\
16 & 68.680 & 68.720 & 69.010 & 69.500 & 69.760 & 70.200 & 76.2 \\
17 & 65.290 & 65.270 & 65.380 & 66.180 & 66.410 & 66.790 & 80.5 \\
18 & 61.810 & 61.730 & 61.660 & 62.770 & 62.990 & 63.310 & 72.6 \\
19 & 58.240 & 58.110 & 57.850 & 59.280 & 59.480 & 59.760 & 65.4 \\
20 & 54.580 & 54.390 & 53.930 & 55.710 & 55.890 & 56.130 & 70.3
\end{tabular}

Table 3. Power Coefficients \(C_{p}\), Thrust Coefficients \(C_{T}\), Advanced Ratio J, and Efficiency \(\eta\) at Variable Weighting Factors
\begin{tabular}{l|c|c|c|c|c|c|c}
\hline wt. & 0.25 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 \\
\hline\(C_{p}\) & 0.0490039 & 0.0490023 & 0.0490006 & 0.0490060 & 0.0490076 & 0.0490083 & 0.0490083 \\
\hline\(C_{T}\) & 0.0496741 & 0.0496339 & 0.0495821 & 0.0495703 & 0.0495497 & 0.0495405 & 0.0495358 \\
\hline\(J\) & 0.843905 & 0.843905 & 0.843905 & 0.843905 & 0.843905 & 0.843905 & 0.843905 \\
\hline\(\eta\) & 0.855446 & 0.854782 & 0.853920 & 0.853623 & 0.853240 & 0.853069 & 0.852989 \\
\hline \begin{tabular}{l} 
No. of \\
Iterations
\end{tabular} & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
\hline
\end{tabular}

Table 4. Overall Noise Comparison for the Use of Variable Weighting Factors
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(W_{t}=25\) & \(W \mathrm{t}=3\) & \(W_{t}=.4\) & \(W_{t}=5\) & \(\underline{W}\) & \(W_{t}=7\) & \(W_{t}=8\) \\
\hline 115.38 & 115.39 & 115.40 & 115.40 & 115.41 & 115.41 & 115.41 \\
\hline 115.36 & 115.36 & 115.37 & 115.37 & 115.38 & 115.38 & 115.38 \\
\hline 114.59 & 114.59 & 114.60 & 114.60 & 114.60 & 114.60 & 114.60 \\
\hline 113.68 & 113.68 & 113.69 & 113.69 & 113.70 & 113.70 & 113.70 \\
\hline 112.75 & 112.75 & 112.76 & 112.76 & 112.76 & 112.76 & 112.76 \\
\hline 111.79 & 111.79 & 111.80 & 111.80 & 111.80 & 111.81 & 111.81 \\
\hline 110.81 & 110.81 & 110.81 & 110.81 & 110.82 & 110.82 & 110.82 \\
\hline 109.78 & 109.78 & 109.79 & 109.79 & 109.79 & 109.79 & 109.79 \\
\hline
\end{tabular}

Table 5. Transonic Propeller Noise (dB) Comparison of the Old and Improved Retarded Time Equation Solutions
\begin{tabular}{|c|c|c|c|c|}
\hline Harmonic Number & Case A & Case B & \[
\begin{aligned}
& \text { NEW } \\
& \text { Case C }
\end{aligned}
\] & Case D \\
\hline \multicolumn{5}{|c|}{Observer 1 ( \(\left.x_{1}=.806 \mathrm{~m}, \mathrm{x}_{2}=0.0 \mathrm{~m}, \mathrm{x}_{3}=-0.01 \mathrm{~m}\right)\)} \\
\hline 1 & 142.63 & 143.45 & 142.59 & 143.45 \\
\hline 2 & 128.66 & 130.61 & 128.69 & 130.61 \\
\hline 3 & 117.54 & 118.79 & 117.62 & 118.79 \\
\hline 4 & 124.07 & 124.86 & 124.22 & 124.86 \\
\hline 5 & 116.24 & 117.58 & 116.16 & 117.58 \\
\hline 6 & 116.18 & 114.90 & 116.28 & 114.90 \\
\hline 7 & 106.50 & 105.99 & 108.44 & 105.99 \\
\hline 8 & 107.29 & 102.56 & 103.33 & 102.56 \\
\hline
\end{tabular}

Observer 2 \(\left(x_{1}=.806 \mathrm{~m}, \mathrm{x}_{2}=0.0 \mathrm{~m}, \mathrm{x}_{3}=-.806 \mathrm{~m}\right)\)
\begin{tabular}{rrrrr}
1 & 137.46 & 138.29 & 137.46 & 138.29 \\
2 & 129.65 & 130.47 & 129.65 & 130.47 \\
3 & 122.64 & 123.44 & 122.64 & 123.44 \\
4 & 116.38 & 117.12 & 116.38 & 117.12 \\
5 & 110.29 & 110.99 & 110.29 & 110.99 \\
6 & 104.99 & 105.57 & 104.99 & 105.57 \\
7 & 101.37 & 101.83 & 101.37 & 101.83 \\
8 & 96.72 & 97.17 & 96.72 & 97.17
\end{tabular}


Figure 1.1 Example of the roots of the retarded time equation


Figure 2.1 ANOPP microphone convention and DNW microphone convention for the test case AN5 and \(N\) propeller.


Figure 3.1 Noise comparison of ANOPP and DNW data for N propeller - test AN5. ANOPP predictions include the integral formulations for the boundarylayer thickness and the zero pressure gradient flat plate model.


Figure 3.2 Noise comparison of ANOPP an DNW data for N propeller - test case AN5. ANOPP predictions include the integral formulations for the boundarylayer thickness and the zero pressure gradient flat plate model.


Figure 4.1 Noise comparison of different compressibility correction options of ANOPP predictions and DNW data for the test case AN5 and N propeller.

ICL - Compressibility option for the lift coefficient
\(=0\) - no compressibility correction
\(=1\) - Glauert compressibility correction
ICP - Compressibility option for the pressure coefficient
= 0 - no compressibility correction
\(=1\) - Glauert compressibility correction
= 2 - Karman-Tsien compressibility correction


Figure 4.2 Noise comparison of different compressibility correction options of ANOPP predictions and DNW data from the test case AN5 for \(N\) propeller.

ICL - Compressibility option for the lift coefficient
= 0 - no compressibility correction
\(=1\) - Glauert compressibility correction
ICP - Compressibility option for the pressure coefficient
= 0 - no compressibility correction
\(=1\) - Glauert compressibility correction
\(=2\) - Karman-Tsien compressibility correction


Figure 4.3 Noise comparison for different compressibility options for the pressure coefficient.

ICL - Compressibility option for the lift coefficient = 0 - no compressibility correction
= 1 - Glauert compressibility correction
ICP - Compressibility option for the pressure coefficient
= 0 - no compressibility correction
=1 - Glauert compressibility correction
= 2 - Karman-Tsien compressibility correction


Figure 4.4 Noise comparison for different compressibility correction options for pressure coefficient - no correction applied for lift coefficient.

ICL - Compressibility option for the lift coefficient
= 0 - no compressibility correction
\(=1\) - Glauert compressibility correction
ICP - Compressibility option for the pressure coefficient
= 0 - no compressibility correction
= 1 - Glauert compressibility correction
\(=2\) - Karman-Tsien compressibility correction


Figure 4.5 Noise comparison for different compressibility correction options for pressure coefficient.

ICL - Compressibility option for the lift coefficient
= 0 - no compressibility correction
= 1-Glauert compressibility correction
ICP - Compressibility option for the pressure coefficient
= 0 - no compressibility correction
= 1 - Glauert compressibility correction
=2 - Karman-Tsien compressibility correction


Figure 4.6 Noise comparison for different compressibility correction options of pressure coefficient - Glauert theory applied for lift coefficient.
\[
\begin{aligned}
& \text { ICL - Compressibility option for the lift coefficient } \\
&=0-\text { no compressibility correction } \\
&=1-\text { Glauert compressibility correction }
\end{aligned}
\]

ICP - Compressibility option for the pressure coefficient
=0 - no compressibility correction
=1 - Glauert compressibility correction
= 2 - Karman-Tsien compressibility correction


Figure 5.1 Function \(f(x)\) for the case where the root is found in two iterations.


Figure 5.2 Function \(f(x)\) for the case where the root is found in 11 iterations.
d


\footnotetext{

}


Figure 6.1 Microphone positions in 24-foot Wind Tunnel tests used for comparisons with the ANOPP predictions.


Figure 6.2 Comparison of prediction with data for the 24 -foot wind tunnel first test case (Dowty Rotol R212 propeller). ( see Fig. 6.1 for microphone position )


Figure 6.3 Comparison of prediction with data for the 24 -foot wind tunnel second test case (Dowty Rotol R212 propeller). ( see Fig 6.1 for microphone positions )


Figure 6.4 Comparison of prediction with data for the 24 -foot wind tunnel third test case (Dowty Rotol R212 propeller). ( see Fig. 6.1 for microphone position)


Figure 7.1 Microphone and nacelle positions in the DNW used for comparisons with the ANOPP predictions.


Figure 7.2 Comparison of prediction and data from \(90^{\circ}\) directivity angle microphone for the DNW tunnel test.


Figure 7.3 Comparison of prediction and data from \(90^{\circ}\) directivity angle microphone for the DNW tunnel test.


Figure 8.1 Comparison of prediction with data from \(60^{\circ}\) directivity angle microphone for the DNW tunnel test.


Figure 8.2 Comparison of prediction with data from \(60^{\circ}\) directivity angle microphone for the DNW tunnel test.


Figure 9.1 Noise comparison of the first harmonic for grid combinations.


Figure 9.2 Noise comparison of the second harmonic for grid combinations.


Figure 9.3 Noise comparison of the third harmonic for grid combinations.


Figure 10.1 Noise comparison of the first harmonic for grid combinations.


Figure 10.2 Noise comparison of the second harmonic for grid combinations.


Figure 10.3 Noise comparison of third harmonic for grid combinations.

Figure 11.1 Grid used for propeller noise predictions for the support of
the propeller noise interior program.






\footnotetext{
-uo!!o!paлd
}

Figure 13.3 Amplitude of the first harmonic of the SR-7 ANOPP prediction.

Figure 13.4 Amplitude of the first harmonic of the SR-7 ANOPP prediction.


Figure 15.1 Amplitude of the first harmonic of the ANOPP prediction for UDF.


\footnotetext{
Figure 15.2 Amplitude of the first harmonic of ANOPP prediction for the UDF.
}


Figure 16.1 Source-to-observer positions used for the PTA propfan prediction.

Figure 17.1 Predicted noise level of the PTA propfan.

Figure 17.2 Predicted noise level of the PTA propfan.

Figure 17.3 Predicted noise level of the PTA propfan.

\(\begin{array}{ll}\text { ALTITUDE }=35000 \mathrm{FT} \\ \text { MACH } & =0.7 \\ \mathrm{Cp} & =1.48\end{array}\)

Figure 17.5 Predicted noise level of the PTA propfan.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Report Documentation Page} \\
\hline \[
\begin{aligned}
& \text { 1. Report No. } \\
& \text { NASA CR-4394 }
\end{aligned}
\] & 2. Government Accession No. & 3. Recipient's Catalog No. \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
4. Title and Subtitle \\
The NASA Aircraft Noise Prediction Program Improved Propeller Analysis System
\end{tabular}} & 5. Report Date
September 1991
6. Performing Organization Code \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
7. Author(s) \\
L. Cathy Nguyen
\end{tabular}} & 8. Performing Organization Report No.
10. Work Unit No. \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
9. Performing Organization Name and Address \\
Lockheed Engineering \& Sciences Company 144 Research Drive Hampton, VA 23666
\end{tabular}} & \[
\begin{array}{|c|}
\hline \text { 532-06-37 } \\
\hline \text { 11. Contract or Grant No. } \\
\text { NAS 1-19000 }
\end{array}
\] \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
12. Sponsoring Agency Name and Address \\
National Aeronautics and Space Administration Langley Research Center \\
Hampton, VA 23665-5225
\end{tabular}} & \begin{tabular}{l}
13. Type of Report and Period Covered \\
Contractor Report \\
14. Sponsoring Agency Code
\end{tabular} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
15. Supplementary Notes \\
NASA Technical Monitor: Robert A. Golub, Langley Research Center
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
16. Abstract \\
This report describes the improvements and the modifications of the NASA Aircraft Noise Prediction Program (ANOPP) and the Propeller Analysis System (PAS). Comparisons of the predictions and the test data are included in the case studies for the flat plate model in the Boundary Layer Module, for the effects of applying compressibility corrections to the lift and pressure coefficients, for the use of different weight factors in the Propeller Performance Module, for the use of the improved retarded time equation solution, and for the effect of the number of grids in the Transonic Propeller Noise Module. The DNW tunnel test data of a propeller at different angles of attack and the Dowty Rotol data are compared with ANOPP predictions. The effect of the number of grids on the Transonic Propeller Noise Module predictions and the comparison of ANOPP TPN and DFP-ATP codes are studied. In addition to the above impact studies, the transonic propeller noise predictions for the \(S R-7\), the UDF front rotor, and the support of the enroute noise test program are included.
\end{tabular}} \\
\hline 17. Key Words (Suggested by Author(s)) Propeller noise prediction, Propeller analysis system, propeller noise prediction & \begin{tabular}{l|r} 
ANOPP, \\
ransonic
\end{tabular}\(\quad\)\begin{tabular}{r} 
18. Distributio \\
Uncla \\
Subje
\end{tabular} & \begin{tabular}{l}
d-Unlimited \\
egory: 71
\end{tabular} \\
\hline \begin{tabular}{l}
19. Security Classif. (of this report) \\
Unclassified
\end{tabular} & \begin{tabular}{l}
20. Security Classif. (of this page) \\
Unclassified
\end{tabular} & \begin{tabular}{c|r} 
21. No. of pages & 22. Price \\
104 & A06
\end{tabular} \\
\hline
\end{tabular}

NASA FORM 1626 OCT 86
For sale by the National Technical Information Service, Springfield, Virginia 22161-2171

```

