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In photosynthesis, the harvesting of solar energy and its sub-
sequent conversion into a stable charge separation are dependent
upon an interconnected macromolecular network of membrane-
associated chlorophyll–protein complexes. Although the detailed
structure of each complex has been determined1–4, the size and
organization of this network are unknown. Here we show the
use of atomic force microscopy to directly reveal a native
bacterial photosynthetic membrane. This first view of any
multi-component membrane shows the relative positions and
associations of the photosynthetic complexes and reveals cru-
cial new features of the organization of the network: we found
that the membrane is divided into specialized domains each
with a different network organization and in which one type of
complex predominates. Two types of organization were found
for the peripheral light-harvesting LH2 complex. In the first,
groups of 10–20 molecules of LH2 form light-capture domains
that interconnect linear arrays of dimers of core reaction centre
(RC)–light-harvesting 1 (RC–LH1–PufX) complexes; in the
second they were found outside these arrays in larger clusters.
The LH1 complex is ideally positioned to function as an energy
collection hub, temporarily storing it before transfer to the RC
where photochemistry occurs: the elegant economy of the
photosynthetic membrane is demonstrated by the close pack-
ing of these linear arrays, which are often only separated by
narrow ‘energy conduits’ of LH2 just two or three complexes
wide.

Photosynthetic purple bacteria can contain two types of complex,
RC–LH1 and LH2, with both light-harvesting complexes compris-
ing roughly circularly arranged a-helices with bound carotenoid
and bacteriochlorophyll (Bchl) pigments3–6. To investigate the
functionally crucial organization of these complexes, native
photosynthetic membranes from the wild-type purple bacterium
Rhodobacter sphaeroides were imaged by atomic force microscopy
(AFM), a technique that allows the topography of biological
samples to be acquired in buffer solution at room temperature
and under normal pressure. Figure 1a shows a cluster of several
membrane patches, each of a size approximating to the surface area
of an intracytoplasmic membrane vesicle (chromatophore). The
bright areas represent photosynthetic complexes; even at this low
magnification this remarkable view of native photosynthetic mem-
branes shows that they are composed, at least in part, of linear arrays
of dimeric complexes. This arrangement was mirrored in all the
membrane patches we examined, and a gallery of additional images
is shown in Supplementary Fig. S1.

Figure 1b clearly shows how the light-harvesting and photo-
chemical functions of a membrane are apportioned, and reveals
the arrangement of photosynthetic complexes. Two types can
be seen: large circular complexes with a bright and therefore
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protruding central protein, and smaller rings with no central
density and a diameter of about 7 nm. The antenna complexes
were identified by comparison with AFM data compiled on
purified LH2, LH1 and RC–LH1 complexes7–9 and the three-
dimensional structures for the LH2 and LH1–RC–PufX com-
plexes1–4. The larger features are RC–LH1–PufX complexes, each
about 12 nm in diameter and comprising an LH1 ring surround-
ing a central bright region representing a RC complex. These RC–
LH1–PufX complexes are usually dimeric, and the dimers are
arranged in rows such as those indicated (red arrows) in Fig. 1b.
Typically, rows of up to six dimers of RC–LH1–PufX complexes
are found, forming a domain of 240–360 Bchl molecules. This is
in close agreement with singlet–singlet annihilation experiments
on a mutant containing only the RC–LH1–PufX complex that
established domain sizes of 330 or more LH1 Bchl molecules at
room temperature10.

Rather than being interspersed randomly throughout the mem-
brane, many of the LH2 complexes are clustered in regions between
the rows of RC–LH1–PufX dimers, as outlined in Fig. 1c. Typically
these regions consist of 10–20 LH2 complexes representing 270–540
Bchl molecules; the same order of magnitude of connected
Bchl molecules (365 or more) was deduced from singlet–singlet
annihilation measurements of mutant LH2-only R. sphaeroides
membranes10. We suggest that the LH2 complexes situated
between rows of RC–LH1–PufX dimers form a relatively invariant
complement of light-harvesting antenna, and that the arrangement
of complexes depicted in Fig. 1c represents the basic requirement for
the efficient harvesting, transmission and trapping of light energy in
this bacterium. However by itself this would not account for all the
LH2 present; a comparison of the starting absorbance spectrum
with one estimated from the number of LH2 and LH1 rings in Figs 1
and 2 indicates that up to 50% of the expected LH2 has not been
accounted for in such images. The circled region in Fig. 2a shows
that there are other regions consisting largely of LH2 that are
not ‘sandwiched’ between rows of RC–LH1–PufX complexes.
Individual LH2 rings can be discerned within the higher-
magnification image in Fig. 2b, such as the one indicated with an

arrow. These LH2-enriched domains could represent the variable
antenna, known for many years to form in response to a lowered
light intensity11. In addition to making contact with each other,
some of the LH2 rings are in close physical association with the
RC–LH1–PufX complexes (see upper green arrow in Fig. 1b),
facilitating the transfer of excitation energy from LH2 to LH1 and
thence to the RC. Even at this intermediate level of detail, the
physical and organizational basis for harvesting, transferring and
using light energy is clearly evident.
A model of the bacterial photosynthetic membrane has been

formulated in Fig. 1c (inset) by arranging the structural information
available for the individual photosynthetic components2–4 in a
manner consistent with the AFM data. These direct images of an
intact photosynthetic membrane resemble one of the models
proposed in 1976 (ref. 12) on the basis of fluorescence-quenching
experiments conducted on R. sphaeroides membranes. From a
quantitative point of view the model in Fig. 1c explains why
fluorescence-quenching studies of R. sphaeroides membranes con-
cluded that there were up to 3,000 light-harvesting Bchl molecules
connected for energy transfer13. This work also estimated that a
single photosynthetic membrane vesicle would contain 30 RCs, in
rough agreement with the number observed in the membrane
patches in Figs 1 and 2. The AFM data suggest that 100 or more
LH2 molecules would form the dominant antenna within such a
vesicle, partitioned between the linear rows of RC–LH1–PufX
dimers (Fig. 1c) and the LH2-enriched areas in Fig. 2b. There
is extensive physical continuity between individual LH2
complexes (27 Bchl molecules for each ring) and between LH2
and RC–LH1–PufX dimers (60 LH1 Bchl molecules per dimer).
Thus, the LH2 rings seem to cooperate to form an extended array
for collecting photons, and, once transferred ‘downhill’ to a
RC–LH1–PufX dimer, the excited state can hop the relatively
large distance of about 3.5 nm from LH1 Bchl molecules to the
special pair of Bchl molecules within the RC14, thereby eliciting
conversion to photochemical energy15. It is possible that the linear
arrays of RC–LH1–PufX complexes cooperate in the overall process
of energy trapping, because if any particular RC is already under-

Figure 1 AFM of native photosynthetic membranes. a, Large-scale view of several

membrane fragments. b, Higher-magnification view showing a region of dimeric

RC–LH1–PufX core complex arrays (red arrows) and associated LH2 complexes (green

arrows). c, Three-dimensional view of core complex arrays surrounded by LH2

complexes. The inset at the bottom is a representation of the region denoted by the

dashed box in the centre, using model structures derived from atomic resolution data2–4. A

typical RC–LH1–PufX dimer is delineated in both images by a red outline and a

representative LH2 complex by a green circle. Scale bar, 100 nm in all panels. For all

images the z range is 6 nm (from darkest to lightest).
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taking photochemical charge separation and is thus unavailable for
receiving excitation energy from its LH1 ring (in a ‘closed’ state), the
LH1 excitation can migrate along a succession of such dimers until
an ‘open’ RC is reached. This arrangement of RC–LH1–PufX dimers
might also provide a structure with the largest number of effective
connections between LH1 rings. In addition, it becomes clear why
mutants lacking LH2 form tubular membranes containing linear
rows of dimers aligned in parallel9,16; this is a natural consequence
of removing the LH2 complexes that normally separate rows of
RC–LH1–PufX dimers.
The AFM was used to examine a small area of membrane

containing only a few photosynthetic complexes; for clarity the
data are represented in three dimensions (Fig. 3). The rows of
dimeric RC–LH1–PufX complexes, which are the most prominent

features in low-magnification topographs of photosynthetic mem-
branes (Fig. 1a, b), can now be seen in greater detail. Each dimer in
Fig. 3 is about 23 nm across, corresponding to the RC–LH1–PufX
dimer complexes about 20 nm in width previously revealed by
negative-stain electron microscopy9. The central protruding feature
is about 4 nm above the lipid bilayer, which corresponds to the H
subunit of the RC8. It is therefore the cytoplasmic face of the
membrane that lies uppermost and the periplasmic face that has
adhered to the mica substrate. Inspection of the RC–LH1–PufX
dimers shows that in some cases the bright central density is
missing. This has been seen before in AFM images of bacterial
RCs, and it arises when the AFM tip dislodges an extrinsic subunit,
revealing the underlying L and M subunits8,17. As seen in Fig. 1,
some of the LH2 complexes make contact with RC–LH1–PufX
complexes, at points indicated by the arrows in Fig. 3, fulfilling their
role not only as gatherers of relatively high-energy excitations but
also as energy conduits to the lower-energy LH1 complex surround-
ing the RC. Although LH2 complexes associate mainly with other
LH2 complexes, some can be found singly, for example sandwiched
between two RC–LH1–PufX complexes (Fig. 3, circle). At the
contact points between LH2 and RC–LH1–PufX complexes, the
distance between the B850 Bchlmolecules of LH2 and the B875 Bchl
molecules of LH1 was calculated to be between 2.7 and 3.2 nm on
the basis of the energy transfer time constant, which is 3 ps (ref. 18).
Remarkably, the subunit structure of both LH2 and LH1 light-
harvesting rings emerges, even in the native membrane environ-
ment. The LH2 rings such as those marked by asterisks in Fig. 3
seem to be composed of nine units in vivo, which is consistent with
previous structural data3,5.

Figure 2 Membrane patches showing two types of arrangement of photosynthetic

complexes. a, The circled region is composed mainly of LH2 complexes. b, Higher-

magnification image of the samemembrane patch in which an arrow points to an LH2 ring

within the LH2-only domain. This higher-resolution scan clearly shows that there are no

core complexes in these regions. Scale bar, 50 nm (a); 25 nm (b).

Figure 3 Three-dimensional representation of a small region of membrane showing

RC–LH1–PufX core complex dimers and monomers with associated LH2 complexes.

Contact points for energy transfer between LH2 and RC–LH1–PufX complexes are

indicated by green arrows. LH2 rings marked by asterisks are composed of nine units. The

LH2 complex in the green circle is sandwiched between two RC–LH1–PufX complexes.

The average tilt of seven LH1 complexes is 4.88; the average height of LH1 above the lipid

membrane is 1.4 ^ 0.3 nm (mean ^ s.d.). The maximum subunit height is

1.8 ^ 0.3 nm (n ¼ 7) and the minimum subunit height is 1.1 ^ 0.1 nm (n ¼ 7). The

average tilt of three LH2 complexes is 3.88. For LH2 the average height of LH2 rings above

the lipid membrane is 1.5 ^ 0.2 nm (n ¼ 11). For three tilted rings the maximum subunit

height is 1.7 ^ 0.1 nm and the minimum subunit height is 1.2 ^ 0.1 nm. The average

height of the reaction centre H subunit above the lipid membrane is 3.7 ^ 0.3 nm

(n ¼ 9). Scale bar, 10 nm.
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We also investigated the disposition of individual photosynthetic
complexes with respect to the nativemembrane bilayer, information
that has escaped the attention of crystallographic methods. Some,
but not all, LH2 complexes seem to be slightly tilted in the native
membrane, estimated to be between 38 and 48 from the vertical. This
tilting is a surprise, notwithstanding the fact that LH2 is tilted in
two-dimensional crystals reconstituted from detergent-purified
LH2 complexes5,19. This phenomenon is not confined to the LH2
complex; close inspection of seven LH1 rings within a series of
native RC–LH1–PufX dimers reveals an average 4.88 tilt of each LH1
ring towards the monomer–monomer interface. We cannot deter-
mine whether the enclosed RC is also tilted, although we note that
purified, detergent-solubilized RCs crystallized in a cubic lipidic
phase lie 118 from the vertical20. This small degree of tilt in each
RC–LH1–PufX complex obscures the central part of each dimer
from analysis, preventing the identification of the PufX polypeptide,
which is thought to be somewhere in this region9,21. It is not clear
whether the tilting of LH2 and RC–LH1–PufX complexes has
any functional significance, but the mutual inward tilt of the
RC–LH1–PufX complexes indicates that it might be a consequence
of the dimerization process. The tilting of these photosynthetic
complexes might be accompanied by a slight degree of buckling of
the lipid bilayer in the immediate vicinity of the complex and could
arise as a consequence of applying the sample to the mica surface,
which imposes a flattened profile on a piece of membrane that was
originally curved. This could be exacerbated in LH2-rich regions,
which are expected to be particularly curved22. An interaction with
the mica surface could also account for the very low lateral mobility
of the photosynthetic complexes in the membrane patches that we
observed. This point is illustrated by Supplementary Fig. S2, which
displays four of a sequence of ten consecutive images obtained from
the same membrane patch. The reproducibility of the data is
remarkable, even on the scale of a single LH2 complex. A similar
lack of lateral mobility was noted previously23 in a study of the
bacterial ATP synthase in a reconstituted lipid bilayer; there was
remarkably low diffusion in comparison with eukaryotic mem-
branes. In the same study, those molecules that formed close
associations with others did not tend to move and some of the
isolated mobile molecules ceasedmoving when they associated with
larger groups. We suggest that the close packing of many of the
light-harvesting complexes probably prevents the lateral diffusion
of individual components.

This study has directly revealed the organization of bacterial
photosynthetic membranes. Further questions can now be
addressed: for example, how does the increased level of LH2 in
low-light-grown cells affect this architecture? Where is the other
component of the cyclic electron transfer chain, the cytochrome bc1
complex, located in the cell? Where is the ATP synthase? How is this
simple yet effective photosynthetic membrane assembled? Further
work will be necessary to answer these questions. Only small
amounts of the cytochrome bc1 complex were detected by western
blot analysis of the membrane patches (results not shown), and
there could be a potential problem in detecting cytochrome bc1
complexes by AFM, because the very recently determined structure
of this complex from the photosynthetic bacterium Rhodobacter
capsulatus reveals relatively little surface topology on the cyto-
plasmic side of the membrane24. In the case of the ATP synthase it
has been reported that intracytoplasmic membrane vesicles of
R. capsulatus contain on average only one FoF1-ATP synthase.
Indeed, 37% of the chromatophore vesicles had no ATP synthase
at all25.

In view of the highly organized arrangements of photosynthetic
complexes seen in recent electron microscopic investigations of
bacterial and plantmembranes9,26, inwhich crystallographic order is
demonstrated, our results present a slightly more chaotic landscape.
A high degree of order is clearly not essential for transmitting
excitation energy; the bacterial photosynthetic membrane fulfils the

basic requirements of being physically extensive to maximize the
likelihood of harvesting photons, while fostering multiple contacts
between its light-harvesting components so that energy can migrate
between complexes. In the context of its energy transfer function
this is a very robust architecture, because associations between
light-harvesting rings place few demands on the contact sites as
long as the distances between rings are minimized. Thus, the two-
dimensional organization we have revealed here by AFMwill always
present multiple possibilities and pathways for the fast and efficient
transfer and trapping of energy. A

Methods

Bacterial growth

Cells of R. sphaeroides NCIB 8253 were grown photosynthetically at moderate light
intensity (500Wm22 for 18–20 h) and then switched to high light intensity (825Wm22)
for 4 h. Intracytoplasmic membrane vesicles with an LH1/LH2 molar ratio of 0.78 were
isolated by rate-zonal sucrose density gradient centrifugation27. Membranes were pelleted
by ultracentrifugation at 100,000g for 4 h and resuspended with gentle homogenization in
50mMHEPES buffer at pH 8 containing 0.03% b-dodecyl maltoside (buffer A) to 16 A875

units cm21ml21. A 250-ml portion of this sample was loaded on a 20/25/30/35/40/50%
w/w sucrose-density step gradient in buffer A and centrifuged for 20 h at 200,000g with a
Beckman SW41 rotor. The fraction containing large membrane fragments was harvested
from the 40/50% interface with a blunted hypodermic syringe and frozen at220 8C, with
45% sucrose as cryoprotectant, until required for AFM.

Atomic force microscopy

The sample solution was adsorbed on the surface of freshly cleaved mica (Ted Pella,
Redding, California, USA). A small drop of adsorption buffer (10mM Tris-HCl pH
7.5, 150mM KCl, 25mM MgCl2) was applied to the mica surface to ensure a firm
attachment of the membranes, then 1 ml of the sample was injected into the thin film of
adsorption buffer and left for 1–1.5 h. The sample was then gently washed with the
recording buffer (10mM Tris-HCl pH 7.5, 150mM KCl) and placed on the AFM stage,
where 100ml of recording buffer was added to the liquid cell. A home-built AFM was
used28. Standard Si3N4 cantilevers (ThermoMicroscopes, Sunnyvale, California, USA)
had a spring constant of 0.5Nm21 and operating frequencies of 25–35 kHz in liquid.
AFM topographs were obtained with the use of tapping mode in liquid. The images
with the highest resolution were achieved when the free tapping amplitude was 1–2 nm
and the amplitude setpoint was adjusted to minimal forces, resulting in the damping of
the free amplitude by only 5–10%. Images contained 256 £ 256 pixels and were
recorded at a typical line frequency of 5–7Hz. Quantitative analysis of the AFM
topographs and three-dimensional representation of the surface structures were
performed with Scanning Probe Image Processor (Image Metrology ApS, Lyngby,
Denmark).
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corrigendum

Germline stem cells and follicular

renewal in the postnatal

mammalian ovary
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In this Article, we estimated that germline stem cells generate
approximately 77 new primordial oocytes per day in ovaries of
postnatal female mice. It has since been drawn to our attention by
Ton Schumacher that a line of reasoning used in our study to verify
this value is circular. However, the initial value for daily oocyte
renewal obtained frommathematical modelling is not derived from
a circular argument. Accordingly, this oversight does not alter any of
the data or the conclusions in our paper. A
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