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THE NATURAL APPROACH OF

WILKER–CUSA–HUYGENS INEQUALITIES

CRISTINEL MORTICI

Abstract. The aim of this paper is to provide a natural approach of Wilker-Cusa-Huygens in-
equalities. This new approach permits us to give new proofs then to refine much these inequali-
ties and we are convinced that it is suitable to establish many other similar inequalities. To attain
these purposes, computer softwares such as Maple are of great importance throughout this work.
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1. Introduction

The starting point of this paper is the following double inequality

(cosx)1/3 <
sinx
x

<
2+ cosx

3

(
0 < x <

π
2

)
, (1.1)

which has attracted the attention of many authors in the recent past.
The left-hand side inequality (1.1) first appeared in [4, p. 238], while the right-

hand side inequality (1.1) was first mentioned by the German philosopher and theolo-
gian Nicolaus de Cusa (1401-1464). A rigorous proof of Cusa’s inequality was given
by Huygens [3], who used (1.1) to estimate the number π . Further interesting historical
facts about the inequalities (1.1) can be found in [7].

Cusa proved (1.1) by using certain geometrical constructions, but in modern times,
such inequalities were proved using the variation of some functions and their deriva-
tives.

We give in this paper a new method for proving trigonometric inequalities of type
(1.1), using the expansions

sinx =
∞

∑
k=0

(−1)k

(2k+1)!
x2k+1 , cosx =

∞

∑
k=0

(−1)k

(2k)!
x2k.

More precisely, we use the following inequalities for x ∈ (0,π/2) and non-negative
integers m and n,

a(x,2n+1) < sinx < a(x,2n) (1.2)

b(x,2m+1) < cosx < b(x,2m) , (1.3)
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which are a direct consequence of the classical Taylor’s theorem, where

a(x, p) =
p

∑
k=0

(−1)k

(2k+1)!
x2k+1 , b(x,q) =

q

∑
k=0

(−1)k

(2k)!
x2k.

The first inequality (1.1) is equivalent to

cosx−
(

sinx
x

)3

< 0,

but we improve it by giving the following accurate estimates

− x4

15
< cosx−

(
sinx
x

)3

< − x4

15
+

23x6

1890

(
0 < x <

π
2

)
,

then we refine the second inequality (1.1) to

− 1
180

x4 <
sinx
x

− cosx+2
3

< − 1
180

x4 +
1

3780
x6

(
0 < x <

π
2

)
.

The following nice inequality due to Huygens [3]

2
sinx
x

+
tanx

x
> 3

(
0 < x <

π
2

)
(1.4)

is a consequence of (1.1), see [1]. We show in the next section the inequality

3+
(

3x4

20
− 3x6

140

)
1

cosx
< 2

sinx
x

+
tanx

x
< 3+

3x4

20cosx

(
0 < x <

π
2

)
,

which improves much (1.4).
The following inequality

(
sinx
x

)2

+
tanx

x
> 2

(
0 < x <

π
2

)
(1.5)

due to Wilker [9] was intensively studied by many authors, e.g. [2], [6], [8], [10]-[13].
Related to (1.5), we prove that

2+
(

8x4

45
− 4x6

105

)
1

cosx
<

(
sinx
x

)2

+
tanx

x
< 2+

8x4

45cosx

(
0 < x <

π
2

)
.

Wu and Srivastava [10, Lemma 3] proved the following dual inequality

( x
sinx

)2
+

x
tanx

> 2
(
0 < x <

π
2

)
,

but we show in this paper the following refinement

( x
sinx

)2
+

x
tanx

> 2+
2
45

x4
(
0 < x <

π
2

)
.
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Then we refine a result of Neuman and Sandor [5, Theorem 2.3] who showed

3
x

sinx
+ cosx > 4

(
0 < x <

π
2

)
,

establishing that

3
x

sinx
+ cosx > 4+

1
10

x4 +
1

210
x6

(
0 < x <

π
2

)
.

2. The results

In this section we prove the announced inequalities, using as main tool the esti-
mates (1.2)-(1.3).

THEOREM 1. For every 0 < x < π/2, we have

− x4

15
< cosx−

(
sinx
x

)3

< − x4

15
+

23x6

1890
.

Proof. By (1.2)-(1.3) inequalities, we get

cosx−
(

sinx
x

)3

+
x4

15
> b(x,3)−

(
a(x,2)

x

)3

+
x4

15
=

x6P
(
x2

)
1728000

> 0,

where P(t) = 20000− 1560t + 60t2 − t3. The positivity of P on
(
0,π2/4

)
follows

from the fact that P is strictly decreasing, with P
(
π2/4

)
> 0. Then

cosx−
(

sinx
x

)3

+
x4

15
− 23x6

1890
< b(x,4)−

(
a(x,3)

x

)3

+
x4

15
− 23

1890
x6

= − x8Q
(
x2

)
128024064000

< 0,

where Q(t) = 137803680−7832160t+300888t2−7812t3 +126t4− t5. We have

Q′ (t) = 601776t−23436t2 +504t3−5t4−7832160

and Q′ (3−w)=−474228w−19170w2−444w3−5w4−6224553. As a consequence,
Q(t)> 0, for every t ∈ (

0,π2/4
)
, since Q is strictly decreasing on [0,3] , with Q

(
π2/4

)
> 0. �

THEOREM 2. For every 0 < x < π/2, we have

− 1
180

x4 <
sinx
x

− cosx+2
3

< − 1
180

x4 +
1

3780
x6.
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Proof. By (1.2)-(1.3) inequalities, we get

sinx
x

− cosx+2
3

+
1

180
x4 >

a(x,3)
x

− b(x,4)+2
3

+
1

180
x4 =

x6
(
32− x2

)
120960

> 0.

Then

sinx
x

− cosx+2
3

+
1

180
x4 − 1

3780
x6 <

a(x,4)
x

− b(x,5)+2
3

+
1

180
x4− 1

3780
x6

= −x8
(
60− x2

)
10886400

< 0. �

THEOREM 3. For every 0 < x < π/2, we have

3+
(

3x4

20
− 3x6

140

)
1

cosx
< 2

sinx
x

+
tanx

x
< 3+

3x4

20cosx
.

Proof. By multiplying by cosx, we obtain the equivalent form

3cosx+
3x4

20
− 3x6

140
<

sin2x
x

+
sinx
x

< 3cosx+
3x4

20
.

By (1.2)-(1.3) inequalities, we get

sin2x
x

+
sinx
x

−3cosx− 3x4

20
+

3x6

140
>

a(2x,5)
x

+
a(x,5)

x
−3b(x,4)− 3x4

20
+

3x6

140

=
x8

(
17820−683x2

)
13305600

> 0.

Then

sin2x
x

+
sinx
x

−3cosx− 3x4

20
<

a(2x,4)
x

+
a(x,2)

x
−3b(x,3)− 3x4

20

= −x6
(
963−64x2

)
45360

< 0. �

THEOREM 4. For every 0 < x < π/2, we have

2+
(

8x4

45
− 4x6

105

)
1

cosx
<

(
sinx
x

)2

+
tanx

x
< 2+

8x4

45cosx
.

Proof. By multiplying by cosx, we obtain the equivalent form

2cosx+
8x4

45
− 4x6

105
<

(
sinx
x

)2

cosx+
sinx
x

< 2cosx+
8x4

45
.
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By (1.2)-(1.3) inequalities, we get

(
sinx
x

)2

cosx+
sinx
x

−2cosx− 8x4

45

<

(
a(x,2)

x

)2

b(x,2)+
a(x,2)

x
−2b(x,3)− 8x4

45

= −x6R
(
x2

)
345600

< 0,

where R(t) = 12480−1144t+52t2− t3. We have R(t) > 0, for every t ∈ (
0,π2/4

)
,

since R is strictly decreasing with R
(
π2/4

)
> 0.

Then

(
sinx
x

)2

cosx+
sinx
x

−2cosx− 8x4

45
+

4x6

105

>

(
a(x,3)

x

)2

b(x,3)+
a(x,3)

x
−2b(x,4)−

(
8x4

45
− 4x6

105

)

=
x8S

(
x2

)
18289152000

> 0,

where S (t) = 72938880− 4848480t+ 214920t2− 6324t3 + 114t4− t5 is strictly de-
creasing on

(
0,π2/4

)
, with S

(
π2/4

)
> 0. �

THEOREM 5. For every 0 < x < π/2, we have

( x
sinx

)2
+

x
tanx

> 2+
2
45

x4.

Proof. By (1.2)-(1.3) inequalities, we get

( x
sinx

)2
+

xcosx
sinx

−
(

2+
2
45

x4
)

>

(
x

a(x,2)

)2

+
xb(x,3)
a(x,2)

−
(

2+
2
45

x4
)

=
Z

(
x2

)
90(x4 −20x2 +120)2

> 0,

where Z (t) = 10200− 1990t + 145t2− 4t3 is strictly positive on
(
0,π2/4

)
, since Z

is strictly decreasing with Z
(
π2/4

)
> 0. �

THEOREM 6. For every 0 < x < π/2, we have

3
x

sinx
+ cosx > 4+

1
10

x4 +
1

210
x6.
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Proof. By (1.2)-(1.3) inequalities, we get

3
x

sinx
+ cosx−

(
4+

1
10

x4 +
1

210
x6

)
> 3

x
a(x,4)

+b(x,5)−
(

4+
1
10

x4 +
1

210
x6

)

=
x8V

(
x2

)
3628800U (x2)

> 0,

where
U (t) = 3024t2−60480t−72t3 + t4 +362880

and

V (t) = 1728000t2−59875200t−31824t3 +162t4− t5 +862202880.

Finally remark that U (t) > 0 and V (t) > 0, for every t � 3, since the polynomials
U (3−w) and V (3−w) have all coefficients positive. �

We are convinced that our new approach is suitable for proving and establishing
many other inequalities also involving hyperbolic functions. As an example, we men-
tion the following result [5, Corollary 2.3]

2
sinhx

x
+

tanhx
x

> 3 (x > 0) .

Remark that this inequality can be improved to

2
sinhx

x
+

tanhx
x

> 3+
3
20

x4− 3
56

x6 (x > 0) ,

using the following estimates

sinhx > x+
1
6
x3 +

1
120

x5 +
1

5040
x7, tanhx > x− 1

3
x3 +

2
15

x5 − 17
315

x7.

arising from the corresponding expansions in power series of x.
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