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Abstract: In this paper, we obtain some new natural approaches of Shafer-Fink inequality for arc sine
function and the square of arc sine function by using the power series expansions of certain functions,
which generalize and strengthen those in the existing literature.
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1. Introduction

Fink [1] (or see [2]) shown a upper bound for inverse sine function, and obtained the
following result, which is called Shafer-Fink inequality:

3x
2 +
√

1− x2
≤ arcsin x ≤ πx

2 +
√

1− x2
, 0 ≤ x ≤ 1. (1)

Some new proof and various improvements of Shafer-Fink inequality can be found
in [3–13]. In [14], Bercu obtained the generalizations and refinements of Shafer-Fink
inequality as follows.

Proposition 1 ([14] Theorem 1). For every real number 0 ≤ x ≤ 1, the following two-sided
inequality holds:

x5

180
+

x7

189
≤ arcsin x− 3x

2 +
√

1− x2
≤ π − 3

2
. (2)

Proposition 2 ([14] Theorem 2). For every 0 ≤ x ≤ 1, we have:

x5/60 + 11x7/840

2 +
√

1− x2
≤ arcsin x− 3x

2 +
√

1− x2
. (3)

Maleševic, Rašajski and Lutovac [15] gave a lower bound for the function arcsin x
as follows.

Proposition 3 ([15] Theorem 2). If m ∈ N and m ≥ 2, then

3x + ∑m
n=2 E(n)x2n+1

2 +
√

1− x2
≤ arcsin x (4)

for every x ∈ [0, 1], where

E(n) =
n(2n− 1)!

(2n + 1)22n−2(n!)2 −
2n · 22n−2((n− 1)!)2

(2n + 1)!
, n ∈ N, n ≥ 2. (5)

At this point, it is necessary for us to recall the results of Zhu [7] :

Proposition 4 ([7] Theorem 6). Let 0 < x < 1. Then,

Mathematics 2022, 10, 647. https://doi.org/10.3390/math10040647 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10040647
https://doi.org/10.3390/math10040647
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math10040647
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10040647?type=check_update&version=2


Mathematics 2022, 10, 647 2 of 8

(1) when p ≥ 1 or p < 0, the double inequality

3xp

2 +
(√

1− x2
)p ≤ (arcsin x)p ≤ (πx)p

2p + (πp − 2p)
(√

1− x2
)p (6)

holds;
(2) when 0 ≤ p ≤ 4/5, the double inequality (6) is reversed.

Inspired by the above approximation inequalities, we consider the asymptotic ex-
pansions of the functions

(
2 +
√

1− x2
)

arcsin x and
(
3− x2)(arcsin x)2 to establish some

new bilateral approximation of Shafer-Fink inequality, and give some deeper conclusions
drawn for arcsin x and (arcsin x)2.

Theorem 1. Let |x| ≤ 1, {an}n≥0 be defined by

a0 = 3; an =

[
(2n− 1)!!

2n−1n!
− 2n−1n!

n(2n− 1)!!

]
1

2n + 1
, n ≥ 1, (7)

m ∈ N, m ≥ 2, αm = am and βm = π −∑m−1
n=0 an. Then,

(i) when 0 ≤ x ≤ 1, the double inequality

∑m−1
n=0 anx2n+1 + αmx2m+1

2 +
√

1− x2
≤ arcsin x ≤ ∑m−1

n=0 anx2n+1 + βmx2m+1

2 +
√

1− x2
(8)

holds with the best constants αm and βm;
(ii) when −1 ≤ x ≤ 0, the double inequality

∑m−1
n=0 anx2n+1 + βmx2m+1

2 +
√

1− x2
≤ arcsin x ≤ ∑m−1

n=0 anx2n+1 + αmx2m+1

2 +
√

1− x2
(9)

holds with the best constants βm and αm.

Theorem 2. Let |x| ≤ 1, {bn}n≥1 be defined by

b1 = 3; bn =
(n− 2)(4n− 3)(n− 2)!2n−2

n(n− 1)(2n− 1)!!
≥ 0, n ≥ 2, (10)

m ∈ N, m ≥ 3, λm = bm and µm = π2/2−∑m−1
n=0 bn. Then, the double inequality

∑m−1
n=1 bnx2n + λmx2m

3− x2 ≤ (arcsin x)2 ≤ ∑m−1
n=1 bnx2n + µmx2m

3− x2 (11)

holds with the best constants λm and µm.

2. Lemmas

This article needs the following two lemmas.

Lemma 1 ([16–20]). For |x| < 1,

arcsin x√
1− x2

=
∞

∑
n=1

(2x)2n−1

n(2n
n )

. (12)

Integrating the functions on both sides of the inequality (12) from 0 to x, we have
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Lemma 2 ([18,20]). For |x| < 1,

(arcsin x)2 =
1
2

∞

∑
n=1

(2x)2n

n2(2n
n )

. (13)

3. Proof of Theorem 1

Since (8) and (9) hold for x = 0, we assume that 0 < |x| ≤ 1 to discuss problems
below. Let

f (x) =
(

2 +
√

1− x2
)

arcsin x. (14)

Then, when 0 < |x| < 1, by Lemma 1 we have

f ′(x) =
2√

1− x2
+ 1− x

arcsin x√
1− x2

= 2

[
1 +

∞

∑
n=1

(2n− 1)!!
2nn!

x2n

]
+ 1− 1

2

∞

∑
n=1

(2x)2n

n(2n
n )

= 3 +
∞

∑
n=1

[
2(2n− 1)!!

2nn!
− 22n−1

n(2n
n )

]
x2n. (15)

Integrating (15) from 0 to x, we have

f (x) =
∫ x

0
f ′(t)dt = 3x +

∞

∑
n=1

[
2(2n− 1)!!

2nn!
− 22n−1

n(2n
n )

]
1

2n + 1
x2n+1 (16)

= 3x +
∞

∑
n=1

[
2(2n− 1)!!

2nn!
− 22n−1

n 2n(2n−1)!!
n!

]
1

2n + 1
x2n+1

= 3x +
∞

∑
n=1

[
(2n− 1)!!

2n−1n!
− 2n−1n!

n(2n− 1)!!

]
1

2n + 1
x2n+1

: =
∞

∑
n=0

anx2n+1,

where an is defined by (7). Clearly, it is easy to prove an ≥ 0 for n ≥ 1, among them, a1 = 0.
Now, we go into the following even function

F(x) =

(
2 +
√

1− x2
)

arcsin x−∑m−1
n=0 anx2n+1

x2m+1

=
f (x)−∑m−1

n=0 anx2n+1

x2m+1 =
∑∞

n=m anx2n+1

x2m+1

=
∞

∑
n=m

anx2(n−m) = am +
∞

∑
n=m+1

anx2(n−m),

which is decreasing on [−1, 0) and increasing on (0, 1]. Since

F(0±) = am := αm, F(±1) = π −
m−1

∑
n=0

an := βm,

we have

am <

(
2 +
√

1− x2
)

arcsin x−∑m−1
n=0 anx2n+1

x2m+1 < π −
m−1

∑
n=0

an, 0 < |x| ≤ 1,
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or

amx2m+1 <
(

2 +
√

1− x2
)

arcsin x−
m−1

∑
n=0

anx2n+1 <

(
π −

m−1

∑
n=0

an

)
x2m+1, 0 < x ≤ 1,

(
π −

m−1

∑
n=0

an

)
x2m+1 <

(
2 +

√
1− x2

)
arcsin x−

m−1

∑
n=0

anx2n+1 < amx2m+1, − 1 ≤ x < 0.

So the proof of Theorem 1 is complete.

4. Proof of Theorem 2

Let
g(x) =

(
3− x2

)
(arcsin x)2. (17)

Then, by Lemma 2 and (17),

g(x) =
(

3− x2
)
(arcsin x)2 =

(
3− x2

)1
2

∞

∑
n=1

(2x)2n

n2 2n(2n−1)!!
n!

=
(

3− x2
) ∞

∑
n=1

2n−1(n− 1)!
n(2n− 1)!!

x2n

= 3x2 +
∞

∑
n=2

(n− 2)(4n− 3)(n− 2)!2n−2

n(n− 1)(2n− 1)!!
x2n

= 3x2 +
∞

∑
n=3

(n− 2)(4n− 3)(n− 2)!2n−2

n(n− 1)(2n− 1)!!
x2n

: =
∞

∑
n=1

bnx2n,

where

b1 = 3; bn =
(n− 2)(4n− 3)(n− 2)!2n−2

n(n− 1)(2n− 1)!!
≥ 0, n ≥ 2,

among them, b2 = 0.
Let

G(x) =
(
3− x2)(arcsin x)2 −∑m−1

n=1 bnx2n

x2m =
g(x)−∑m−1

n=1 bnx2n

x2m .

Then,

G(x) = ∑∞
n=m bnx2n

x2m =
∞

∑
n=m

bnx2(n−m),

which is increasing on (0, 1].
Since

G(0+) = bm := λm,

and

G(1) = lim
x→1

(
3− x2)(arcsin x)2 −∑m−1

n=1 bnx2n

x2m

=
π2

2
−

m−1

∑
n=1

bn := µm,

we have

bm ≤
(
3− x2)(arcsin x)2 −∑m−1

n=1 bnx2n

x2m ≤ π2

2
−

m−1

∑
n=1

bn,



Mathematics 2022, 10, 647 5 of 8

or

bmx2m ≤
(

3− x2
)
(arcsin x)2 −

m−1

∑
n=1

bnx2n ≤
(

π2

2
−

m−1

∑
n=1

bn

)
x2m,

that is,

m

∑
n=1

bnx2n ≤
(

3− x2
)
(arcsin x)2 ≤

m−1

∑
n=1

bnx2n+1 +

(
π2

2
−

m−1

∑
n=1

bn

)
x2m,

which implies (11). The proof of Theorem 2 is complete.

5. Corollaries and Remarks

In this section, we draw some new conclusions from Theorems 1 and 2, and compare
the results of Theorem 1 with the ones in the literature on the same interval [0, 1].

Remark 1. The left-hand side inequality of (8) is just the inequality (4) due to an = E(n) for
n ≥ 0. Obviously, the expression of an in (7) is simpler than E(n) in (5). Most importantly,
the method of this paper is simple and direct, and the bilateral sharp inequality is obtained.

From Theorem 1, we can obtain the following results.

Corollary 1. Let 0 ≤ x ≤ 1,

A5(x) =
1
60

x5,

B5(x) = (π − 3)x5;

A7(x) =
1
60

x5 +
11

840
x7,

B7(x) =
1
60

x5 +

(
π − 181

60

)
x7;

A9(x) =
1
60

x5 +
11

840
x7 +

67
6720

x9,

B9(x) =
1
60

x5 +
11

840
x7 +

(
π − 509

168

)
x9;

A11(x) =
1
60

x5 +
11

840
x7 +

67
6720

x9 +
3461

443, 520
x11,

B11(x) =
1
60

x5 +
11

840
x7 +

67
6720

x9 +

(
π − 6809

2240

)
x11;

A13(x) =
1
60

x5 +
11

840
x7 +

67
6720

x9 +
3461

443, 520
x11 +

29, 011
4, 612, 608

x13,

B13(x) =
1
60

x5 +
11

840
x7 +

67
6720

x9 +
3461

443, 520
x11 +

(
π − 1, 351, 643

443, 520

)
x13;

A15(x) =
x5

60
+

11x7

840
+

67x9

6720
+

3461x11

443, 520
+

29, 011x13

4, 612, 608
+

239, 711x15

46, 126, 080
,

B15(x) =
x5

60
+

11x7

840
+

67x9

6720
+

3461x11

443, 520
+

29, 011x13

4, 612, 608
+

(
π − 70, 430, 491

23, 063, 040

)
x15.

Then,

A2m+1(x) ≤ arcsin x− 3x
2 +
√

1− x2
≤ B2m+1(x), m = 2, 7. (18)
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Corollary 2. Let 0 ≤ x ≤ 1, an defined by (7), f (x) showed in (14), and

S(x) = arcsin x− 3x
2 +
√

1− x2
=

f (x)− 3x
2 +
√

1− x2
,

A2m+1(x) =
m

∑
n=2

anx2n+1, B2m+1(x) =
m−1

∑
n=2

anx2n+1 + βmx2m+1, m ≥ 2.

Then, for 2 ≤ p < q,

A2p+1(x)

2 +
√

1− x2
≤

A2q+1(x)

2 +
√

1− x2
≤ S(x) ≤

B2q+1(x)

2 +
√

1− x2
≤

B2p+1(x)

2 +
√

1− x2
. (19)

The left-hand side inequality of (19) holds for all x ∈ [0, 1] due to an ≥ 0, and the
light-hand side inequality of (19) holds just due to 0 ≤ x ≤ 1.

Remark 2. Taking m = 2 in (18) gives

arcsin x− 3x
2 +
√

1− x2
≤ (π − 3)x5

2 +
√

1− x2
,

which is sharper than the light-hand side one of (2) due to

(π − 3)x5

2 +
√

1− x2
≤ π − 3

2 +
√

1− x2
≤ π − 3

2
.

So, by (19) we have

arcsin x− 3x
2 +
√

1− x2
≤ B2m+1(x)

2 +
√

1− x2
≤ π − 3

2
, m ≥ 2. (20)

Remark 3. Taking m = 3 in (18) gives (3). We can find that this inequality is sharper than the
left-hand side one of (2):

x5

60
+

11x7

840
−
(

x5

180
+

x7

189

)(
2 +

√
1− x2

)
=

x5

7560

(
19x2 + 42−

(
42 + 40x2

)√
1− x2

)
≥ 0

⇐⇒ 19x2 + 42 ≥
(

42 + 40x2
)√

1− x2.

In fact, (
19x2 + 42

)2
−
(

42 + 40x2
)2(

1− x2
)
= x4

(
1600x2 + 2121

)
> 0.

From Theorem 2, we can obtain the following results.

Corollary 3. Let 0 ≤ x ≤ 1,

C6(x) =
1
5

x6, D6(x) =
(

π2

2
− 3
)

x6;

C8(x) =
1
5

x6 +
52

315
x8, D8(x) =

1
5

x6 +

(
π2

2
− 16

5

)
x8;

C10(x) =
1
5

x6 +
52

315
x8 +

68
525

x10, D10(x) =
1
5

x6 +
52

315
x8 +

(
π2

2
− 212

63

)
x10,
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C12(x) =
1
5

x6 +
52
315

x8 +
68

525
x10 +

256
2475

x12,

D12(x) =
1
5

x6 +
52
315

x8 +
68

525
x10 +

(
π2

2
− 5504

1575

)
x12,

C14(x) =
1
5

x6 +
52
315

x8 +
68
525

x10 +
256
2475

x12 +
16, 000

189, 189
x14,

D14(x) =
1
5

x6 +
52
315

x8 +
68
525

x10 +
256
2475

x12 +

(
π2

2
− 62, 336

17, 325

)
x14,

C16(x) =
x6

5
+

52x8

315
+

68x10

525
+

256x12

2475
+

16, 000x14

189, 189
+

7424x16

105, 105
,

D16(x) =
x6

5
+

52x8

315
+

68x10

525
+

256x12

2475
+

16, 000x14

189, 189
+

(
π2

2
− 1640, 418, 688

468, 242, 775

)
x16.

Then,

C2m(x) ≤ (arcsin x)2 − 3x2

3− x2 ≤ D2m(x), m = 3, 8. (21)

Corollary 4. Let 0 ≤ x ≤ 1, bn defined by (9), g(x) showed in (17), and

T(x) = (arcsin x)2 − 3x2

3− x2 =
g(x)− 3x2

3− x2 ,

C2m(x) =
m

∑
n=3

bnx2n, D2m(x) =
m−1

∑
n=3

bnx2n + µmx2m, m ≥ 3.

Then, for 3 ≤ p < q,

C2p(x)
3− x2 ≤

C2q(x)
3− x2 ≤ T(x) ≤

D2q(x)
3− x2 ≤

D2q(x)
3− x2 . (22)

The left-hand side inequality of (22) holds for all x ∈ [0, 1] due to bn ≥ 0, and the
light-hand side inequality of (22) holds just due to 0 ≤ x ≤ 1.

Remark 4. Taking m = 3 in (21) gives

(arcsin x)2 − 3x2

3− x2 ≤
(

π2

2
− 3
)

x6.

So, by (22) we have

(arcsin x)2 − 3x2

3− x2 ≤
D2m(x)
3− x2 ≤

(
π2

2
− 3
)

x6 ≤ π2

2
− 3, m ≥ 3. (23)

Remark 5. In the process of proving Theorems 1 and 2, we prove that an, bn > 0, which just meet
a condition in a theorem called “Theorem on double-sided TAYLOR’s approximations” (see [21]
(Theorem 4), [22] (Theorem 2), [23] (Theorem 22)). Therefore, the proofs of Theorems 1 and 2 can be
completed by “Theorem on double-sided TAYLOR’s approximations”.

6. Conclusions

Throughout the history of mathematics, function estimation is widely used in various
fields of mathematics, including engineering mathematics. In this paper, we have given the
power series truncation of the correlation functions of the ones arcsin x and (arcsin x)2 as
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their upper and lower bounds. Based on these basic conclusions, we have drawn a large
number of practical estimates about arcsin x and (arcsin x)2.
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