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Abstract Electricity industries worldwide have been restructured in order to intro-
duce competition. As a result, decision makers are exposed to volatile electricity prices,
which are positively correlated with those of natural gas in markets with price-setting
gas-fired power plants. Consequently, gas-fired plants are said to enjoy a “natural
hedge.” We explore the properties of such a built-in hedge for a gas-fired power plant
via a stochastic programming approach, which enables characterisation of uncertainty
in both electricity and gas prices in deriving optimal hedging and generation deci-
sions. The producer engages in financial hedging by signing forward contracts at the
beginning of the month while anticipating uncertainty in spot prices. Using UK energy
price data from 2006 to 2011 and daily aggregated dispatch decisions of a typical gas-
fired power plant, we find that such a producer does, in fact, enjoy a natural hedge,
i.e., it is better off facing uncertain spot prices rather than locking in its generation
cost. However, the natural hedge is not a perfect hedge, i.e., even modest risk aversion
makes it optimal to use gas forwards partially. Furthermore, greater operational flex-
ibility enhances this natural hedge as generation decisions provide a countervailing
response to uncertainty. Conversely, higher energy-conversion efficiency reduces the
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natural hedge by decreasing the importance of natural gas price volatility and, thus,
its correlation with the electricity price.

Keywords Electricity markets · Risk management · Stochastic programming

List of symbols

Indices

t Time periods, 1, . . . , NT

f Power forward contracts, 1, . . . , NF

h Natural gas forward contracts, 1, . . . , NH

ω Scenarios, 1, . . . , NΩ

Real variables

P F
f Power sold via forward contract f (MWe)

QF
h Natural gas purchased from forward contract h (MW h)

E S
t,ω Electricity sold in the spot market in period t and scenario ω (MW he)

EG
t,ω Electricity generated in period t and scenario ω (MW he)

ζ VaR (£)
ηω Auxiliary variable related to scenario ω and used to calculate CVaR (£)

Random variables

λS
t,ω Random variable modelling the spot price of electricity in period t of

scenario ω (£/MW he)

μS
t,ω Random variable modelling the spot price of natural gas in period t of

scenario ω (£/MW h)

Constants

λF
f Price of power forward contract f (£/MW he)

μF
h Price of natural gas forward contract h (£/MW h)

P
F

f Upper quantity limit of power forward contract f (MWe)

Q
F

h Upper periodic quantity limit of natural gas forward contract h (MW h)

PG,max Capacity of plant (MWe)

e Energy-conversion efficiency of plant (MW he/MW h)

L Minimum percentage of energy produced during peak periods that must
be produced during off-peak periods

dt Length of period t (h)
α Quartile value used in CVaR calculation
β Weighting factor for CVaR calculation
πω Probability of occurrence of scenario ω

123



Gas-fired power plant 65

W (t, t ′) Binary parameter equal to 1 if t and t ′ are two consecutive off-peak and
peak periods, and 0 otherwise.

1 Introduction

Restructuring of the electricity industry worldwide has been motivated by both tech-
nological innovation and the desire to improve economic efficiency (Wilson 2002).
Although the replacement of vertically integrated utilities with firms providing sep-
arate generation, retailing, and distribution services is still an ongoing process with
varied outcomes (Hyman 2010), it has generally resulted in a paradigm with greater
risk exposure stemming from volatile electricity prices. Consequently, decision sup-
port for generators, retailers, and industrial consumers alike needs to reflect variability
in profits or costs (Deng and Oren 2006). At the same time, policymakers require a
deeper understanding of how exposure to risk affects investment and operational deci-
sions by industry in order to craft policy that may balance economic objectives with
environmental ones.

Such tension between competing objectives is prominent in the UK. Starting with
a largely coal-fired generation sector in the late 1980s, the UK has seen privatisation
of its electricity industry lead to a “dash for gas” in the past twenty years. For a variety
of reasons, e.g., lifting of government restrictions, historically low gas prices, and
new combined-cycle technologies, the 1990s were favourable to investment in gas-
fired generation. As a result, 40 % of the electricity generated in the UK during 2011
was from natural gas (DUKES 2012). Such herding behaviour stymies policymakers’
promotion of renewable energy technologies and entrenches the position of gas-fired
plants. Indeed, by being “price makers,” gas-fired plants are less exposed to market risk
as electricity and gas prices are strongly correlated, which renders renewable energy
technologies less attractive to investors (Gross et al. 2010). Therefore, understanding
the channels through which this natural hedge propagates is essential for policymakers
in order to support the deployment of renewable energy technologies.

In this paper, we use a stochastic programming framework (Birge and Louveaux
1997) to explore the properties of a gas-fired power plant’s natural hedge. Specifically,
we assume that a price-taking producer facing uncertain electricity and gas spot prices
seeks to maximise its expected profit from electricity sales over a representative month
while controlling its risk. We find that such a producer is always better off purchasing
all of its natural gas in the spot market as opposed to locking in its price at the mean
forward price for the month. Thus, a natural hedge exists, but we discover that it is
not a perfect hedge for even a slightly risk-averse producer, i.e., some gas forward
contracting is always optimal, which necessarily alters the optimal power hedging
strategy. Using these insights, policymakers may devise support schemes for making
renewable energy technologies attractive from not only a levelised cost perspective but
also a risk angle. For example, Gross et al. (2010) use levelised costs to examine how
the natural hedge of gas-fired power plants in the UK puts wind and other renewable
energy technologies at a disadvantage. In order to mitigate this undesirable outcome,
feed-in tariffs and renewables obligation certificates have been proposed (Mitchell
and Woodman 2011; Chronopoulos et al. 2014). The impacts of these proposals on
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the risk exposure for both dominant gas-fired and fringe renewable energy plants may
be assessed using our framework. Moreover, as combined-cycle gas turbine (CCGT)
plants rather than single-cycle ones become more prevalent, the nature of this hedge
may change, and, thus, policymakers will have to anticipate how to adapt support
schemes. Indeed, the installed capacity of CCGT plants has increased from 26 GW in
2007 to 32 GW in 2011, whereas single-cycle gas plant capacity has declined from 9
to 6.5 GW over the same period (DUKES 2012).

We use two sensitivity analyses to illustrate the effects of future technological inno-
vation: greater operational flexibility and higher energy-conversion efficiency. Surpris-
ingly, we find that they have opposing effects on the producer’s hedging behaviour.
More operational flexibility enables the plant to take further advantage of the positive
correlation between electricity and gas prices. Consequently, less financial hedging
occurs for relatively low levels of risk aversion. By contrast, improved efficiency mit-
igates the impact of natural gas price volatility on the producer’s risk. Hence, the
natural hedge is diminished, and forward contracting becomes more important.

The structure of this paper is as follows:

– Section 2 surveys the related literature on decision making under uncertainty in
the energy sector, focusing on stochastic programming in order to provide context
for our approach.

– Section 3 outlines our assumptions, formulates the deterministic equivalent of the
plant’s problem, and explains how we handle uncertainty.

– Section 4 consists of numerical examples based on UK data in order to distil
managerial and policy insights.

– Section 5 summarises the paper, discusses its limitations, and outlines directions
for future research.

2 Related work

Methods for decision making under uncertainty in the electricity industry are wide-
spread. Some use the real options approach (Dixit and Pindyck 1994), which is able
to handle uncertainty, discretion over timing, and multi-stage problems. However, in
order to obtain quasi-analytical solutions, simplifying assumptions are usually made
about the underlying uncertainties (Siddiqui and Maribu 2009). Furthermore, risk is
not directly addressed in the objective function even in simulation-based studies that
accommodate more realistic price processes because the objective is still to maximise
expected profit (Abadie and Chamorro 2008). An alternative is to use portfolio optimi-
sation (Liu and Wu 2006), but while it addresses risk management for a generator by
considering uncertain electricity and fuel prices, the risk measure used, i.e., variance,
punishes exposure to both upside and downside risk.

More amenable to problems in the power sector, especially short- to medium-term
operational ones, is stochastic programming since it accounts for technical constraints
as well as coherent risk measures in the formulation. Typically, two-stage stochas-
tic programming involves here-and-now decisions, e.g., forward contracting, without
knowledge of uncertainty and wait-and-see ones, e.g., generation and spot sales, after
uncertainty has been revealed (Conejo et al. 2010). Yet, without simplifying assump-
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tions about the underlying sources of uncertainty (Oum and Oren 2008), this frame-
work is also unable to deliver closed-form solutions. Thus, discrete scenarios generated
from time-series models (Escudero et al. 1996; Contreras et al. 2003) that approximate
the underlying continuous stochastic processes fitted to the data are usually employed
to arrive at tractable problems (Dupačová et al. 2000).

Applications of stochastic programming to the electricity industry typically focus on
the problem of a single decision maker, e.g., producer, retailer, or consumer. Notably,
Fleten and Kristoffersen (2007) examine the bidding and production strategies of
a Nordic hydropower plant under uncertain electricity prices. They find considerable
value to accounting for stochastic prices as opposed to replacing them with their means.
Closer to our effort is the two-stage model of Conejo et al. (2008), which determines
the optimal year-long futures contracts to be signed by a power producer facing uncer-
tain spot prices and fixed generation costs. They demonstrate that futures sales increase
with risk aversion as the producer prefers to avoid exposure to uncertain spot prices.
However, such a strategy may be problematic for unreliable generators prone to forced
outages as they would be liable to procuring electricity at possibly very high spot prices
in order to meet their contractual obligations. Pineda et al. (2010) and Pineda and
Conejo (2012) address such unit failures and illustrate how insurance contracts and
options, respectively, may be purchased by such risk-averse producers. Analogously,
Pousinho et al. (2011) use stochastic programming to examine the trading strategy
for a risk-averse wind producer facing uncertainty in both electricity prices and wind
speeds. Modelling correlated electricity prices and loads, Kettunen et al. (2010) address
the risk-management problem of a retailer. Besides multiple sources of uncertainty,
they also incorporate inter-temporal cash-flow constraints. A multi-stage model for
an electricity retailer based on the scenario-free stochastic programming approach
is implemented by Rocha and Kuhn (2012) using linear decision rules. Finally, Car-
rión et al. (2007) take the perspective of an industrial consumer facing uncertain
spot prices while having recourse to self generation and purchasing various forward
contracts. Implementing a multi-stage framework, they show that a more risk-averse
consumer increases its forward contracting and reduces both spot purchases and self
generation. Carrión et al. (2009) model the analogous hedging problem of a retailer.

Analysis of risk for producers with uncertainty in both electricity and fuel prices
has been rare. This would be particularly pertinent for policymakers in terms of under-
standing the drivers of producers’ risk exposure. Extant work examining risk typically
focuses on expected profit maximisation of an investor (Roques et al. 2006) or the
expected cost minimisation for CO2 abatement (Blyth et al. 2009). Although risk
may be quantified ex post given uncertain energy and CO2 prices along with technol-
ogy costs, it is not directly tackled in the decision-making objective. An exception is
Kettunen et al. (2011), who use a stochastic programming framework to illustrate how
uncertain CO2 prices promote market concentration as less risk-averse firms leverage
their existing plants to make more investments of the same kind. Following in a similar
spirit but focusing on a producer’s operations with both electricity and fuel price risk,
we seek to understand the behaviour of the built-in hedge for gas-fired power plants
with current and future versions of the dominant CCGT technology.
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3 Problem formulation

3.1 Assumptions

We consider the profit-maximisation problem of a gas-fired power plant over a rep-
resentative month with daily generation and spot market decisions after spot price
scenarios are realised. For simplicity, we ignore the interaction of this plant’s opera-
tions with other generation assets that the producer may hold. In reality, a combined
offering strategy for the producer’s portfolio of plants may be quite different from that
of a single plant. Furthermore, auction rules, market power, transmission congestion,
ramping constraints, unit failures, and unit-commitment issues also influence genera-
tion output but are not explicitly modelled here. Finally, although CO2 emissions are
relevant for gas-fired power plants, we ignore them due to relatively low CO2 prices
at the time of this analysis.

In abstracting from these details, we seek to distil the risk-management incentives
for a gas-fired power plant. Towards that end, we use a two-stage model in which
the here-and-now decision at the first stage (t = 0) is the amount of forward con-
tracting, which is made without knowing the realised spot prices (Fig. 1). We assume
that only monthly contracts are available for both types of energy, and they must
be selected at the beginning of the month. Subsequently, second-stage decisions (at
t = 1, . . . , NT ) about spot transactions and power production are made daily given
the spot price realisation. In effect, the producer knows the spot price with greater
certainty a day in advance than several weeks ahead when forward contracts are
signed. Therefore, we treat spot prices as known after the first stage, and the pro-
ducer is able to make wait-and-see generation decisions given complete certainty. A
more realistic multi-stage formulation with weekly contracts could also be imple-
mented.

Fig. 1 Two-stage decision-making framework
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Although we similarly assume that the producer is a price taker in the forward
markets, there is no uncertainty about forward prices at any stage. Thus, spot prices are
taken to be stochastic and exogenous, while forward prices are deterministic. We also
approximate the plant’s ramping and start-up constraints by restricting its generation
from changing too quickly from a pre-defined off-peak day to a peak day. While
modern gas-fired power plants can ramp up to full capacity in a matter of hours, they
also incur start-up costs, which may preclude several start-up and shut-down cycles
per day. For example, 1,200 GJ of fuel are burned for a “hot start” (immediately
one hour after the unit is shut down), which leads to a start-up cost of £6k assuming
a fuel price of £18/MWh. These calculations are based on a CCGT plant installed
in 2010 in Aghada, Republic of Ireland (Šumbera 2013). Furthermore, according to
the same source, CCGT plants have constraints on minimum up- and down-times
(typically four hours each). Combined with the fact that UK intra-day peak and off-
peak half-hourly electricity spot prices for January 2014 averaged £53.36/MWhe and
£39.32/MWhe, respectively, it is rather unlikely that prices during peak hours would
drop sufficiently below the average operating cost of £40.47/MWhe for long enough
to warrant shutting down the plant during peak hours. Thus, our compromise is to
consider daily generation decisions with a constraint when going from an off-peak
day to a peak one.

As for risk control, variance, shortfall probability, expected shortage, value-at-risk
(VaR), and conditional value-at-risk (CVaR) are widely used as risk measures. While
variance is appealing for its ease of implementation, it penalises the decision maker
equally for upside as well as downside risk. The shortfall probability and the expected
shortage are also straightforward to implement but require the specification of an
arbitrary target value for profit (Conejo et al. 2010). Getting around this arbitrariness,
for a given level of α ∈ (0, 1), the VaR is defined as the largest value ensuring that the
probability of obtaining a profit less than this value is lower than (1−α) (Oum and Oren
2008). However, a shortcoming of VaR is that it provides no information about the
extent of the losses that might be suffered beyond the threshold amount (Rockafellar
and Uryasev 2002). As an alternative, the CVaR is proposed, which is a coherent risk
measure (reflecting translation invariance, subadditivity, positive homogeneity, and
monotonicity) and can also be expressed using a linear formulation to indicate the
expected value of the profit smaller than the (1 − α)-quartile of the profit distribution
(Fig. 2).

3.2 Deterministic-equivalent problem

In a medium-term planning horizon, e.g., 1 month to a year, the objective of the
power producer is to determine its generation and trading strategies to maximise
its expected profit, while controlling the risk of profit variability. Compared to the
stochastic programming literature, our two-stage formulation is closest in spirit to that
of (Conejo et al. 2008): we have a power producer taking here-and-now decisions
about forward contracting with wait-and-see decisions about spot transactions. The
main difference is that we assume that the spot price of natural gas is also stochastic
and may be hedged via forward contracts as well. As in Carrión et al. (2007) or
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Fig. 2 Conditional value-at-risk

Kettunen et al. (2010), we could also have a multi-stage model with weekly contracts,
which would be a more realistic representation of the hedging opportunities available
to a power producer. Nevertheless, our objective is to gain insights about the natural
hedge rather than to devise a risk-management strategy for a producer.

As we consider a decision horizon of 1 month, forward contracting positions are
taken at the beginning of the month and are in force for each day thereafter. Given the
forward positions, the set of daily decisions in the spot market are made throughout
the month with knowledge of the spot prices. While decisions based on representative
hours could also be implemented, natural gas prices are available only on a daily basis.
Thus, the deterministic-equivalent formulation is as follows (see “List of symbols”
for the notation):

Maximise P F
f ,QF

h ,E S
t,ω,EG

t,ω,ζ,ηω

NΩ
∑

ω=1

πω

NT
∑

t=1

⎛

⎝

NF
∑

f =1

λF
f P F

f dt

+λS
t,ω E S

t,ω −

NH
∑

h=1

μF
h QF

h − μS
t,ω

(

EG
t,ω

e
−

NH
∑

h=1

QF
h

))

+β

(

ζ −
1

1 − α

NΩ
∑

ω=1

πωηω

)

(1)

s.t.

0 ≤ P F
f ≤ P

F

f , ∀ f (2)

0 ≤ QF
h ≤ Q

F

h , ∀h (3)

0 ≤ EG
t,ω ≤ PG,max dt , ∀t,∀ω (4)

EG
t,ω ≥ L EG

t
′
,ω

, ∀ω,∀t, t
′

|W (t, t
′

) = 1 (5)
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EG
t,ω = E S

t,ω +

NF
∑

f =1

P F
f dt , ∀t,∀ω (6)

ζ −

NT
∑

t=1

⎛

⎝

NF
∑

f =1

λF
f P F

f dt + λS
t,ω E S

t,ω −

NH
∑

h=1

μF
h QF

h

−μS
t,ω

(

EG
t,ω

e
−

NH
∑

h=1

QF
h

))

≤ ηω, ∀ω (7)

ηω ≥ 0, ∀ω (8)

E S
t,ω ≥ 0, ∀t,∀ω (9)

EG
t,ω

e
−

NH
∑

h=1

QF
h ≥ 0, ∀t,∀ω (10)

The producer’s objective function is to maximise the expected profit plus a weighted
CVaR term as captured by Eq. (1). Here, the first two terms consist of the revenues
from forward and spot sales of power and electricity, respectively. Next, the remaining
portion of the second line reflects the cost of generation from both forward and spot
purchases of natural gas. Without loss of generality, we neglect fixed operating and
maintenance costs. Finally, the third line of Eq. (1) is the weighted CVaR term (Rock-
afellar and Uryasev 2002), where β ∈ [0,∞) is a factor that represents the trade off
between risk and return.

This objective function is maximised by selecting the forward positions for both
power, P F

f , and natural gas, QF
h , as well as daily generation decisions, EG

t,ω, and

spot transactions, E S
t,ω, under each scenario. Additional auxiliary decision variables,

ζ and ηω, are needed to implement the CVaR constraint. The constraints for the pro-
ducer’s problem include Eqs. (2) and (3), which are the contracting constraints for the
forward sales of power and forward purchases of natural gas, respectively. As per
Conejo et al. (2008), these constraints reflect market liquidity in the form of a limited
amount of energy available for trade. Eq. (4) is the capacity constraint for genera-
tion, while Eq. (5) approximates the limited operational flexibility for the power plant.
Here, W (t, t ′) = 1 if t is an off-peak day that immediately precedes a peak day, t ′. In
effect, the plant is not able to adjust generation as much as it would ideally like due to
physical characteristics that are not directly modelled here, e.g., minimum up-times
or start-up costs. Thus, L is a parameter that captures the extent of the plant’s inflexi-
bility, e.g., L = 0 means complete flexibility. Eq. (6) simply states that all electricity
generated has to be sold in either the forward or the spot market, while Eqs. (7) and (8)
implement the CVaR constraint in a linear manner. Intuitively, a risk-averse producer
would like to maximise its CVaR in Eq. (1), which is equivalent to forcing the ηω

variables to be as small as possible for a given ζ . Now, since Eq. (8) restricts ηω to be
non-negative, the smallest value that this auxiliary variable can assume is zero. Next,
from Eq. (7), ηω will be either zero if the profit in scenario ω exceeds ζ or the shortage
level if the profit in scenario ω is less than ζ . Consequently, after ηω is weighted by the
probabilities πω and summed up over all scenarios before being scaled by 1−α in the
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objective function, the resulting term, i.e., 1
1−α

∑NΩ

ω=1 πωηω, represents the expected
profit shortage relative to ζ . Finally, the non-negativity of electricity spot sales and
natural gas spot purchases is enforced via Eqs. (9) and (10). In general, these con-
straints may be relaxed to allow for arbitrage between markets, but our focus is on
understanding the natural, i.e., physical, hedge of a gas-fired power plant.

3.3 Representation of uncertainty

In order to solve the problem in Eqs. (1) through (10), we need an adequate repre-
sentation of the uncertain electricity and natural gas spot prices. These are obtained
by generating a suitably large number of scenarios, λS

t,ω and μS
t,ω, for each day, t , of

a given month. Time-series analysis is used as the basis for scenario generation, and
autoregressive integrated moving average (ARIMA) models are usually sufficient to
capture salient features of energy prices, viz., high frequency, non-constant variance
and mean, weekly seasonality, and high volatility (Contreras et al. 2003).

The non-constant mean is alleviated by differentiating the series by using factors
(1− Bs), where B is the backshift operator and s is the number of steps, i.e., Bs(yt ) =

yt−s , where yt is the price on day t . Weekly seasonality is often taken into account
by using lags of order 7. In order to obtain constant variance, applying logarithmic
transformation to the original process is widely used. If the mean and variance of the
process do not change over the observed time period, then we can regard the time
series as a stationary process.

After making these transformations, the general form of a seasonal ARIMA model
with parameters (p, d, q) × (P, D, Q)s is

φ(B)Φ(BS)(1 − B)d(1 − BS)D yt = θ(B)Θ(BS)ǫt (11)

where yt is the price on day t and ǫt is the error term. In this model, there are
p autoregressive parameters, φ1, φ2, . . . , φp, q moving average parameters θ1, θ2,
. . . , θq , and d is the differentiation order. This model also includes seasonal compo-
nents of P autoregressive parameters Φ1, Φ2, . . . , ΦP , Q moving average parameters
Θ1,Θ2, . . . , ΘQ , and the differentiation order D. φ(B), Φ(B), θ(B), and Θ(B) are
polynomial functions of backshift operator B, e.g., φ(B) = 1 −

∑p
j=1 φ j B j and

θ(B) = 1 −
∑q

k=1 θk Bk .
From suitable ARIMA models for the price processes, scenarios may be generated

using the general form of Eq. (11) (Contreras et al. 2003). Unlike most of the sto-
chastic programming literature that we have discussed, our work involves generating
scenarios for two dependent processes. Given that electricity and natural gas prices
are likely to be correlated in a non-contemporaneous manner, we cannot simply use
independent ARIMA models of the form in Eq. (11) to generate scenarios. Rather,
we consider transfer functions or dynamic regression models to link the two price
processes. Intuitively, the latter approach includes lagged terms of the dependent and
independent processes in the model for the dependent one, whereas the former uses
only the lagged terms of the independent process plus lagged terms of a function of the
error terms. For example, Nogales and Conejo (2006) relate electricity demand and
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price, and Conejo et al. (2005) compare transform functions with dynamic regression
by applying them to model electricity prices of the PJM (Pennsylvania–New Jersey–
Maryland) Interconnection to show that they are more effective than ARIMA models
alone.

In our case, the transfer function seems to work better, and the general form for it
is:

yt = w(B)xt + γt (12)

where yt and xt are the two correlated time series assumed to be stationary. w(B) is
the polynomial function of backshift operator, i.e.,

w(B) =

M
∑

m=0

wm Bm (13)

The coefficients wm describe the dynamic relationship between yt , i.e., natural gas
spot price, and the explanatory variable xt , i.e., electricity spot price. The part of yt

not explained by xt is a disturbance term that follows an ARMA model of the form:

γt =
θ(B)

φ(B)
ǫt (14)

where θ(B) and φ(B) are polynomial functions of backshift operator B and ǫt is
assumed to be white noise.

4 Numerical examples

In order to explore the natural hedge, we use data from the UK Automated Power
Exchange (APX) to generate scenarios for electricity and natural gas spot prices as indi-
cated in Sect. 3.3. Next, we use these scenarios as inputs to the deterministic-equivalent
formulation from Sect. 3.2 of a gas-fired plant’s medium-term risk-management prob-
lem. Finally, we run the problem under various settings to extract policy insights.

4.1 Data

For the time-series analysis, a total number of 2,191 daily spot prices for electricity
and natural gas are available from the APX (Fig. 3). The time period begins on 1
January 2006 and ends on 31 December 2011. The daily electricity spot prices are the
average of the reference price data (RPD) for all 48 half-hour periods, while the gas
spot prices are the weighted-average prices with the weight provided by APX of all
trades for the relevant day on the on-the-day commodity market (OCM). A summary of
the descriptive statistics of electricity and gas spot prices as well as their logarithms is
provided in Table 1. It shows that the electricity and gas spot prices are highly volatile,
and after logarithmic transformation, the data become more stable. Ultimately, we
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Fig. 3 Logarithms of UK APX electricity and natural gas prices before (a) and after (b) weekly differen-
tiation

Table 1 Descriptive statistics, UK APX energy prices (£/MW he and £/MW h), 2006–2011 (APX Group)

Statistic Electricity Ln electricity Gas Ln gas

Mean 43.350 3.696 14.500 2.594

SD 17.950 0.378 5.497 0.423

Minimum 15.290 2.727 0.493 −0.707

1st Quartile 31.270 3.443 9.857 2.288

Median 40.820 3.709 14.430 2.669

3rd Quartile 50.340 3.919 18.980 2.944

Maximum 190.500 5.250 61.350 4.117

will use these data in Sect. 4.2 to generate scenarios for the representative month of
January. Similar analysis for a representative month of July indicates that the findings
are qualitatively similar and are, thus, not presented here.

We consider a single gas-fired plant with capacity PG,max = 100 MWe and an
energy-conversion efficiency of e = 0.45. As for the technical parameters, we set the
peak/off-peak factor to L = 0.33, which is in line with that used by Conejo et al.
(2008). The peak/off-peak periods are determined by the average daily prices among
the 31 days in January, i.e., the days with the 22 highest daily average prices are the
peak periods (Table 2). For reference, if the plant were operated at its rated capacity
for the entire month, then it would generate 100×24×31 = 74.4 GWhe of electricity
and consume 74.4/0.45 = 165.33 GWh of natural gas.

Two types of forward contracts spanning each day of the next month are available.
Carrión et al. (2007) provide several examples of contracts for the Spanish electricity
market. Similarly, we use data from the Intercontinental Exchange (ICE) on January
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Table 2 Peak and off-peak
periods during January

Peak periods Off-peak periods

2-6, 9-13, 16-20, 23-27, 30, 31 1, 7, 8, 14, 15, 21, 22, 28, 29

Table 3 Power forward
contracts Contract λF

f
P

F
f

f (£/MWhe) (MWe)

1 42.15 40

2 42.85 20

Table 4 Natural gas forward
contracts Contract μF

h
Q

F
h

h (£/MWh) (MWh)

1 18.35 1,000

2 18.65 2,000

2012 prices as of 31 December 2011 in order to introduce two different types of
forward contracts for each energy type.

The parameters defining each contract are provided in Tables 3 and 4. For reference,
the mean January electricity and natural gas spot prices during this time period are
£45.23/MWhe and £16.85/MWh, respectively. Furthermore, if the plant were operating
at capacity, then it would be able to sell forward a maximum of 60 % of its power.
Similarly, it would be able to hedge a maximum of 56 % of its natural gas purchases,
i.e., a total of 31 × 3,000 MWh = 93 GWh.

4.2 Time-series analysis and scenario generation

Figure 3 plots the logarithms of electricity and gas spot prices before and after weekly
differentiation. It is apparent that the time series of daily prices are not stationary. For
this reason, we will consider differentiating the original series using factors (1 − Bs).
After weekly differentiation, the non-constant mean and variance are alleviated, and
the time series seem to be stationary.

On these transformed data, we carry out the procedure described in Sect. 3.3.
According to the model identification method described by Box and Jenkins (1976),
the terms of θ7 B7 and θ8 B8 should be included in the polynomial θ(B) because in
Fig. 4, there are peaks at 7 and 8 in the ACF and PACF damped sinusoid at the same
value. We start from an initial model and select one with the lowest AIC and standard
deviation of the error term after trying several different models. The final ARIMA
model for electricity and natural gas prices is as follows:

(1 − φ1 B − φ2 B2)(1 − B7) log(yt ) = (1 − θ1 B − θ7 B7 − θ8 B8)ǫt (15)
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Fig. 4 ACF and PACF after differentiating: a ACF of the logarithm of the electricity price, b PACF of the
logarithm of the electricity price, c ACF of the logarithm of the natural gas price, d PACF of the logarithm
of the natural gas price

Table 5 Estimated Parameters
of ARIMA model for energy
spot prices

Electricity Natural gas

φ1 = 1.42942 φ1 = 1.46055

φ2 = −0.43126 φ2 = −0.47436

θ1 = 0.89485 θ1 = 0.78316

θ7 = 0.98103 θ7 = 0.98227

θ8 = −0.8759 θ8 = −0.78177

σ E = 0.151 σ G = 0.142

In Eq. (15), the prices of electricity and natural gas on day t depend on previous values
of two terms: 1- and 2-day lags and weekly differentiation. They also depend on error
terms with lags of 1, 7, and 8 days. Next, SAS 9.2 is used to estimate the parameters,
which are shown in Table 5. All the parameters have passed the t-test at the 95 %
significance level.

Using the scenario-generation procedure described in Sect. 3.3 for both electricity
and natural gas prices, a set of 1,000 scenarios for January is obtained from independent
ARIMA models. In Fig. 5, crosses represent pairs of historical gas-electricity prices,
whereas circles correspond to generated scenario pairs. Although historical data are
almost within the area covered by the generated scenarios, some generated points
are far away from the historical data, especially for the natural gas prices. This result
indicates that the correlation between electricity and natural gas prices should be taken
into consideration. Indeed, Fig. 6 shows non-contemporaneous correlation between
the residuals from the independent ARIMA models. Hence, it is necessary to account
for the non-contemporaneous correlation between electricity and natural gas prices by
means of a transfer function described in Sect. 3.3.

Although the standard deviations of the electricity and natural gas error terms are
similar, the generated scenarios for electricity prices look better than those for natural
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Fig. 5 Generated scenarios for January by independent ARIMA models

Fig. 6 Residual cross-correlation

gas prices. Plus, transfer functions linking electricity prices and demand usually have
the latter as the independent variable, i.e., exogenous demand drives the price (Nogales
and Conejo 2006). Similarly, it is plausible that the electricity industry’s demand for
natural gas drives the price of natural gas rather than the other way around. For these
reasons, we build a transfer function to model natural gas prices by using the electricity
price (reflecting demand for natural gas) as an explanatory variable. As for the transfer
function, we take differentiation of order 7 at first because one assumption of the
transfer function is that the two time series are stationary. The final transfer function
model for natural gas prices is:

log(y′
t ) = (w0 + w1 B) log(x ′

t ) +

(

1 − θ1 B − θ7 B7 − θ8 B8
)

(

1 − φ1 B − φ2 B2
) ǫt (16)
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where y′
t and x ′

t are the natural gas and electricity prices after differentiation in day
t , respectively. Since it is necessary to know the value of electricity prices to model
natural gas prices, when using transfer function models, an additional model is required
to generate scenarios of the explanatory variable. We use the ARIMA model in Eq.
(15) to generate scenarios of electricity prices. Table 6 shows the estimated parameters
of the transfer function, which have all passed the t test at the 95 % significance level.

The diagnostic check of the ARIMA model for the electricity prices and the transfer
function model for the natural gas prices indicates that the standard residuals are
fairly random (Fig. 7). Furthermore, the ACF plot and the p-values of the Ljung-
Box test (for which the null hypothesis is that there is no autocorrelation between the
residuals under this lag) indicate that the residuals are not statistically significantly
autocorrelated. Finally, Fig. 8 depicts the set of natural gas price scenarios versus the
set of electricity price scenarios (circles) together with historical data (crosses). Notice
that the correspondence between scenarios and historical data is much better than that
with independent ARIMA models.

4.3 Results

Using the formulation from Sect. 3.2 and 1,000 equiprobable scenarios generated for
the month of January from Sect. 4.2, we solve the problem under the following three
cases:

Table 6 Estimated parameters
of the transfer function φ1 = 1.40887 θ1 = 0.77283

φ2 = −0.42737 θ7 = 0.98262

w0 = 0.18456 θ8 = −0.77247

w1 = 0.08751 σ D = 0.139

Fig. 7 Diagnostic plots a ARIMA model for the electricity price and b transfer function for the natural gas
price
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Fig. 8 Generated scenarios of electricity and natural gas prices using the transfer function

– Case 1 Stochastic electricity spot prices, fully hedged gas purchases equal to

the quantity-weighted mean natural gas forward price, i.e., CG =

∑NH
h=1 Q

F
h μF

h

e
∑NH

h=1 Q
F
h

=

£41.20/MWhe, and only power forward contracts for financial hedging
– Case 2 Stochastic energy spot prices but only power forward contracts for financial

hedging
– Case 3 Stochastic energy spot prices with both power and natural gas contracts

for financial hedging

Each case is run for α = 0.95 and increasing β starting from zero until the financial
hedging does not change. It should be noted that while β has no physical meaning,
we are able to compare decision making among cases by examining the outcomes for
completely risk-neutral and fully contracted producers. We consider three settings:
a base setting, one with complete operational flexibility, i.e., L = 0, and one with
a higher energy-conversion efficiency of e = 0.60. The generated scenarios yield
mean January 2012 electricity and gas spot prices of £43.19/MWhe and £18.21/MWh,
respectively. The problem of the gas-fired power plant in Eqs. (1)–(10) may be solved
numerically using CPLEX in GAMS 23.0.2. The solution time is around ten seconds
on a desktop PC with a quad-core 2.9 GHz processor and 8 GB of RAM. We check
the stability of the scenarios by increasing their number from 1 to 1,000 and find that
the solutions in all cases and with various levels of risk aversion are stable after about
800 scenarios (Figs. 9, 10). Except for the setting with a higher energy-conversion
efficiency, the solution for Case 2 for all levels of risk aversion is equal to that for Case
3 with a risk-neutral producer.

4.3.1 Base setting

By solving the problem for various levels of β, we sketch out the power plant’s efficient
frontier. Figure 11 illustrates this for the base setting. In Case 1, the power plant
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Fig. 9 Stability of the solution
with the number of scenarios
(Case 1)
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Fig. 10 Stability of the solution
with the number of scenarios
(Case 3)
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Fig. 11 Efficient frontiers in base setting

hedges its natural gas costs completely at the quantity-weighted mean forward price.
For β = 0, the producer is risk neutral and makes an expected monthly profit of
£320k with a CVaR of just under £13.9k without any forward sales. As the producer
becomes more risk averse, it gives up some expected profit for a higher monthly CVaR
via forward sales, viz., ending up with an expected profit of £184k and a CVaR of £61k
when β = 10.

Once spot transactions at stochastic natural gas prices are allowed, the producer’s
situation improves in Case 3. Indeed, the positive correlation between electricity and
natural gas prices does constitute a natural hedge, i.e., the producer’s expected profit
and CVaR are higher as a consequence of facing the stochastic fuel price, which
reduces the net exposure to uncertainty. For β = 0, the expected profit and CVaR
increase to £420k and £14.7k, respectively, relative to Case 1. However, this natural
hedge is not a perfect hedge as the producer can mitigate its risk further by holding
natural gas forwards in Case 3. Case 2 in this setting results in no forward contracting
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Table 7 Base setting trading
strategies for Case 1

β Expected generation
(GWhe)

Proportion of powersold
forward

0 42.133 0.000

1 42.243 0.007

2 48.148 0.309

5 52.187 0.470

10 61.139 0.730

Table 8 Base setting trading strategies for Case 3

β Expectedgeneration
(GWhe)

Proportion of power
sold forward

Proportion of gas
purchased forward

0 45.677 0.000 0.000

1.5 48.605 0.167 0.167

2 50.816 0.274 0.274

5 51.168 0.291 0.291

10 54.823 0.448 0.448

50 61.617 0.679 0.679

regardless of the level of risk aversion and, thus, provides a solution that is equal to
the one in Case 3 with a risk-neutral producer.

In order to explain the differences between the cases, we next break down the
producer’s generation and hedging strategy further. Table 7 indicates that the risk-
return trade off in Case 1 is facilitated by financial hedging, which also allows more
generation to take place. Specifically, forward sales increase from nothing to over 70 %
of the output for an extremely risk-averse producer, which uses both power contracts
fully. In effect, by locking in most of its revenues, a risk-averse producer is committed
to generating more than a risk-neutral one. By contrast, the availability of the natural
hedge in Case 3 means that more generation is possible and less financial hedging is
needed (Table 8).

Higher risk aversion requires forward purchases of natural gas for optimal risk
management, which also modifies the hedging of power sales. Finally, the power sold
forward seems to use gas purchased through forwards, thereby eliminating exposure
to cross-commodity risk.

4.3.2 Operational flexibility

With complete operational flexibility, the expected profit and CVaR increase in all
cases except for the extremely risk-averse ones (Fig. 12). This is because the producer
is now able to generate only on those days when the spark spread is sufficiently high.
In Case 3, such flexibility drastically mitigates the risk of even risk-neutral producers
compared to the base setting. However, it is not clear how the natural hedge is affected.

Scrutinising the generation and trading strategies, we find in Case 1 that although a
relatively more risk-neutral producer’s generation and hedging are reduced compared
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Fig. 12 Efficient frontiers with
operational flexibility
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Table 9 Operational flexibility
trading strategies for Case 1

β Expected generation
(GWhe)

Proportion of power sold
forward

0 41.246 0.000

3 47.877 0.311

7 61.139 0.730

Table 10 Operational flexibility trading strategies for Case 3

β Expected generation (GWhe) Proportion of power sold
forward

Proportion of gas purchased forward

0 45.182 0.000 0.000

3 50.661 0.275 0.275

5 51.026 0.292 0.292

20 61.617 0.679 0.679

to the base setting, they are unchanged as β increases (Table 9). The explanation for this
behaviour is that without operational constraints, a more risk-neutral producer is able
to increase its expected profit by being more selective about generation. Thus, there is
less need for forward sales at low levels of β. However, as risk aversion increases, most
of the power is sold forward as in the base setting, which renders operational flexibility
less relevant. Exposure to stochastic natural gas prices in Case 3 reduces the need for
financial hedging relative to Case 1 as in the base setting (Table 10). Compared to the
results in Table 8, operational flexibility increases the effect of the natural hedge as
the producer is able to use the positive correlation between the two spot prices to its
advantage to a greater extent by not hedging financially until β = 3. Nevertheless, the
natural hedge by itself is still not optimal for a more risk-averse producer. As in the
base setting, power sold forward seems to be generated via contracted natural gas.

4.3.3 Higher energy-conversion efficiency

With a higher energy-conversion efficiency of e = 0.6, both the expected profit and
the CVaR increase dramatically in all cases relative to the base setting (Fig. 13).
With effectively a 25 % lower average cost of generation, the plant is able to turn
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Fig. 13 Efficient frontiers with
higher energy-conversion
efficiency
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Table 11 Higher
energy-conversion efficiency
trading strategies for Case 1

β Expected generation
(GWhe)

Proportion of power sold
forward

0 70.700 0.000

0.05 70.936 0.114

0.1 71.204 0.209

0.2 72.720 0.614

Table 12 Higher
energy-conversion efficiency
trading strategies for Case 2

β Expected generation
(GWhe)

Proportion of power sold
forward

0 68.623 0.000

0.5 69.549 0.214

2 70.062 0.323

5 70.190 0.350

100 70.343 0.375

Table 13 Higher energy-conversion efficiency trading strategies for Case 3

β Expected generation
(GWhe)

Proportion of power
sold forward

Proportion of gas
purchased forward

0 68.623 0.000 0.000

0.1 69.549 0.214 0.214

0.2 69.796 0.266 0.266

0.3 71.887 0.621 0.621

1 72.787 0.613 0.760

2 72.829 0.613 0.766

an operating profit on more days, which also mitigates its risk. Moreover, the higher
efficiency means that the natural gas price is less important than in the base setting.
This suggests that the natural hedge is now weakened, which is picked up by the
appearance of financial hedging during Case 2.
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An investigation of the generation and hedging strategies in Tables 11, 12 and 13
confirms that higher efficiency reduces the natural hedge relative to the base setting.
In Case 1, the impact of higher efficiency is more obvious as it simply reduces the
deterministic generation cost. Still, this has consequences for risk management as
fewer unprofitable days lead to a higher expected profit even in the lowest 5 % of
scenarios, thereby reducing the need for hedging (Table 11). Next, Case 2 illustrates
that the natural hedge diminishes, which leads to more financial hedging (Table 12)
than in the base setting. Finally, Case 3 reveals that the fractions of power sold forward
and natural gas purchased forward are higher than in the base setting (Table 13).
Another intriguing difference from the results in the previous two settings is that a
highly risk-averse producer now hedges even natural gas purchases that are used for
some spot sales of electricity. In effect, the natural hedge has diminished to the extent
that the producer no longer finds it beneficial to use the positive correlation between
the spot prices to its advantage. Consequently, the natural hedge is less relevant in
a future with a more efficient CCGT technology, and the forward contract limit for
electricity is reached with β = 0.3. After this point, greater risk aversion leads to more
generation by the producer sold into the spot market using gas bought on the forward
market, i.e., the low cost of generation offsets the absence of the natural hedge and
leads to a decoupling in the hedging ratios unlike in the base setting.

We have assumed in our example that the relationship between electricity and
natural gas prices does not change as a result of the higher energy-conversion efficiency.
In other words, the time-series analysis used to generate scenarios for the energy prices
is still valid. However, it may be the case that decoupling of electricity and natural gas
markets because of higher efficiency leads to prices (and, thus, generated scenarios)
that are not as positively correlated as in Fig. 8. Taking this shift into account could
either strengthen or weaken our conclusions. For example, less correlated energy
prices would weaken the natural hedge, thereby leading to an even greater increase in
financial hedging in Case 3. Alternatively, the plant may reduce its operations, which
would obviate the need for contracting. Hence, the overall effect of decoupled markets
may be ambiguous and could be the subject of additional research that treats energy
prices as being endogenous to the model.

5 Conclusions

The coupling of the UK’s electricity and natural gas markets has been perhaps an
unintended consequence of the restructuring of its power sector in the early 1990s.
As gas-fired power plants are effectively price setters in UK electricity markets, they
are also hedged to a greater extent than renewable energy technologies, which are
needed for the UK to meet its policy objectives. Due to their relatively higher risk,
such renewable energy technologies will not be readily adopted by private producers.
Since other industrialised economies face similar predicaments, lessons learned for
the UK may be relevant for their policymakers as well. Thus, in order to devise
incentives to facilitate investment in renewable energy technologies, policymakers
need to understand better the channels through which the so-called natural hedge of
gas-fired producers propagates.
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Taking a stochastic programming perspective to tackle risk directly, we find that
such a natural hedge does exist for a typical UK producer. Indeed, the positive corre-
lation between electricity and natural gas spot prices is advantageous for the producer
both in terms of increasing expected profit and controlling risk. Nevertheless, it is not
a perfect hedge as some natural gas forward purchases may be necessary for even
a moderately risk-averse producer. With future evolution of CCGT technologies, the
behaviour of this natural hedge may be of interest to policymakers. If a gas-fired plant
could be operated in a more flexible manner, then the extent of the natural hedge
increases while forward contracting diminishes for a risk-averse producer. In effect,
the plant itself becomes a more effective physical hedge by taking advantage of periods
of high spark spreads to generate. Consequently, expected generation also decreases.
On the other hand, if the energy-conversion efficiency of CCGT is likely to increase,
then the natural hedge actually diminishes as exposure to natural gas prices is lower.
It should be noted that these results hold for the UK using data from 2006 to 2011 and
under the assumption that a single daily dispatch decision is valid, which is appropriate
given the observed spark spreads, e.g., in January 2014. Unlike the extant literature
on the UK power sector, our work directly addresses risk and the behaviour of this
natural hedge rather than relying on levelised cost calculations. Hence, assessments
of support schemes (such as feed-in tariffs and renewables obligation certificates) for
promoting renewable energy technologies could use our case studies to examine how
coupled electricity and gas prices may affect the natural hedge of CCGT technologies,
which are currently favoured by investors.

For future work, relaxation of some of our assumptions would be warranted. In
particular, the inclusion of a competing producer (either based on natural gas or a
renewable energy) could shed additional light on the natural hedge by capturing the
market power that is present in most electricity industries. Another direction of research
could involve generation of more realistic scenarios that capture the tail dependencies
between electricity and natural gas prices, e.g., via copulas. This link is especially
pertinent because of the significance of risk control in our setting. Similarly, more
realistic forward contracts reflecting the market’s liquidity and operational constraints
would allow us to generalise the insights further.
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