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Abstract

The natural history of Chlamydia trachomatis infection in
women: a multi-parameter evidence synthesis

Malcolm J Price,1 AE Ades,2* Kate Soldan,3 Nicky J Welton,2

John Macleod,2 Ian Simms,3 Daniela DeAngelis,3,4

Katherine ME Turner2 and Paddy J Horner2,5

1Institute of Applied Health Research, University of Birmingham, Birmingham, UK
2School of Social and Community Medicine, University of Bristol, Bristol, UK
3Public Health England (formerly Health Protection Agency), Colindale, London, UK
4Medical Research Council Biostatistics Unit, Cambridge, UK
5Bristol Sexual Health Centre, University Hospital Bristol NHS Foundation Trust, Bristol, UK

*Corresponding author T.Ades@bristol.ac.uk

Background and objectives: The evidence base supporting the National Chlamydia Screening

Programme, initiated in 2003, has been questioned repeatedly, with little consensus on modelling

assumptions, parameter values or evidence sources to be used in cost-effectiveness analyses. The purpose

of this project was to assemble all available evidence on the prevalence and incidence of Chlamydia

trachomatis (CT) in the UK and its sequelae, pelvic inflammatory disease (PID), ectopic pregnancy (EP)

and tubal factor infertility (TFI) to review the evidence base in its entirety, assess its consistency and,

if possible, arrive at a coherent set of estimates consistent with all the evidence.

Methods: Evidence was identified using ‘high-yield’ strategies. Bayesian Multi-Parameter Evidence

Synthesis models were constructed for separate subparts of the clinical and population epidemiology of

CT. Where possible, different types of data sources were statistically combined to derive coherent

estimates. Where evidence was inconsistent, evidence sources were re-interpreted and new estimates

derived on a post-hoc basis.

Results: An internally coherent set of estimates was generated, consistent with a multifaceted evidence

base, fertility surveys and routine UK statistics on PID and EP. Among the key findings were that the risk of

PID (symptomatic or asymptomatic) following an untreated CT infection is 17.1% [95% credible interval

(CrI) 6% to 29%] and the risk of salpingitis is 7.3% (95% CrI 2.2% to 14.0%). In women aged 16–24 years,

screened at annual intervals, at best, 61% (95% CrI 55% to 67%) of CT-related PID and 22% (95% CrI

7% to 43%) of all PID could be directly prevented. For women aged 16–44 years, the proportions of PID,

EP and TFI that are attributable to CT are estimated to be 20% (95% CrI 6% to 38%), 4.9% (95% CrI

1.2% to 12%) and 29% (95% CrI 9% to 56%), respectively. The prevalence of TFI in the UK in women at

the end of their reproductive lives is 1.1%: this is consistent with all PID carrying a relatively high risk of

reproductive damage, whether diagnosed or not. Every 1000 CT infections in women aged 16–44 years, on

average, gives rise to approximately 171 episodes of PID and 73 of salpingitis, 2.0 EPs and 5.1 women with

TFI at age 44 years.
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Conclusions and research recommendations: The study establishes a set of interpretations of the major

studies and study designs, under which a coherent set of estimates can be generated. CT is a significant

cause of PID and TFI. CT screening is of benefit to the individual, but detection and treatment of incident

infection may be more beneficial. Women with lower abdominal pain need better advice on when to seek

early medical attention to avoid risk of reproductive damage. The study provides new insights into the

reproductive risks of PID and the role of CT. Further research is required on the proportions of PID, EP and

TFI attributable to CT to confirm predictions made in this report, and to improve the precision of key

estimates. The cost-effectiveness of screening should be re-evaluated using the findings of this report.

Funding: The Medical Research Council grant G0801947.
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Plain English summary

Chlamydia trachomatis (CT) infection is a cause of pelvic inflammatory disease (PID), ectopic pregnancy

(EP) and infertility but is usually asymptomatic. The National Chlamydia Screening Programme (NCSP)

offers sexually active young men and women annual screening for CT, but its effectiveness and value

for money have not been definitely established. There has been no consensus on how much reproductive

damage untreated CT infection can cause or on the best methods for estimating this.

The purpose of this project was to assemble all the evidence on CT infection, PID, EP and tubal factor

infertility (TFI) to see if a consistent picture could be formed of the role of CT in causing reproductive

damage. We looked at the worldwide literature on the risks of these outcomes following CT, and also

at the UK evidence on CT prevalence, and routinely reported PID and EP seen in general practitioner

surgeries, hospitals and sexually transmitted disease clinics, and at evidence on infertility from UK surveys.

We found a way of interpreting all this evidence which provided a single consistent set of estimates.

It was confirmed that untreated CT infection posed a significant threat to reproductive health. Our findings

show that screening is beneficial to the individual, but a focus on treating infections at the time they are

acquired may have greater benefit.

The cost-effectiveness of the NCSP now needs to be reassessed, using these new estimates of how much

reproductive damage CT infection can cause.
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Scientific summary

Background and objectives

The National Chlamydia Screening Programme (NCSP) was initiated in 2003 and was operational

throughout England by 2008. It offers screening for Chlamydia trachomatis (CT) infection annually, and

on partner change, to sexually active men and women under 25 years attending general practitioner (GP)

surgeries and other services. In 2012, over 1.7 million chlamydia tests were carried out in England among

young people aged 15–24 years old. Assuming one test per person, this approximates to 35% of

young women and 16% of young men being tested for chlamydia. The objectives of the programme

(see www.chlamydiascreening.nhs.uk/ps/overview.asp) are to:

l prevent and control CT through early detection and treatment of infection
l reduce onward transmission to sexual partners
l prevent the consequences of untreated infection, principally pelvic inflammatory disease (PID), which

can result in ectopic pregnancy (EP) and tubal factor infertility (TFI).

The effectiveness and cost-effectiveness of the programme has yet to be clearly established.

Treatment of current CT infection is considered to be both safe and effective, and screening has been

proposed because the majority of incident CT remains asymptomatic. However, the cost-effectiveness and

clinical effectiveness of screening depends primarily on the precise extent of reproductive morbidity caused

by untreated CT, chiefly PID, EP and TFI, and on the proportion that can be prevented by screening.

The work reported here was funded by the Medical Research Council. The premise for the project was that

there was no consensus on the quantitative risks of PID, EP and TFI following a CT infection, or on how to

derive estimates from the evidence available, or even on what kind of evidence should be used. The

objective, therefore, was to comprehensively assemble all the available evidence on the incidence and

prevalence of CT in the UK, and the evidence from the various prospective and retrospective study designs

from which quantitative relationships between CT, PID, EP and TFI can be derived, as well as routine

sources of evidence on PID, EP and TFI in the UK, in order to assess the consistency of the different types

of evidence, and, if possible, to provide a coherent, unified account of the clinical and population

epidemiology of CT in the UK and its reproductive consequences in women.

Methods

Evidence sources were identified using ‘high-yield’ strategies, based on citations in recent cost-effectiveness

analyses, reviews and research papers, and on the advice of the multidisciplinary group of investigators.

New formal systematic reviews were not undertaken. Where routine UK data were used, this was from

2002, prior to the introduction of the NCSP.
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In the interests of transparency and simplicity, the problem was broken down into separate but interlinked

subproblems. These were: duration of asymptomatic CT; incidence, prevalence and duration of CT

considered together; the risk of PID following CT infection; the incidence of PID and the proportion of PID

attributable to CT; the cumulative incidence of PID, of repeat episodes and the prevalence of previous

salpingitis; the relation between salpingitis and EP; the relation between salpingitis and TFI; and the

relation between CT and TFI from serological case–control studies. Under each of these headings, multiple

sources of evidence were assembled and their interpretation was reviewed. Models were estimated from

the assembled data following a Multi-parameter Evidence Synthesis (MPES) approach, using Bayesian

Markov chain Monte Carlo.

Where appropriate, we combined the evidence from multiple sources to form a single coherent set of

estimates for multiple parameters (such as incidence, prevalence and duration). Wherever possible, we

assessed the consistency of estimates derived from alternative evidence sources. Where evidence sources

were in conflict, we attempted to identify alternative sets of assumptions, or alternative interpretations of

the data sources, under which the different sources of data could be regarded as making consistent

predictions for the model parameters. In such cases, where models and interpretations were based on

post-hoc reasoning, this was highlighted, and any conclusions were considered as tentative and requiring

further confirmation.

Results

The key results from each of the analyses are as follows.

Duration of asymptomatic Chlamydia trachomatis infection in women
(see Chapter 4)
Evidence on CT duration in women was extraordinarily heterogeneous. However, the heterogeneity can be

explained if studies of incident and prevalent infection are distinguished, and if one assumes that ‘passive’

infections clear over approximately 1 week. A model including such passive and ‘real’ infections gave an

adequate fit. The evidence was also compatible with a three-rate model which includes fast clearing real

infection as a result of a protective immune response in addition to passive infection and slow clearing

real infection.

Incidence, prevalence, and duration of Chlamydia trachomatis in the UK
(see Chapter 5)
It was shown that available evidence on CT incidence in the UK (infection rates and re-infection rates),

appropriately calibrated to apply to the general population, was consistent with evidence on duration and

prevalence. Key findings were:

l Approximately 77% [95% credible interval (CrI) 68% to 84%] of incident CT in women

is asymptomatic.
l An asymptomatic CT infection has an average duration of 1.31 years (95% CrI 1.06 to 1.56 years).
l A CT infection (symptomatic and asymptomatic) has an average duration of 1.03 years (95% CrI 0.82

to 1.25 years).
l CT prevalence in women ranges from 8.4% per year in 16- to 17-year-olds to 0.8% in 30- to 44-year-olds.

It was 5.2% (95% CrI 3.8% to 6.9%) in 16- to 24-year-olds and 2.1% (95% CrI 1.6% to 2.7%) in 16- to

44-year-olds.
l CT incidence ranges from 8.2 per 100 person-years in 16- to 18-year-olds to 0.8 in 30- to 44-year-olds.

It was 5.0 per 100 person-years (95 CrI 3.5 to 7.1) in 16- to 24-year-olds and 2.1 per 100 person-years

(95% CrI 1.5 to 2.8) in 16- to 44-year-olds.
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Risk of pelvic inflammatory disease following Chlamydia trachomatis
infection (see Chapter 6)
A Markov model was constructed which allowed for CT clearance as a ‘competing risk’ alongside the

development of PID. Estimates of the proportion of incident CT that progresses to PID were generated,

based on synthesised data from three trials, as well as estimates of the proportion of CT-related PID that

could be prevented by screening on an annual basis. We explored the possibility that rates of progression

to PID could be higher in the 3 months following infection, but the data available could not distinguish

between one- and two-rate models:

l 14.9% (95% CrI 4.8% to 24.8%) of incident CT infections progress to symptomatic PID
l 17.1% (95% CrI 5.6% to 28.9%) of incident CT infections progress to PID (symptomatic

and asymptomatic)
l 7.3% (95% CrI 2.3% to 14%) of incident CT infections progress to salpingitis
l In women aged 16–24 years who undergo screening at annual intervals, at best, 61% (95% CrI 55%

to 67%) of CT-related PID and 22% (95% CrI 7% to 43%) of all-cause PID can be directly prevented.

Incidence of pelvic inflammatory disease and proportion of pelvic
inflammatory disease attributable to chlamydia (see Chapter 7)
We established that the all-cause PID incidence as observed in the Prevention of Pelvic Infection (POPI) trial,

taking account of the proportion that is asymptomatic (13%), is consistent with routinely collected data on

PID from hospital, GP and genitourinary medicine clinic returns, taking account of the overlap between

these data sets and the proportion of PID that is undiagnosed (64%).

l A pooled estimate of PID incidence in 16- to 24-year-olds, including diagnosed and undiagnosed PID,

is 2.5 per 100 person-years (95% CrI 1.8 to 3.4), and in 16- to 44-year-olds is 1.8 per 100 person-years

(95% CrI 1.3 to 2.5).
l 62.9% (95% CrI 57.8% to 67.4%) of PID episodes are in women aged > 24 years.

Several estimates of the proportion of PID due to CT, the Population Excess Fraction (PEF) (see Chapter 3),

were compared:

l the PEF is four to six times higher in 16- to 19-year-olds than in 35- to 44-year-olds
l the preferred estimate of the PEF was 35.3% (95% CrI 10.5% to 68.5%) in 16- to 24-year-olds,

and 19.7% (95% CrI 5.9% to 38.1%) in 16- to 44-year-olds, based on estimates of CT incidence,

CT-related PID incidence and the CT-to-PID progression risk
l this is consistent with estimates derived from case–control studies, adjusted for under-ascertainment of

CT infection, and with estimates of relative risk reduction from the POPI trial although uncertainty

is high.

Cumulative incidence of Chlamydia trachomatis-related and non-Chlamydia
trachomatis-related pelvic inflammatory disease and salpingitis
(see Chapter 8)
Based on a Markov model of PID and salpingitis incidence and repeat episodes:

l A total of 42.9% (95% CrI 25.5% to 61.2%) of incident PID would be confirmed as salpingitis

on laparoscopy.
l In women aged 35–44 years, 33.6% (95% CrI 25.4% to 43.1%) have experienced at least one

episode of PID (all causes, diagnosed and undiagnosed), and 16.1% (95% CrI 9.0% to 24.7%) have

experienced at least one episode of salpingitis (all causes, diagnosed and undiagnosed).
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Comparison of ectopic pregnancy rates predicted from the Lund study with
UK data on ectopic pregnancy incidence (see Chapter 9)
Although conception rates peak between the ages of 20 and 30 years, the proportion of conceptions that

are EPs rises sharply with age, indicating its sensitivity to cumulative exposure to risk factors. The proportion

of EP that is due to salpingitis was derived from two French case–control studies.

l 1.13% of all pregnancies in the UK are EPs
l an estimated 27% (95% CrI 11% to 46%) of EPs are due to salpingitis
l an estimated 4.9% (95% CrI 1.2% to 12.1%) of EPs are due to CT.

We derived predictions for UK EP conception rates based on the salpingitis-to-EP risks observed in the

Lund study, and a parallel set of predictions were made for TFI. It was concluded, however, that the

salpingitis-to-EP risks observed in the Lund study were too high to be consistent with UK data on EP,

possibly because of changes in interuterine device use.

Comparison of tubal factor infertility rates predicted from the Lund study
with UK infertility surveys (see Chapter 10)

l Prevalence of primary and secondary TFI in women aged 44 years was 1.08% (95% CrI 0.79% to

1.54%), based on UK infertility surveys.
l This is consistent with the salpingitis-to-TFI risks observed in the Lund study, if it is assumed that the TFI

risks associated with all salpingitis, whether diagnosed or not, is the same as, or slightly lower than,

the salpingitis-to-TFI risk observed in the Lund study.
l An estimated 29% (95% CrI 9% to 56%) of TFI is attributable to CT.

Proportion of tubal factor infertility attributable to Chlamydia trachomatis,
based on serological case–control studies (see Chapter 11)
We developed a method for estimating the proportion of TFI cases due to CT from serological studies, with

adjustment for the sensitivity and specificity of the serological assays. This was applied to a case–control

study from the Netherlands. It was estimated that 45% (95% CrI 28% to 62%) of TFI was attributable

to CT in this study, but this is likely to be an overestimate. There is a large body of evidence clearly

demonstrating that CT is a significant cause of TFI.

Conclusions

The study has generated a set of estimates on chlamydia epidemiology, from its incidence, prevalence and

duration of infection, all the way through to its role in PID, EP and TFI. These estimates are not only

consistent with an extensive body of literature, and with fertility surveys and routine statistics on PID and

EP, but they are also internally coherent. To achieve this, the study has produced a coherent set of

interpretations of the key study designs.

Public health significance

l Our findings confirm that CT is an important cause of PID and TFI.
l The findings support the view that screening of prevalent cases prevents PID, but suggest that a greater

emphasis should be placed on detection and treatment of incident CT infection, as part of an

integrated programme for sexually transmitted infection treatment and control.
l Current guidance on PID management, regarding a low threshold for presumptive treatment with

broad-spectrum antibiotics, should not be changed.
l Women with lower abdominal pain require advice on when to seek early medical attention to avoid

risk of reproductive damage.
l Every 1000 CT infections in women aged 16–44 years, on average, gives rise to approximately

171 episodes of PID and 73 of salpingitis, 2.0 EPs and 5.1 women with TFI at age 44 years.

SCIENTIFIC SUMMARY
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Limitations
The study has a limited scope: it has not covered dynamic models of CT transmission, and therefore cannot

by itself fully inform cost-effectiveness analyses of screening. Neither costs nor impact on quality of life

have been addressed. Chronic pelvic pain, CT infection in pregnancy, and the role of CT in neonatal

pneumonia and conjunctivitis have not been covered.

Within its scope, the main limitations relate to the large number of assumptions that have been made,

although these are assumptions that have been commonly made in the previous literature, in particular:

l the proportion of PID that is undiagnosed is the same, regardless of age and whether or not the PID is

CT related
l the proportion of PID that would be confirmed as salpingitis on laparoscopy is the same, whether or

not it is CT related
l the proportion of PID that would be confirmed as salpingitis on laparoscopy is the same, whether or

not it is diagnosed
l the reproductive damage caused by salpingitis is the same whether it is CT related or not.

Recommendations for further research
Further research is recommended as follows:

l A suite of serological studies, based on routine health service activity, should be undertaken to estimate

the causal role of CT in PID, EP and TFI, and how this might vary with age.
l Such studies would also offer the opportunity to gain up-to-date information on: PID referral patterns,

leading to better estimates of PID incidence; the proportion of PID causing reproductive damage that is

diagnosed, and the proportion that is silent; whether or not the CT-related PID is more or less likely to

be associated with reproductive damage, and is more or less likely to diagnosed. Microbiological

studies of the aetiology of reproductive damage following salpingitis could also be undertaken.
l Further dynamic modelling, within a MPES framework, so that all sources of evidence can be

incorporated and checked for consistency, with appropriate uncertainty propagation. Further research

may be required to develop methods of Bayesian computation capable of incorporating sexual network

dynamics in disease transmission models.
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Chapter 1 Background

Objectives

1. To set out the background to this research, and the context in which it was conceived.

2. To describe its motivation, objectives and the analytic strategy that has been adopted.

3. To set out the structure of the monograph.

Introduction

We begin with a brief description of the National Chlamydia Screening Programme (NCSP) in England,

and the decision-making processes that led to it. Our account suggests that, at the time it began,

Chlamydia trachomatis (CT) screening in the UK was not based on clear evidence of its effectiveness or

cost-effectiveness. The present study, the questions it seeks to answer and the methodology it uses,

originate in the early history of NCSP, and in the way in which evidence was used in the two UK studies1,2

of the cost-effectiveness of screening for CT, published in 2007.

The National Chlamydia Screening Programme in England

The early history of the programme
The NCSP was set up in 2003 and was implemented in some way in every region of England by 2008. It is

an opportunistic approach involving a combination of health and non-health screening venues, targeted

at sexually active young people aged 15–24 years.3 The objectives of the programme include both

individual and population benefit.

1. Reduce CT incidence (population benefit). Detection and treatment of CT directly lowers CT prevalence

and this will reduce the incidence of new cases in future.

2. Treat CT and prevent sequelae (individual benefit). Detection and early treatment of CT should prevent

progression to sequelae.

3. Treat sexual partners of index cases.

The website (www.chlamydiascreening.nhs.uk/) provides further information on how the programme operates.

The precise evidence base for the NCSP has been controversial both before4 and since its introduction.5

In the UK, new screening programmes are normally examined by the National Screening Committee (NSC),

based on a specifically commissioned systematic review and cost-effectiveness analysis (CEA) of candidate

proposals for screening. The committee applies a set of criteria (see www.screening.nhs.uk/criteria) derived

from the Wilson and Junger criteria for screening,6 and considers the infrastructural implications of the

screening and diagnostic tests, training in counselling and other services. In the case of CT, the decision to

go ahead with a screening programme was originally based on the report from the Chief Medical Officer’s

Expert Advisory Group on Chlamydia trachomatis.7 This group considered that the proposed programme

met the necessary criteria, although others5 have found otherwise. Although the report recommended

screening in sexually active women aged < 25 years, women aged 25 years or over with a new partner in

the previous 12 months, and high-risk men, there was a recognition that data on the costs, feasibility and

acceptability of the programme were lacking, and these were to be addressed by pilot studies to be

initiated the following year, in 1999. An early dynamic modelling study undertaken during this period by

the Department of Health8 may also have influenced the decision. It had concluded that screening could

be cost neutral within 4 years.
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In the event, following supportive experience during the pilot studies, CT screening formed an important

plank in the English government’s 2001 sexual health strategy9 and has continued to do so ever since. The

NSC reviewed the population-based screening programme in 2006 but did not recommend it.10 The NSC

may revisit this, or it may review opportunistic screening as currently practiced in England, in the future.

Sheringham et al.11 recently provided an insightful analysis of the development of policy leading to

the NCSP.

Evaluating the benefits of Chlamydia trachomatis screening
As with any screening programme, evaluation of its effects can be undertaken in two ways: one method is

experimental studies in which individuals are randomised to either screening and early treatment or to no

screening, with outcomes assessed at appropriate later time points. At the time when the NCSP was set

up, two randomised controlled trials (RCTs) had been conducted,12,13 one of which, a large-scale study13

on women considered to be at higher risk in the USA, appeared to show that the frequency of pelvic

inflammatory disease (PID) could be approximately halved in the screened group. This trial13 has been

criticised by a number of commentators,14–16 although the US Task Force for Prevention did not see fit to

adjust the estimates of benefit17 and we return to consider this more closely in later chapters. A second

study, by Ostergaard et al.,12 was relatively small. Both of these trials12,13 studied an intervention and target

population somewhat different from that proposed and implemented in England. Further RCTs have been

published since the NCSP was introduced.

By 2009 there had been more reviews of the trial evidence than there had been trials.18 Once again,

although there was good evidence that screening could be effective in lowering the incidence of PID in

high-risk populations, and also in high school students, some felt that there was a lack of evidence

that screening would be successful in the general population.18 Since then, the Prevention of Pelvic

Infection (POPI) trial19 has studied whether or not screening can lower the PID rate in women in higher

education. The findings of this trial19 were again positive. However, the results were considered to be

less than definitive: the trial was somewhat underpowered because of difficulties with recruitment

and lower-than-expected rates of PID.20,21

There have also been trials that have sought to estimate the effect of screening on population prevalence,

rather than its effect on morbidity in the recruited population. Studies published to date have not delivered

convincing results.18 A stepped-wedge pilot in the Netherlands has reported no substantial fall in positivity

among those screened over three screening rounds. The intended primary outcome of impact on

population prevalence was aborted as a result of difficulties obtaining this measure.22 A Danish trial23

randomised women to a single postal invitation to be screened compared with no intervention, and

followed up to PID, EP and infertility outcomes over a 9-year period. In view of the uptake of testing in

both arms as part of routine care, and the low uptake of the offer of testing in the treatment arm, the

result is not surprising.24 In addition, the length of follow-up is likely to lead to considerable dilution of the

relative risk (see Chapter 3, Population Excess Fraction). Results from the large-scale ACCEPt trial

(Australian Chlamydia Control Effectiveness Pilot)25 in Australia are still awaited.

A second approach to evaluation is by systematic review of the evidence and CEA. CEA applied to

screening decisions can be informed directly by randomised studies, but is more often based on putting

together the wide range of evidence on the population epidemiology of the condition, its clinical natural

history with and without treatment, and – in the case of infectious disease programmes – models of the

dynamic effects of interventions on future incidence. With sexually transmitted diseases (STDs), dynamic

models must also make a range of assumptions about sexual partnership formation rates, duration of

partnerships, their concurrency, and the impact of screening on partner recall and subsequent sexual

behaviour, and so on. The advantage of evaluation by modelling, compared with RCTs, is that it is possible

to consider the longer-term outcomes, beyond the trial, such as EP and tubal factor infertility (TFI). One can

also study the expected dynamic effects of reducing prevalence. In 2007, two major CEAs of CT screening

in the UK context were published.1,2,15
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The results from the two CEAs were very different: one2 concluded that screening was highly unlikely to be

cost-effective (ClaSS, Chlamydia Screening Studies project), whereas the other concluded that screening

was likely to be cost-effective, and most clearly so in men and women aged < 20 years if the risk of PID

attributable to chlamydia was 10% or more. The fact that the two models produced different results is,

in itself, not at all surprising. They were not examining exactly the same screening protocol, different

structural assumptions were made about the natural history and different parameter values were assumed,

particularly touching on transmissibility and sexual behaviour.26,27

However, what is surprising, particularly given the wide acceptance of systematic review as the methodology

for analysing problems of this type, is that the disagreement between the two UK cost-effectiveness analyses1,2

was not only about the parameter values, or even about how parameter values should be estimated from the

available data, but also went as far as a conflict about what kinds of data should be used to inform parameters.

Later in this chapter we illustrate the extent of the controversy concerning just one single parameter.

Population and individual benefits of screening

There are two distinct aspects to the epidemiological model underlying CEA of CT screening programmes:

the dynamic effects on future incidence and prevalence of lowering prevalence by screening and treating

a large proportion of the population, and the expected effect of screening and treatment of CT on

progression to PID, EP and TFI. The two topics are not necessarily completely independent of each other,

although it is important to establish that the two topics can be studied independently.

Although findings from the two UK screening models differed,1,2 one clear finding that emerged from both

CEAs was that the cost-effectiveness of CT screening was highly dependent on what was assumed to be

the frequency of sequelae in untreated infection. The issue needs to be stated in two slightly different

ways, each relating to the two objectives of screening:

1. If CT incidence is lowered by a given amount, how many PIDs, EPs and TFIs are prevented in the

population as a whole?

2. In each case of CT detected by screening and treated, how much is the risk of PID, EP and TFI lowered?

The two questions are fundamentally different, and this has not always been fully appreciated. The first

question invites us to consider how many further CT infections are prevented by treating each infected

woman, recognising that each prevented CT infection can be associated with a number of averted

sequelae. The second question relates to the benefits to the individual of detecting and successfully

treating CT infection. This is the question that can be evaluated by randomising individuals in RCTs of

screening versus no screening.

One way in which the questions of population benefit and individual benefit differ is that the former

concerns incident infection, whereas the latter concerns prevalent infection. Women whose infection is

picked up on screening are almost all asymptomatic (otherwise they would most likely have sought

treatment already) and have already been infected for an unknown period. Trials of screening versus no

screening show that treatment of asymptomatic prevalent infection does prevent subsequent PID. The

issue of incident versus prevalent infections impacts on the interpretation of all the prospective studies of

CT (see Chapters 4 and 6), as well as on the potential benefits of screening.
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Difficulties with the evidence base for screening

In this section, we illustrate the extent of the controversy concerning what evidence should be used to

inform models of CT screening and how it should be used.

Cost-effectiveness analysis models have agreed that the probability of PID following a CT infection is a key

parameter in forming public health decisions on CT prevention and control. Although not all PID is caused

by CT, the probability that an (untreated) episode of CT causes an episode of PID directly controls the

downstream benefit of preventing a CT infection through screening or other preventative measures.

Further, PID occupies a pivotal position among the various sequelae of infection in women because the

consensus view1,28–34 is that PID is a necessary precursor to a significant proportion of ectopic pregnancy

(EP) and to virtually all TFI,35 whether or not the PID is causally attributable to CT. Thus, increasing the

probability that CT causes PID in any model should also lead to predictions of higher incidence of EP and

TFI. (Although, this assumption was not built into the ClaSS study.2) The relationships between the clinical

entities are shown in Figure 1.

Once again, given the central role of this parameter, it comes as a surprise that the two UK studies1,2

sourced parameter estimates in completely different ways.

The ClaSS study2 based their estimates on analyses of the Uppsala cohort,36 a data linkage study involving

all women aged 15–39 years, resident in Uppsala County, Sweden, in a 5-year period from 1985. Screening

was offered by general practitioners (GPs), and laboratory screening records for the period were linked to

hospital records of PID, EP and TFI. Setting aside the precise details of how estimates of progression rates

were derived from the study, several difficulties can be enumerated, perhaps the most important of which is

that women who were screened and found to be CT infected were treated. It is therefore not possible to

draw conclusions about the progression rate to PID, EP and TFI in untreated women.

A very different approach was taken by the Health Protection Agency (HPA) study.1 Here the investigators

carried out scenario analyses around three estimates of the probability that an incident CT causes a PID:

1%, 10%, and 30%. The investigators proposed that the 10% PID rate should be considered the most

plausible on the basis of an analysis of retrospective data. Their argument has two parts: first, overall PID

incidence was between 1.5% and 2.4% per year, based on analyses of the General Practice Research

Database (GPRD). Second, the proportion of total PID that could be attributed to chlamydia infection was

approximately 30% according to studies that looked at evidence of current exposure in PID cases.37

The HPA investigators then compared the supposed numbers of CT-related PIDs presenting to GPs

with data on the number of incident CT cases. Whatever the validity of this approach, the use of

retrospective data and the chain of reasoning via more than one type of study, contrasts with the use of

a data linkage study in the ClaSS2 model.

PID

EP

CT Salpingitis

TFI

Other
infections

Other
causes

FIGURE 1 Relationships between CT infection and its major sequelae.
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Subsequently, an authoritative series of papers on CT clinical and population epidemiology and the

potential for CT screening appeared in the Journal of Infectious Diseases in 2010.38 These were based on

reports from an expert group set up by the US Centers for Disease Control and Prevention (CDC). Among

them was a review of the research on the relation between CT and PID, co-authored by some of the authors

of the ClaSS analysis. The review focused its attention not on linkage studies, nor on retrospective studies,

but on a third type of study: prospective follow-up of untreated women with CT. Register linkage studies

were recognised as possible sources of information, but were discounted for the reasons given above.

Even this does not exhaust the list of types of data that have been proposed. Another type of data was

brought into play by van Valkengoed et al.39 This was not prospective, retrospective or a linkage study, but

simple routine statistics on the numbers of PIDs, EP and infertility being reported in routinely collected data.

These estimates have been criticised,40 and the reasoning behind them is questionable (see Appendix 9).

However, although unconventional from a traditional Hierarchy of Evidence viewpoint,41 the use of routine

statistics to support inferences about causal effects is valid. Given an estimate of CT incidence in a

population of known size, a register study of the number of PID episodes can put effective constraints on

the CT-to-PID progression rate.

Summary of aims and objectives

Hopefully, our previous comment on the background to the NCSP, the way it was introduced and the

difficulties that respected experts have had, not only in providing a CEA of screening, but even in

identifying an appropriate methodology, explains the motivation behind this project. The aims of the

proposed research, as they were stated at the outset, were to generate:

1. a consensus view of what existing data tell us about the natural history of untreated CT

2. a quantitative model of the natural history of CT, providing internally coherent and externally validated

estimates of the prevalence and incidence of the complications of CT in the absence of treatment,

suitable for modelling cost-effectiveness of interventions in the UK.

This monograph focuses attention on CT and its sequelae in women aged between 16 and 44 years of

age, corresponding approximately to the period of reproductive activity. Many of the data sources relate to

England, some to Great Britain and some to the UK. However, our general presumption is that, in the

absence of any evidence to the contrary, there is no reason to believe that we would reach different

conclusions for different nations within the UK, and conclusions are therefore intended to be relevant to

the UK as a whole.

Any estimates of incidence and prevalence, both of CT and of its sequelae, must refer to a specified time,

as well as a specified place. We have targeted the year 2002, which is immediately before the beginning

of the NCSP. Where possible, routine data have been from that year, and, although it has not been

possible to source all evidence from that year, we have interpreted evidence as being relevant to that year,

unless otherwise stated.

We now explain the analytic strategy we adopted to achieve these aims.
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Analytic strategy

In a previous section we have just picked out a single parameter, the risk of PID following CT, to show first

that previous investigators have not simply inferred different parameter values from the same set of

available data, but that they have sourced their parameter estimates from completely different kinds

of data. This is by no means the only example that could be cited. These fundamental divergences of

approach between previous investigators lie behind the analytic strategy we have adopted, which is

essentially to look at all the sources of evidence, to see if they are consistent with each other, and to

produce a set of internally consistent and coherent estimates, based on all the data sources – or at least all

of those that we believe provide unbiased estimates of their target parameters. This is a large and complex

undertaking, not only because of the range of types of study that could bear on each parameter, but also

because the parameters are all related. For example, if we were to entertain the belief that CT incidence

was at the high end of its credible interval (CrI), we should be committed to also believing that CT

prevalence is higher and/or duration of infection is lower; also that there is a higher incidence of

CT-related PIDs, a higher incidence of CT-related EP episodes and a higher prevalence of CT-related TFI.

Therefore, when we examine the evidence about any one of these parameters we should examine the

evidence about all of them, because we can learn about each one by looking at any of the others.

The relationships between the key clinical entities are shown in Figure 1.

To meet this challenge we have adopted the following analytic strategy:

1. work through the natural history of CT and its sequelae in a logical sequence, starting with CT

incidence, prevalence and duration, and ending with TFI

2. at each stage, review the different kinds of evidence available, prospective, retrospective and routine

data, and review previous approaches to deriving parameter values from these evidence types

3. formulate a model for the evidence at each stage, and synthesise the evidence under that model,

examining the consistency of estimates with the data

4. examine the consistency of the entire set of estimates overall.

Statistical combination of evidence
To carry out this programme, we have relied on Multi-parameter Evidence Synthesis (MPES). This is an

approach to model building and evidence synthesis42,43 that has properties that will prove valuable in the

present context. It recognises that epidemiological studies do not necessarily generate direct evidence on

the parameters of interest, but instead can inform functions of parameters. It has the technical means to

combine information on parameters and functions of parameters within a single coherent structure;

it offers standard statistical approaches to checking model fit, and specifically for determining whether

or not different sources of evidence are in conflict regarding the information they contribute to any

specified parameter; all data sources are formally incorporated via their likelihood, and parameter

uncertainty, sampling uncertainty, and variation owing to heterogeneity is readily propagated through the

evidence network.

Multi-parameter Evidence Synthesis is an essentially Bayesian methodology and it has been implemented

using the popular Bayesian Markov chain Monte Carlo (MCMC) package WinBUGS version 1.4.3 (Medical

Research Council Biostatistics Unit, Cambridge, UK).44 But we emphasise that the use of Bayesian MCMC is

not a necessary feature of our approach to evidence synthesis. Bayesian MCMC in WinBUGS makes it

relatively easy for investigators to fit complex models, and the adoption of simulation-based Bayesian

computation also greatly facilitates uncertainty propagation. However, similar results could be achieved, in

principle, though perhaps with some difficulty, using Frequentist methods.

The idea of statistical combination of information on different functions of parameters appears to have

been independently rediscovered a number of times in the last 80 years, with applications in physics,

environmental risk control, deterministic dynamic models of population change, and in a range of

computational frameworks, in both Frequentist and Bayesian forms.45–48 The term ‘multi-parameter
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synthesis’ was coined by Victor Hassleblad,49 one of the originators of the Confidence Profile Method,50 a

programme of research in clinical and descriptive epidemiology that was the immediate precursor to MPES

and which made particular use of bias adjustment.

Besides review papers,42,43,51 there are a number of applications of MPES to infectious disease

epidemiology, often oriented to screening problems.52–56 A relatively simple application, and perhaps the

best introduction, setting out all of the main properties of MPES, is a stylised application to prenatal

human immunodeficiency virus (HIV) testing.57

Multi-parameter Evidence Synthesis can be viewed as a purely technical extension of the single parameter

meta-analysis, as described in numerous textbooks and tutorial papers,58–60 to multi-parameter problems.

But it is probably more accurate to see it as a philosophically different approach to evidence and

evidence synthesis.

Coherence of estimates
An important property of this approach to synthesis is its internal coherence. The generation of

epidemiological evidence tends to be fragmented: separate studies are made of CT prevalence, CT

incidence and CT duration, and separate estimates are published. But, in truth, these three quantities are

known to be related: prevalence= incidence × duration. Estimates of any one of these parameters need to

be consistent with estimates of the other two and with whatever data inform any of them. In the same

way, studies of CT incidence, progression rates to PID, EP and TFI should produce results that are

mathematically related to the results from retrospective studies of the role of CT in PID, EP and TFI, and to

routine statistics. MPES is simply a methodology in which these relationships can be explored in a formal

way, while taking account of the full extent of uncertainty due to sampling variation, additional sources of

variation and any concerns that might come under the heading of ‘data quality’.

There is, in fact, nothing very new or original about putting different pieces of information together to see

if they ‘add up’. Many chlamydiologists have carried out ‘back of the envelope’ calculations with exactly

this objective in mind, to see whether information on incidence and prevalence, put together with

information on progression to PID, EP or TFI could be consistent with routine data or not. Or asking

whether routine data, put together with information on the proportion of PID, EP or TFI attributable to CT

could be consistent with CT incidence and prevalence information or not. Indeed, many calculations of this

type have been published.5,39,40,61,62 The programme of work described in this monograph uses MPES to

examine exactly the same ideas, but within the framework of a formal statistical method, and perhaps in a

more complete and systematic way.

Role of interpretation
Note, however, that MPES is not simply a ‘synthesis exercise’. The synthesis is carried out under a very

specific model of how the different data sources were generated. There is, therefore, as in any scientific

exercise, an element of interpretation, and therefore of judgement. This arises in several ways. First,

goodness-of-fit tests may not be able to distinguish between alternative models, forcing investigators to

use their judgement. But a far more serious element of subjectivity lies in the fact that our overall

judgement about the mechanisms that generate a set of data may depend greatly on our interpretation of

just one or two studies. It is notoriously difficult, for example, to know if confounding variables or effect

modifiers are present, or how great their impact is. Although conflicts between evidence sources may alert

us to the presence of confounders and effect modifiers, the use of MPES does not remove the problems

they create. We have therefore been explicit about where there is a subjective element to model choice,

and particularly where there is an element of data-driven (post hoc) re-interpretation of evidence. In these

instances, we follow the usual practice of describing the results as ‘hypothesis generating’, and we

prioritise research recommendations in this light.
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Overview of this monograph

In Chapter 2 we present a brief account of the natural history and epidemiology of CT and its sequelae.

The objective is to explain the relationships between the clinical entities, and the definitions we have

adopted. Chapter 3 sets out the methodology used throughout the monograph. This covers methods for

literature identification, and gives some further details of the MPES approach, such as sensitivity to priors,

technical aspects relating to the use of WinBUGS software, and our methods for assessing model fit and

model selection.

The rest of the monograph takes the successive aspects of the natural history of CT and PID in turn and

delivers a ‘mini-synthesis’ of specified subsets of the data. This approach allows us to gather together and

synthesise all the direct evidence on each parameter, and then to build it incrementally into the overall

model. We adopt an incremental strategy, in preference to putting every piece of evidence straight into a

single overarching model. It may seem at first sight that this defeats the very advantages of MPES.

However, the advantage of the incremental approach is that it commits us to a view on each parameter

that can be examined and debated in reference to the existing literature. If we had combined all the data

from the outset, it would be much more difficult to understand conflicts between the results and

previous work.

Figure 2 provides a simple schematic guide to the contents of Chapters 4–12, in terms of the relationships

between the clinical entities (see Figure 1). We begin at the start of the natural history process with a

synthesis of data on the duration of CT in asymptomatic women (see Chapter 4). This is followed

(see Chapter 5) by a synthesis of information of prevalence and incidence in the UK with the duration data.

PID

TFI EP

Other
infections

Salpingitis Other causes

(a)

CT

PID

CT

TFI EP

Other
infections

Salpingitis

(b)

Other causes

PID

CT

TFI EP

Other
infections

Salpingitis

(c)

Other causes

FIGURE 2 Guide to Chapters 4–12 of the report. (a) Chapters 4 and 5, incidence, prevalence and duration;
(b) Chapter 6, CT to PID progression; (c) Chapter 7, CT and PID; (d) Chapter 8, cumulative PID and salpingitis;
(e) Chapter 9, salpingitis and EP; (f) Chapter 10, salpingitis and TFI; (g) Chapter 11, TFI and CT; and
(h) Chapter 12, summary. (continued )
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FIGURE 2 Guide to Chapters 4–12 of the report. (a) Chapters 4 and 5, incidence, prevalence and duration;
(b) Chapter 6, CT to PID progression; (c) Chapter 7, CT and PID; (d) Chapter 8, cumulative PID and salpingitis;
(e) Chapter 9, salpingitis and EP; (f) Chapter 10, salpingitis and TFI; (g) Chapter 11, TFI and CT; and
(h) Chapter 12, summary.
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This allows us to establish the consistency of incidence, prevalence and duration data, and to go forward

with a coherent analysis of these parameters. The next chapter (see Chapter 6) examines and re-analyses

information from prospective studies, particularly randomised studies, following women with untreated CT

forward to observe the occurrence of PID. This is used to generate estimates of the probability a CT episode

causes PID. In Chapter 7, we examine the relationship between CT and PID from a retrospective viewpoint:

how much PID is caused by CT. This requires us also to consider the incidence of PID.

There is strong evidence that the women with PID, who have an elevated risk of EP and TFI, are those in

whom salpingitis can be confirmed by laparoscopy. In these women, EP and TFI risk increases with the

number of PID episodes. Chapter 8 presents a Markov model in which information on PID incidence and

CT re-infection rates is used to generate predictions on the proportion of women who have experienced

salpingitis followed by further episodes of PID. In Chapter 9 we use these together with data from

prospective and retrospective studies of salpingitis and PID to compare the predicted occurrence of EP to

the rates of EP observed in the UK. Chapter 10 takes the same form as Chapter 9, but deals with TFI rather

than EP. Chapter 11 derives sensitivity and specificity estimates for some new CT serology assays to adjust

reported CT seroprevalence in a study comparing TFI cases and controls. We then derive estimates of the

proportion of TFI attributable to CT. Finally, in Chapter 12 we review the previous chapters, identifying

where inconsistencies between estimates exist, and suggesting how these might be resolved.

Chapters 8–12 should be considered to be somewhat more tentative than Chapters 4–7. There has been

little previous work looking at these different evidence sources, and the aetiological mechanisms relating

CT and PID to EP and TFI are less well studied. As a result, there is a larger element of post-hoc reasoning

as we attempt to identify what assumptions need to be made about the evidence sources in order to make

them consistent, rather than the preferred more objective approach of assembling evidence and then

checking consistency under a well-understood model of how the evidence sources are generated. Chapter 12

ends with a tentative set of final estimates, an outline of study limitations, and research priorities.

Summary

1. At the time the NCSP was introduced, the evidence base for the cost-effectiveness of CT screening

against its aims of reducing infection rates and reducing sequelae was mixed and questionable.

2. Two major UK studies1,2 of the cost-effectiveness of CT screening sourced critical parameter estimates

from completely different types of study, indicating a lack of consensus about what kinds of evidence

should be used to inform natural history parameters.

3. Our analytic strategy is to look at all sources of evidence: retrospective, prospective and routine data.

4. MPES is used to assess the consistency of different types of evidence, and to develop an internally

coherent model of the natural history and population epidemiology of CT.

5. The use of MPES does not remove the subjective elements in model choice and evidence interpretation.
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Chapter 2 Natural history and epidemiology of
Chlamydia trachomatis

Objectives

To:

l provide an introductory account of CT, and its natural history, clinical and population epidemiology in

the UK in women
l explain what is known about the relations between CT, PID, salpingitis, EP and TFI, explaining features

of their clinical and descriptive epidemiology in the UK
l provide definitions of clinically diagnosed PID and salpingitis, and to explain the concepts of

undiagnosed symptomatic PID, and asymptomatic or silent PID.

Chlamydia trachomatis infection
Chlamydia trachomatis is an intracellular bacterial pathogen and a major cause of genital and eye disease.

It comprises three human biovars. One causes trachoma, the most common form of blindness worldwide,

and particularly prevalent in Africa. A second is the cause of lymphogranuloma venereum, a sexually

transmitted infection (STI), mainly of gay men, in the developed world. The third biovar, consisting of

serovars D to K, is the topic of this monograph. It is a major cause of PID, EP and TFI in women,

epididymitis in men, and neonatal conjunctivitis and neonatal pneumonia in newborns.3,28,63,64

Chlamydia trachomatis is transmitted by oral, vaginal or anal sex, and can also be transmitted from mother

to newborn during a vaginal delivery.3,63,64 Diagnosis is generally based on nucleic acid amplification

tests (NAATs) carried out on cervical or vaginal swabs in women, urethral swabs in men or on urine

samples.3,63,64 NAAT has largely replaced culture or enzyme immunoassays for diagnostic testing.3,63,64

However, culture played a key role in earlier epidemiological studies, and the lower sensitivity of culture,

60–80%,64,65 needs to be taken into account when interpreting the earlier research results.

The infection can be treated effectively by antibiotics, such as azithromycin or doxycycline, but it is often

asymptomatic, especially in women.3,63,64 Re-infection by the same partner is an important issue in

prevention: partner notification rates can be improved and risks of re-infection reduced by providing index

cases with prescriptions intended for their partners, or with the medication itself.66–71

Control and prevention

There appears to be little consensus on approaches to control and prevention. In the USA screening is

recommended for non-pregnant women aged < 25 years, and for older women with risk factors

(e.g. those who have a new sex partner or multiple sex partners).63 The technical report from the European

Centre for Disease Control 2008 lists the chlamydia-control activities in Europe, ranging from none to an

organised CT screening programme.16 In Sweden, a change in infectious disease laws in 1988 required

doctors to offer testing and treatment to those with suspected chlamydia. This policy continues in five

other countries. It should probably be considered as opportunistic testing for selected asymptomatic

individuals, rather than as a formal screening programme.5,16 Only two countries are detailed as having an

organised CT screening programme: England and the Netherlands.16 The opportunistic screening approach

adopted in England is described in Chapter 1. In the Netherlands, a pilot register-based screening
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programme for people aged 16–29 years was recently undertaken (2007–10).72 Participation rates were

low, < 20%, and decreased over three rounds of register-based screening.22

Natural history and epidemiology

Chlamydia trachomatis infection
Approximately 75% of incident infections in women are asymptomatic.73 Although studies of the duration

of asymptomatic infection have produced a wide range of estimates – between 1 and 18 months

(see Chapter 4) – it is evident that the infection can clear spontaneously in the absence of treatment

as a consequence of the adaptive and innate immune responses.38,74

The risk of transmission of infection from one episode of sexual intercourse is estimated to be between

10% and 20%.75,76 Given the high sensitivity of current NAATs for detecting CT,8–10 and the fact that

non-host DNA and sperm can be recovered from the female genital tract up to 7 days following sexual

intercourse, this strongly implies that at least some women who test CT positive (CT+) are probably only

passively infected.77,78 This is consistent with the observations of Joyner et al.79 and Geisler et al.80 that a

proportion of women testing CT+ without treatment become CT NAAT-negative within 2 weeks.

Prevalence of CT can be studied by population surveys, using NAATs on genitourinary specimens. As with

most STIs, incidence and prevalence are highest among young people, and decline steeply with age.81

Infection is more common among the more sexually active individuals, with the greatest number of

sexual partners.8–10,81

Pelvic inflammatory disease

Definition of pelvic inflammatory disease
Pelvic inflammatory disease comprises a spectrum of upper genital tract inflammatory disorders among

women, which includes any combination of endometritis, salpingitis, tubo-ovarian abscess and pelvic

peritonitis.82 The principal clinical and economic significance of CT lies in the fact that it is a causal agent

of PID and the further damage to reproductive health that follows from salpingitis.33,83,84 Confusion can

arise with the term PID. Historically, it was often used interchangeably with the term ‘acute salpingitis’ as

detected at laparoscopy, which, historically, was the gold standard for diagnosing PID.85,86 More recently

endometritis, which is associated with salpingitis but can be detected by endometrial sampling, has been

equated with PID because of the unacceptability of performing laparoscopy on large numbers of women

with minimal symptoms.85–87

Pelvic inflammatory disease is not easy to diagnose and the criteria for a clinical diagnosis of PID have

changed over time.33 In the original Lund studies33 the minimum criteria for diagnosis were: (1) lower

abdominal or pelvic pain of < 3 weeks; (2) a purulent vaginal discharge diagnosed on microscopy or

painful intermenstrual bleeding; and (3) increased motion tenderness of the uterus and adnexa on

bimanual examination. In the UK national PID guideline 2011,83 recent onset of lower abdominal pain in

association with local tenderness on bimanual examination is now considered sufficient to establish a

diagnosis and initiate treatment. This is because it is now recognised that many women with salpingitis

have subtle or mild symptoms.63,83 Even when present, the clinical symptoms and signs of PID lack

sensitivity and specificity for detecting women with salpingitis.83 Because of the difficulty of diagnosis and

the potential for damage to the reproductive health of women (even by apparently mild PID) and the

benefit of early antimicrobial therapy, health-care providers are now advised to maintain a low threshold

for the diagnosis of PID.83

Laparoscopic diagnosis of PID, which identifies women with salpingitis, is no longer undertaken in women

with a clinical diagnosis of PID. However, clinical information can be used to classify PID as ‘possible’,
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‘probable’ and ‘definite’ PID, based on Hager’s criteria.88,89 Table 1 details the clinical definitions adopted

by Taylor-Robinson et al.,88 based on a modified version of the Hager criteria, and which were used to

estimate the proportion of women with salpingitis following a clinical diagnosis of PID. This classification is

often used in clinical trials such as POPI, and in studies of patient data such as the GPRD database,

although in recent work using GPRD ‘probable’ PID includes chronic disease as well.19,88,90 As the

probability that patients diagnosed with PID based on clinical presentation have salpingitis decreases, the

likelihood of other diagnoses, such as endometriosis, irritable bowel syndrome and functional

pain, increases.

For the purposes of this report we define clinically diagnosed PID as women with ‘probable’ and ‘definite’

diagnostic criteria. Women with ‘possible’ diagnostic criteria may be treated for PID depending on to

where they present, which is probably less likely in primary care compared with departments of

genitourinary medicine (GUM) as there is greater expertise in managing PID in the latter setting. Diagnostic

thresholds have changed over time as the role of PID in reproductive damage has been recognised.

Accordingly, the proportion of women with PID regarded as having ‘probable/definite’ or ‘possible’ PID

diagnostic criteria is likely to have increased over time, with fewer women remaining symptomatic and

undiagnosed.19,90 This probably began in the mid to late 1990s in the UK.

Infections associated with pelvic inflammatory disease
Pelvic inflammatory disease is not exclusively caused by CT, with about 30–40% of PID cases being

CT+37,82 (see Chapter 7). A range of STIs have been implicated, particularly gonorrhoea and, more recently,

Mycoplasma genitalium.63,83,91 It is also likely that PID can be caused by micro-organisms associated with

bacterial vaginosis (BV), which is commonly present in women with PID.63,83,92 These micro-organisms

include Gardnerella vaginalis and anaerobes (including Prevotella, Atopobium and Leptotrichia),83,93 which

are probably sexually transmissible but would not be classed as STIs.92,93 Anaerobes are isolated more often

from women with severe PID. As a consequence, broad-spectrum antibiotic therapy is recommended for

PID to cover Neisseria gonorrhoeae, CT, and a variety of aerobic and anaerobic bacteria commonly isolated

from the upper genital tract in women with PID.83

Bacterial vaginosis is a common condition affecting women of reproductive age.94,95 It is a condition

characterised by vaginal flora imbalance, in which the normal plentiful lactobacillus is scarce and other

anaerobic bacteria abundant.94–96 It is present in between 12% and 25% of women.94,95 Women are

usually asymptomatic and if symptoms are present these consist of vaginal discharge with or without an

odour.63 Only some BV-associated bacteria have been associated with PID, and it remains to be established

whether or not these bacteria are indeed causally implicated in reproductive damage.63

TABLE 1 Definition of clinical diagnosis of PID

PID diagnosis Definition

Definite Recent-onset lower abdominal pain; cervical excitation with or without uterine/tenderness, with adnexal
tenderness with or without mass, and clinically unwell, and LGTI

Probable Recent-onset lower abdominal pain with (1) cervical excitation/uterine tenderness and adnexal
tenderness or (2) cervical excitation/uterine tenderness or adnexal tenderness with evidence, LGTI or
clinically unwell

Possible Recent-onset lower abdominal pain and only one of the following: (1) cervical excitation/uterine
tenderness or (2) adnexal tenderness

or

Chronic lower abdominal pain, not clinically unwell and no evidence of LGTI and only one of the
following: (1) cervical excitation/uterine tenderness or (2) adnexal tenderness

LGTI, lower genital tract infection.
Definitions based on Taylor-Robinson et al.88
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Undiagnosed pelvic inflammatory disease and asymptomatic pelvic
inflammatory disease
Over 50% of PID episodes in the UK are treated in primary care, but it is also treated in STI clinics and in

hospital. Data from the GPRD, Hospital Episode Statistics (HES), and KC-60 returns from STI clinics for

2002 are shown in Table 2, which is based on the ‘definite/probable PID’ definition.90 We have assumed

that women admitted for inpatient treatment of PID in the HES data, and women diagnosed at

departments of GUM by clinicians trained in diagnosing PID, are ‘probable’ or ‘definite’ cases. An

unknown proportion of diagnosed PID episodes meeting these definitions will be recorded under more

than one of these locations, although the study by Nicholson et al.97 using the GPRD database suggests

that approximately one-third of cases of probable or definite PID diagnosed in primary care have been

treated elsewhere.

These figures on diagnosed PID incidence certainly underestimate the true incidence of PID episodes.

It is widely accepted that a relatively high proportion of PID is undiagnosed. This is inferred from historical

studies of TFI. PID is considered to be a necessary precursor of TFI,98 and yet a high proportion of women

with TFI have no history of clinical PID.99–102 Wolner-Hanssen103 found that only 34% of TFI cases reported

a previous diagnosis of PID. However, only 11% reported never having had clinical symptoms.103 The

implication is that a large proportion of the PID that causes TFI is undiagnosed, but it is relatively unusual

for PID which causes reproductive damage to be completely asymptomatic. We therefore distinguish

diagnosed PID, by which we mean PID meeting the ‘probable/definite’ criterion, undiagnosed symptomatic

PID and asymptomatic or silent PID (see Chapter 7).

Therefore, even if we maintain a single diagnostic criteria, such as ‘probable/definite’, across all studies,

and these definitions were consistently applied – which we know is not the case – it would still be the case

that the proportions of PID that would be ascertained would depend on the study design. For example,

the routine PID statistics in Table 2 depend on patient self-referral, whereas in a prospective study of

women attending a STI clinic, or in the context of a screening trial, a higher proportion of PID meeting the

same definition may come to light (see Chapter 7).

Current guidance on pelvic inflammatory disease management
Recognising the difficulty of achieving a definitive diagnosis, the British Association for Sexual Health and

HIV (BASHH) guidelines83 emphasise a low threshold for empiric treatment, to lower the risk of subsequent

EP and infertility. The same advice is seen in primary care guidelines and the National Institute for Health

and Care Excellence (NICE) Clinical Knowledge Summaries.104,105 However, the latter cites multiple partners,

a recent new partner, young age and previous history of PID or a STI as risk factors for PID. The NICE

Clinical Knowledge Summary104 explicitly states that ‘PID is almost always due to a sexually transmitted

disease’. This contrasts somewhat with BASHH guidelines,83 which acknowledge that only 25% of cases of

can be accounted for by CT or N. gonorrhoeae. US guidelines highlight young age as a risk factor but

avoid citing any behavioural risk factors.63 All guidance advocates early use of broad-spectrum antibiotics.

TABLE 2 Number of incident cases of PID in England, 2002

Age (years) HES GPRDa GUMb Female population

16–19 1233 5083 3212 1,199,600

20–24 3101 8842 4399 1,519,100

25–34 9756 14,932 3919 3,502,100

35–44 10,526 9609 1388 3,795,600

GPRD, General Practice Research Database; GUM, genitourinary medicine; HES, Hospital Episode Statistics.
a Definite and probable PID as defined in French et al.90

b Data by age not available for 2002, so we assume that the age distribution for these data was the same in 2002 as
in 2009.
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Age profiles of Chlamydia trachomatis and pelvic inflammatory disease
In this section we briefly compare the age profiles of CT and PID, to draw attention to an important, but

generally overlooked, issue in the natural history of CT. Estimates of CT prevalence are approximately

fourfold higher in women aged 16–24 years than women aged 25–44 years.106 The age profile of incident

PID is very different. HES show an increasing trend in PID incidence rates with age (see Table 2). Evidence

from the GPRD shows incidence rates that are higher in the age group 20–24 years, but the difference in

PID incidence rates across ages is far less than the difference in chlamydia prevalence. The age profile

in PID presenting in STI clinics is more similar to the age profile of incident CT, in that there is a relatively

high proportion of young women. However, of the three sources, these make up the smallest proportion

of diagnosed cases.

There are three plausible contributory reasons for these discrepancies in age profile. First, the PID diagnosis

rates may increase with age. There is some evidence that the severity of PID might increase with the

number of previous PID episodes. The proportion of women who become infertile because of tubal

scarring from adhesions, and the proportion of pregnancies that are ectopic, appears to increases

multiplicatively with number of previous PID episodes,33 which is likely to be positively correlated with age,

and it is likely that more severe PID has a higher chance of being diagnosed and hospitalised. This

hypothesis is supported by the dramatic increase with age of hospital-diagnosed PID.

A second possibility is that the probability that a case of CT causes an episode of PID may be higher in

older women, perhaps owing to more previous episodes of CT, other STIs and PID.107

Finally, the proportion of PID that is caused by CT may decline with age (see Chapter 7), possibly because

of differences in the age distributions of the other risk factors for PID. Facultative and anaerobic bacteria

are frequently isolated from women with PID; although often present in the normal vaginal flora, they

occur more often and in increased concentrations, in women with BV,82 which has been associated with

PID. Interestingly, isolation of endogenous bacteria from the upper genital tract appears more common in

older women and may be associated with severe suppurative disease, including tubo-ovarian abscess and

recurrent PID.82,108 Although BV does not appear to be associated with age, it is associated with increasing

lifetime number of sexual partners.94,109

These three different explanations would have quite different public health implications. Analyses in

subsequent chapters throw some light on the issues, but we do not believe it can be resolved on the basis

of existing evidence, and this is addressed in the research recommendations in Chapter 12.

Salpingitis
Much of our knowledge of the impact of PID on reproductive health is based on the Swedish Lund

study,33,34,84,110 which recruited PID cases admitted to hospital between 1960 and 1984, and followed

them forward to observe reproductive outcomes over a median 8-year period. The study was based on

laparoscopic examination. Women with macroscopic inflammation of the fallopian tubes, ‘salpingitis’, were

distinguished from PID cases with no macroscopic inflammation at laparoscopy. The more severe the

macroscopic salpingitis, the greater the risk of adverse reproductive outcomes. Remarkably, the incidence

of TFI and EP in the control group, those admitted to hospital with PID but with no salpingitis on

laparoscopy, appeared to be no different from the general population, even though a lower genital tract

infection was identified in the majority of cases.33 It is likely that many of these women would have had

endometritis or microscopic inflammation of the fallopian tubes but some will have had other pathology

or causes for their pelvic pain.83,111,112 Incidence of EP and TFI among women with salpingitis depended on

age, the number of clinical PID episodes – and thus presumably on the number of salpingitis episodes –

and on the severity of the salpingitis on admission (see Chapters 9 and 10).

These results raise the question: what proportion of clinically diagnosed PID is accompanied by an

underlying macroscopic salpingitis? Unfortunately for our purposes, laparoscopy is no longer a routine

procedure in examination of PID, so it is not possible to match up the definitions of PID and salpingitis
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employed in the Lund study33,34,84,110 to current practice or to recent research studies. However, we can

deduce from the fact that they were hospitalised that the cases of PID recruited into the Lund study33,34,84,110

would be at the more severe end of the spectrum. What is known is that the proportion of clinical PID cases

with salpingitis fell during the course of the Lund study33,34,84,110 from an initial 80% down towards 60%

among those recruited at the end of the study.110 In the analyses we present in Chapters 10 and 11, we have

assumed that the proportion of PID cases with salpingitis has continued to fall.

Finally, there is little quantitative information on whether the organism causing PID impacts on the

probability or extent of reproductive damage. In the Lund study33,34,84,110 it was observed that the severity of

CT salpingitis at laparoscopy was generally greater than would be expected from the relatively benign

clinical picture.101 For PID with salpingitis (including that caused by CT), delay of treatment for more than

3 days from onset of symptoms increases the likelihood of tubal damage.84 Therefore, if the clinical

symptoms of CT-related PID appear to be less severe than gonococcal PID, it is possible that women with

chlamydia PID may present later than women with gonococcal PID,101,113–115 and as a result suffer more

reproductive damage. The same comments apply to women with asymptomatic PID.

Ectopic pregnancy
In a normal pregnancy the fertilised egg implants in the uterus, where it divides and develops into an

embryo and, eventually, a fetus. An ectopic pregnancy is one in which the egg implants outside the uterus,

most often in the Fallopian tubes. EP is an important cause of maternal morbidity and, occasionally,

mortality.116 It usually presents with acute symptoms including pelvic pain and vaginal bleeding, although

increasingly EPs are diagnosed before the onset of symptoms, allowing early, conservative treatment.

Prevention of maternal morbidity and mortality relies on early diagnosis and appropriate management,

which is almost invariably in a specialist setting.116

Among the common causes of EP are fallopian tube damage because of salpingitis, surgery and smoking.116

In a normal pregnancy, cilia in the Fallopian tubes carry the fertilised egg towards the uterus. If the cilia are

damaged, the egg may become lodged in the tube. PID is an inflammatory process that can result in the

development of scar tissue in the tubes. If both tubes become entirely blocked then fertilisation cannot take

place at all. This constitutes a single common pathway leading from salpingitis to both EP and to TFI (which

will be exploited in the modelling in Chapters 9 and 10).98,116

Data on overall EP rates in England are based on HES (HES code O00).117 If these are compared with

conception rates (maternities plus abortions),118 it is evident that the EP rate, defined as the number of

EPs divided by the number of conceptions, has remained remarkably constant between 2000 and 2009

(Figure 3), at around 1% of conceptions. Similar rates have been reported in France, although there was
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evidence that a fall in intrauterine device (IUD)-related EPs had masked a rise in EPs caused by salpingitis.119

EP rates reported in the USA have been somewhat lower, but, again, have remained stable over

recent years.120

Although the overall conception rate falls steeply from the age of 30 years onwards, the proportion of

conceptions that are EPs rises with age (see Figure 3). The same phenomenon has been observed many

times.120–122 This points to the role of cumulative exposure to the causal factors, whether these are smoking

or tubal damage, which can only increase with age.

The fact that EP risk links to cumulative exposure to risk factors, including salpingitis, rather than to, say,

incident exposure, is critical to understanding the role of PID.123 Egger et al.121 report an ecological analysis

of EP rates and CT prevalence by age and location in Uppsala county, Sweden. They establish that the

correlation between CT prevalence and EP rates is strongest in 20- to 24-year-olds, and that it becomes

increasingly weak in the 25- to 29-year-old, 30- to 34-year-old, and finally the 35- to 39-year-old groups.

At the same time the regression of EP rate against CT prevalence becomes increasingly steep, which

would not be expected if variation in EP rates was driven by variation in CT incidence. However, these

phenomena can be readily explained if cumulative salpingitis incidence is the variable determining EP rates.

Most CT occurs in the younger age groups, but current incidence and prevalence become increasingly

poor predictors of cumulative exposure to CT as age increases. On the other hand, the regression against

recent incidence becomes increasingly steep with age – although with increasing error about the

regression – because cumulative incidence is higher per unit of current prevalence. These ecological

observations provide further support for the conclusions we draw from Figure 3 in the previous paragraph.

Another important feature of the relation between salpingitis and EP is the strong ‘dose–response’

relationship reported in prospective studies following women with salpingitis. The Lund studies,33,110,124 in

particular, followed women for an average of approximately 8 years from hospitalisation for PID. The

proportion of women whose first subsequent pregnancy was an EP increased systematically with severity

as determined by laparoscopy, and also with the number of previous salpingitis episodes.124 Among the

women who subsequently conceived, those with two, or three or more previous episodes of salpingitis had

a non-linear increase in risk of EP (see Chapter 9). A similar pattern of findings was reported for TFI.33 A

record linkage study in the USA following high-risk women with a diagnosed CT infection over an average

6-year period again reported a similar increase in risk of EP, but this time in relation to the number of

previous CT infections rather than the number of PID episodes.107 These studies constitute some of the

strongest evidence for a causal link between salpingitis (PID) and EP. Of particular significance is the fact

that the dose–response relation is exactly what would be expected on the basis of cumulative exposure to

risk factors. In addition, the similarity of the ‘dose–response’ effect attaching to CT and salpingitis suggests

that the risk of EP may be approximately the same whatever the cause of the salpingitis, although the

agreement could be coincidental if the aetiology changes with age in a way that approximately cancels out

any differences.

Tubal factor infertility
Women are usually considered ‘infertile’ if they have tried to have a baby for ≥ 1 year and have been

unsuccessful. Defined in this way, infertility is clearly not an absolute condition, as only 85% of couples

succeed in conceiving within 1 year, whereas 95% may succeed within 3 or 4 years.125 This immediately

reveals a major difficulty in the study of infertility, as apparently minor changes in definition readily

generate threefold changes in the number considered infertile.

Infertility is a complex construct: the infertile population includes both couples who are sterile, and couples

who are subfertile. The former cannot conceive, but the latter can, if given enough time. Population

surveys of infertility in the UK126–128 distinguish between primary unresolved failure to conceive, between

2% and 3.5%, representing women who have not conceived at the end of their reproductive life, and

secondary infertility, which includes women who have conceived at least once, but who subsequently
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experience difficulty in conceiving. Secondary infertility must be included in our study because it is quite

possible for salpingitis to be acquired by women who have already had children.

Surveys reporting secondary infertility have reported the numbers who have experienced at least two years

of being unable to conceive.126–128 According to one study,126 the secondary infertility group included

women who had already had one or two, and in one case eight, previous children. The 2–3.5% estimates

of secondary infertility from these surveys are therefore probably an overestimate, but the extent of the

overestimate depends on the distribution of duration of infertility.

A further problem is the difficulty of estimating the proportion of women who are infertile at any

particular age. Not only is it necessary to ensure that their infertility has lasted sufficiently long to meet a

specified definition, but infertility can only manifest itself, and thus be diagnosed, in women who are

trying to become pregnant, although the underlying condition may have been present for a long time.

This contrasts with the study of EP where reliable age-specific incidence data are available from routine

hospital statistics.

To avoid these problems in this monograph we have followed a strategy that has been adopted in a

number of epidemiological studies of infertility in the UK,126–129 which is to focus attention on the

proportion of the population who are infertile, which specifically means unable to conceive, at the end of

their reproductive life, which we take to be the age of 44 years (see Chapter 10).

Tubal factor infertility is one of several causes of female infertility (Figure 4).130 According to a 2006 survey

by the Human Fertilisation and Embryology Authority (HFEA), 22% of those being treated by in vitro

fertilisation (IVF) have TFI (Table 3), but a further 30% of infertility in women undergoing treatment

is unexplained.131

The Lund studies124 established the key relationship between PID and TFI, which parallels the relationship

between EP and TFI. A higher rate of TFI was observed only in PID cases with confirmed salpingitis on

laparoscopy, and the risk increased with the number of subsequent PID episodes. Critically, none of the

601 control group women with PID who were not confirmed as having salpingitis went on to have TFI.

A difference between EP and TFI, however, is that TFI can occur only following an infective process,35

namely salpingitis; EP on the other hand has a multifactorial aetiology.
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There is an extensive literature on the role of CT in TFI. Much of it consists of retrospective studies

demonstrating a higher prevalence of serum antibody to CT in TFI cases compared with non-TFI controls.

Because of the poor sensitivity and specificity of the assays, the imprecise characterisation of their

diagnostic accuracy, and the variation in cut-offs, these studies have not generated reliable quantitative

estimates of the role of CT in TFI. However, a number of these retrospective studies have reported marked

differences in the titre distributions in antibody-positive TFI cases and controls (see Chapter 11). The higher

prevalence of high titres in TFI cases constitutes powerful evidence of the causal role of CT.

Chronic pelvic pain
Chronic pelvic pain is a well-recognised complication of PID, which has a significant morbidity.33,132 It is

defined as non-menstrual pain of ≥ 6 months’ duration that is severe enough to cause functional disability

or require medical or surgical treatment. Chronic pelvic pain is common in women, with an estimated

prevalence of 3.8% in women aged 15–73 years in the USA. Often the aetiology is not clear. There are

many physical disorders of the reproductive tract, gastrointestinal system, urological, musculoskeletal

system and psychoneurological system that may be associated with chronic pelvic pain in women,132 and

these may often co-exist. Although adhesions resulting from pelvic inflammatory disease are diagnosed

in about 25% of women undergoing investigation, it is not clear whether these are always the cause of

the pain.132 The prevalence of adhesions in women with chronic pelvic pain will vary depending on the

population studied. Most information is obtained from women attending secondary and tertiary care, who

are likely to experience more severe forms and may not be representative of women with chronic pelvic

pain in the community. An accurate diagnosis of pelvic adhesions is only possible following laparoscopy

and, even then, it is not possible to ascertain the cause, as the infectious agent will have usually resolved

prior to investigation.

We have therefore chosen not to investigate chronic pelvic pain because of the paucity of data on the role

of PID, and the lack of evidence on the contribution of CT.

Premature delivery, neonatal pneumonia and conjunctivitis
There is conflicting evidence that CT may result in miscarriage and/or premature labour. One hypothesis is

that adverse pregnancy outcomes may only occur following primary infection. No studies have investigated

this since 1990. In view of the limited and conflicting data on adverse pregnancy outcomes, we decided

not to include this in our work plan.

TABLE 3 Tubal factor infertility by age, 2002

Age
(years)

Number of
cycles in
women
with TFI
(B)

Average
number of
cycles per
woman
with TFI
(C)

Number of
women
with TFI
adjusted for
mean
number
of cycles:
(D)= (B)/(C)

Number of
cycles in
women
with other
cause
infertility (E)

Average
number of
cycles per
woman with
other-cause
infertility (F)

Number of
women with
other-cause
infertility
adjusted
for mean
number
of cycles:
(G)= (E)/(F)

Proportion of
women treated
in HFEA with TFI:
(H)= (D)/((D)+ (G))

18–34 4550 2.20 2071 16773 2.43 6916 0.23

35–37 2247 2.51 896 8618 2.80 3076 0.23

38–39 1192 2.70 442 4404 2.92 1508 0.23

40–42 858 2.81 305 3663 3.13 1171 0.21

43–44 216 2.97 73 1102 3.07 359 0.17

45–50 86 3.37 26 767 3.17 242 0.10

Source: HFEA.
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Chlamydia trachomatis is transmitted to approximately half of children of mothers infected with CT and

about 10–50% of these develop neonatal conjunctivitis and/or pneumonia. This was recently reviewed by

Thorne133 for the NSC. Data in the UK are based on those presenting to hospital and thus biased towards

severe and prolonged cases. Neonatal infection with chlamydia is usually asymptomatic, and the most

common manifestations (conjunctivitis and pneumonia) are non-specific. Furthermore, chlamydial disease is

usually of a mild to moderate nature and easily treated or is often self-limiting. For these reasons, perinatal

and neonatal outcomes have not been included in this study.

Summary of clinical definitions and assumptions

1. The monograph focuses on:

i. the mean duration, incidence, and prevalence of CT

ii. the causal relationship between CT and PID

iii. the relation between PID and salpingitis, by which we mean macroscopic inflammation of the

fallopian tubes

iv. the relationships between salpingitis and EP, between salpingitis and TFI, and between TFI and CT.

2. Premature delivery, neonatal outcomes and chronic pelvic pain are not covered in this report.

3. When referring to clinically diagnosed PID, we are referring to ‘probable’ and ‘definite’ PID as

previously defined.88,90

4. We distinguish between diagnosed PID, undiagnosed symptomatic PID, and asymptomatic or

silent PID.103
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Chapter 3 Methods

Objectives

To set out methods used for:

1. evidence identification

2. Population Excess Fractions (PEFs)

3. evidence synthesis

4. model critique and model choice.

Introduction

This chapter sets out the methods used in evidence identification, evidence synthesis modelling and model

critique. We provide only generic descriptions of our approach to these components of the project. The

actual statistical synthesis models themselves, and the specific forms that the model critique took, are set

out in detail in each of the subsequent chapters. We also include a section defining PEF and outlining the

different ways PEFs can be estimated, because these feature in several chapters.

Evidence identification

The task of identifying data sources to inform the full range of CT natural history parameters from CT

incidence through to EP incidence and TFI prevalence more closely resembles the task faced by

investigators populating a decision-analytic model in a limited period of time than the task of systematic

review. Although systematic review methods are considered ideal, it is uncommon for them to applied

comprehensively in a multiple-parameter setting.134 We have therefore relied on ‘high-yield’ and

‘snowballing’ strategies135 that efficiently identify a large number of relevant data sources from a small

number of cited references rather than on exhaustive systematic review. It is recognised that this

introduces a risk of missing relevant sources. However, there is limited evidence comparing the sensitivity

of the two approaches, particularly in the context of natural history parameters.135 Nor is it clear that

‘sensitivity’ is an appropriate criterion, as the issue is not whether absolutely every literature source

has been identified, but whether further searching would reveal anything that would change

the conclusions.135,136

The search strategy was therefore to identify relevant literature cited in a series of dynamic modelling and

cost-effectiveness analyses,1,2,20,74,98,106,137–145 and review papers.20,61,62,74,98,106,139,142–147 Cost-effectiveness

analyses were used because their authors are obliged to have parameters with specified values, and must

therefore cite the sources they used. A second tier of identification was based on a citation search on

selected epidemiology papers identified in the first round. In addition the collaborative group undertaking

the project included epidemiologists and STD clinicians with a very wide range of research experience in

most aspects of chlamydia epidemiology, treatment and referral pathways in the UK, and routine and

ad-hoc surveys on chlamydia and its sequelae in the UK. This formed an ‘in-house’ expert group who were

consulted on the completeness of the literature identification, as well as on the interpretation of the data.

Finally, in our study of the duration of CT infection (see Chapter 4) we consulted a panel of internationally

recognised experts to ask if they knew of further papers that we had missed.
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An important series of review papers published in Journal of Infectious Disease 201038 provided a

particularly valuable resource. These were from an expert group set up by the CDC, Atlanta, Georgia,

which included many of the world’s acknowledged leaders in various fields of chlamydia research. The

CDC expert group employed a more formal systematic review methodology. We have not made a formal

study of whether or not these reviews identified papers that had not been identified by our searches, and

we therefore cannot claim that the CDC project validates our approach. However, we believe that their

work minimises the risk that we have overlooked information that is capable of having a material effect on

the analyses we have produced.

The MPES approach, explained below, allows us to combine many different types of information in order

to draw conclusions. For example, as we shall see in subsequent chapters, studies of different types may

form a ‘chain of evidence’,50 which can be put together to inform a prospective relation between CT and

TFI. The results can then be compared with retrospective evidence on the relation between CT and TFI,

which can also be derived by combining several kinds of data source. The question of which is most likely

to provide an accurate estimate must be viewed with an open mind, bearing in mind both the relevance of

the studies and their internal validity.

This contrasts somewhat with standard systematic review methodology, which tends to favour prospective

over retrospective studies, and is not obviously compatible with reasoning via chains of evidence. For

example, a systematic review of the causal effect of CT on TFI trawled through several thousand abstracts

and identified a single study, which was then deemed to be inadequate, with the conclusion that no

quantitative estimates could be derived.145 This conclusion seems unwarranted as it would effectively rule

out both retrospective evidence and estimates derived from a chain of evidence. In addition, systematic

review would not allow certain kinds of evidence which are essential to our project, such as routine

statistics, to be considered at all.

As noted above, a risk of missing sources of evidence would still remain even if we attempted to devise a

formal systematic review on each parameter in every model. The strength of the MPES methodology,

described below, is that it can combine direct evidence on model parameters with independent evidence

on functions of model parameters. This raises further questions on whether or not evidence sources have

been missed, as we know of no formal methods to define all the functions of parameters on which data

might exist, let alone search strategies that could efficiently identify literature on each function.

However, it will become clear in subsequent chapters that, whatever the advantages and disadvantages

of our approach to literature identification, we have combined and cross-checked many times more

information on chlamydia, its incidence, prevalence and sequelae than previous researchers. Although we

cannot be certain that every piece of relevant information has been incorporated, we believe that it is

unlikely that anything has been missed that could have a material impact on our conclusions. It is in any

case easy to incorporate further data within the framework we have created.

Details of included studies and reasons for study exclusion are set out separately for each chapter or in the

appendices. Where appropriate, appendices are also used to explain how the data used in our analyses

were derived from the published information. Further appendices set out the actual data as it was used in

the data analyses, as well as the program code used to analyse it.

Population Excess Fractions

Population Excess Fractions feature in several places in the monograph. We outline the definition and

estimation methods, as this has been an area of confusion in epidemiological and lay literature.148 The PEF

is the proportional reduction in disease risk that would be achieved by eliminating the exposure of interest

from the population, assuming the exposure is causally related to the disease.149 A number of formulae

METHODS

NIHR Journals Library www.journalslibrary.nihr.ac.uk

22



have been derived by which the PEF can be estimated from epidemiological data. The formula giving an

estimate from case–control or prospective studies is:

PEF =
π.(RR−1)

π.(RR−1)+1
(1)

Here, RR is the relative risk of the disease in exposed groups relative to unexposed groups, and π is the

prevalence of the exposure in the population of interest. Strictly RR should be an incidence ratio, or hazard

ratio (HR), but the formula is a reasonable approximation where a relative risk is used, as long as incidence

is low during the period under consideration. If the incidence is high enough to reduce the risk set by

more than say 20%, the approximation will become poor.

There are several further points to note. First, the formula can be applied to case–control studies,

substituting the odds ratio (OR) in place of the RR, if the study recruits an incidence density sample or if

the disease is sufficiently rare for the OR to be a reasonable estimate of the RR. Second, the presence of π

in the formula reminds us that the PEF has only a ‘local’ interpretation: it is not only a property of the

disease and the exposure, but also of the time and place where the data were collected.

The most important caveat is that the formula is correct only when there are no confounding factors.

Suppose, for example, we were considering the proportion of PID that is attributable to CT infection.

We could estimate the OR in studies comparing CT prevalence in PID cases and non-PID control subjects.

Typically, an OR of ≥ 6 is found in such studies (see Chapter 7). However, PID can be caused by other STIs

as well as CT, and we can anticipate that women infected with CT are also more likely to be infected with

other STIs as well. In the extreme case it would therefore be possible to observe a high PEF, even if there

was no causal relation between CT and PID. Because of this, in the presence of positive confounders,

we would have to consider the estimated PEF to be an upper bound. However, RRs adjusted for

confounders can be used in Equation 1.

A simpler formula can be used in situations where there are no confounding variables:148

PEF =
IPPopn− IPUnExp

IPPopn

(2)

In this case IPPopn and IPUnExp are the cumulative proportions of the total population and the unexposed

group developing the disease in a specified time period. (The comments above about rates and risks apply

equally in this case.) Here the PEF can be interpreted as the proportional reduction in incidence in the

population if the exposure was removed.

In the context of a randomised trial this corresponds to the idea of relative risk reduction (RRR),

the proportion of incidence in the control group that can be eliminated by treatment:

RRR =
IPCo− IPTrt

IPCo

(3)

In CT screening trials (see Chapter 7), the outcome is incident PID in a 1-year period, the control group is

the untreated population, and the treated group is screened and treated for CT. If we assume that the

treatment is 100% effective, the RRR is therefore a trial-based estimate of the PEF.

Note, however, the importance of follow-up time in this calculation for these single screen studies.

Screening and treatment for CT ‘work’ by preventing CT that is prevalent at the onset of the study from

developing into PID during the 1-year follow-up. As the follow-up time is extended to 2, 3 or more years,

women in both arms will experience more episodes of PID, and the RRR will converge towards zero.

Further, this will be case whether the further PID episodes are CT related or not.
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It is necessary, therefore, to consider models of PID incidence over a relatively long term, and compare

scenarios in which (1) CT is a contributing cause of PID, and (2) CT does not exist. Estimates of the PEF

taking the form of Equation 2 can be computed from these models of long-term effects.

Because we estimate a number of PEFs in the report, we use the notation PEF (risk factor←disease) to

stand for the PEF of the disease attributable to the risk factor.

Statistical methods

Bayesian Markov chain Monte Carlo in WinBUGS
We have adopted Bayesian methods throughout this monograph.150 Bayesian inference seeks to find the

probability distribution of parameters (the posterior distribution) given the data (likelihood) and a prior

distribution representing beliefs before the data were available. Classical inference (maximum likelihood)

considers the parameter values at which the probability of obtaining the data is greatest. The Bayesian

viewpoint is generally considered to be the more ‘natural’, in that people want to know what they can say

about parameters given the data, not what they can say about the data given specific parameter values.

However, it has been considered to have two disadvantages: the ‘subjectivity’ of the prior distribution and

the computational difficulty of carrying out the high-dimensional integration required. We have avoided

the subjectivity issue by using vague priors wherever possible (but see below). Advances in statistical

theory151 and computing power, and the development of highly flexible programming packages, such as

WinBUGS,44 have not only solved the computational problems, but also have made Bayesian methods the

common choice for complex synthesis.42

The general principles of Bayesian MCMC are set out in standard texts,152 and the procedures for

Bayesian MCMC using WinBUGS are to be found in the WinBUGs on-line user manual.44 The WinBUGS

user is required to specify a model in algebraic terms. The model consists of (1) specification of prior

distribution for ‘basic‘50 parameters; (2) definitions of ‘functional’ parameters in terms of basic parameters,

effectively the ‘model’; and (3) specification of data likelihoods. Each item of data informs either a basic or

a functional parameter.

Given some starting values for the basic parameters, parameter distributions converge to the joint posterior

distribution. The WinBUGS 1.4.3 software makes use of a number of different MCMC algorithms. The

most commonly used is Gibbs sampling,153,154 in which samples are drawn from the conditional distribution

of each parameter in turn, conditioning on the other parameters and on the data. Eventually, the marginal

distributions of the parameters converge to their true marginal posterior distribution. In essence, all the

parameters are uncertain: the marginal distribution expresses the uncertainty in each parameter, averaging

over the distributions of all the other parameters.

Users find out about the posterior distributions of parameters of interest by sampling from them. Posterior

means or medians are commonly cited, along with 95% CrIs or posterior standard deviations (SDs). CrIs

have the interpretation that many people attribute to classical confidence intervals (CIs): namely that they

express the probability that the parameter lies within that range, given the model, priors and data.

Posterior SDs have the same interpretation as standard errors of estimates in classical statistics.

Because of the need for the process to converge, MCMC users must pay careful attention to a number of

technical issues. First, diagnostics must be used to assess whether or not the process has converged. The

Brooks–Gelman statistics155 are commonly used as these are available in WinBUGS. The initial samples –

the ‘burn-in’ – are discarded. Second, a large number of posterior samples may be needed to obtain

accurate summary statistics. It is usually recommended that the process is run until the Monte Carlo error

in the mean is < 5% of the posterior SD. It is also good practice to base posterior inference on more than

one MCMC chain, because occasionally chains converge to different posteriors. Our practice here is to

use two chains, to check they converge to the same point, to use a conservatively large burn-in period,
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and also conservatively large numbers of posterior samples. In all the analyses in the monograph

convergence has been achieved within about 25,000 samples, and we discard the first 50,000 as ‘burn-in’.

Posterior inference is based on 200,000 samples, 100,000 from each of two chains.

Sensitivity analyses
A further issue arising in Bayesian analysis is sensitivity to prior distributions.150 Our general approach has

been to introduce all information through likelihoods, and to put vague priors on all the basic parameters.

When data are relatively sparse, or when the number of parameters to be estimated is large in relation to

the amount of data informing them, results can be sensitive to the distributional form of the priors.

Sensitivity analyses are therefore included wherever this is the case. The main findings from sensitivity

analyses and their implications for the conclusions are discussed in the main text, but the full details are

provided in the appendices.

In some cases it is preferable to fix parameters at a range of set values, to see the impact on the final

results, rather than give the parameters a distribution. This, again, may generate a series of sensitivity

analyses that are reported in full only in the appendices.

Model diagnostics and model selection
Our methods for assessing goodness of fit are based on Spiegelhalter et al.156 The key statistic is the

posterior mean residual deviance �D, corrected for the saturated model. This is the familiar residual deviance

statistic from classical statistics, except that it is computed on each MCMC cycle rather than at the

maximum likelihood values of the parameters. As a result a distribution of samples is generated and the

mean is taken as a measure of goodness of fit. In a good-fitting model, the summed residual deviances

should approximate to the number of data points.156,157 When comparing models with different numbers

of parameters a common approach in classical statistics is the Akaike Information criterion,158 in which the

models are ‘penalised’ by adding the number of parameters to the deviance statistic. We adopt this

approach where appropriate using the Bayesian Deviance Information Criterion (DIC):156,159 DIC = �D + pD,

where pD represents the effective number of parameters. This statistic is calculated by WinBUGS and is

available through the DIC tool. In models lacking any hierarchical elements, pD is simply the number of free

parameters in the model. With hierarchical models it reflects the degree of shrinkage. We make sparing

use of hierarchical models in this monograph because of difficulties of interpretation (see Chapter 4),

and they play no role in our final estimates.

�D and DIC can be examined as measures of global model fit, or the contributions of individual data points

to �D and DIC can be examined in order to locate more precisely the particular data points that are in

conflict with the other data under the model. It should be emphasised that these statistics are sensitive to

prior distributions. This is one of the reasons why we tend to put vague priors on all parameters and

introduce all of the information through data likelihoods. In this way, we can use residual deviance to

assess conflict between different data sources.

There are exceptions to this rule, however, where we introduce evidence through informative priors.

This is done where the parameter’s role is local to a source of data, or when it is not central to the issues

under study. In these cases, we may also use the WinBUGS ‘Cut Function’.44 This is a special function in

WinBUGS that allows users to impose a prior distribution on a set of parameters that is not updated by the

likelihood (the posterior is equal to the prior). The flow of information from elsewhere back to those

parameters is blocked. This is done in cases when we wish to impose a belief (probability distribution) on a

set of parameters, which we do not want to be altered by the data, or more pertinently, when we want

the key parameters to be estimated conditional on a set of specific assumptions over which we have

complete control.

An example that illustrates the reasoning behind this is the duration of symptomatic CT infection in

women. It was difficult to source evidence for this parameter from formally collected data, and we turned,

instead, to expert clinical opinion. The duration of symptomatic infection is the sum of the ‘incubation
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time’ between infection and the appearance of symptoms; the time from symptoms until treatment is

obtained; and the time from treatment to clearance of infection. It was considered by clinicians that a

uniform distribution between 4 and 8 weeks would represent clinically informed belief about this

parameter, and this was the chosen prior. This information was combined with information on incidence,

prevalence, duration of asymptomatic infection, and the proportion of infections that are symptomatic,

all of which had been based on formal consideration of likelihoods of data sourced in a reproducible way.

If all the evidence was combined without the ‘cut’ function, the incidence and prevalence information

would have changed our view of the duration of symptomatic infection.

In our view, this was not appropriate. We therefore used the ‘cut’ function to prevent this flow of

information between sets of parameters. This allows us to estimate the other parameters, conditional on

the assumption that this duration parameter is 4–8 weeks. This is clear and reproducible. If we built a full

probability model with feedback, we would have to report that the parameter estimates were conditional

on having a prior of 4–8 weeks on the duration parameter, but leading to a posterior distribution for

duration that was somewhat different. We do, of course, assess the sensitivity of the results on incidence,

prevalence, and other parameters to this assumption.

WinBUGS Development Interface and WinBUGS Differential Interface
WinBUGS itself has a limited repertoire of mathematical functions and statistical distributions. However,

WBDev (WinBUGS Development Interface)160 allows users to specify their own mathematical subroutines in

the Component Pascal programming language. Although the functions must be evaluated on every

MCMC iteration, the programming is ‘hard wired’ in a way that allows for very efficient computation.

WBDev is used in to solve the discrete time Markov chain for repeat PID in Chapter 8.

A second WinBUGS ‘add-on’, WBDiff (WinBUGS Differential Interface)161 allows users to specify systems of

first-order ordinary differential equations, which are solved on each MCMC iteration using the Runge–Kutta

method. WBDiff is used to solve the equations relating transition rates to transition probabilities in the

continuous time Markov model fitted in Chapter 6.

When these add-ons are used, the WBDev and WBDiff code are provided in the appendices.

Directed acyclic graphs (influence diagrams)
The directed acyclic graph (DAG), or influence diagram, is a way of portraying the relationships between

the data and the model parameters. The DAG is a formal entity in Bayesian statistics, and, in the WinBUGS

language,44 it is in fact possible to specify a model as a DAG rather than write WinBUGS code. In this

monograph, following the previous work in Bayesian evidence synthesis,42,50,52 we use schematic DAGs to

show how all of the data sources ‘fit together’ around the synthesis model.

The schematic DAG in Figure 5 illustrates how they are used and how they should be interpreted. The

figure shows four numbered data items in rectangles, and five model parameters α, β, γ, δ, θ in ellipses.

Data 1

(a)

Data 2

Data 4

Data 1

α
α

β

β

δ
γ =

γN

δ
θ =

Data 1

(b)

Data 2

Data 4

Data 1

α
α

β

β

δ
γ =

γN

δ
θ =

FIGURE 5 Directed acyclic graph. (a) Two sources of evidence on a parameter; and (b) one source is blocked from
influencing the parameter.
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The direction of ‘influence’ is shown in the direction of the arrows. The model is said to generate the data,

so that the data are always pointed to. (In cases where information is introduced via informative priors,

rather than as data, the information is shown in a rectangle, with an arrow pointing to the parameter.)

Three of the five parameters, α, β, δ have no ‘parents’, that is, no arrows point to them, only from them.

These are called ‘basic’ parameters,50 and they are the parameters that must be assigned prior distributions.

The remaining two parameters γ, θ are ‘functional’ or ‘logical’ parameters, and they can always be defined

in terms of the basic parameters. The functional relationships between parameters are shown as equations

in the ellipses, and these equations would be exactly those in the WinBUGs code.

Note that data can inform either basic or functional parameters. Also, the same model can be

parameterised in many different ways, with different parameters defined as basic or functional. As long as

the data are not too sparse in the relation to the number of parameters, this should not have any material

impact on estimates.

Methods to examine evidence conflict
There are effectively two evidence groups in Figure 5a, each representing a different source of information

on the parameter θ. One source of information is from Data item 4, the other is a combination of

information from Data items 1, 2 and 3. Figure 5a represents a DAG in which both sources of information

are combined to give a pooled estimate of θ. In this situation the inclusion of Data 4 not only informs θ,

but it also feeds back to impact on the estimates of all the other parameters. We can examine conflict

between the two groups of evidence by simply blocking Data item 4, to obtain an estimate of θ in its

absence (see Figure 5b). Similarly, we can block out the other data to see what the estimate of θ would be

if informed from Data item 4 alone. This technique is a version of ‘node splitting’.162,163

A very useful way of assessing conflict between different sources of evidence visually is to plot the

posterior densities. In this way, the posterior distributions of the parameter based on separate sources of

evidence can be compared. The posterior density when the different sources are pooled can also be

plotted on the same graph. This approach has been used by Dias et al.164 in the context of splitting nodes

in mixed treatment comparison evidence networks. A further refinement is to generate ‘significance tests’

based on Bayesian p-values: these test the hypothesis that one source of evidence generates a posterior

distribution that is different from the other source.

Summary

1. Literature identification has been based on a high-yield strategy and snowballing, not on

systematic review.

2. PEF is the proportion of incident cases in the population that would be eliminated by removing

the exposure.

3. The synthesis models are fitted in a Bayesian MCMC framework using WinBUGS.

4. Global measures of goodness of fit, DIC and �D, are used to assist model selection.

5. Vague prior distributions are used throughout, so that conflict between evidence sources can be

assessed by goodness of fit.

6. ‘Node-splitting’ methods are also used to assess conflict between different sources of data.
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Chapter 4 Duration of asymptomatic Chlamydia
trachomatis infection

Objective

To estimate the mean duration of asymptomatic infection in women, based on duration studies alone.

Introduction

There have been several attempts to estimate the duration of asymptomatic CT infection. It is intrinsically

difficult to measure because, although one can determine whether an individual is infected by bacterial

culture or DNA amplification, it is not possible to determine for how long the infection has been present.

Further, infected individuals would now normally be treated, so it is not possible to observe the natural life

course of the infection. Studies do exist, however, of untreated women. Previous reviewers have all noted

that the published studies have produced a highly diverse set of estimates but have responded to the

heterogeneity in different ways. Golden et al.139 presented no summary estimate at all, whereas Geisler

et al.74 cited a median of approximately 1 year, based on an essentially narrative review. Korenromp et al.142

derived an estimate of 1.4 years. This was based on an unweighted average of the study-specific estimates,

in order to avoid giving a higher weight to larger studies.

Models of the transmission dynamics of CT have to make assumptions about its duration. Turner et al.,141

citing the reviews by Korenromp et al.,142 and Golden et al.,139 drew somewhat different conclusion from

the evidence, and assumed a 0.5-year duration. Roberts et al.2 chose 0.56 years, citing the well-known

modelling study of Kretschmar et al.,137 which used the results from a duration study by Rahm et al.165

More recently, Althaus et al.166 based their estimate on a single study. It is worth emphasising that,

although these authors have not used exactly the same evidence base, there is considerable agreement

between them on the core studies that need to be included in a review.

In this chapter we compare fixed-effect (FE) and random-effects (RE) models for the duration of CT

infection in a somewhat more formal way than previous authors, using statistical measures of goodness of

fit. But we also re-examine the diverse study designs that constitute the evidence base. This leads us to

propose a latent class analysis of the data, in which there are, in effect, two or three classes of infection,

or apparent infection, each with a different expected duration. We assume that clearance rates within

each class are constant over time, giving us a mixture of two or three exponentials.167 Unlike the standard

FE and RE models, which can be estimated relatively directly from the data, under the latent class models

the study-specific proportions of individuals in each class represent an additional form of sampling

variation. In the methods section (see below), we explain how the patient recruitment and sampling

mechanisms engaged by each study design impact on the data likelihood. In the discussion section

(see below), we consider other survival models and meta-regression models that could have been used,

and briefly assess the scientific plausibility of the mixture-of-exponentials models we propose. The work in

this chapter has been published.168
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Methods

Evidence identification
Our target parameter is the mean duration of an episode of untreated, asymptomatic CT in women.

Studies in any country on any population were included, as long as they reported sufficient information to

determine: numbers at risk of clearing infection, numbers who cleared infection, and total time at risk.

We define an episode of CT as the time from infection to the time that the infection has cleared, in the

absence of treatment. Studies of CT duration have the inherent limitation that patients may clear infection

and be re-infected during the follow-up period. For this reason we consider same-partner re-infections,

which microbiological evidence suggest comprise the great majority of re-infections169 to be part of a

continuous episode. Symptomatic infection is defined as infection that is diagnosed and treated.

We identified studies through three recent reviews,74,139,142 reference searches of published economic

and population transmission models,1,2,8,29,140,141,170–174 and consultation with an expert panel (see

Acknowledgements). A 2012 search identifying papers that had cited the three reviews revealed no

further studies of duration of asymptomatic infection in women. The recent review paper by Geisler

et al.74 was part of an authoritative review of CT epidemiology set up by an expert group of the CDC.38

Two studies175,176 were excluded because patients were treated for CT or other infection soon before

recruitment175 or during follow-up.176 Three were excluded because they provided insufficient

information.177–179 Results from the 11 studies73,79,165,169,180–186 included are shown below (see Table 4).

Initial consideration of the data: study design
The studies differed in their design with some being set in STD clinics, and others based on women

identified as infected by population screening (Table 4). Two were set in antenatal clinics, where women

were screened for CT at a prenatal visit. In most studies, patients were followed forward from an initial

examination, when samples were collected, until they returned for a second visit, when CT status was

assessed again; patients attended for the second test after different intervals but each patient was retested

only once. In other studies,169,180 the same patients were tested repeatedly over several follow-up periods:

those at risk in subsequent periods had already ‘survived’ the previous period without clearing infection.

A preliminary analysis is presented in Table 4, showing the numbers clearing infection during each follow-up

period i of study j with mean follow-up time tij. (Where this was not reported, we estimated it from the data

at hand: details in Appendix 1.) We assume that in each study the clearance of infection in each woman is

the result of an independent Bernoulli trial, and that the number clearing infection in each period is

therefore binomially distributed with parameter θ(tij), and a constant clearance rate λij. As the observations

are interval censored, the exact clearance times are unobserved, but we can obtain an estimate of the

clearance rate λi and CIs through the relation θ(tij)= 1– exp(–λijtij).This is the complementary log–log (cloglog)

link commonly assumed for binomial data generated in this way.187 The mean CT duration Δij in that

segment is estimated by Δij= 1/λij.

The crude estimates of mean duration vary by over 40-fold, varying between studies and also within.

Although it is possible to fit either FE or RE models to these data, neither would capture the strong

association between clearance rate, length of follow-up and study design. The studies based in STD clinics

tend to have much shorter follow-up periods, and have a higher clearance rate than the longer-term

studies, which tend to be screening studies. In the STD studies, women were recruited only if they were

both asymptomatic at first attendance and had no indicators, such as a sexual partner with CT, that would

trigger immediate treatment. Our interpretation is that women who attend STD clinics in the absence of

any symptoms are most likely to be seeking to assess their infection status following a possible recent

sexual exposure to CT. Those found to be infected in this setting might therefore have their first sample

collected within a few days of the date of infection, and thus represent incident cases of infection.

In screening studies, observations are left truncated as well as interval censored: those found to be

infected have already ‘survived’ clearance for an unknown period prior to screening. Screening studies
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TABLE 4 Studies of the duration of asymptomatic CT infection in women: the study design, the numbers at risk,
the numbers clearing infection, and the follow-up period over which they were observed.168 Reproduced from:
Mixture-of-exponentials models to explain heterogeneity in studies of the duration of Chlamydia trachomatis
infection. Stat Med 2013;32:1547–60, under the Commons Attribution-NonCommercial license 3.0:
http://creativecommons.org/licenses/by-nc/3.0/

First author
Study
design

Number
clearing CT

Number
tested at
follow-up

Follow-up
period

Estimated
mean
follow-up,
years

Mean duration,
years (95% CI)

Johannisson183 Clinic 10 23 0–2w 0.038 0.07 (0.04 to 0.15)

7 14 0–3w 0.058 0.08 (0.05 to 0.22)

6 14 0–4w 0.077 0.14 (0.07 to 0.39)

6 8 0-(5–8)w 0.125 0.09 (0.05 to 0.29)

Joyner79 Clinic 2 12 0-(2–7)d 0.012 0.07 (0.03 to 0.58)

7 28 0-(8–14)d 0.030 0.10 (0.06 to 0.27)

1 4 0-(15–21)d 0.049 0.17 (0.05 to 7.72)

0 8 0-(22–42)d 0.088

3 6 0-(43–231)d 0.274 0.39 (0.18 to 2.14)

Geisler73 Clinic 23 129 0-(4–59)d 0.045 0.23 (0.16 to 0.36)

Paavonen184 Clinic 3 15 1m 0.083 0.36 (0.15 to 1.80)

Rahm165 Screened 17 85 3m 0.250 1.12 (0.74 to 1.93)

0 1 6m 0.500

0 1 9m 0.750

Sorensen185 Screened 8 13 (2–24)m 1.000 1.05 (0.6 to 2.62)

McCormack186 Screened 3 7 (16–17)m 1.375 2.46 (1.11 to 13.3)

Morre180 Screened 2 20 1m 0.083 0.79 (0.29 to 6.66)

2 5 6m 0.500 0.98 (0.4 to 9.21)

4 15 1+ 5m 0.417 1.34 (0.63 to 5.12)

0 1 1+ 11m 0.917

2 13 6+ 6m 0.500 2.99 (1.12 to 25.4)

Molano169 Screened 44 82 1y 1.000 1.32 (1.00 to 1.86)

23 37 1+ 1y 1.000 1.03 (0.72 to 1.68)

7 14 2+ 1y 1.000 1.44 (0.80 to 3.81)

2 6 3+ 1y 1.000 2.47 (0.97 to 22.6)

Sheffield181 Antenatal 16 52 (1–5w) 0.058 0.16 (0.10 to 0.28)

45 88 (6–13w) 0.183 0.24 (0.18 to 0.34)

Alexander182 Antenatal 12 15 6w 0.115 0.07 (0.05 to 0.16)

d, days; m, months; w, weeks; y, years.
Follow-up time: 0–Xw indicates follow-up for X weeks of women who were observed to be infected at time zero; 0–(X–Y)d
indicates between X and Y days‘ follow-up from time zero; 3m indicates a 3-month period of observation with an
unknown starting date; 1+ 1y indicates a 1-year period of observation of women who had already been followed for
1 year without having cleared infection. CrIs based on the binomial distribution (see text).
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therefore reflect prevalent infection. This, together with the apparently slower clearance rate seen in

screening studies, provides a prima facie case for believing that CT infections may clear at different rates:

screening studies may generate apparently longer clearance rates because they selectively oversample

the longer-lasting infections, as short-duration infections are more likely to clear before screening,

a phenomenon known as length-biased sampling.188

The high rates of clearance reported at the shortest follow-up times are consistent with observations made

in Chapter 2 on the likelihood of ‘passive infection’ (see also Joyner et al.79), according to which CT is

recoverable from the female genital tract for several days after sexual intercourse, but without leading to

an active infection.

This provides a basis, independent of the evidence in Table 4, for a two-class model comprising passive

and true infections. However, examination of Table 4 suggests that, even within the screening studies,

longer follow-up times seem to be associated with lower average clearance rates. We have therefore also

considered a three-class model, comprising passive infection, and fast- and slow-clearing infections. These

alternative conceptions of the natural history of transmission, infection and clearance can be captured by

mixture-of-exponentials models. We return to a consideration of the a priori scientific plausibility of both the

two- and three-class models in the discussion, where the role of alternative survival models is also considered.

We begin by describing the standard FE and RE models for these data. We then describe the parameters of

the mixture of exponentials models and develop expressions for their functional relationship to the

parameters in the likelihood.

Statistical models for studies of the duration of Chlamydia
trachomatis infection

Random-effects model
The RE model assumes a single clearance rate λj within each study j, drawn from a distribution of clearance

rates. We assume that the log study-specific rates are normally distributed, with a mean µ and variance σ2

to be estimated from the data: log(λj)= αj, αj∼N(µ,σ2).

In studies reporting the numbers clearing infection in more than one period of follow-up, the same rate

applies in each time period, so that the number clearing infection during the ith period in study j is

binomially distributed: rij∼Bin(θ(tij),nij), where θ(tij)= 1 – exp(–λjtij).

Fixed-effect model
The FE model follows immediately from setting λj= λ, for all j.

Mixture of exponentials model
In both FE and RE models described above, within every study, each woman has the same clearance rate.

We now develop the three-class mixture model. This allows women within every study to have one of

three different rates. It is the same three rates that are present in every study. We then introduce the

two-class model as a special case. As we now show, there are three types of data: each provides

information on a different function of a common set of parameters. For each type of data we define the

likelihood and explain the relation between the parameters in the likelihood and the common set of rate

and probability parameters in the model.

We assume that incident infections are in one of three categories (‘passive’, fast-clearing and slow-

clearing). The proportion of incident infections in each of the three classes is p1, p2, p3; p3= 1 – p1 – p2,

and the clearance rates are λ1, λ2, λ3, with each rate having a fixed effect across studies. It can readily be

established that the two-class model is a special case of the three-class model, in which p3= 0, and that

the FE model is a one-class model in which p2= 0 and p3= 0. We henceforth refer to the latter as the

one-class FE model. The schematic DAG (Figure 6) clarifies the relationships between the shared rate and
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proportion parameters, and the likelihoods generated by the sampling and recruitments schemes

represented by the three study designs, under the mixture-of-exponentials models.

Sexually transmitted disease clinic studies
We interpret clinic studies as studies of incident infection, as explained above, and the infections observed

are therefore a mixture of the three types of infections, the clearance rates of which are exponentially

distributed. In any given sample, the denominator number of infections ‘at risk’ of clearing is an

unobserved mixture of infection types. The proportions recruited from each class k will vary by chance

around the population mean proportions p1, p2, p3. For each observation i in study j, the number of

infections zi,j,k in class k at risk of clearing will be drawn from a multinomial distribution, with probabilities

p1, p2, p3 and denominator nij: zi,j,k=1,2,3∼Multinomial (p1, p2, p3, nij).

The expected clearance probability in follow-up period tij is therefore a weighted average of the clearance

probabilities for the three classes with the zijk as weights:

θ(t i j) =
zi, j,1
ni j

. 1− exp(−λ1.t i j)
� �

+
zi, j,2
ni j

. 1− exp(−λ2.t i j)
� �

+
zi, j,3
ni j

. 1− exp(−λ3.t i j)
� �

(4)

Screening studies: follow-up from the initial screen
The expected proportion of incident infections of each type is p1, p2, p3. But screening studies must

over-sample longer lasting infections. The prevalence πk of infection of type k can be derived from the

relationship: prevalence = incidence × duration:

πk =
η.pk

λk
(5)

(tij) = (1 – e  ktij)λ
(1 – e–  ktij)λ

k∑

Studies of incident infection

pk

Studies of prevalent infection

h

pk

k
∑

kλnij

nij

tij

tij, Tij

rij ~ Bin(  (tij), nij)θ

rij ~ Bin(  (tij, Tij), nij)θ

zijk ~ Multi(wk, nij)

zijk ~ Multi(pk, nij)

wk =
λ

ph

hλ

θ (tij, Tij) = k∑θ
zijk

nij
(e–  ktij)λ

k∑
z1 jk

n1 j

(e–  kTij)λz1 jk

n1 j

FIGURE 6 Directed acyclic graph of the CT duration synthesis. Subscripts: i, observation; j, study; k, class; n, number
followed up; pk, proportion of infections in class k; r, number of patients clearing infection; tij, duration of
follow-up period; Tij, duration of previous segments; wk, expected proportion of infections in class k; zijk, number of
infections in class k at risk of clearing in time interval ij; θ(), probability of clearance; λk, clearance rate of class
k infections.
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where η is the incidence of CT. Thus the expected proportion wk of women in each group k in a prevalent

population is:

wk =
pk

λk

� �

=
p1

λ1
+
p2

λ2
+
p3

λ3

� �

(6)

Again, to take account of the chance variation between the proportions in the general population and the

proportions sampled for each observed group, we take the data collected in each observation as a

multinomial sample, now with parameters wk. For the first observation (i= 1) in study j we may now use

the same expression (see equation 4) for the probability of clearance, with weights:

Z1, j,k=1,2,3∼Multinomial(w1,w2,w3,ni j) (7)

Screening studies: subsequent follow-up periods
In the Molano et al.169 and Morre et al.180 studies, after the first observation period, patients who are ‘at

risk’ of clearance in the subsequent follow-up segments should be considered to have ‘survived’ both the

original period between infection and screening, and the previous follow-up segments, of duration say

Tij, since screening. This is shown in Table 4. For example in the Molano et al.169 study, 2 out of 6 cleared

CT during a 1-year period of observation, having already ‘survived’ a further Tij= 3 years since their

recruitment to the study. This leads to another, rather complex, sampling structure. The proportion zi,j,k in

each category k for each observation i in study j is determined by two factors. First, a single multinomial

sample at the start of the first time period (the time of screening) determines the numbers wk in each

group, exactly as in equation 6. Second, in subsequent time periods there is no further multinomial

sampling. Instead, each original sample in category k must be depleted by a further exp(–λk Tij), so that,

through substitution into equation 5, and then equation 4, the observed number of women clearing CT in

each time period Tij is equal to:

θi j(t i j,T i j) = ∑
3

k=1

z1, j,k
n1, j

exp(−λkT i j)

∑
3

k=1

z1, j,k
n1, j

exp(−λkT i j)

(1− exp(−λkt i j))

0

B

B

@

1

C

C

A

(8)

Studies based in antenatal clinics
Two studies181,182 were set in antenatal clinics. One clinic181 recruited pregnant women between 8 and

23 weeks of gestation, and the other clinic182 between 36 and 40 weeks of gestation. These studies, in

principle, could be considered as having the same recruitment process as a screening study. However,

it would also be plausible to consider at least a proportion of those recruited to have been infected at

the same time that they conceived, on average, say, 16 weeks or 38 weeks prior to the initial sample.

We therefore explored including the antenatal studies under the extreme assumptions that (1) they are

left-truncated screening studies, and (2) infection was acquired at the point of conception.

Sensitivity and specificity of diagnostic tests for Chlamydia trachomatis used
in the studies
Poor test sensitivity may overestimate the clearance rate, as patients who have not cleared infection may

be thought to have done so. Most of the studies use NAATs, which we assumed to be 100% sensitive and

100% specific. Sensitivity is defined as the probability of detecting a CT infection, given that it is present.

For example, if sensitivity of culture is ψ then studies of clearance rate that test for CT using culture

estimate θij(tij)/ψ, rather than θi(ti). Geisler et al.
73 used both NAAT and culture tests, and reported the

sensitivity of culture given a previous culture positive result for that infection as 78 out of 86 (90%),

and we use this as an estimate of ψ.
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Note that we distinguish between test sensitivity in the initial testing to determine infection status, and

sensitivity in subsequent tests to establish whether or not the infection has cleared. A failure to detect

infection initially will mean that the individual is not recruited into the study, and we assume that this has

no bearing on the estimates of clearance rates. Although we can estimate the sensitivity of culture in

women who are initially culture positive, it is difficult to estimate sensitivity of NAAT in women who are

initially NAAT positive, and we make the simplifying assumption that this is 100%. An alternative, but

equivalent, assumption would be that if the bacterial load is so low that it cannot be detected by NAAT,

then it does not constitute a clinically relevant infection.

Prior distributions
For the RE model, we place a flat normal prior on the log mean clearance rate and a Uniform(0,5) prior on

the log SD, and the effect of this prior is assessed through sensitivity analysis. Because the shortest follow-up

period is 1 week, the Table 4 data do not allow us to adequately identify λ1, the rate of clearance of passive

infection, in the three-class model. To improve the identifiability, we set λ1= 120 per year, implying that

passive infection lasts, on average, only 3 days. We confirmed subsequently that the precise value chosen

has negligible impact on the other parameters. We assigned priors of the following form to the clearance

rates: log(λ2)∼Uniform(A,B), and log(λ3)∼Uniform(C,λ2). We chose the values A= –1, B= 4.8 and C= –2.62,

corresponding to durations between 3 days and 2.7 years for the duration of a fast-clearing infection and

between 1/λ2 and 13.7 years for slow clearing. As a sensitivity analysis for the three-class model, we varied

the values of A, B and C, and also considered placing Uniform priors on clearance rate, and on duration

(1/clearance rate), as alternatives. We also estimated a two-rate model, in which p3= 0, λ3= 0, and

log(λ3)∼ Exponential(0.001). A prior distribution for the sensitivity of diagnostic tests of ψ∼ Beta(78,8) was

based on the results from Geisler et al.73 The mixing proportions p1, p2, p3 were given Beta(1,1) and

Dirichlet(1,1,1) priors in the two- and three-rate mixture models, respectively.

Estimation of Chlamydia trachomatis infection duration from each model
The target parameter is the average duration of asymptomatic infection. For the one-class FE model, this is

simply 1/λ1. For the RE model, at least two estimates can be generated, depending on how the model

is interpreted (see Discussion, below). One would focus on the RE mean, which would generate an

estimate of duration. In this case we monitor a node 1/exp(µ) and report its summary statistics. Another

interpretation might be that the rate obtained in any future situation is effectively another sample from the

RE distribution whose parameters have been estimated from the data. The estimate produced by this

‘predictive’ interpretation is readily found in the MCMC framework, by monitoring the nodes αnew∼N(µ,σ2)

and 1/exp(αnew), and reporting summary statistics for the distribution of the latter.

In the two-class mixture model, a proportion p1 of CT+ patients do not have a true infection, so the

estimate of CT duration is 1/λ2. Under the three-class mixture model, the estimate of CT duration is a

weighted average of the durations of the fast- and slow-clearing infections:

p2

λ2(p2 + p3)
+

p3

λ3(p2 + p3)
(9)

The WinBUGS code for the two-class model is presented in Appendix 2.

Results

Model fit statistics
There were a total of 28 data points from 11 studies informing CT duration, constituting the independent

observations for the evidence synthesis. The models that include the antenatal data assuming it represents

prevalent infection fit better than when these data are assumed to represent infection that is incident at

the time of conception (results not shown). The model fit statistics (Table 5) show, however, that when the

antenatal data (assumed to be prevalent cases) is included none of the models fits well.
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The residual deviance �D is expected to approximate the number of data points (28), but the best-fitting

model, the RE model, has a �D of 36. The FE and the latent class models fit even worse. If the antenatal

studies are excluded, the two- and three-class models now fit the data well. The RE model is an acceptable

fit, but the DIC, a measure that sums �D and the number of effective parameters pD, strongly favours the

mixture models, as they have fewer effective parameters as well as having a better fit. Further results

are reported for only the reduced data set, excluding the antenatal studies, to which we return in

the discussion.

Parameter estimates
The rate estimates from each model are shown in Table 6. The rate estimate generated by the one-class

FE model (1.1 per year) is lower than the RE model (1.7 per year) because the former is more strongly

influenced by the largest studies, which happen to be the screening studies with their longer follow-up and

TABLE 6 Posterior summaries – mean (2.5th, 50th, 97.5th) percentiles – of parameter estimates.168 Reproduced
from: Mixture-of-exponentials models to explain heterogeneity in studies of the duration of Chlamydia
trachomatis infection. Stat Med 2013;32:1547–60

Parameter Symbol One-class FE Two-class Three-class RE

Clearance rate Class 1 λ1 1.09
(0.93, 1.09, 1.26)

120a 120a
–

Class 2 λ2 – 0.74
(0.61, 0.74, 0.89)

9.5
(0.69, 1.77, 74.7)

–

Class 3 λ3 – – 0.64
(0.25, 0.66, 0.84)

–

Proportion Class 1 p1 1 0.23
(0.16, 0.23, 0.31)

0.19
(0.03, 0.20, 0.29)

–

Class 2 p2 – 0.77
(0.69, 0.77, 0.84)

0.31
(0.01, 0.26, 0.76)

–

Class 3 p3 – – 0.49
(0.02, 0.56, 0.79)

–

Mean clearance rate exp(µ) – – – 1.70
(0.57, 1.51, 3.89)

Predictive clearance rate exp(αnew) – – – 18.5
(0.08, 1.50, 28.9)

Between-study SD σ – – – 1.33
(0.74, 1.24, 2.46)

a Note that λ1 was fixed at 120 (see text).
One-class FE, RE, two-class and three-class models. Rates are per year.

TABLE 5 Model fit statistics: one-class FE, RE, two-class and three-class models.168 Reproduced from: Mixture-of-
exponentials models to explain heterogeneity in studies of the duration of Chlamydia trachomatis infection.
Stat Med 2013;32:1547–60

Model fit
statistics

With antenatal studies, 28 data points Without antenatal studies, 25 data points

One-class, FE Two-class Three-class RE One-class, FE Two-class Three-class RE

D-bar 268 128 76 36 170 25 25 31

pD 1.6 7.5 6.8 10.7 1.4 6.8 6.9 9.8

DIC 270 136 82 47 171 32 32 40

D-bar residual deviance; DIC, Deviance Information Criterion; pD effective number of parameter.
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slower clearance, whereas the latter allows greater influence of the more numerous high-clearance-rate

studies. A prediction for a new study has an expected rate of 18.5. This is due to the skew in the posterior

distribution (median 1.5). The degree of between-studies heterogeneity according to the RE model, as

indicated by the between-studies SD, is extraordinary. The posterior mean of the between studies SD is 1.33

on the log scale, indicating that a study on the 95th percentile of clearance rate would have a clearance rate

almost 200 times higher than the fifth percentile. The mean clearance rates estimated from the exponential

mixture models were 0.74 per year for the two-class model, and 9.5 and 0.64 per year for fast and slow

clearers, respectively, in the three-class model. They identify 19–23% of infections as ‘passive’, clearing

exceptionally rapidly. Note that the three-class mixture model is barely identified by the data, with the

proportions in each class and the class-specific clearance rates having extremely wide CrIs. This is largely a

result of the sparseness of data at long follow-up times.

The estimates of the target parameter, mean duration of CT (Table 7), indicate broad agreement between

the two- and three-class models (1.36 years, 1.24 years, respectively), and considerably lower estimates

from the one-class FE and RE models. The posterior medians of the mean duration in the RE model,

whether based on the mean or on the predictive distribution, are barely half those from the mixture

models. The RE distribution is so skewed, however, and its variance so large, that the mean of the

predictive distribution is 23 years.

The ‘observed’ durations in each observation from Table 4 are compared with those predicted by the

two-class model taking into account study design and duration of follow-up, and with duration plotted

on a log scale (Figure 7). Note that for the longer-duration screening studies the predicted duration

stabilises to a single value, which is, in fact, the expected duration of true CT infection. This is because in

a screening study the chances of recruiting a woman with passive infection are very low indeed. This is

also evident from equation 6. It is interesting that the results from the longer-duration screening studies

systematically deviate from the two-rate model in showing that observed duration increases with length of

follow-up. This is evidence that favours a three-rate model but, because the data are so sparse, the global

statistical fit does not support the three-rate against the two-rate model.

Sensitivity analysis
Sensitivity to priors was also explored. When the RE variance prior was changed from Uniform(0,5) to

Uniform(0,3), this changed the posterior expectation of the RE mean by less than 1%. Similarly, the

posterior between-studies SD was changed by only 1%. This suggests the prior is having only a small

effect on the between-study variance and we conclude that the Table 4 data are adequate to estimate the

RE model.

TABLE 7 Posterior summaries – mean (2.5th, 50th, 97.5th) percentiles – of the mean duration of CT infection in
years.168 Reproduced from: Mixture-of-exponentials models to explain heterogeneity in studies of the duration of
Chlamydia trachomatis infection. Stat Med 2013;32:1547–60

Model
Expression for mean CT duration,
under each model

Mean (2.5th, 50th, 97.5th)
percentiles

One-class FE 1/λ1 0.92 (0.79, 0.92, 1.07)

Two-class 1/λ2 1.36 (1.13, 1.35, 1.63)

Three-class p2

λ2(p2 + p3)
+

p3

λ3(p2 + p3)
1.24 (0.85, 1.25, 1.59)

RE (mean) 1/exp(µ) 0.75 (0.26, 0.66, 1.76)

RE (predictive) 1/exp(αnew) 23.2 (0.03, 0.67, 13.24)

pk, proportion of infections that are type k; αnew; log clearance rate in a new study under the RE model; λk, clearance rate in
infections of type k; µ, population mean log clearance rate in a RE model.
One-class FE, RE, two-class and three-class models.
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FIGURE 7 Forest plot of the ‘observed’ log duration (black) and predicted (green) based on the two-rate model,
mean and 95% CrI, for each study observation (in the same order as Table 4).68 Adapted from: Mixture-of-exponentials
models to explain heterogeneity in studies of the duration of Chlamydia trachomatis infection. Stat Med
2013;32:1547–60. Results of the RE meta-analysis are presented at the base.
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We examined a two-class model in which λ1 was not restricted to a fixed value: it did not fit better and

has the same residual deviance as the model restricted to λ1= 120. It converged to a very high rate of

clearance of passive infection, with p1 estimated at 0.23 (0.16,0.32), very close to the estimate from the

restricted model. This finding supports our use of the value of 120 to improve model stability. All

reasonable priors for λ2 gave essentially identical answers. Sensitivity analysis of the three-class models

showed that the rate and probability parameters were sensitive to priors, which might be expected from

the fact that the model is only barely identifiable. The estimated duration of CT, the target parameter,

was, however, relatively insensitive, with values ranging from 1.17 to 1.24 years.

Discussion

We have compared standard fixed- and random-effect models with mixtures of exponentials models,167

in which the proportions are latent variables estimated from the data. The latter are considerably more

complex to fit because of the impact of the patient recruitment processes in the different study designs.

This had two aspects: first, once one abandons models in which there is a single constant clearance rate, it

is necessary to take into account the left truncation in the screening studies.188 Second, although the latent

class model proposes that the proportions of incident infections belonging to each class is a fixed property

of chlamydia infections, each different study in effect constitutes a different sample in which the

proportions in each class differ from their expectations owing to both sampling variation and selective

attrition in previous periods.

The choice between the alternative models must be considered both from the viewpoint of model fit and

in terms of scientific interpretation. In this application, we found that the latent mixture models both

provided a better fit and used fewer parameters, but this was true only when the two antenatal

studies181,182 were excluded. With the antenatal studies181,182 included, none of the models fitted particularly

well, although the RE model gave by far the best fit. These studies have unusually high clearance rates,

considering they are not studies of incident infection, and this is at variance with what would be expected

biologically.28,189 However, the higher clearance rate in Sheffield et al.181 may have been because of

problems with the ligase chain reaction (LCR) NAAT test, which was withdrawn in 2001 owing to

problems including non-repeating positives.190 The other antenatal study, Alexander et al.,182 recruited

patients while pregnant, who may be less likely to resolve infection than non-pregnant women, and

retested them 6 weeks post partum when their cell-mediated immune response was likely to have

returned to normal. Clearance rates would thus be expected to be higher than for non-pregnant women.

This is, however, post-hoc reasoning.

The two-class model not only fits the data very well with a very small number of parameters, but it also

represents a biologically driven model of transmission and infection (see Chapter 2). Interestingly, the

concept of ‘passive infection’ was also proposed by the investigators of one of the duration studies.79

The further distinction between Fast and Slow clearers is attractive, as it could reflect potential differences

in the human protective immune response to CT,74,191 but there is no previous suggestion that there is a

relation between clearance rates and immune response to CT. Although there is little prior support for

the three-class model, it is important to note that the target parameter, mean duration of CT, is not

particularly sensitive to choice of two- or three-class mixture model, from which we conclude that results

are relatively insensitive to model assumptions.

The analysis provided by the two- and three-class models is dependent on our conception of the studies as

clinic-based or screening studies, and on our assumption that clinic studies recruit women with incident

infection, while screening studies recruit women with prevalent infection. This is a somewhat simplistic

view of the clinic studies, where women may be attending at varying intervals from the time of

transmission, but it is required to make the analysis tractable.
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None of the models examined allowed for re-infection. However, the model including fast and slow

clearers provided no improvement in residual deviance, and the bias introduced by not accounting for CT

re-infection in duration studies is far lower than the bias introduced by not accounting for clearance in

studies of incidence. This conclusion is supported by a recent analysis by Althaus et al.,166 who fit a model

to data extracted from Kaplan–Meier curve in the Molano et al.169 study. They showed that a single-rate

model provided a good fit, and found that allowing for re-infection had almost no impact on estimates

of duration.

Setting aside their generally poor fit, the RE models are not scientifically plausible because they imply an

extraordinary degree of between-study variation in clearance rates, a 300-fold difference between 2.5th

and 97.5th percentile. This seems to defy any biological interpretation.

Among the further models that could be advanced would be a meta-regression against length of

follow-up, or a subgroup analysis by study design, perhaps with RE within groups. We have not fitted

such models on the grounds that they cannot be used to provide an estimate of the true duration of CT

infection for modelling purposes. This is because they assume that the duration of CT infection is not a

biological property of CT, but depends on the duration and/or the design of the studies carried out to

estimate it. Even if these models could be shown to fit the data, they would, at best, be no more than

descriptively adequate: they lack explanatory power as well as public health utility.

Another model that could be suggested would have a two-rate latent class model, similar to the one we

have proposed, but with random between-studies variation in the clearance rates in each class. This model

has a DIC of 33: one point higher than the two- and three-rate models. The model is certainly a possible

view of the data, but random variation between studies again creates problems of interpretation when

applied to a public health context, with an estimate based on the RE mean (1.50 years, 95% CI 0.75

to 2.68 years) differing from an estimate based on the predictive distribution (27 years, 95% CI 0.29 to

6.7 years, median 1.4 years).

Latent class models are not the only models possible. A wide range of failure time distributions, such as

Weibull or Gamma, in which the clearance rates can decline over time, could also have been fitted to

these data, although biological interpretations of such models would perhaps be less compelling. In this

connection it is worth noting that Weibull distributions with shape parameter less than 1 can always be

generated by mixtures of exponentials.167

Asymptomatic infection: summary of findings and assumptions

Assumptions

1. Studies of duration have been either based in STI clinics, or they have been studies following individuals

whose infection was detected by screening. We have assumed that these two designs recruit incident

and prevalent infections respectively.

Summary of findings

1. The data are not compatible with a single-class (FE) model, and the degree of variability implied by the

RE model is not scientifically plausible.

2. The exponential mixture models, whether two- or three-class, fit the data best, and accord with our

understanding on the biological mechanisms of transmission and infection. The data does not

distinguish between two- and three-class models.

3. The expected duration of asymptomatic infection in women, based on this data alone, is 1.36 years

(95% CI 1.13 to 1.63 years), based on the two-class model.
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Chapter 5 Synthesis of data on incidence,
prevalence and duration

Objectives

To:

1. determine whether the estimated duration of asymptomatic CT infection in women, developed in the

previous chapter, is consistent with the available evidence on incidence and prevalence of CT in the UK

2. produce a coherent set of estimates of incidence and prevalence by age group, and duration, and the

proportion of infections that are asymptomatic.

Introduction

This chapter sets out to produce a set of age group-specific estimates of CT incidence and prevalence in

the general population of women in England. First, we re-analyse the data from the LaMontagne et al.192

incidence study accounting for CT clearance, informing clearance rate from the Chapter 4 synthesis of the

duration of asymptomatic infection. Second, we use information on setting-specific prevalence106 of CT in

the UK – which included estimates in the general population as well as in GP, FP and STD settings – to

‘recalibrate’ the estimated incidence rates from LaMontagne et al.192 to the general population setting.

Third, we exploit the well-known epidemiological relationship: prevalence= incidence × duration to

generate an independent set of incidence estimates based on prevalence and duration data. This provides

a degree of independent validation for the estimates obtained directly from the incidence study. Finally,

having established there is consistency between the alternative estimates, we produce a coherent set of

estimates of age-specific incidence and prevalence, and duration, in women in the general population that

both conform to the appropriate epidemiological relationships and are based on all the available data.

The work in this chapter has been published.193

Methods

Evidence sources

Duration of asymptomatic infection in women, and proportion symptomatic
For the duration of asymptomatic CT infections, ΔA, we use the estimate of 1.36 (95% CI 1.11 to 1.62) years

based on the two-rate model described in Chapter 4. The proportion of CT infections, φ, in which symptoms

develop can be estimated from studies where asymptomatic women within a few days of exposure are

followed without treatment to determine if symptoms develop. The one study194 of this type reported that

26 out of a total 115 women developed symptoms, estimating φ at 23% (95% Crl 16% to 31%).

Duration of symptomatic infection in women
We define the duration of symptomatic infection, ΔS, as the time between the point at which the patient

becomes infected, and the point at which the infection is diagnosed, or the patient is empirically treated

and the infection is cleared. This could be derived from information on the incubation period of CT

and studies of time taken to seek health care in women who are subsequently diagnosed with CT.

A recent literature search142 found no data on incubation period, and although there were studies of time

to seek health care in women with genital symptoms, specific information on those diagnosed with CT
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was not found. Based on a clinical understanding of incubation time, and the time taken to seek and

obtain treatment, we placed an informative prior on the time from infection to diagnosis, assuming it is

uniformly distributed between 4 and 8 weeks, and, that, once diagnosed, a woman would not participate

in a prevalence survey. We assess sensitivity to this by fitting a model where the duration of symptomatic

infection varies uniformly from 3 to 12 weeks. The distributions used for each duration parameter are

summarised in Table 8.

Chlamydia trachomatis incidence data
Only one published report on incidence in England was identified: LaMontagne et al.192 Women aged

16–24 years were screened for chlamydia in GP, FP and STD clinic settings in two areas in England, and

were followed prospectively at 6-month intervals for 6–18 months to assess CT infection and re-infection.

However, this study is restricted to GP and clinic patients and does not address incidence in the English

general population. A LCR test was used, for which we assumed 100% sensitivity and specificity. Table 9

gives the proportions of 6-month-long observations in which CT-negative (CT–) women were CT+ at

follow-up. These are divided into ‘infections’ and ‘re-infections’, the latter being infections observed in

women who were CT+ on recruitment or were infected for the second time during the follow-up period.

The data are reported for age groups (a= 1, 16–17 years; a= 2, 18–20 years; a= 3, 21–24 years).

TABLE 8 Data on duration (years) of CT Infection, and proportion symptomatic. From Price et al.193

Parameter Mean (95% CrI) Source

Duration of asymptomatic infection 1.36 (1.11 to 1.62) see Chapter 4

Duration of symptomatic infection 0.115 (0.079 to 0.151) See text

Duration of symptomatic infection (sensitivity analysis) 0.144 (0.062 to 0.227)

Proportion of incident infections in which symptoms develop 0.231 (0.159 to 0.311) Geisler 200873

TABLE 9 Infection and reinfection rates per 100 women-years

Setting Age (years)

Infection Re-infection

r Rate n
a

r Rate n
a

GP 16–17 4 11.2 73 5 86.2 14

18–20 3 3.1 195 7 22.8 65

21–24 4 4.3 188 10 26.9 79

FP 16–17 9 9.5 194 13 29.4 95

18–20 5 3.7 273 12 19.9 127

21–24 7 7.1 201 5 16.6 63

STD 16–17 5 10.1 102 6 32.3 40

18–20 16 14.1 235 15 22.8 139

21–24 9 7.5 245 5 12.8 39.1

a Note that n is estimated as the total number of 6-month follow-up periods (events were assumed to happen half way
between observations when the rates were estimated in the LaMontagne study192). This has been calculated from the
reported rates and numbers of events.

Numerators r and denominators n.
Adapted from tables 2 and 4, LaMontagne et al.192
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Given that observations are interval censored in this study, and the fact that CT infections can clear

spontaneously, it is possible for women to have both acquired and cleared the infection during the periods

between observations, leading to underestimation of incidence. This was not accounted for in the

original paper.

Chlamydia trachomatis prevalence by age and setting
Chlamydia trachomatis prevalence information was derived from a recent synthesis of UK data.106 CT

prevalence varies by age and setting. Table 10 shows estimates of CT prevalence by age in the general

population from a logistic regression of UK prevalence studies106 identified by a systematic review in 2004.

Other prevalence data have been collected subsequently19,81 but have not been incorporated, as it was

considered preferable to use results from a single comprehensive study.

Table 11 shows prevalence ORs for the different settings: FP, STD clinics, and general population settings,

relative to the GP, from the same study. These are used to inform setting-specific relative risks (RRs).

The interpretation of ORs as RRs is an approximation that is justified by the rarity of the infection.149

Statistical models

Model for the overall duration of CT infection in women
The mean duration of infection, Δ, can be expressed as a weighted average of the length of asymptomatic

(untreated) infection ΔA and symptomatic (treated) infection ΔS:

Δ=Δsφ+ΔA.(1−φ) (10)

with φ being the proportion of incident infections in which symptoms develop.

TABLE 10 Estimated prevalence of CT in females in the general population

Age (years) Prevalence (95% CI)

18–19 0.048 (0.032 to 0.076)

20–24 0.032 (0.021 to 0.049)

25–29 0.015 (0.010 to 0.025)

30–44 0.008 (0.005 to 0.013)

Adapted from table 4, Adams et al.106

TABLE 11 Adjusted ORs for the effect of setting on chlamydia prevalence in females in the UK

Setting OR (95% CI)

General population vs. GP 0.6 (0.37 to 0.95)

FP vs. GP 1.27 (1.00 to 1.62)

STD vs. GP 2.39 (0.72 to 3.33)

Adapted from table 3, Adams et al.106
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Regression estimates of infection and re-infection rates by age and setting
We model the infection rates as a function of a baseline infection rate λ1,1,1 multiplied by the between-setting

HRs ρs and the between-age group HRs γa. The age- and setting-specific re-infection rates λa,s,2 equal the

respective infection rate multiplied by a setting-specific re-infection HR ηs (equation 11). Other regression

models are considered in Appendix 3:

λa,s,1 = γaρsλ1,1,1 and λa,s,2 = ηsλa,s,1 (11)

The infection rates λa,s,i in equation 11 are informed by the data in Table 9, which shows the number of

initially uninfected women in each age within each setting who were found to be infected after a 6-month

follow-up period. However, the mathematical relationship between the infection rates in each group and

the proportions infected κ(t)a,s,i at the end of a period of time length t is complex. The formula shown in the

DAG (Figure 8) allows for the fact that in the LaMontagne et al. data192 it is possible for a woman to clear

infection spontaneously or through treatment, and then re-acquire infection within the 6-month follow-up.

It is necessary, therefore, to take account of the clearance rates of symptomatic and asymptomatic infection,

and the proportion of incident infections that become symptomatic (see Appendix 4).

Estimation of force of infection
The infection and re-infection rates can be used to estimate the mean force of infection (FOI) ~λFOIa,s in the

CT– women in each setting and age group using equation 12:

~λ
FOI

a,s = (1� pa,s).λa,s,1 + pa,s.λa,s,2 (12)

where the weights pa,s are given by the prevalence of CT in each setting observed in the LaMontagne

study192 (see Appendix 4). However, as the LaMontagne study192 samples from only GP, STD and FP

settings, it is necessary to turn to a third source of evidence, CT prevalence, to map these estimates of FOI

to estimates for the general population.

The CT prevalence data inform the absolute prevalence in 18- to 19-years-olds π1,pop (the youngest age

group in the study), and the relative risks RRa of infection in the generic age group a relative to age

18–19 years so that:

πa,pop = π1,pop.RRa (13)

In order to use these data to map our estimates of FOI to the general population, we make the

assumption that the between-setting and between-age group RRs in the prevalence data directly inform

the HRs (γa and ρs) in the incidence model described above. For a fixed duration, prevalence ratios must be

equal to incidence rate ratios, so the assumption is that ratios of incidence are equivalent to ratios of FOI,

and of infection. We consider this assumption further in Appendix 3.

A first estimate of Chlamydia trachomatis incidence in England (method A)
We use the OR between the general population setting and the GP setting, which informs the parameter

ρpop to map the FOI in the GP setting to provide an estimate of the FOI in women in the general

population ~λFOIa,pop:

~λ
FOI

a,pop = ρpop
~λ
FOI

a,GP (14)
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Estimates of FOI are of interest in themselves. However, we can easily calculate the annual population

incidence rate ~λINC1a,pop: (years
–1) for the age groups 16–17, 18–20 and 21–24 years as a function of FOI

(years–1) and duration using equation 15:

~λ
INC1

a,pop =

~λ
FOI

a,pop

1−~λ
FOI

a,popΔ
(15)

A second estimate of Chlamydia trachomatis incidence in England
(method B)
A second estimate of the annual population incidence can be obtained using data on duration and data

on prevalence using the relationship incidence= prevalence/duration so that:

~λ
INC2

a,pop =
πa,pop

Δ
(16)

Where duration is estimated as previously described and prevalence πa,pop is informed directly by the data in

Table 10 so ~λINC2a,pop is estimated for the age groups 18–19, 20–24, 25–29 and 30–44 years.

Full synthesis model
The method A and method B analyses can be combined in a single joint synthesis using the relationship:

πa,pop = ~λ
INC

a,pop.Δ (17)

Where ~λINCa,pop is informed as described in method A, and the parameters πa,pop and Δ are informed as

described in method B. This is shown in the DAG in Figure 8. This single joint analysis provides estimates

of population incidence for the age groups 16–17, 18–20, 21–24, 25–29 and 30–44 years. The only age

groups for which incidence is estimated in both methods A and B are 18–20 and 21–24 years. However,

estimates for the other age groups are also expected to change. The full synthesis model provides estimates

for all parameters based on the entire data ensemble. So, for example, when our knowledge of the

regression parameters described in method A are updated by the data described in method B, estimates of

the annual population incidence rate in 16- to 17-year-olds may change.

Note that the DAG in Figure 8 also describes methods A and B above. We remove the constraint that

prevalence= incidence × duration shown on the DAG under the heavy black bar replacing it with equation 17

above, and place uninformative priors on πa,pop. This single unconstrained model then produces estimates from

both methods A and B in parallel.

Model critique
We compare the goodness of fit of the combined synthesis model and the model with separate incidence

estimates: this provides a global assessment of the statistical assumptions. A graphical comparison of the

separate incidence estimates is also presented. We assess the validity of some more specific statistical

assumptions in Appendices 3 and 4. Unless otherwise stated vague priors are employed throughout,

so that results are dominated by the data. The WinBUGS code is available along with the data sets in

Appendix 5. It has been annotated to help readers to understand the model.
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Results

Table 12 shows the posterior estimates of the annual population incidence from method A (column 2),

method B (column 3) and the full synthesis model (column 4). Estimates from method A are available for the

16–17, 18–19, and 20–24 years age groups, method B provides estimates for age groups 18–19, 20–24,

25–29 and 30–44 years, and estimates for all age groups are available from the full synthesis model.

Estimates from the full synthesis model are around a factor of 1.5 lower than those obtained from method A

but only marginally higher than those obtained from method B. This is because the uncertainty in the

incidence information from the LaMontagne data192 is much greater than in the combined duration and

prevalence information. This effect is shown pictorially in Figure 9, which compares the estimates of incidence

in the age groups 18–19 years and 20–24 years, and also shows the combined estimate incorporating all data

sources. Results from the full synthesis model for all five age groups are also given in Figure 10.

Table 13 shows the estimates of the basic parameters in the model estimated when the constraint that

prevalence= incidence × duration is excluded (column 2) and included (column 3) in the model,

representing, respectively, methods A and B being performed simultaneously in parallel, and the full

synthesis model. It shows that for most parameters: duration, proportion symptomatic, re-infection-to-

infection rate ratios, age- and setting-specific risk ratios, and prevalence parameters, the synthesis has not

contributed much additional information over and above the ‘direct’ data already available. However,

the general population to GP RR is lowered by a factor of about 1.35 compared with method A, and the

95% CrIs are about half of the width.

Our separate models of incidence in women aged 16–24 years included nine parameters and had a

residual deviance of 18.4 for a data set with 21 data points (see Tables 9–11) representing a good fit

(Table 14). When these data are combined with the prevalence information, residual deviance increases

only marginally (19.5), indicating a lack of conflict between the different sources of information on

incidence. Prevalence and duration data also fitted equally well. Results (not shown) with a wider uniform

prior distribution on the duration of symptomatic infection, 3–12 weeks rather than 4–8 weeks, were

almost identical (< 1% multiplicative change). We therefore recommend using results from the full

synthesis model that uses all of the data, giving an estimated incidence rate in 16- to 24-year-old females,

the population targeted by the NCSP, of 0.05 per year (95% CrI 0.035 to 0.071) and in 16- to 44-year-olds

0.021 per year (95% CrI 0.015 to 0.028).

TABLE 12 Population CT incidence rate per year in women by age estimated using each method. From Price et al.193

Parameter (years)

Method A (adjusted
incidence data)
(95% CrI)

Method B (prevalence
and duration data)
(95% CrI)

Full synthesis model
(95% CrI)

~λINC16–17,pop incidence, 16–17 0.122 (0.057 to 0.235) – 0.082 (0.047 to 0.134)

~λINC18–19,pop incidence, 18–19 0.070 (0.036 to 0.126) 0.046 (0.028 to 0.072) 0.048 (0.032 to 0.068)

~λINC20–24,pop incidence, 20–24 0.060 (0.032 to 0.106) 0.031 (0.019 to 0.048) 0.039 (0.027 to 0.054)

~λINC25–29,pop incidence, 25–29 – 0.015 (0.009 to 0.023) 0.015 (0.0087 to 0.024)

~λINC30–44,pop incidence, 30–44 – 0.0078 (0.0045 to 0.013) 0.0080 (0.0045 to 0.013)

Incidence, 16–24 0.050 (0.035 to 0.071)

Incidence, 16–44 0.021 (0.015 to 0.028)
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Reproduced from Price M, Ades A, De Angelis D, Welton NJ, Macleod J, Turner K, et al. Incidence of Chlamydia
trachomatis infection in England: two methods of estimation. Epidemiol Infect 2014;142:562–67. This work is under
the Commons Attribution-NonCommercial license 3.0: http://creativecommons.org/licenses/by-nc/3.0/.
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TABLE 14 Model fit statistics for each data set from the separate models fitted using methods A and B in parallel
and the full synthesis model. From Price et al.193

Source Number of data points

Number of parameters Mean residual deviance

Separate models Full model Separate models Full model

Incidence 21 9 9 18.4 19.5

Prevalence 4 4 2 4.0 4.1

Duration 2 2 2 2.0 2.2

Total 27 15 13 24.3 25.7

TABLE 13 Incidence, prevalence, duration estimates obtained from the separate models, and from the full
synthesis model. From Price et al.193

Parameter
Separate models:a

mean (95% CrI)
Full synthesis model:
mean (95% CrI)

CT duration and clearance rate

λA clearance rate, asymptomatic 0.74 (0.62 to 0.90) 0.77 (0.64 to 0.95)

ΔA duration of asymptomatic infection 1.36 (1.13 to 1.63) 1.31 (1.06 to 1.56)

Δ mean duration (years) 1.07 (0.86 to 1.29) 1.03 (0.82 to 1.25)

Φ proportion symptomatic 0.23 (0.16 to 0.31) 0.23 (0.16 to 0.32)

CT incidence: regression parameters

ηGP re-infection: infection ratio, GP 7.31 (4.07 to 11.9) 7.08 (3.97 to 11.6)

ηFP re-infection: infection ratio, FP 3.52 (2.09 to 5.52) 3.66 (2.16 to 5.77)

ηSTD re-infection: infection ratio, STD 2.01 (1.17 to 3.17) 2.08 (1.21 to 3.28)

ρFP HR, GP (reference group) 1 1

ρpop HR, general population 0.62 (0.37 to 0.96) 0.46 (0.33 to 0.63)

ρFP HR, FP 1.28 (1.02 to 1.59) 1.30 (1.03 to 1.61)

ρSTD HR, STD 2.38 (1.78 to 3.11) 2.45 (1.83 to 3.20)

CT prevalence, %

π16–17,pop general population, 16–17 years – 8.38 (4.94 to 13.5)

π18–19,pop general population, 18–19 years 4.91 (3.13 to7.28) 4.85 (3.47 to 6.59)

π20–24,pop general population, 20–24 years 3.27 (2.10 to 4.83) 3.96 (2.89 to 5.30)

π25–29,pop general population, 25–29 years 1.54 (0.95 to 2.35) 1.54 (0.95 to 2.37)

π30–44,pop general population, 30–44 years 0.82 (0.50 to 1.28) 0.83 (0.50 to 1.29)

General population, 16–24 years 5.15 (3.76 to 6.93)

General population, 16–44 years 2.11 (1.63 to 2.71)

a Methods A and B.
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Discussion

Although CT prevalence in the general UK population has been studied,106 incidence estimates have been

produced only in clinic patients.192 We used data on ratios between clinic settings and the general population

in prevalence studies to ‘recalibrate’ the incidence data to a lower value that was appropriate to a general

population setting. The possibility of clearance of infection and re-infection during the follow-up period was

also taken into account: the effect of this is to raise incidence estimates above the levels that are directly

observed. The estimate based on the recalibrated incidence study was found to be compatible with an

estimate based on combining prevalence and duration information.

A certain degree of simplification is involved. The incidence data were collected in 2003–4, 2–3 years later

than the NATSAL (National Survey of Sexual Attitudes and Lifestyles) study,195 which contributes all of the

general population prevalence information to the estimates in the Adams study,106 and in a period before

intensive screening was taking place. We have assumed that incidence is unlikely to have changed greatly

between these dates, and that our estimates are therefore relevant to the years 2001–5.

As with any evidence synthesis method, conclusions are limited by the quality of the original data and the

assumptions made in interpreting them. The CT prevalence information in NATSAL195 was based on

self-testing in a structured population sample and is vulnerable to response biases, although these have

been extensively analysed elsewhere.196 The incidence data were collected in two English areas, which

were metropolitan and urban, respectively. The extent to which these data can be assumed to be

nationally representative is not known. The final estimates are more influenced by the prevalence data

than the incidence data, and this is dominated by the NATSAL195 data collected in 2000. Finally, the

estimates of duration of asymptomatic CT duration, 1.36 (95% CrI 1.11 to 1.62) years, are based

on the Chapter 4 synthesis of studies with different designs and subject to the assumptions made in

that chapter.168

Additional validation of our estimates and of our overall approach is available by multiplying our estimated

infection rate by the number of women aged 16–24 years in England, based on population census

projections for 2002.197 This predicts a total of 137,100 (95% CrI 95,520 to 192,500) infections. This can

be compared with the 31,510 and 34,660 women aged 16–24 years who were treated for CT in STD

clinics in 2002 and 2003, respectively.198 The ratios of numbers treated to predicted total infections in

women aged 16–24 years are 24% (95% CrI 16% to 33%) for 2002 and 26% (95% CrI 18% to 36%)

for 2003. This accords closely with the proportion of infections in which symptoms develop estimated from

the model, and the Geisler et al.73 findings. Therefore, had we partitioned women as treated or untreated

when estimating the mean duration as is often done in dynamic models and used recursive equations to

estimate the proportion treated from routine data, we would have obtained almost identical results.

Although the estimates of CT incidence and prevalence in England may be of limited interest elsewhere,

the study does have wider implications. First, the fact that incidence, prevalence and duration evidence is

internally consistent provides a degree of independent validation of our estimates of all three parameters.

Second, it indicates that estimates of CT prevalence or CT incidence in other countries can each be

generated from the other, using our estimates of duration. Alternatively, where information is available on

both incidence and prevalence, a similar exercise could be carried out to provide a further validation of our

results and the models on which they are based.

The study raises the question: what is the best way to obtain accurate population-based estimates of

CT incidence? Further direct study of infection and re-infection rates among opportunistically recruited

women appears to be worthwhile. However, as well as taking account of clearance and re-infection during

follow-up, it will probably always be necessary to ‘recalibrate’ setting-specific estimates to the general

population. Studies of either prevalence or incidence based on structured general population surveys are,

therefore, essential.
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Our analysis of incidence, prevalence and duration has relied on an essentially static epidemiological

model. The alternative would be to assess the consistency of a somewhat wider evidence base within a

dynamic modelling context. For example, a dynamic model could be estimated from the same sources

of data (incidence, prevalence, duration of symptomatic and asymptomatic infection, proportion

symptomatic), but also incorporating information on contact rates and transmission rates per contact

(see Chapter 12).

Summary of assumptions and findings

Key assumptions

1. The LaMontagne study192 of incidence in FP, STI and GP groups is nationally representative.

2. The incidence and prevalence estimates are based on several data sources, but are relevant to the

years 2000–5.

Summary of findings

1. The available data on incidence in the UK agree with predictions based on duration (see Chapter 4) and

UK prevalence.

2. The mean duration of CT infection in women (including symptomatic and asymptomatic infections) is

1.03 years (95% CrI 0.82 to 1.25 years). The proportion of incident infections that are symptomatic

is 0.23 (95% CrI 0.16 to 0.32).

3. CT incidence in the general population aged 16–24 years is 5.04 per 100 person-years (95% CrI 3.52

to 7.09) and in women aged 16–44 years it is 2.07 per 100 person-years (95% CrI 1.50 to 2.81).

4. CT prevalence in the general population aged 16–24 years is 5.15% (95% CrI 3.76% to 6.93%), and

in women aged 16–44 years it is 2.11% (95% CrI 1.63% to 2.71%).
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Chapter 6 Risk of pelvic inflammatory disease
following Chlamydia trachomatis: analysis of
prospective studies

Objectives

To:

1. develop and apply appropriate models for trials of screening and other prospective studies that follow-up

women with CT to observe whether they develop PID

2. estimate the risk of PID following a CT infection

3. estimate the proportion of CT-related PID infection in women with CT that can be prevented by CT

screening and treatment at annual intervals.

Introduction

A range of observational studies have followed untreated CT infected (CT+) women prospectively and

observed the number of women developing PID.73,165,184,199,200 In some studies,73,184,199,200 the infection,

presumably mostly symptomatic, has been diagnosed in a clinic, and in one study165 it was identified by

screening asymptomatic cases. There have also been controlled trials randomising large numbers of

women to screening and treatment or to no screening.12,13,19 However, as we note earlier, there is a

remarkable lack of consensus on the risk of PID attributable to an episode of CT, despite a major

authoritative review.98

Previous reviews20,61,98,144 of prospective data on progression to PID have been qualitative. In this chapter

we synthesise data from these studies to provide quantitative estimates of the difference in the rates at

which PID develops in women with and without CT. From these estimates we derive first the probability

that an episode of CT causes an episode of PID, and then the proportion of episodes of PID caused by CT

in women with CT, that could be prevented by screening at 1-yearly intervals. By this we mean annual

screening not associated with recent risk of infection.

First, we re-appraise the prospective studies, including non-randomised and uncontrolled studies. We

then present a three-state continuous time Markov model, which allows not only for different rates of

development of PID in CT-infected (CT+) and uninfected (CT–) women but also spontaneous clearance of

CT, a competing risk. It also allows for CT infection in women who are initially uninfected (CT–), and for

re-infection with CT in women who are initially CT+ but who spontaneously clear infection or are tested

and treated. We then re-analyse each of the controlled studies, both randomised and not, under the

assumptions of the model. Finally, we synthesise them altogether to obtain estimates of the proportion

of incident CT that results in PID, and the proportion of CT-caused PID in women with CT that can be

prevented by annual screening. The work in this chapter has been published previously.201

The definition of PID that was used in the prospective studies is, of course, a key issue in their

interpretation. Our assumption is (see Chapter 2) that, in prospective studies, the 89% of PID that is not

asymptomatic103 will be picked up.
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Methods

Evidence identification
We sought prospective studies of women with CT including observational studies with or without a control

group, and RCTs of screening interventions. We identified studies from recent review papers,20,61,98,144

reference searches of published economic and population transmission models,1,2,8,29,140,141,170–174 and as part

of a wider review of the literature on the natural history of CT. Included among these was a recent

systematic review instituted at an Expert Advisory Meeting of the Centers for Disease Control and

Prevention.98 We exclude the study by Bachmann et al.202 because the follow-up time was not reported;

the study by Stamm et al.203 because the patients were co-infected with gonorrhoea; and the study by

Westergaard et al.204 because the patients were women who had just undergone an abortion, and this is a

very unrepresentative population. The study by Morre et al.180 is excluded because of uncertainty about the

adequacy of outcome assessment.40 We identified eight studies12,13,19,73,165,184,199,200 (Table 15) that followed

up women with CT to assess the proportion who developed PID in the absence of, or prior to, treatment.

Note that four of the studies73,165,184,200 shown in Table 15 are excluded from the modelling because of a

lack of a control group.

Information sources and their interpretation
Some studies were set in STD clinics, and others were based on infected women recruited by population

screening. Five were observational, one of which, a clinic-based study, included a control group. The

remainder were RCTs, all based on screened populations. In the POPI trial,19 both arms were screened; one

was treated immediately, whereas in the other arm treatment was deferred until the end of the study.

Table 15 shows the proportion of women with PID in each arm at the end of each study. Most

investigators have focused attention on these proportions, and in controlled studies, on RRs. However, it is

necessary to account for the mean follow-up time t0 for each observation o. The last column of Table 15

shows crude study-specific estimates of the rates of progression to PID, based on a constant hazard within

each study and arm.

The crude estimates of the progression rate in CT+ women vary by factors of 30-fold: studies based in STI

clinics having shorter follow-up periods and higher apparent progression rates, whereas those based on

screened populations tend to have longer follow-up periods and lower progression rates. There are three

possible contributory explanations for this. First, CT infections spontaneously resolve without treatment, so

even if progression rates were constant over time, with CT clearance as a ‘competing risk’, the numbers

acquiring PID must slowly decrease over time towards a background level seen in a representative control

group. The effect of this will tend to be greater in studies with a longer follow-up. However, the mean

duration of untreated CT has been estimated to be over 1 year74,142,166 (see Chapter 4) so this would

explain only a small part of the apparent differences. A second possible explanation is that women visiting

STI clinics are more likely to have symptoms than those identified through screening, and the higher CT

load associated with symptoms205–207 may confer a greater risk of developing PID. A third possible

explanation is if the risk of developing PID is greater in the period immediately after CT infection,98,208

even if the infection is asymptomatic.

There is a fundamental difference between STI clinic studies and screening studies. Women are most likely

to attend clinics because of the onset of symptoms, or because of concern following recent possible

exposure to infection. They are therefore more likely to be recently infected. This is supported by evidence

that symptoms mostly occur soon after infection (6) (see Chapter 4). Screening studies, by contrast, recruit

participants with asymptomatic, prevalent CT infection, who have already ‘survived’ an unknown period of

time without developing PID. Further, if the risk of PID is higher immediately following infection, the

screening studies must underestimate the overall progression rate. For example, if asymptomatic infection

lasted exactly 12 months, and if 20% of incident cases develop PID (at which point they are treated for

CT), always exactly 3 months after infection, the annual progression rate that would be observed in

patients recruited from a prevalent population would be only 5.9% [i.e. 3/(0.8 × 12+ 0.2 × 3) × 0.2],
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TABLE 15 Information from prospective studies that followed women with chlamydia to PID. From Price et al.201

First
author

Study
design

Study
population Arm

Data:
ro/no

Crude
proportion
developing
PID (95% CrI):
po= ro/no

Follow-up
period: to

Crude annual
PID rate
(95% CrI):
(–log(1 –po))/to

Hook200 Uncontrolled Clinic CT+ 3/93 0.032
(0.012 to 0.091)

2 weeks 0.82
(0.30 to 2.40)

Geisler73 Uncontrolled Clinic CT+ 2/115 0.017
(0.005 to 0.061)

2 weeks 0.44
(0.14 to 1.59)

Paavonen184 Uncontrolled Clinic CT+ 3/15 0.200
(0.078 to 0.481)

1 month 2.79
(1.01 to 8.21)

Rahm165 Uncontrolled Screened CT+ 4/102 0.048
(0.016 to 0.097)

3 months 0.18
(0.07 to 0.46)

Rees199 Controlled Clinic CT+ 8/67 0.119
(0.063 to 0.222)

7–90 days 1.02
(0.52 to 2.01)

CT– 3/62 0.048
(0.018 to 0.135)

0.40
(0.15 to 1.16)

Oakshott19 RCT Screened Untreated
CT+

7/74 0.093
(0.047 to 0.183)

1 year 0.099
(0.049 to 0.205)

Delayed
screen CT–

16/1112 0.014
(0.009 to 0.023)

0.014
(0.009 to 0.024)

Treated
CT+

1/63 0.016
(0.004 to 0.087)

0.016
(0.004 to 0.089)

Screened
CT–

14/1128 0.011
(0.007 to 0.019)

0.012
(0.007 to 0.021)

Scholes13 RCT Screened Unscreened 33/1598 0.021
(0.015 to 0.029)

1 year 0.021
(0.015 to 0.029)

Screened 7/645 0.011
(0.005 to 0.022)

0.011
(0.005 to 0.022)

Chlamydia
prevalence

44/645 0.068
(0.051 to 0.091)

Ostergaard12 RCT Screened Unscreened 20/487 0.041
(0.027 to 0.063)

1 year 0.042
(0.027 to 0.065)

Screened 9/443 0.020
(0.011 to 0.038)

0.021
(0.011 to 0.039)

Chlamydia
prevalence

43/867 0.050
(0.037 to 0.066)

ro, no, to are the numerator, denominator and time interval in observation o.
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a gross underestimate. In such a scenario, only screening and treatment occurring during the first

3 months of a 12-month infection would prevent PID due to these infections. As a result, a single screen

every year would prevent only 29.4% (5.9/20%= 29.4%) of the PID cases caused by CT.

A model for progression to pelvic inflammatory disease in the controlled
prospective studies
In our model for prospective studies (Figure 11), women who are CT+ and CT– at the start of the study

begin in states 1 and 2, respectively. Women in state 1 may clear infection and progress to the CT– state,

state 2, at rate λC, or they may develop PID (state 3) at a study-specific rate θCT+
s for study s. Women in

state 2 may become infected with CT, which occurs at rate λls or may develop PID at rate θCT−
s if they

acquire, or already had, a non-CT infection that carries a PID risk. We assume that the prevalence and

incidence rates for other STIs are the same in each arm. The difference δ between θCT+
s and θCT−

s represents

the rate of acquiring PID in women with a current CT infection that can be causally attributed to CT.

The Figure 11 model is represented by the Markov transition rate matrix (G) shown in equation 18:

G =

�ðλC + θCT+
s ) λC θCT+

s

λls −(λls + θCT−
s ) θCT−

s

0 0 1

2
64

3
75 (18)

Only comparative studies can contribute information on δ but we cannot derive estimates of δ from

comparative studies without information on λC and λls. We assume that the CT clearance rate for

asymptomatic infection, λC, is constant across studies, at 0.74 (95% CrI 0.61 to 0.89) per year, based on

the Chapter 4 evidence synthesis of studies on CT duration. Similar estimates have been reported

elsewhere.166 Note that the information on incidence and prevalence can back-propagate through the

evidence network and impact on the posterior distribution of the duration of asymptomatic infection,

although the latter was not materially changed.

For CT incidence λls we assume an infection rate of 5% per year in women who are CT– at the outset, and

a re-infection rate of 15% per year in women who are CT+ and tested and treated. Given a CT average

duration of 1–1.5 years, a 5% incidence reflects a CT prevalence of 5–7.5%, which accords with the

baseline CT prevalence in the three trials. Re-infection rates are higher by approximately a factor of 3.192

We assume that all women in the Scholes13 and Ostergaard12 (95% CT–) studies are at risk of infection,

whereas all women in the Rahm165 (50% CT+) and POPI19 (100% CT+) studies are assumed to be at risk

of re-infection. Detailed sensitivity analyses (see Appendix 6) show that conclusions are relatively insensitive

to the values assumed.

Some of the screening studies record the proportion of women who were tested and treated for CT during

follow-up, thus shortening their time at risk of CT-related PID. This was 43% for the POPI trial,19 32% for

Ostergaard et al.12 and 8.1% for Rees.199 The Scholes et al. paper13 implies that some women were tested

but does not report how many: we have assumed a proportion of 32%, following Ostergaard et al.,12

but the impact of a lower rate is explored in sensitivity analyses (see Appendix 6).

State 1:
CT+

State 2:
CT–

State 3: PID

λC

λI
s

θ CT–
s

θ δCT+
s θ= +CT–

s

FIGURE 11 Multi-state transition model for disease progression in prospective studies. From Price et al.201
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We consider two models. In the first, the causal rate of PID due to CT (δ) is constant throughout the

duration of infection. In the second, the causal rate in the period immediately following CT infection (δ1) is

different from the causal rate during the remainder of the infection (δ2). We fit models with the rate δ1

lasting for periods of 30 days, 60 days and 90 days post infection.

Estimation
Details of the estimation methods are given in Appendix 7. In brief, each study arm provided data with a

binomial likelihood, which estimates a probability parameter, say pi→ j
s,t , representing the study-specific

transition probability that a person in state i occupies state j, t years later. These probabilities are entries in

the transition probability matrix Pt. If the transition rates are constant over the period t then the transition

probabilities, on which we have data (see Table 15), are functionally related to the transition rates in

equation 18 by Kolmogorov’s Forward Equations (equation 19):209

dPt

dt
= Pt .G (19)

Estimation is carried out using a Bayesian approach, where the posterior distribution is sampled through

Markov chain Monte Carlo (MCMC) simulation. The rate parameters in equation 18 are given vague priors,

the values of which are updated by the data. Numerical solutions to the Forward Equations are found in

each MCMC cycle, using the WinBUGS44 add-on WBDiff,161 which uses the Runge–Kutta method.210,211

Only the CT+ groups from the POPI trial19 were included in the analysis because the treatment effect

estimate is thereby based on a randomised comparison. The proportion with CT in the early treated arm

are considered, in effect, as being CT– at the start of the observation period. Those in the deferred

treatment group are, of course CT+. However, in the Scholes13 and Ostergaard12 trials, although the

women in the screened arm are again taken to be CT– at the start of follow-up, those in the unscreened

arm are a mixture of (untreated) CT+ and CT–. The study-specific CT prevalences in the screened arms are

estimators of these mixing proportions.

Further details on how the observed data informs the rate parameters in the matrix G (equation 18) are

given in Appendix 7. The joint posterior distribution of the rate parameters is used to obtain posterior

distributions for the two parameters of interest: the proportion of CT infections that result in PID and the

proportion of CT-caused PID preventable by annual screening.

Probability that incident Chlamydia trachomatis will cause an episode of
pelvic inflammatory disease
Although the comparative studies provide an estimate of the difference δ in progression rates between

CT+ and CT– women, the target parameter of interest is the proportion of incident CT infections that

cause PID. We assume that a proportion, φ, of incident CT cases are symptomatic and treated, clearing at

rate λT, and with no increased risk of PID. The remaining 1 – φ infections are asymptomatic. To simplify the

equations and maintain generality we ignore non-CT-related PID as a competing risk at this stage. Even if

the rate of non-CT PID were twice that observed in the screened arm of POPI,19 this would change the

value of our target parameter by a multiplicative factor of only about 2.5%. The probability that either

type of infection will cause PID is the ratio of the rate of leaving state 1 for state 3 to the rate of leaving

state 1, a standard result from competing risks analysis.212 The proportion of incident cases of CT leading

to an episode of PID in a homogeneous model is therefore:

κ = (1−φ).
δ

δ + λC
+ φ.

δ

δ + λΤ
(20)

Calculation of κ requires estimates of φ and λT. For the former, we use the estimate from Geisler et al:73

0.24 (95% CrI 0.17 to 0.32). For the latter we assume that treated infection lasts 4–8 weeks.
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In the two-stage piecewise homogeneous model, with the initial rate lasting for B days, the probability of

developing PID in the first B days and the probability of developing PID subsequently conditional on having

neither developed PID nor cleared infection in the first B days, are summed (equation 21):

κ = (1−φ). 1− exp −(λC + δ1).
B

365

� �
.

δ1

δ1 + λC

� �
+ exp −(λC + δ1).

B

365

� �
.

δ2

δ2 + λC

� �� �

+ φ. 1− exp −(λT + δ1).
B

365

� �
.

δ1

δ1 + λT

� �
+ exp −(λT + δ1).

B

365

� �
.

δ2

δ2 + λT

� �� � (21)

Estimation of the proportion of pelvic inflammatory disease episodes
prevented by screening
Even with 100% coverage, an annual screening programme for CT would not prevent all cases of PID.

We estimate the proportion of episodes of CT-related PID that could be prevented in women who become

infected with CT. The expressions for this quantity are derived and presented in Appendix 7. This applies to

the benefits to CT+ women who are screened and treated, and is not designed to measure the full effect

of screening as it does not take into account reduction in PID due to reduced CT incidence.

Plan of analysis
The data analysis is carried out in several steps in order to show the influence of the different types of data

on the estimates of interest. First, we examine each of the comparative studies separately. We then

synthesise information from all three RCTs, and then from the four comparative studies. Studies are

combined on the basis that the progression rates in CT– women vary between studies in an arbitrary way,

but the difference δ between the progression rates from CT– and CT+ has the same fixed effect across

studies. WinBUGS code is provided in Appendix 8.

Results

Table 16 shows the study-specific estimates from the homogeneous Markov model of the difference δ,

which we interpret as the causal rate of PID in CT+ women, and the proportion of incident CT infections

that result in PID. Although the POPI trial19 data delivered the lowest estimates of both parameters, the

CrIs for the estimates from the other studies were considerably wider and approximately compatible with

the POPI19 results. The estimates from the Scholes study13 were relatively insensitive to changes in

assumptions on the proportion tested during the follow-up period (see Appendix 6).

TABLE 16 Posterior means and 95% CrIs for the causal rate of PID in CT+ women, and the probability that an
incident CT case causes PID.201 Reproduced from Price M, Ades A, De Angelis D, et al. Risk of Pelvic Inflammatory
Disease following Chlamydia trachomatis infection: analysis of prospective studies with a multistate model.
Am J Epidemiol 2013;178:484–92

Study Causal PID rate in CT+, δ Pr(CT causes PID)

POPI 0.15 (0.02 to 0.31) 0.12 (0.02 to 0.24)

Scholes 0.26 (0.03 to 0.55) 0.20 (0.03 to 0.34)

Ostergaard 1.03 (0.13 to 2.49) 0.42 (0.11 to 0.64)

Rees 0.73 (0.06 to 1.71) 0.36 (0.06 to 0.58)
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Table 17 presents the results of combining the information from the different studies under each of the

homogeneous and piecewise homogeneous models. In all of the models the mean residual deviance was

close to the number of data points, indicating a good fit. Also, it was apparent that the estimates under the

one-rate model were broadly similar for data (1) from the POPI trial19 only, or (2) pooled from all trials, or

(3) including the observational study as well. The causal rate of PID ranged from 0.15 to 0.19 per year, and

the probability of CT causing PID from 0.12 to 0.16. The proportion of CT-caused PID preventable by

annual screening remained at 61–63%. The degree of overlap between these estimates, and the shape of

the posterior distributions can be seen in Figure 12.

The data did not distinguish between the one- and two-rate models in terms of goodness of fit. The rate

in the initial period is estimated to be approximately 50% higher than the rate during the remainder of

infection, which is slightly lower than for the one-rate model. Both rates are insensitive to the assumed

time period of the higher rate between 30 and 90 days (see Table 17). Credible intervals are, however,

very wide, and a Bayesian p-value, testing the null hypothesis of equal rates in the 60-day model, was only

0.67. The assumption of two rates had no real effect on the causal probability of PID from an episode of

CT. The estimated proportion of PIDs that can be prevented by screening reduced marginally to between

54% and 58% for B= 90 days and 30 days, respectively, although CrIs were wide (Figure 13).

Sensitivity analyses (see Appendix 6) showed that although results from some of the individual studies can

be sensitive to changes in assumed infection and re-infection rates, none of the results for the pooled

analyses using the single rate model was changed by more than a multiplicative factor of 4%. Results from

the two-rate model were more sensitive, with κ varying between 0.15 and 0.20 when B= 60 days.

TABLE 17 Synthesis models. Residual mean deviance, numbers of data points and marginal posterior means with
95% CrIs for key parameters. From Price et al.201

Method

Mean
residual
deviance

Number
of data
points Causal rate of PID

Probability CT
causes clinical PID

Proportion
prevented by
screening

One-rate models

POPI data only 2.0 2 δ 0.145 (0.021 to 0.31) 0.125 (0.021 to 0.24) 0.625 (0.56 to 0.69)

Trials only 8.5 8 δ 0.178 (0.049 to 0.33) 0.148 (0.048 to 0.25) 0.615 (0.55 to 0.68)

All controlled
studies

10.6 10 δ 0.189 (0.057 to 0.34) 0.156 (0.056 to 0.25) 0.612 (0.55 to 0.67)

Two-rate models

All controlled
studies, 30 days

10.3 10 δ1 0.280 (0.016 to 0.65) 0.161 (0.068 to 0.26) 0.576 (0.42 to 0.68)

δ2 0.187 (0.055 to 0.35)

All controlled
studies, 60 days

10.3 10 δ1 0.288 (0.018 to 0.65) 0.163 (0.073 to 0.26) 0.552 (0.32 to 0.72)

δ2 0.182 (0.046 to 0.35)

All controlled
studies, 90 days

10.3 10 δ1 0.281 (0.017 to 0.63) 0.165 (0.075 to 0.26) 0.543 (0.26 to 0.76)

δ2 0.179 (0.038 to 0.36)
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Discussion

Early literature on the progression from CT to PID cited high rates based on uncontrolled studies in high

risk populations.184,203 Over time, these estimates were increasingly questioned.5,39,213 Quantitative estimates

of the causal relation between CT and PID have been made from a wide range of study types,40 including

linkage studies of treated women,36,107,214–217 arguments from retrospective data1,36,107,214–217 and the use of

CT serology.88,101,218 More recently, it has been accepted that linkage studies cannot be used to generate

reliable estimates.20,98

The approach presented here has some novel aspects. The Markov model characterises the causal rate as

the difference in progression rates in CT– and CT+ individuals. It takes account of the ‘competing’ role of

CT clearance and of the fact that persons testing CT+ upon screening have already ‘survived’ a period

without developing PID. Finally, we have allowed for the impact of CT treatment of women in the

untreated arms of trials, and probable re-infection rates among those who were treated.

The continuous time Markov formulation avoids the limitations of traditional RR estimates12,13,19 of the

effect of CT screening. As the follow-up period is extended, the risk ratio estimate will be diluted by CT

clearance and PID caused by infections (both CT and non-CT) acquired after the screening and treatment,

while in time the risk difference should converge to a stable estimate. Crude risk difference estimates19,219

should also be interpreted with caution. The POPI trial19 data suggest that screening can prevent 83% of
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FIGURE 13 Marginal posterior distributions of the proportion of CT-related PID episodes, in women with CT,
prevented by annual screening. From Price et al.201
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PID occurring in the following year in a prevalent CT+ population (11). Based on the Markov model, these

data tell us that the proportion of incident CT-caused PID that can be prevented by annual screening is

lower, between 55% and 65%.

The study has also shown for the first time that similar estimates can be derived, though indirectly and with

less precision, from trials of screening versus no screening. The Scholes trial in particular has been criticised18

because testing and treatment rates outside the protocol are unlikely to be the same in the two arms.

We have used the information available, and sensitivity analyses, to mitigate this. Even with this defect, the

trials are clearly superior sources of evidence on the causal effects of CT to the often-cited observational

studies, in which the difference in CT status at the outset is likely to correlate with risk factors that favour

development of PID: higher partner change, greater risk of exposure to other agents that cause PID, and

greater prior exposure to CT.

The study relates to ‘annual screening’ at a random point in time. In practice, the benefit of screening

for the individual infected women may be greater if it occurs soon after partner change, as recommended

in some countries, or less if partner testing and treatment are not pursued effectively.

The main weakness of this analysis lies in the reliance of almost all prospective studies on clinical PID as the

outcome and between-study variation in case definition.40 There is a clear risk that prospective studies may

underdiagnose PID, as case–control studies of TFI suggest that up to 80% of women with TFI report no

history of PID.34,99,220 However, Wolner-Hanssen103 found that only 11% of women with TFI reported never

having had clinical symptoms. In prospective studies in which participants are questioned about symptoms

of PID, few cases are likely to be missed. The risk of overdiagnosis of PID depends on the definitions used.

The definition used in the POPI trial19 corresponded very closely with ‘probable/definite’ PID as defined in

Chapter 2. To the extent that the POPI trial19 has a dominating influence on the pooled estimate, it is

reasonable to assume that the estimate of progression risk applies to ‘probable/definite’ PID.

However, as noted in Chapter 2, although it is believed that a high proportion, 66% of PID is

undiagnosed, only a small proportion, 11%, is asymptomatic.103 In the POPI trial19 women were alerted to

the risks of PID as part of the consenting process, as follows: ‘. . . This is why if you could have been at risk

of infection, or have any symptoms which could be due to a sexually transmitted infection, it is vital that

you have a check up at a genitourinary clinic even if you are participating in the study’.221 Women would

also have been aware that they would be followed up at the end of the study. Our assumption therefore is

that in the POPI trial,19 and probably in all prospective studies following women at risk of STIs and PID, only

the small proportion of PID – the ‘silent’ proportion – will be missed.

The progression risk from CT to PID was estimated to be 14.8%. This estimate is based on the trial data

alone. A previously published rate from this study,201 which was a little higher (16%), was based on the

trial together with the single non-randomised study with a control group. However, in discussing the

progression rate from CT to PID, we should bear in mind not one single estimate but three estimates, each

reflecting a different level of ascertainment of PID. The 14.8% estimate most likely represents the 87%

of PID that is symptomatic, a 17.1% estimate would be more appropriate for all PID, diagnosed and

undiagnosed, whereas an estimate of approximately 6% would correspond to the level of ascertainment

that is represented in routine statistics.

The systematic difference in observed PID rates in studies with shorter and longer follow-up periods has led

to the suggestion that the progression rate is not constant over time.98 The potential impact of this has

been explored in the mathematical modelling literature, using Markov or similar models208,222 to predict the

proportion of PID prevented. However, with one exception,222 these studies have generated estimates of

the proportion prevented from scenario analyses based on estimates of progression rates that were derived

from models that do not allow for the competing risk of clearance or the left truncation inherent in

screening studies. The key contribution of this paper is to actually estimate all of these parameters

consistently within the Markov model framework. We found that the proportion of CT-related PID that
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could be prevented by annual screening may be as low as 55%, which might represent only 20–25% of

all PID in younger women62 (see later chapters). Estimates based on two-rate models were relatively

insensitive to the duration of a period of heightened PID risk following CT infection, but were derived from

a single, non-randomised study. The sparse data available do not distinguish homogeneous and piecewise

homogeneous models statistically, and the credible intervals on the parameters are wide. However, both

one- and two-rate models are considered plausible a priori.98

Summary of assumptions and findings

Assumptions

1. Studies based on screening asymptomatic individuals recruit prevalent infection, whereas clinical-based

studies recruit recently incident cases.

2. The definitions of PID used in the POPI study19 correspond closely with the definition of probable/

definite PID used in Chapter 2.

Summary of findings

1. The data do not distinguish between a model that assumes a constant hazard of PID following CT

infection, and a model in which the rate is higher over the initial 1–3 months.

2. The results of the POPI trial19 are consistent with the results of other trials and controlled prospective

studies although there is a high degree of uncertainty.

3. The CT-related risk of PID following CT infection is 14.8% (95% CrI 4.8% to 24.8%), based on the trial

evidence on PID that would be ascertained in a prospective study.

4. The total CT-related risk of PID following CT, including undiagnosed PID, is 17.1% (95% CrI 5.6%

to 28.9%).

5. 61% (95% CrI 55% to 67%) of CT-related PID could be prevented by screening at annual intervals.

The estimate is slightly lower if CT-to-PID progression rates are higher in the first 1–3 months.
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Chapter 7 Chlamydia and pelvic inflammatory
disease: Population Excess Fraction based on
prospective, retrospective and routine data

Objectives

To:

1. generate and compare estimates of the incidence of PID

2. generate and compare plausible estimates of the proportion of PID attributable to CT (the PEF)

3. produce coherent estimates of: CT incidence, PID incidence, the CT-to-PID progression rate, and

the PEF.

Introduction

The previous chapter produced estimates of the risk of clinical PID (as defined in Chapter 2) caused by an

episode of CT, based on prospective, and, particularly, randomised, data. We now consider the relation

between CT and PID from a broader perspective: not only the risk of PID following CT, but also how much

PID is attributable to CT. Viewed in isolation, the two questions are technically independent of each other.

However, suppose we had independent estimates of (1) CT incidence; (2) PID incidence; (3) the CT-to-PID

progression risk; and (4) the proportion of PID attributable to CT, the PEF. It would then be possible to

generate a prediction for each of these quantities from the other three. Therefore, estimates of the two

quantities are not independent if we examine the available data sources more broadly.

In fact, the relation between untreated CT and PID has been studied in a wide variety of ways, drawing on

prospective, retrospective and routine data. Following a MPES approach, we want to know whether the

different methods give consistent answers.

Given that previous chapters have dealt with CT incidence and the CT-to-PID progression risk, in order to

provide a complete account of CT and PID, we must answer two remaining questions: first, what is the

incidence of all-cause PID; and second, how much PID is caused by CT. We begin by describing evidence

sources and statistical methodology for each topic. Two sources of evidence of PID incidence are

considered: a direct estimate from the control arm of the POPI trial19 and an estimate derived from routine

data. We then consider five separate methods of estimating the PEF in turn. For each estimate we first

review the evidence sources available, describing the relationships between the different elements. We

then set out the statistical models used to obtain estimates from the data. In the results we assess the

consistency of evidence on PID incidence, and compare the various estimates of PEF. In discussion we

review some of the key assumptions made and provide a rationale for our choice of PEF estimate to take

forward to later chapters. We also present a coherent set of estimates of CT incidence, prevalence and

duration, CT-to-PID progression rate, PID incidence and the PEF.

We note here that there is a wider literature on the relation between CT and PID which we have not

reviewed here, although it is, on the face of it, highly relevant. In particular, we have not included

estimates of the CT-to-PID progression risk based on register studies36,215 because women with CT in these

studies are treated, and are therefore not able to inform the CT-to-PID progression risk in untreated

infection. Further, although these studies have been used for this purpose in the past,2,15 the CDC Task

Force98 also concluded that such studies could not help determine the relationship between CT and PID.
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A second set of estimates not reviewed here are those of van Valkengoed et al.,39 who used a complex

procedure to estimate the prospective risk of PID, EP and TFI, following CT, from retrospective and routine

data sources. These risk estimates are extraordinarily low, and a methodological critique is given in

Appendix 9.

Methods: review of evidence sources and statistical estimation

Estimates of the incidence of all-cause pelvic inflammatory disease
This section describes two independent sources of PID incidence estimates, and a third estimate based on

pooling them.

Estimates based on the control arm of the Prevention of Pelvic Infection trial
A comparatively direct estimate of λALL PIDa can be derived from the control arm of the POPI trial,19 if we

assume that the trial sample is approximately representative of the general female population of the same

age, approximately age 16–24 years. In the unscreened arm, 23 (rPOPI) cases of clinical PID were reported in

a sample of 1186 (nPOPI) women, aged 16–27 years, followed up for a period of 1 year. Following

comments on the definition and ascertainment of PID in Chapters 2 and 6, we assume that all

symptomatic PID meeting the ‘probable/definite’ criteria will be ascertained, including those normally

undiagnosed. The POPI estimates are therefore ‘grossed up’ to account for the underascertainment of

asymptomatic (silent) PID in prospective studies. The POPI19 control arm estimates λALL PIDa . ψSym, where ψSym

is the proportion of PID that is symptomatic.

rPOPIeBin(pPOPI,nPOPI)

pPOPI
= 1−exp(−λPOPI)

λPOPI = λAll PID.ψ Sym

rSymeBin(ψ Sym,nSym)

(22)

The probability that incident PID is symptomatic ψSym is informed by the 32 out of 36 cases who reported

symptoms in the Wolner-Hanssen study.103

Incidence of all-cause pelvic inflammatory disease based on routine data
A second, more indirect, estimate of incidence can be derived from PID data routinely collected in England.

These data represent only diagnosed ‘probable/definite’ PID, and so must be grossed up by an estimate of

the proportion of PID that is diagnosed in a general population context (see below).

There are three sources of data on PID in England: HES,117 GPRD90 and KC-60 (the routine returns from STI

clinics198) (Table 18). The three sources pick up cases from different care pathways. HES117 reports the

number of cases of PID diagnosed in hospital (codes N70-N74). GPRD90 reports all diagnosis made in an

TABLE 18 Number of incident cases of PID in England, 2002

Age (years) HES (A) GPRDa (B) GUM clinicsb (C) MinC+Max (B,A) Max A+B+C Female population

16–19 1233 5083 3212 8295 9528 1,199,600

20–24 3101 8842 4399 13,241 16,342 1,519,100

25–34 9756 14,932 3919 18,851 28,607 3,502,100

35–44 10,526 9609 1388 11,914 21,523 3,795,600

Max, maximum; Min, minimum.
a Definite and probable PID as defined in French et al.90

b Data by age not available for 2002 so we assume that the age distribution for these data were the same as in 2009.
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approximately 8% sample of patients registered with general practices across the country. These data do

not include PID as a separate diagnosis, so we take our estimate from a recent paper that used the

recorded clinical descriptions of symptoms to estimate population incidence of definite and probable, and

of possible, PID diagnosed in this setting.90 Finally, PID diagnosed in STI clinics is reported as ‘complicated

chlamydia’. Data shown in Table 18 is for 2002, the final year before the introduction of the National

Chlamydia Screening Programme.

To use these data to derive age group-specific estimates of the annual incidence of diagnosed PID, we

need to make assumptions about the degree of overlap between the three sources. Consultation with

experts suggests that referrals of PID cases to and from departments of GUM (STI clinics) were rare prior to

2008. Referrals from GP practices to hospital are likely to have been more common for severe cases.

A primary care guideline for STI management published in 2006223 recommended referral to a GUM clinic

for mild/moderate cases of PID, and immediate commencement of treatment was advised if an urgent

appointment was not available. Prior to 2008, access to GUM services within 48 hours was poor.105 It was

recommended that severe cases should be referred to gynaecology for admission to hospital. We therefore

assume that the total of the STI, GPRD and HES data, within each age group, represents an upper bound

for the number of PID cases diagnosed in England each year. A minimum was formed by adding the

number of GUM cases to either the GPRD or the HES cases, whichever was largest.

Routine data on diagnosed PID, given information on age-specific population sizes Na, provides information

on λDiagPIDa . An estimate of total (all cause) rate of PID can then be constructed by using information on the

proportion diagnosed, ψDiag:

λΑLLPIDa =
λDiagPIDa

ψDiag
(23)

Binomially distributed data based on Table 18 are used to inform minimum and maximum limits for the

annual probability of (diagnosed) PID, and these are used to define the upper and lower limits for λDiagPIDa .

The WinBUGS ‘cut function’ was used to ensure that this uniform distribution was not updated (see

Chapter 3).

rmin
a eBinomial(pmin

a , Na), rmax
a eBinomial(pmax

a , Na)

paeUniform(pmin
a , pmax

a )

λDiagPIDa = −log(1−pa)

λALLPIDa = λDiagPIDa =ψDiag

rDiageBin(ψDiag, nDiag)

(24)

where Na is the number of women in each age group in England in 2002 from Census data.

The degree of underdiagnosis was based on a single study of 36 infertile women, only 11 of whom

(30.6%) reported that they had been diagnosed with PID.103 This study reported data with a

binomial likelihood.

Synthesis of pelvic inflammatory disease incidence estimates
The two estimates of PID incidence were compared. A DAG (Figure 14) shows how the two estimates

were combined. The WinBUGS code and data sets are set out in Appendix 10.
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Population Excess Fraction: how much PID is caused by chlamydia?
In this section we examine estimates of the PEF based on microbiological studies, estimates based on

retrospective case–control studies, and estimates derived from the ratio of CT-related PID incidence and

all-cause PID incidence, and finally estimates based on randomised trials. DAGs for each of the estimates

are shown in Figure 15.

Uncontrolled studies of the microbial aetiology of PID
Microbiological analysis of samples from the genital tract of women with PID provides direct information

on potentially causative organisms. Based on 19 microbiological studies conducted between 1977 and

1992, in a number of countries, Paavonen et al.82 reported that CT was involved in 30% of PID cases.

It has been argued20 that this must be an underestimate of the current role of CT, as gonorrhoea was a

common cause of PID during the period when many of these studies were undertaken, and it is generally

agreed that gonorrhoea is a far less common aetiology at present, particularly in Europe.

Simms and Stephenson62 provide a summary of studies in which patients with laparoscopically proven PID,

in other words salpingitis (see Chapter 2), recruited in various clinical settings, were examined for evidence

of current CT infection. The proportion with evidence of current CT in upper genital tract samples varied

from 12% to 65%, reflecting considerable variation over time and between countries. The largest UK

study,224 conducted between 1989 and 1993, reported 39%. In another UK study,37 conducted from 2000

to 2002, 42 of 140 (30%) salpingitis cases had evidence of exposure to CT.37

It is tempting to consider these studies as producing a direct estimate of the proportion of PID that is

attributable to CT.1 But this may be misleading for several reasons, the most obvious of which is that a

control group is required consisting of women without PID. The proportion of control samples in which we

would expect to find evidence of CT is, of course, quite small. The general population prevalence of CT is

in the order of only 3% (see Chapter 5).

A more serious weakness is that the results obtained depend markedly on the sites from which samples

are taken. In particular, the presence of CT in the upper genital tract, which is more likely to be causally

related to PID, may not be well predicted by its presence in the lower genital tract.225,226 These issues were

clarified by a recent study in Erfurt, Germany,225 looking at 363 women with laparoscopically confirmed

PID. CT was found in the genital tract of 103 (28.4%), and in 55 (15.2%) it could be isolated from the

cervix. In 23 (6.3%), CT was isolated from both the cervix and the fallopian tubes, whereas in 47 (12.9%)

CT was isolated in the fallopian tubes only.

=

Routine PID data and
census data

POPI trial19 control arm ALL PIDPOPI Sym

16 − 24
.= λλ ψ

Symψ diagψ Diag PID
a

λ

ALL PID
a

λ

Diag PID
a

λ

Wolner-Hanssen103

diagψ

FIGURE 14 Directed acyclic graph showing combination of two sources of evidence on PID incidence.

CHLAMYDIA AND PELVIC INFLAMMATORY DISEASE

NIHR Journals Library www.journalslibrary.nihr.ac.uk

66



Retrospective
studies, CT|PID

PEF-1

OR

CT prevalence data

aπ

(1) (OR – 1)
a

=γ
aπ

(OR – 1) + 1aπ

(a)

(b)

PEF-2

(2) (OR * – 1)
a

=

a

ErfOR* = OR/ψ

Erfψ

OR

Retrospective
studies, CT|PID

Correction
Erfurt study (2012)

CT prevalence data

π

γ
aπ

(OR * – 1) + 1aπ

(c)

CT incidence data 
Chapter 5

PID incidence
data Chapter 7

CT    PID progression data
Chapter 6

PEF-3

a
CT

λ

a
All PID

λ

a
CT    PID

θ

(3)
a

=γ

a
All PID

λ

a
CT

λ θ
CT    PID

(d)

POPI trial 
treatment arm

pTrt
PEF-4

POPI trial 
control arm

pCtrl

(4) pCtrl – pTrt

a
=γ

pCtrl

Independent
test in controls

PEF-5
POPI trial 

treatment arm

POPI trial
control arm

pTrt

pCtrl

pIT

(5) pCtrl – pTrt

a
=γ

pCtrl

*

*

(e)

pCtrl
*

=
pCtrl – pTrt 

pTrt +
1 – pIT

FIGURE 15 Directed acyclic graph showing methods of estimating Population Excess Fraction. Symbols: PEF-1: πa, CT
prevalence in age band a; OR from case–control study. PEF-2 OR* adjusted OR; ψErf correct for under-ascertainment

of CT infection based on Erfurt study.225 PEF-3: λCTa incidence of CT; λALL PIDa incidence of all-cause PID; θCT→PID
a CT-to-PID

progression risk. PEF-4: Ptrt probability of PID in POPI19 treatment arm; pCtrl probability of PID in POPI19 deferred
treatment (control) arm; pCtrl

� adjusted pCtrl; pIT probability independent testing in CT+ controls.
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If we take infection in the fallopian tubes as the causal factor in subsequent reproductive damage, this

implies that studies based on cervical isolates may be underestimating the role of CT in PID-related

reproductive damage by a factor of 103/(103–47)= 1.84. The Erfurt study225 found CT in the fallopian

tubes of just under 20% of cases of laparoscopically confirmed PID. Few studies of PID routinely sample

both the cervix and fallopian tubes for CT, so direct comparisons are difficult. However, high titre antibody

can be used as a surrogate for upper genital tract infection.85 Taylor-Robinson et al.88 also observed that

infection at the cervix probably underestimates the role of CT in PID-related reproductive damage by a

similar factor 16/(16–6), or 1.6. This was based on the observation that of the 22 women diagnosed with

acute salpingitis on laparoscopy: 10 had CT detected at the cervix and an additional six had high-titre

serum CT IgG antibody.

These considerations help to quantify the likely degree of underestimation of the OR, and hence the PEF,

from case–control studies based on lower genital tract samples, and this can be used to adjust estimates

from those studies.

Population Excess Fraction based on case–control studies
We noted in Chapter 3 that the presence of positive confounding in estimates of the RR of the disease

(PID) given the exposure (CT), if based on observational data, would tend to result in overestimation of the

PEF. This can be mitigated to some extent by choosing study designs in which the risk of confounding is

minimised. For example, it is preferable to use a marker of current CT infection rather than a marker of

previous CT infection. We have therefore used data only from case–control studies that use current

infection as a marker of exposure. (We set aside, here, the further difficulties with the serological markers

used in the published literature, namely their poor sensitivity and specificity: this is discussed at greater

length in Chapter 11.)

Identification of case–control studies on CT prevalence in women with PID
and control subjects
We searched for studies using current CT infection as a marker of CT exposure. Strictly speaking, in a

synthesis focusing on prevalence and sequelae of CT in the UK, only contemporary UK data should be

used. We have, nevertheless, used data from Europe on the basis that the epidemiology of STIs is generally

similar in Western European countries. Studies from North America have been excluded because

gonorrhoea has tended to have a more important role in the aetiology of PID in North America than the

UK.227–229 We also excluded studies published before the 1990s. Our literature identification process

(see Chapter 3) identified three studies,31,37,230 shown in Table 19.

TABLE 19 Odds ratios from retrospective studies

Study Group Dataa Crude CT prevalence Crude OR

Paavonen31 Cases 13/30 0.43 (0.28 to 0.63) 6.9 (0.77 to 61.4)

Controlsb 1/10 0.10 (0.03 to 0.44)

Mascellino230 Cases 22/110 0.20 (0.14 to 0.29) 7.0 (3.1 to 15.8)

Controls 9/261 0.03 (0.02 to 0.06)

Simms37 Cases 17/140 0.12 (0.08 to 0.19) 18.7 (2.45 to 142)

Controlsb,c 1/136 0.01 (0.00 to 0.04)

a Binomial numerators and denominators.
b Illustrative, as there are insufficient numbers to assume asymptotic normality.
c GP control Group used.
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Estimates of the Population Excess Fraction from case–control studies,
PEF-1 and PEF-2
A pooled OR was estimated from these studies (see below), and used to derive an estimate of the PEF,

using equation 1. Although the same OR is assumed to apply to women of all ages, the formula will

generate age-specific estimates of PEF, because age-specific estimates of CT prevalence from Chapter 5 are

entered, as follows:

PEF (1)
a = γ(1)a =

πa.(RR−1)

πa.(RR−1) + 1
(25)

The six data points are used to estimate four parameters: three study-specific ‘baselines’, the log odds in

the control groups µs, with s indexing study, and one ‘FE’ log OR β. Using a standard logistic regression

model, with 0 for controls, 1 for PID cases:

logit(λs,0) = µs

logit(λs,1) = µs + β
(26)

The OR can be recovered via: OR= exp(β), and used as a RR in (see equation 25) (see Chapter 3) to

generate a set of estimates, PEF-1.

A second set of estimates (PEF-2) were generated by adjusting the OR from the retrospective studies for

under-ascertainment of CT in the PID cases, using the 1.84 estimate from the Erfurt study.225 The

uncertainty in the adjustment is taken into account by setting: ORAdj=OR/ψErf, where ψErf∼ Beta(56,47).

Estimates of Population Excess Fraction based on CT-related and all-cause PID
incidence, PEF-3
Adams et al.1 obtained estimates of all-cause PID incidence in 16- to 44-year-olds from a GP-based

study.231 Based on a retrospective study,37 they reckoned that a maximum of 30% of PID could be

attributed to CT, and used this to identify a range of estimates of CT-related PID incidence. They then

multiplied a number of CT-to-PID progression rates into estimates of CT incidence, to identify progression

rates that were consistent with their results on CT-related PID. We mention this study,231 not to review the

findings in detail but simply to draw attention to the general method, which we use below in an inverted

form to estimate the PEF, although with different data inputs.

Here, the age-specific PEF is taken to be the ratio of the incidence of CT-related PID to the incidence of

all-cause PID, where the incidence of CT-related PID is the product of CT incidence (see Chapter 5) and the

CT-to-PID progression rate (see Chapter 6):

PEF (3)
a = γ(3)a =

λCTa θCT→PID

λALLPID
a

(27)

To implement this, we pool two independent sources for estimating all-cause PID incidence (see below),

and estimates of CT incidence and CT-to-PID progression rate from Chapter 6.

For these last two parameters, we use a multivariate normal approximation to the posterior distribution

estimated in the incidence, prevalence, duration synthesis (see Chapter 5), and this is entered as data in

the calculations. Specifically, incidence and duration were normal on the log scale, the proportion

symptomatic was normal on the natural scale, and prevalence was normal on a logit scale. Similarly,

a normal likelihood for CT-to-PID progression risk is derived from the posterior analysis in Chapter 6.
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Estimates of Population Excess Fraction based on screening trials, PEF-4 and PEF-5
The Scholes trial13 compared PID risk 1 year later in women randomised to screening and treatment and

women randomised to no screening. The observed RR was 0.44 (95% CI 0.20 to 0.88). This represents a

RRR of 0.56, implying that 56% of PID is due to CT in the study population, and this can be interpreted as

an estimate of the PEF (see Chapter 3). One of the early criticisms of the trial18 was that this was an

unrealistically optimistic result because it conflicted with the microbiological studies cited above, apparently

showing that 30% of PID was CT related. Gottlieb et al.,226 in an important review, also draw attention to

this apparent discrepancy, but points out that a similar RR was observed in the Ostergaard trial.12

An approximate PEF can be derived from the RR of PID in the POPI trial, using equation 3.12 There were 23 PIDs

in the untreated group of 1186, and 15 in the treated group of 1191. An estimate of the PEF is therefore:

pCtrleBeta(23,1163), pTrteBeta(15,1176)

PEF (4)
= γ(4)a =

pCtrl−pTrt

pCtrl

(28)

However, this estimate is likely to be biased because 29 out of 67 (43%) untreated controls, who were

initially CT+ undertook to be tested independently. We can assume, therefore, that the excess risk of PID

in the untreated controls, pCtrl – pTrt has been underestimated by a factor of 1 – pIT, where pIT is the

probability that a CT+ control is independently tested and treated. Accordingly, we can form an

adjusted estimate:

pITe Beta(29,38)

pCtrl
� =

pCtrl−pTrt

1−pIT

� �
+ pTrT

PEF (5)
= γ(5)a =

pCtrl
� −pTrt

pCtrl
�

(29)

This should be regarded as a ‘maximum’ correction, as it assumes that all the independent testing took

place at the outset.

Results

Consistency of evidence on pelvic inflammatory disease incidence
Table 20 provides a series of age-specific estimates for the incidence of (all cause) PID, from the

different data sources. The ‘direct’ estimate from the POPI trial,19 2.0% per year – when adjusted for

under-ascertainment due to asymptomatic presentation – represents a 2.4% per year incidence. This is

consistent with the estimate derived from routine data, 3.0% per year for that age range, following

adjustment for the underdiagnosis inherent in routine PID statistics. Figure 16 shows the posterior

distributions of PID incidence from the two sources, and the pooled estimate, and establishes the

consistency of the estimates. The consistency of registry data with the POPI study19 can be studied only

for the 16- to 24-year-old age group.

Note that when combining the direct and indirect evidence sources, the incidence information

back-propagates to ‘update’ the estimate of the proportions of PID that is undiagnosed. This was 31%

in the original study but is estimated to be 36% following synthesis with the POPI19 data.

The final pooled PID incidence estimates are 2.5% per year (95% CrI 1.8% to 3.4%) in women aged

16–24 years, and 1.6% (95% CrI 1.1% to 2.2%) in women aged 25–44 years. Taking into account the

age structure of the female population, we can estimate that 62.9% (95% CrI 57.8% to 67.4%) of PID

episodes occur in women over 24 years.
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Estimates of the Population Excess Fraction
The synthesis of the three retrospective studies31,37,230 of CT in women with PID and control subjects

(see Table 19) produces a posterior mean OR of 9.2 (95% CrI 4.4 to 18.1). The model fitted well (residual

deviance of 5, compared with six data points). The OR adjusted by the under-ascertainment factor from

the Erfurt study225 is 17.1 (95% CrI 7.9 to 34).

The several estimates of the PEF are shown in Table 21. The adjustment for under-detection of CT

infection in the case–control studies, based on the Erfurt study,225 almost doubles the overall PEF (women

aged 16–44 years) from 14.5% to 24.6%. The dramatic fall in PEF with age is no more than a reflection of

our assumption that the OR is not related to age, whereas the incidence and prevalence of PID varies, as is

evident from the routine data (see Table 18).

TABLE 21 Alternative estimates of the PEF, the percentage of PID caused by CT

Age
(years)

Retrospective
(OR= 9.2):
case–control studies,
see Chapter 6

Adjusted
retrospective
OR= 17.1, based
on Erfurt study225

CT-related PID
divided by all-cause
PID incidence

POPI trial19

alone, from
reported RR

POPI trial,19

adjusted for
treatment
during
follow-up in
the control
group1 2 3 4

16–19 33.8 (16.9 to 54.8) 49.5 (29.4 to 70.3) 53.5 (15.6 to 100) – –

20–24 23.7 (11.1 to 41.4) 37.4 (20.4 to 58.0) 24.3 (7.2 to 47.6) – –

25–34 8.5 (3.4 to 17.2) 15.2 (6.7 to 28.8) 10.3 (2.9 to 21.2) – –

35–44 6.2 (2.3 to 13.5) 11.5 (4.6 to 23.3) 11.5 (3.0 to 25.7) – –

16–24 28.6 (14.0 to 47.9) 43.5 (25.0 to 23.3) 35.3 (10.5 to 68.5) 35.7 (0 to 67.2) 49.4 (0 to 78.9)

25–44 7.3 (2.9 to 15.1) 13.3 (5.8 to 25.8) 10.6 (3.0 to 21.9) – –

16–44 14.5 (6.4 to 27.1) 24.6 (12.3 to 42.0) 19.7 (5.9 to 38.1) – –

Column 1: Estimates based on three case–control studies; column 2, same, but OR adjusted by data from the Erfurt study225

(see text); column 3, ratio of CT-related PID incidence, estimated as the product of CT incidence (see Chapter 5) and
CT-to-PID progression risk (see Chapter 6) to all-cause PID incidence (synthesis model, see Table 20); column 4, median PEF
derived directly from RR reported in the POPI trial;19 and column 5, median PEF from POPI trial19 adjusted for independent
testing in the deferred treatment group.
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FIGURE 16 Evidence consistency plot for the incidence of all-cause PID in England in women aged 16–24 years.
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The PEF-3 estimates (column 3) based on the ratio of CT-related PID to all-cause PID also show a marked

falling off with age. It is reassuring that the adjusted estimates based on case–control studies are close to

estimates derived in a very different way from the progression rate, CT incidence and all-cause PID incidence.

The direct estimate of the PEF based on the POPI trial,19 PEF-4, is 35.7%, but if this is corrected for

independent testing in the deferred treatment (control) arm, this becomes 49.4%. The CrIs on both

estimates are wide, and span zero because the difference in the crude PID rates between the two trial

arms itself is too uncertain to rule out no difference with 95% confidence.

Discussion

The chapter establishes that routine data on PID incidence collected from GP, hospital and STI clinic

sources, taking account of the likely overlap between these sources and the extent of undiagnosed PID,

is consistent with an estimate of PID derived from the POPI19 trial.

Second, setting aside the actual estimates obtained, we have established for the first time a coherent

framework in which CT incidence and prevalence, PID incidence, CT-to-PID progression rate, and the PEF

can all be considered together. The coherent set of estimates obtained, for the first time in any country or

region, reflect what we feel is the totality of evidence on all these parameters, subject, of course, to our

interpretation of the evidence sources.

Although one might wish for greater precision in each one of the data inputs that have been examined

here, we would suggest that the analysis lends a degree of robustness to our interpretation of all of the

data sources, but particularly to our quantitative information on the causal connection between incident

CT and PID. This estimate of the causal connection between CT and PID is pivotal, as the further

downstream sequelae of CT, namely EP and infertility, are viewed as arising from CT-related PID, and not

from CT in the absence of PID.

The general consistency between the various estimates of PEF, based on fundamentally different sources, is

reassuring, although the CrIs are wide. The two direct estimates based on the POPI trial,19 PEF-4 and PEF-5,

probably represent lower and upper limits, and they are close to estimates from previous trials. Interestingly,

of the 26 PID patients in the POPI trial19 who were tested, 16 (61.5%) were CT+ at the time the PID was

diagnosed. Of the 16 who were CT– at the start of the trial, 10 (62.5%) were CT+ at diagnosis. These

further observations from the POPI trial19 suggest that that the corrected estimate may be closer to the truth.

Although the failure to find inconsistency raises the credibility of the analyses, confidence in the estimates

has to be tempered by their relatively low precision, which makes inconsistency difficult to demonstrate.

Moreover, each of the analyses are subject to a number of caveats.

Limitations of the analysis

Overlap between sources of routine data on incident pelvic
inflammatory disease
One important limitation is the poor information currently available on the degree of overlap between the

three routine data sources contributing information on incident PID (see Table 18). Our assumption was

that the true number of incident cases was from a uniform distribution bounded by a ‘minimum’ (GUM

plus the largest of GPRD and HES) and a ‘maximum’ in which there was no overlap. Although this seems a

reasonable way to use the data available, the ‘gap’ between the minimum and maximum estimates was

30–37% of the lower estimate, depending on age. A recent paper on PID management based on GPRD

noted that only 56% of the 3669 cases examined were managed entirely within the practice. If the

age-specific GPRD figures are divided by 0.56, the number obtained lies between the minimum and

maximum, which provides some support for the procedure we have followed.97
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Obtaining a more precise estimate of the number of incident cases, by collecting data on referrals between

GPRD, hospital and GUM clinics, could improve the accuracy of estimates considerably. This would be a

useful avenue for further research (see Chapter 12).

Proportion of pelvic inflammatory disease patients diagnosed
and ascertained
Our estimate of the proportion of PID episodes diagnosed is based on a single study looking at infertile

women with evidence of past PID.103 This study103 has informed two key parameters which have been used

to ‘gross up’ each of two estimates of PID incidence. First, we grossed up the estimate seen in the POPI

trial,19 to account for the proportion of ‘silent’ PID that would not be observed even in a prospective study.

Second, we use it to gross up evidence from routine data, to account for both silent PID and for

symptomatic PID that does not lead to medical treatment or which is not diagnosed. This single, small

study,103 carried out in another country 30 years ago, is being asked to carry quite a considerable weight

and this must be recognised as a limitation of our analyses.

Retrospective data and confounding
As noted earlier in this chapter and elsewhere, the use of equation 25 to estimate the PEF from

retrospective data is inherently likely to overestimate it as a result of positive confounding with other

exposures, both other STIs that are known to be causal agents for PID, and non-STI infections that can

be transmitted as a result of sexual intercourse. It is therefore possible that the PEF-1 estimate, and

particularly the PEF-2 estimate, which is adjusted for probable under-ascertainment of CT infection in

women with PID, represent overestimates. On the other hand, this adjustment may not fully account for

under-ascertainment if a proportion of women with CT-related PID may clear their infection before the

diagnosis of PID is made.88,226 In addition, estimates of PEF are time- and place-dependent: the extent to

which we can generalise from these results to the UK situation is very hard to assess. Therefore, although

the PEF-1 and PEF-2 estimates based on retrospective data are of interest, we conclude that they are

biased to an extent that is had to quantify, and they play no further role in this report.

Impact of age on the relationship between Chlamydia trachomatis and
pelvic inflammatory disease
The PEF estimates show a clearly declining trend with age. In the retrospective estimates, this follows as a

consequence of assuming a constant OR and applying this to a prevalence that declines steeply with age.

In the case of PEF-3, the decline with age is partly due to the decline in CT incidence with age (exactly

mirroring the decline in prevalence with age), the age profile of PID in the routine data, and the

assumption that the proportion of PID that is undiagnosed is constant over age.

Although the decrease in PEF with age is to some extent a result of our assumption that neither the

probability that PID is diagnosed nor the risk of PID following CT are age-dependent, the degree of

variation with age, a factor of 4–6 between age 16–19 years and age 35–44 years, is so extreme that we

would have to propose quite extreme trends in one or both of those quantities to reverse it. The proposal

that PEF decreases with age is, apparently, not one that has been made before, but it is consistent with

the observation that estimates based on the trial evidence tend to be higher because the trials are heavily

weighted towards younger women.

Age dependency in PEF, if confirmed (see Chapter 2 for discussion of alternative explanations), would have

significant impact on the public health importance of CT, as the majority of EP and TFI occurs in older

women. Although it is certainly possible that CT infections in younger women have a key role in

reproductive health problems that emerge many years later, these results focus attention on the distinctly

different age profiles of CT and PID. There are insufficient data in either the prospective or retrospective

studies to address this question more fully. Further work to examine these issues directly is proposed in our

research recommendations.
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Post-hoc element in choice of estimates
We record here that, when the work in this chapter was first carried out, we included only the unadjusted

(PEF-1), and we pooled that information with the evidence sources contributing to estimate PEF-3. At that

time we believed that the estimates based on retrospective studies must be upper bounds, and we did not

examine the trial-based estimates. After we had completed the work on TFI (see Chapters 10 and 11), we

became aware that the PEF-1 estimates were too low to be consistent with the results of those chapters.

We then reconsidered the relationship between CT and PID, and re-examined the trial-based estimates of

PEF, particularly in the light of the comments in Gottlieb et al.226 At the same time, results from the recent

Erfurt study225 made it clear that the retrospective estimates were not necessarily upper bounds. There is,

therefore, a post-hoc element to the reasoning in this chapter. The ‘hypothesis-generating’ aspect to our

findings on PEF are reflected in the research recommendations. Nevertheless, that fact that two estimates

of PID incidence are consistent with each other, and with an account of the PEF that is consistent with

other independent sources of data, to some extent mitigates the post-hoc process in our investigation.

Coherent estimates of CT and PID incidence, CT-to-PID risk, and
Population Excess Fraction
There is an option to strengthen our estimate of the PEF by pooling PEF-3 with either the adjusted

retrospective evidence PEF-2, or the evidence directly derived from the POPI trial,19 PEF-4 or PEF-5, or both.

We have chosen not to do this, on the basis that the PEF-2 estimate is vulnerable to many biases, and

relates to a different time and place, as discussed above. The estimate of PEF from the POPI trial19 is not

statistically independent of the estimate of the CT-to-PID risk estimate, and is also subject to uncertainties

described above. However, we regard the similarity of these independently derived estimates as an

important validation.

In taking forward the PEF-3 estimate γCT←PID
a , which is calculated from the CT incidence estimates in Chapter 5,

the CT-to-PID progression risk in Chapter 6, and all-cause PID incidence in this chapter, we have generated a

fully coherent set of estimates for CT incidence, prevalence, duration and the proportion of infection that is

symptomatic; PID incidence, the proportion of PID that is symptomatic and the proportion that is diagnosed,

the CT-to-PID progression risk, and the PEF. The summary posterior means and CrIs can be found in Tables 13

(full synthesis model), 17 (trials only), 20 (synthesis model) and 21 (column 3).

These estimates are carried forward to the analyses in the subsequent chapters.

Summary of assumptions and findings

Summary of assumptions

1. The probability that PID is diagnosed is independent of age.

2. The risk of PID due to CT is independent of age.

3. The probability of diagnosis is the same in CT- and non-CT-related PID.

4. In prospective studies, including the screening trials, all PID – except for asymptomatic PID –

is diagnosed.

5. In routinely collected data on PID, a lower proportion of all PID is diagnosed than in prospective studies.

DOI: 10.3310/hta20220 HEALTH TECHNOLOGY ASSESSMENT 2016 VOL. 20 NO. 22

© Queen’s Printer and Controller of HMSO 2016. This work was produced by Price et al. This issue may be freely reproduced for the purposes of private research and study and
extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any
form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies
Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

75



Summary of findings

1. Two estimates of PID incidence in the UK were consistent: one derived from the control arm of the

POPI trial,19 and the other from routine statistics combined with evidence on the proportion of PID that

is diagnosed.

2. A pooled estimate of PID incidence in age 16- to 24-year-olds is 2.5% per year (95% CrI 1.8 to 3.4),

and 1.8% per year (95% CrI 1.3% to 2.5%) in 16- to 44-year-olds.

3. 36% (95% CrI 26% to 48%) of PID that causes reproductive damage is diagnosed; 12.6% (95% CrI

4 to 25) is asymptomatic.

4. Estimates of the PEF were compared: (1) an estimate based on retrospective studies adjusted for

under-ascertainment; (2) an estimate based on CT incidence, CT-to-PID progression rate, and PID

incidence; and (3) estimates based on the POPI19 trial. There was no evidence of inconsistency although

Crls were wide.

5. We estimate that 62.9% of PID episodes (95% CrI 57.8% to 67.4%) occur in women aged over

24 years.

6. The PEF declines sharply with age.

7. Our estimate of PEF, derived from CT and PID incidence data and the CT-to-PID progression risk is

19.7% (95% CrI 5.9% to 38.1%) in women aged 16–44 years, and 35.3% (95% CrI 10.5% to

68.5%) in women aged 16–24 years.

The analyses thus far in the report establish a set of coherent estimates for the UK of CT incidence, CT

prevalence, CT duration, probability that an incident CT infection is symptomatic, PID incidence, proportion

of PID that is diagnosed, proportion of PID that is symptomatic, the CT-to-PID progression, and the PEF of

PID due to CT.
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Chapter 8 Cumulative incidence of pelvic
inflammatory disease: results from a Markov model

Objectives

1. To estimate the proportion of women, by age, who have ever experienced (1) an episode of PID;

(2) an episode of salpingitis; (3) an episode of non-CT-related PID; and (4) an episode of

non-CT-related salpingitis.

2. To estimate the proportion of women, by age at index salpingitis who experience zero, one, or two or

more subsequent episodes of PID.

Introduction

The critical evidence on the relation between PID and both EP and TFI derives from the Lund study,

represented by a series of classic papers published between 1980 and 1992,33,110,124,232 although new

analyses of these data continue to appear. Named after a county in Sweden, the Lund study was based on

the relatively long-term follow-up of large numbers of women hospitalised with a diagnosis of PID that

was confirmed as salpingitis on laparoscopy. Control subjects with the same initial diagnosis but no

evidence of salpingitis on laparoscopy were also followed up, with subsequent episodes of PID, EPs and TFI

as the recorded outcomes. The findings are described in detail in Chapters 9 and 10, respectively.

The Lund study established three clear principles:

The risks of EP and TFI:

l were raised above the background rate only in women with salpingitis; there was no evidence of

heightened risk following PID that was not confirmed as salpingitis on laparoscopy
l increased with the severity of the salpingitis
l increased with the number of subsequent episodes of PID.

In Chapters 9 and 10 we derive predictions of the numbers of EP and TFI cases that would occur in the

UK, based on the risks observed in the Lund study. To do this we need to estimate the proportion of

women who have been exposed to salpingitis, and the proportion of these who have experienced zero,

one, two or more subsequent episodes of PID. In this chapter we provide such estimates, based on the PID

incidence estimates from Chapter 7, the evidence on repeat infections in CT from Chapter 5, and the data

reported in the Lund study33 on the proportion of women with PID who had experienced one, two, three

or more episodes of PID subsequent to their index salpingitis.

It needs to be recognised that to achieve this analysis a number of assumptions have to be made, which

cannot be properly supported by empirical evidence, which are even somewhat arbitrary, and which, at

best, must be considered as no more than ‘reasonable’. In the discussion section of this chapter we will

nonetheless ‘reality check’ our results on the cumulative incidence of PID and salpingitis, and the

prevalence of one, two or more previous PIDs, by comparing our predictions to other sources of evidence

on PID incidence and cumulative incidence.
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Methods

Model for repeat pelvic inflammatory disease episodes
Estimates of age-specific incidence of CT-related PID, all-cause PID, and therefore non-CT-related PID are

available from earlier chapters. What we need, however, is a way to estimate what proportion of these PID

episodes are occurring in women who have already experienced a previous episode. In a homogeneous

population, PID incidence would be the same in women who had previously had PID and those who had

not. However, in the Lund study33 it was observed that the majority of women who experience a second

PID did so within 2 years. We therefore assume that women acquire PID at a rate λPIDa,1 in age group a,

and that this rate increases to λPIDa,2 for the 2 years following a PID. To determine the ratio of λPIDa,2 to λPIDa,1

we use information from the LaMontagne study192 of CT infection and re-infection rates for up to a

18-month period. This was described in Chapter 5. Specifically, we use the ratio on the GP group, which

was 7.08 (3.97 to 11.6) from Table 13, and assume that this same ratio applies to PID incidence so

that: λPIDa,2 = ηGP.λPIDa,1.

The GP group was chosen, rather than the FP or STI groups, as it was the most likely to reflect re-infection

rates in the general population. Using data on recurrent CT makes the further strong assumption that the

pattern of infection and re-infection in CT is the same as the pattern of PID and repeat PID, for PID from

any cause. Apart from the observation by Westrom33 that repeat PIDs usually occurred within 2 years of

follow-up, this assumption, and its many implications, do not have strong a priori validity. Our results are,

however, consistent with the Lund study33 observations on the incidence of repeat PID, and with other

data, as we show below.

We have posterior estimates of ηGP from Chapter 4 and λALL PIDa from Chapter 7, and our task is to calculate

λPIDa,1 and λPIDa,2. The parameter λALL PIDa denotes the incidence of all PID, whether first, second, or subsequent,

and from any cause. There are several ways to parameterise the problem but the simplest is as follows:

λPIDa,1 = ρ:λALL PID
a

λPIDa,2 = λPIDa,1.η
GP

(30)

The equations, together with estimates of λALL PIDa and ηGP, uniquely determine ρ, which is a calibration

constant ensuring that when we sum first PIDs and subsequent PIDs we end up with the correct total PID

incidence. It is interpreted as the ratio of PID incidence in women who have not had a PID in the last

2 years to the incidence of PID in all women. ρ is calculated through a trial and error process. The model

was run from ages 16–44 years for different values of ρ until a value was found where the estimated

incidence of any PID agreed with our estimates of PID incidence from Chapter 7 (see Table 20).

Proportion of clinical pelvic inflammatory disease confirmed on laparoscopy
The Lund study33 analysis relates to hospital-diagnosed PID that has been laparoscopically confirmed. In the

Lund study33 itself, the ‘control subjects’ were women admitted with PID in whom there were no findings

of inflammation on laparoscopy. Interestingly, the proportion of all those referred with clinical PID who

were confirmed by laparoscopy fell systematically from 80% in those recruited 1960–4 and 1965–9, to

78% in 1970–4, to 70% in 1975–9, and to 60% in 1980–4.110 A 2003 paper by Simms et al.233 reviews

seven studies reporting between 31% and 79% confirmation rates, with the lowest figure coming from

the most recent study published in 2003. A continuing decrease in the proportion of clinical PID that is

confirmed on laparoscopy is probably to be expected in view of the fact that it is now recognised that

acute PID is difficult to diagnose because of the wide variation in the symptoms and signs. Many women

with PID have subtle or mild symptoms.63,234 Because of the difficulty of diagnosis and the potential for

damage to the reproductive health of women (even by apparently mild or subclinical PID), health-care

providers are now advised to maintain a low threshold for the diagnosis of PID.63,234
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If this is the case, then the most relevant evidence comes from a recently published UK study on a cohort

of women with abdominal pain.235 A total of 112 women were graded as ‘almost certain’, ‘probable’ or

‘possible’ PID, or were ‘very unlikely’ to have PID on the basis of their symptoms; 42.9% (12/28) of those

with grades as having at least probable PID were confirmed on laparoscopy, and 87% of these had high

titres of specific IgG antibody to CT. If a grading of ‘possible PID’ is included, 19 out of 56 (33.9%) were

confirmed. The definition of ‘probable’ here accords with the definitions used in our analyses of routine

UK data from HES and GPRD (see Chapter 6). Therefore, the rate at which women with ‘probable/definite

PID’ acquire salpingitis λsalpa,1 , λ
salp
a,2 can be estimated by applying the ϕsalpjPID to the clinical PID incidence rates

estimated above. We assign an informative prior to ϕsalpjPID based on the data, Beta(12,16):

λ
salp
a,1 = ρ:λALL PID

a ϕsalpjPID

λsalpa,2 = λPIDa,1.η
GP

(31)

Markov model
Figure 17 shows a Markov model of PID development. It is assumed that women start in state 1 at age

15 years and progress through the model until age 44 years. It is a discrete time model with 1-year cycles,

programmed in WBDEV and WinBUGS161,236 (see Appendix 11). Expressions for the transition probabilities

are shown in Table 22, with the parameters defined as in equations 30 and 31. Note that the model

shows progression to first salpingitis and subsequent PID episodes. Exactly the same structure is used to

assess numbers of PID episodes, or number of salpingitis as described later in the section.

To generate estimates of the proportion of women who have ever had one, two or three or more PIDs,

we assume that further PIDs occur within a 2-year time period. The logic of the model is that individuals

start in state 1 (no previous salpingitis), and progress to state 2 (salpingitis 0–1 years) at the constant

incidence rate λ
Salp
a,1 . The probability of a transition to state 2 with a 1-year period is therefore 1−e−λSalp

a,1 .

State 1
Never

salpingitis

p11

p12 p23 p34 p45

p35

p44

p56

p58

p78p67

p77

p68

State 2
Salpingitis 

0 – 1 years ago

State 3
Salpingitis 

1 – 2 years ago

State 6
Salpingitis and
PID 1 – 2 years

ago

State 7
Salpingitis and

one PID
 ≥ 2 years ago

State 8
Salpingitis and

≥ 2 PIDs

State 4
Salpingitis

 ≥ 2 years ago

State 5
Salpingitis and

one PID 
1 – 2 years ago

FIGURE 17 Markov model of salpingitis and subsequent PID incidence. Individuals start in state 1 (no previous
salpingitis) and progress to state 2 (salpingitis in the last 0–1 year). Once in state 2, women can (a) fail to have a second
PID and enter state 3 (salpingitis 1-2 years ago) or (b) have a second PID episode within a 2-year period and enter state
5 (salpingitis and 1 PID 0–1 year ago). From state 3 it is also possible to progress to state 5 at the faster ‘recurrence’
rate or to progress to state 4 (salpingitis 2+ years ago) by failing to experience a further PID episode within 2 years.
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Once in state 2, women can (1) fail to have a subsequent PID episode and enter state 3 (salpingitis 1–2 years

ago), or (2) have a subsequent PID episode and enter state 5 (salpingitis and 1 PID 0–1 years ago) at a

rate 1−e−λPIDa,2 . From state 3 it is also possible to progress to state 5 at the faster ‘recurrence’ rate, or to

progress to state 4 (salpingitis 2+ years ago) by failing to experience a PID episode. The subsequent

transitions follow the same logic.

Given values of λPIDa,1, λ
PID
a,2 and λ

Salp
a,1 , the model is run for a cohort of women aged 16–44 years on a 1-year

cycle, generating proportions of the female population φk,a in each state k, at each age a. From these state

probabilities the proportions of the population who have experienced no salpingitis, or salpingitis with

zero, one or two or more subsequent PID episodes can readily be found (see below).

We also validate our results against results from the Lund data set.33 The study reports data on the

distribution of numbers of PID episodes in women who have had salpingitis, for a mean follow-up period

of approximately 8 years, for women aged < 25 years, and for women aged ≥ 25 years. The Markov

model was run separately for women starting at each of the 22 ages, 16–37 years, in each case starting in

state 2. An 8-year time-horizon was used in order to compare results with those observed in the Lund

study.33 The average predicted number of women with a single subsequent PID and women with two or

more subsequent PIDs were obtained by averaging across the age ranges 16–24 years and 25–37 years,

respectively. Results were obtained for all PID and diagnosed PID only, and these are shown alongside the

observed results in the Lund study33 (Table 23).

Model inputs
Besides ϕsalp|PID and ρ (see above), the key parameters are:

1. the proportion of all PID that is due to CT, the PEF, for each age group, γCT←PID
a

2. the incidence of all-cause PID, by age group, λALL PIDa

3. the CT re-infection to infection ratio rate for the GP setting, ηGP

4. the proportion of PID that is diagnosed in the general population, ψDiag.

These parameters are all correlated, as they are estimated simultaneously from a common combined data

set in Chapter 7. After suitable transformations (log transformations for λPIDa and ηGP; a logit transformation

for γCT←PID
a ; ψDiag on the natural scale) the joint uncertainty in these parameters is described by a multivariate

normal distribution.

TABLE 22 Parameters of the 1-year cycle transition matrix of the Markov model

Destination states

1 2 3 4 5 6 7 8

From state

1 e−λSalp
a,1 1−e−λSalp

a,1 0 0 0 0 0 0

2 0 0 e−λPIDa,2 0 1−e−λSalp
a,2 0 0 0

3 0 0 0 e−λPIDa,2 1−e−λPIDa,2 0 0 0

4 0 0 0 e−λPIDa,1 1−e−λPIDa,1 0 0 0

5 0 0 0 0 0 e−λPIDa,2 0 1−e−λPIDa,2

6 0 0 0 0 0 0 e−λPIDa,1 1−e−λPIDa,1

7 0 0 0 0 0 0 e−λPIDa,1 1−e−λPIDa,1

8 0 0 0 0 0 0 0 1

The cell probabilities correspond to the pj’,a in equation 33.

CUMULATIVE INCIDENCE OF PELVIC INFLAMMATORY DISEASE: RESULTS FROM A MARKOV MODEL

NIHR Journals Library www.journalslibrary.nihr.ac.uk

80



Model outputs
Our primary output from the chapter is πS+PID

m,a , the proportion of women age a who have had an episode of

salpingitis and zero, one, or two subsequent episodes of PID (indexed by m = 0,1,2 respectively). At age

15 years, all women are assumed to have never had PID so that φ1,15 = 1, φ2,15⋯φ8,15 = 0 . If φk,a is the

proportion of women at age a in state k, then:

1− ∑
m = 0,1,2

πS+PID
m,a = φ1,a

πS+PID
0,a = φ2,a + φ3,a + φ4,a

πS+PID
1,a = φ5,a + φ6,a + φ7,a

πS+PID
2,a = φ8,a

(32)

where:

φ j,a = ∑
8

j’=1

φ j’,a−1⋅P j’, j,a (33)

P j’, j,a is the transition probability from state j’ to state j where a indexes from ages 16 to 44. The model

was run first for all-cause PID, and then separately for diagnosed all-cause PID. Although the true

progression through the model is the same, only a proportion ψDiag of PIDs are observed. The probability of

diagnosis for each PID is assumed to be independent of the number of previous PIDs, and it is assumed

that no women have more than three PIDs, so the results will be a slight underestimate. As such, the

proportion of women observed to have had zero, one, two or three or more PIDs, respectively, πobsPID
n,a , is:

πobsPID
0,a = 1−(πobsPID

1,a + πobsPID
2,a + πobsPID

3,a )

πobsPID
1,a = πPID

1,a⋅ψ
Sym
+ 2⋅πPID

2,a⋅ψ
Sym⋅(1−ψ Sym) + 3⋅πPID

3,a⋅ψ
Sym⋅(1−ψ Sym)

2

πobsPID
2,a = πPID

2,a⋅(ψ
Sym)

2
+ 3⋅πPID

3,a⋅(ψ
Sym)

3
⋅(1−ψ Sym)

πobsPID
3,a = πPID

3,a⋅(ψ
Sym)

3

(34)

Incidence of all-cause PID and incidence of all-cause salpingitis
Exactly the same model that estimates the proportion of women who have had one, two or three or more

episodes of PID can be applied to one, two, or three or more episodes of salpingitis, by substituting all

instances of the parameter λALL PIDa with the parameter λSalpa as calculated in equation 31 and vice versa.

TABLE 23 Distributions of numbers of PIDs from our model after 8 years, posterior mean % in each category
(95% CrIs), compared with the findings from the Lund study33 (see text)

Age

Model

Lund study33All PID Diagnosed PID

16–24 years

1 PID 66.3 (51.3 to 78.0) 85.4 (78.3 to 90.2) 77.7 (75.1 to 80.3)

2 PID 23.6 (18.3 to 27.2) 12.8 (9.1 to 17.8) 16.0 (13.8 to 18.4)

3+ PID 10.1 (3.75 to 21.5) 1.8 (0.7 to 3.9) 6.2 (4.8 to 7.8)

25–44 years

1 PID 75.2 (62.3 to 84.7) 90.0 (84.4 to 93.5) 87.0 (82.6 to 90.9)

2 PID 19.3 (13.5 to 25.0) 9.3 (6.2 to 13.6) 11.0 (7.5 to 15.1)

3+ PID 5.5 (1.8 to 12.7) 0.9 (0.3 to 2.0) 2.0 (0.6 to 4.0)
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Incidence of non-CT-related PID and salpingitis
Using our PEFs from the previous chapter, we calculate the incidence rate of non-CT related-PID and non

CT-related salpingitis for age a as:

λnonCT PID
a = λALL PID

a (1− γCT←PID
a )

λnonCT,Salpa = λSalpa (1− γCT←PID
a )

(35)

Exactly the same model as above can then be used to calculate the numbers of women who would ever

have had 0, one, two or three or more PIDs, and ever had one, two or three or more diagnosed PIDs,

by age, if there were no CT-related PIDs. We make the fundamental assumption that the proportion of

salpingitis caused by CT is the same as the proportion of clinical PID caused by CT.

Results

The calibration parameter ρ, the ratio of PID incidence in women who have not had a PID in the last

2 years, and the incidence of all-cause PID, was varied in order to find the value at which model

predictions best fitted the age-specific all-cause PID incidence derived from Chapter 7. The best fitting

value was 0.85 (Table 24).

Table 23 shows the correspondence between the results from the Markov model run for an 8-year period

and the Lund data.33 Note that the comparisons between observed and predicted distributions relate

most directly to the proportions of PIDs that are second or third (or more) PIDs. The proportion of women

who have ever had PID is not relevant to the comparison because only women who have a PID were

recruited into the Lund study.33 Note that there is no reason to expect the credible intervals to agree.

The first column shows the proportions of women in the study whom the model predicts would develop

one or two or more PIDs, of whatever cause and whether diagnosed or not, during the follow-up period.

Column 2 shows how many PIDs would be expected to be observed (diagnosed) in these women. The

Lund study33 results (column 3) lie between the results in the first two columns, which is exactly what is to

be expected, as it seems reasonable that subsequent PIDs in women who have had a previous, relatively

recent, hospital diagnosed PID are more likely than average to be diagnosed, on the basis that (1) these

women will be more likely to recognise the symptoms and (2) such PIDs may be more severe than average.

On the other hand, the Lund study33 is not technically a cohort study: unlike the prospective studies

analysed in Chapter 6 we would not necessarily expect all, or even most, symptomatic PID to be diagnosed.

Table 25a gives the predicted numbers of women who have had zero, one, two or three or more previous

PID episodes, whether diagnosed or not, by age. This is shown for both all-cause PID, and for non-CT-related

PID. An exactly analogous set of predictions is shown for salpingitis (see Table 25b). These tables show, for

TABLE 24 Calibration of the Markov model

Age (years) From cumulative incidence model Estimated PID incidence

16–44 1.9 (1.2 to 2.8) 1.8 (1.3 to 2.5)

16–19 2.0 (1.4 to 2.9) 2.1 (1.5 to 2.9)

20–24 3.0 (2.0 to 4.6) 2.8 (2.0 to 3.8)

25–34 2.0 (1.2 to 3.2) 1.9 (1.3 to 2.8)

35–44 1.2 (0.72 to 2.0) 1.3 (0.78 to1.9)

Estimated all-cause PID incidence rate per 100 person-years from Chapter 7 and predictions of the Markov model with the
rescaling factor ρ set to 0.85.
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example, that 33.6% of women aged 35–44 years have experienced at least one episode of PID, and 16.1%

have experienced at least one episode of salpingitis, again all cause and whether diagnosed or not.

The figures that are taken forward to later chapters (Table 26) are the proportions of the population that

have experienced at least one episode of salpingitis, followed by zero, one or two or more episodes of PID,

these being the risk categories used throughout the Lund study.33 Here we see that, although 16.1% have

experienced at least one episode of salpingitis, 10.7% have experienced one salpingitis episode and no

further PID episodes, 3.7% one salpingitis and one further PID episode, and 1.7% one salpingitis episode

and two or more further PID episodes.

Figures 18–21 give essentially the same results in 1-year bands from age 16 to 44 years for: PID,

undiagnosed PID, salpingitis, and salpingitis followed by zero, one, two or three or more episodes of PID.

TABLE 25a Predicted age-specific distributions of numbers of episodes: all-cause clinical PID and non-CT-related
clinical PID, based on the Markov model

Age (years)

PID episodes

0 1 2 3+

All PID

16–19 95.7 (94.2 to 96.9) 3.89 (2.90 to 5.09) 0.43 (0.19 to 0.81) 0.03 (0.01 to 0.10)

20–24 86.7 (82.5 to 90.2) 10.3 (7.94 to 12.9) 2.38 (1.25 to 3.91) 0.64 (0.16 to 1.69)

25–34 75.3 (67.9 to 81.6) 17.2 (13.7 to 21.0) 5.30 (3.10 to 7.95) 2.16 (0.64 to 5.25)

35–44 66.4 (56.9 to 74.6) 22.2 (18.2 to 26.3) 7.76 (4.78 to 11.15) 7.76 (4.78 to 11.2)

Non-CT related

16–19 97.9 (95.7 to 100) 1.98 (0.00 to 3.87) 0.13 (0.00 to 0.43) 0.01 (0.00 to 0.03)

20–24 91.6 (86.0 to 97.0) 7.05 (2.79 to 10.9) 1.17 (0.22 to 2.68) 0.22 (0.01 to 0.82)

25–34 82.1 (72.4 to 89.3) 14.2 (9.03 to 19.0) 3.15 (1.38 to 6.43) 1.11 (0.18 to 3.31)

35–44 72.4 (61.3 to 82.4) 19.7 (14.2 to 24.8) 5.73 (2.59 to 9.36) 2.15 (0.45 to 5.85)

TABLE 25b Predicted age-specific distributions of numbers of episodes: all-cause salpingitis and non-CT-related
salpingitis, based on the Markov model

Age (years)

Salpingitis episodes

0 1 2 3+

All salpingitis

16–19 98.1 (97.0 to 99.0) 1.85 (1.02 to 2.88) 0.04 (0.01 to 0.14) 0.00 (0.00 to 0.00)

20–24 94.1 (90.7 to 96.8) 5.56 (3.18 to 8.35) 0.34 (0.07 to 0.93) 0.02 (0.00 to 0.10)

25–34 88.6 (82.3 to 93.6) 10.4 (6.11 to 15.0) 0.99 (0.23 to 2.44) 0.10 (0.01 to 0.40)

35–44 83.9 (75.3 to 91.0) 14.2 (8.55 to 20.1) 1.71 (0.45 to 3.96) 0.20 (0.02 to 0.78)

Non-CT related

16–19 99.1 (97.9 to 100) 0.90 (0.00 to 2.01) 0.01 (0.00 to 0.01) 0.00 (0.00 to 0.00)

20–24 96.3 (93.0 to 98.8) 3.56 (1.16 to 6.50) 0.15 (0.01 to 0.52) 0.01 (0.00 to 0.04)

25–34 91.4 (85.3 to 96.0) 7.92 (3.85 to 12.84) 0.60 (0.10 to 1.69) 0.05 (0.00 to 0.22)

35–44 87.1 (78.6 to 93.5) 11.7 (6.22 to 18.0) 1.15 (0.24 to 3.00) 0.11 (0.00 to 0.48)

Posterior mean% in each category (95% CrIs).
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TABLE 26 Predicted age-specific distributions of numbers of women with a salpingitis and zero, one or two-plus
subsequent PID episodes: all-cause, and non-CT related, based on the Markov model

Age (years) 0 salpingitis
1 salpingitis, 0 further
PID episodes

1 salpingitis, 1 further
PID episode

1 salpingitis,
2+ further PID
episodes

All cause

16–19 98.1 (97.0 to 99.0) 1.69 (0.93 to 2.64) 0.19 (0.07 to 0.38) 0.01 (0.00 to 0.04)

20–24 94.1 (90.7 to 96.8) 4.59 (2.59 to 6.99) 1.06 (0.46 to 1.96) 0.28 (0.06 to 0.79)

25–34 88.6 (82.3 to 93.6) 8.03 (4.63 to 12.0) 2.44 (1.15 to 4.21) 0.98 (0.25 to 2.55)

35–44 83.9 (75.3 to 91.0) 10.7 (6.32 to 15.7) 3.66 (1.80 to 6.14) 1.69 (0.48 to 4.18)

Non-CT related

16–19 99.1 (97.9 to 100) 0.86 (0.00 to 1.87) 0.06 (0.00 to 0.20) 0.00 (0.00 to 0.01)

20–24 96.3 (93.0 to 98.8) 3.11 (1.07 to 5.58) 0.51 (0.09 to 1.28) 0.10 (0.00 to 0.37)

25–34 91.4 (85.3 to 96.0) 6.48 (3.24 to 10.4) 1.59 (0.52 to 3.26) 0.50 (0.07 to 1.57)

35–44 87.1 (78.6 to 93.5) 9.31 (5.07 to 14.3) 2.66 (1.01 to 5.08) 0.98 (0.18 to 2.85)

Posterior mean% in each category (95% CrIs).

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

16 21 26 31 36 41

P
ro

p
o

rt
io

n
 e

v
e

r 
h

a
d

 t
h

is
 n

u
m

b
e

r
 o

f 
P

ID
s

Age (years)

Ever PID

One PID

Two PIDs

Three or more PIDs

(a)

16 21 26 31 36 41

Age (years)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

P
ro

p
o

rt
io

n
 e

v
e
r 

h
a
d

 t
h

is
 n

u
m

b
e

r 
o

f 
P
ID

s Ever PID

One PID

Two PIDs

Three or more PIDs

(b)

FIGURE 18 Cumulative exposure to PID: proportion experiencing one two and three-plus episodes. (a) All cause;
and (b) if no CT.
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FIGURE 19 Cumulative exposure to diagnosed PID: proportion experiencing one two and three-plus episodes.
(a) All cause; and (b) if no CT.
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FIGURE 20 Cumulative exposure to salpingitis: proportion experiencing one two and three-plus episodes.
(a) All cause; and (b) if no CT.
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Discussion

This chapter proposes, as far as we are aware for the first time, a methodology for estimating the

proportion of incident PID episodes, and salpingitis episodes, that are first, second or third PIDs, by age.

We have applied it to both all-cause PID and salpingitis and non-CT-related PID and salpingitis. The

method is based on assumptions about the CT re-infection to infection rate ratio, and the length of time

after which the re-infection rate applies. With these two assumptions, the results are compared with data

on the distribution of second and third episodes in women with an index episode.

In the Lund study that was used for this purpose, 22.1% of women aged 16–24 years with an index

salpingitis were observed to have a further PID episode within 8 years, and 6.2% had more than one

further episode (see Table 23). In women aged 25–44 years, 11% had a further PID episode, and 2%

more than one episode. A short-coming of our methodology is that the Lund study follows women whose

index PID was sufficiently severe to be not only diagnosed, but also treated in hospital. As a result, our

estimate of the proportion of PIDs that are diagnosed in the general population from Chapter 7 will

probably be lower than the proportion in the Lund data, so any comparison must be informal. All we can

say is that the Lund results must lie somewhere between our estimates for the numbers of subsequent

PIDs and the numbers of subsequent PIDs that are likely to be diagnosed in the general population, which

are quite different.
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FIGURE 21 Cumulative exposure to salpingitis and subsequent PID episodes: proportion experiencing one episode
of salpingitis followed by zero, one and two-plus episodes of PID. (a) All cause; and (b) with no CT.
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The Lund data on the distribution of repeat PIDs is consistent with data on repeat CT infections in other

data linkage studies. For example, in the Uppsala study,36 of the 3415 CT infections registered in a cohort

with a median 15 years’ follow-up, 76.9% were first infections. In the nearly 30,000 women in the

Norwegian cohort,215 with an average 8 years’ follow-up, 62% CT infections were first infections, 25%

second and 13% third or more. Nevertheless, there is no strong empirical basis for choosing the

re-infection rate in the GP group from the LaMontagne study,192 nor for choosing a 2-year period during

which the higher re-infection rate applies: both assumptions are somewhat arbitrary. Clearly, other

assumptions could be made, which would generate different estimates of the relative proportions of

subsequent PIDs that are first, or second-plus episodes. However, the total numbers of PIDs – whether

first, second or third – must remain the same as our estimates in Chapter 7; similarly, the distribution of

the number of subsequent PIDs is required to be consistent with the Lund data. It is therefore to be

expected that, given these constraints, similar results will be obtained with different inputs.

An interesting aspect of the modelling approach we have taken is that it correctly captures the age profile

of PID, which peaks in the 20- to 24-year-old age band, not in the < 20-year-old age band in which CT

incidence peaks. As we will see when considering the epidemiology of EP (see Chapter 9) and TFI (see

Chapter 10), the different age profiles of CT and each of its sequelae provide important insights into the

aetiology of these conditions, which have perhaps not been adequately addressed in previous work.

We use data from the UK study by Taylor-Robinson235 to estimate the proportion of PID cases that are

salpingitis. Although the study was published fairly recently, the data were collected in the 1990s and

patients were diagnosed in hospital, so it is unclear how applicable it is to all PID in 2002. Over time,

clinical guidance has changed to treat women with possible or probable PID instead of only treating

women with probable PID, so this is likely to be an overestimate for the proportion in all PIDs in 2002.

Although we included only PID cases from the GPRD database that are definite and probable, it is unclear

whether the Taylor-Robinson study235 provides an overestimate for clinical PID cases diagnosed in GUM

clinics. We also assume the same proportion of salpingitis in undiagnosed PID cases, and there is no real

evidence to say whether this is reasonable. On the one hand, undiagnosed women are likely to have

less severe symptoms and symptoms are likely to correlate to severity of inflammation and presence of

salpingitis. However, laparoscopy identifies the presence of salpingitis at a single point in time. Some of

the women in the Taylor-Robison study235 may have developed inflammation that would be visible on

laparoscopy at a later date had they not been treated, as would be the case if they were undiagnosed.

There are some quite severe limitations to our interpretation of the present findings, however. One relates

to the fact that our estimates of PID incidence and the age-related population attributable fractions, are

based on 2002 data. We are therefore implicitly assuming that age-specific PID incidence is constant

over time, although evidence from most countries suggests that it has been declining steadily since the

1970s.237 Although the numbers of PIDs reported through the HES has remained fairly constant since

2002, the numbers coming through KC-60 returns have increased, and those reported in GPRD have

nearly halved.90

Given the lack of empirical basis for some of the assumptions made in our analysis of cumulative PID,

it is important to compare our quantitative findings with as broad a range of other studies as possible.

Our estimates of cumulative incidence of PID seem high, and our estimates of cumulative incidence of

diagnosed PID are considerably higher than NATSAL,195 which reported that 2.2% (1.8% to 2.6%) of

female respondents said they have ever been treated for PID compared with our estimate of about 10% in

31-year-olds (see Figure 18). However, NATSAL is also highly inconsistent with other UK data sources. The

POPI trial19 observed all-cause PID incidence to be 2% in a single year. Furthermore, HES data alone reports

a total of approximately 15,000 PIDs in women by the age of 35 years: given that an annual birth cohort

would comprise some 300,000 females, unless over half of these episodes occurred in the same women

this equates to more than the amount reported by NATSAL.
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Recruitment and participation biases in surveys such as NATSAL may selectively under-sample or those who

would be considered at increased risk (and some groups at reduced risk). On top of this, there may be a

tendency among responders to under-report health problems linked to STD, and it may be that not

everyone diagnosed with PID is told this diagnosis and remembers it. The discrepancy between NATSAL

and our results is, nevertheless, large and requires further investigation.

Our projections can also be compared with the 2002 US National Survey of Family Growth in which 5.1%

of women aged 16–44 years reported having been treated for PID.238 This figure is sharply down on the

1995 Survey, which reported 8% had been treated for PID, with 11% in the 1988 and 14% in the

1982.238 Our average estimate for this age range is around 10% (see Figure 19a).

The Scandinavian linkage studies provide another opportunity to ‘reality check’ the predictions. In the

Uppsala study, the cumulative incidence of PID was reported as 3.9% by 35 years36 compared with our

estimate of 13.4% for all (diagnosed) PID (see Figure 19a). The Uppsala figures, however, cover only

hospital-diagnosed PID. It is not known what proportion of PID was diagnosed and treated outside the

hospital setting. However, we can obtain a comparable estimate from our model by substituting our

age-specific estimates of the proportion of PID cases diagnosed in hospital (see estimation of

κ1,a in Chapter 9) for ψsym in equation 34. This gives an estimate of 4.6% for the proportion of women

aged 35 years who have ever been diagnosed with PID in hospital, which is close to the Uppsala figure.

Summary of assumptions and findings

Summary of assumptions

1. The distribution of zero, one and two or more subsequent PID episodes in women with salpingitis in

the UK approximates that found in the Lund study.

2. The probability that PID is diagnosed does not depend on the number of previous episodes, nor on

whether previous episodes would have confirmed as salpingitis on laparoscopy.

3. It is assumed that the re-infection rate for CT applies equally to all other causes of PID and salpingitis.

Summary of findings

1. 33.6% of women age 35–44 years have experienced at least one episode of PID (diagnosed or not).

2. 16.1% of women age 35–44 years have experienced at least one episode of salpingitis (diagnosed

or not).
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Chapter 9 Pelvic inflammatory disease and
ectopic pregnancy

Objectives

To:

1. use routinely collected data to estimate the proportion of pregnancies that are ectopic in the UK,

by age

2. apply the information on group-specific risks of EP reported in the Lund study (severity of salpingitis,

number of diagnosed PID episodes) to estimates of the distribution of these risk factors in the UK,

to predict the proportion of salpingitis-related pregnancies that are ectopic in the UK

3. compare predicted and observed proportions of pregnancies that are ectopic

4. estimate the proportion of EP attributable to salpingitis

5. estimate the proportion of EP attributable to CT.

Introduction

This chapter looks at the evidence relating PID, and particularly salpingitis, and EP. As we have seen, the

most important findings, from the Lund studies,33,110,124,232 are that the risks of subsequent EP and TFI

depend on salpingitis severity at laparoscopy, and that they increase with number of episodes of PID.

However, these observations relate exclusively to women with PID diagnosed and treated in hospital, and

were made some 30 years ago in Sweden. We therefore need to address the huge evidence gap regarding

the role of PID that is diagnosed and treated outside the hospital setting and the role of undiagnosed PID.

Evidence presented in Chapters 2 and 7 suggested that these make up the majority of PID episodes.103

We also need to obtain contemporary estimates that are relevant to the UK.

In previous chapters we have been able to set out a mathematical model a priori, based for example on

the well-understood relationship between incidence, prevalence and duration (see Chapters 4 and 5) or

based on relatively familiar Markov processes (see Chapter 6). We have then been able to assess whether

the different evidence sources were consistent under a mathematical model that was not only prespecified

but whose form and structure could not be influenced by the evidence available. In this chapter and the

next we are unable to follow such a rigorous approach because the natural history of PID and the

mechanisms that lead from PID to EP and TFI are far less well understood.

We can, however, retain the essential element of our approach, which is the critical examination of a wide

range of different types of evidence bearing on the relationship between a small set of outcomes within a

coherent mathematical model, in this case CT, PID, salpingitis and EP. However, rather than assessing the

consistency of the evidence sources under a prespecified model, we instead try to answer the question:

‘under what models can these data sources be considered consistent?’ The exercise therefore takes on

more of a ‘hypothesis generation’ role. However, as shown in Chapter 2, there is a single common

pathway between PID and EP, and PID and TFI. Therefore, we would expect any structural assumptions we

make for EP to also hold for TFI. This will provide an opportunity to assess consistency and the

compatibility of findings on EP risk and TFI risk in the concluding Chapter 12.

We have referred previously to the strong ‘dose–response’ relationship reported in prospective studies

following women with hospital diagnosed PID. The Lund studies,33,110,124,232 in particular, followed women

for approximately 8 years after hospitalisation for PID. The proportion of women whose first subsequent
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pregnancy was an EP increased systematically with severity of salpingitis as determined by laparoscopy, and

also with the number of diagnosed subsequent PID episodes.124 A similar pattern of findings was reported

for TFI.33

A record linkage study in the USA following high-risk women with a diagnosed CT infection over an

average 6-year period, again reported a similar increase in risk of EP, but this time in relation to the

number of previous CT infections rather than the number of diagnosed PID episodes.107 These studies

constitute overwhelming evidence of the causal role of PID in reproductive damage, and point to the

significance of cumulative exposure to risk factors, as described in Chapter 2. In addition, the similarity

of the ‘dose–response’ effect attaching to CT and PID suggests that the risk of EP and TFI may be

approximately the same whatever the cause of the PID, although the agreement could be coincidental if

the aetiology changes with age in a way that approximately cancels out any differences.

Review and interpretation of evidence sources

In this section we describe what data sources are potentially available and we develop a rationale that

explains which ones we have selected for use. At the same time, we develop a framework that embraces

the different types of study: prospective studies of EP risk in women with diagnosed PID, routine data on

the incidence of EP in England, and retrospective studies of the PEF of EP that is caused by PID.

Prospective evidence: ectopic pregnancy following pelvic
inflammatory disease
We identified studies from a recent systematic review of the sequelae of CT,98 from the knowledge of

collaborators, and as part of a wider search of the literature on CT. We exclude a study by Buchan et al.239

because it does not report data on number of pregnancies (see below). Table 27 summarises the results of

the six prospective studies33,228,240–243 following women forward from PID to a next pregnancy. These studies

have very different follow-up times. However, we can control for this approximately by estimating the

proportion of pregnancies that are ectopic, φEPjpreg. Study-specific crude estimates are presented in column 7.

Apart from the small study by Heinonen et al.,240 in which EP rates are unaccountably low, estimates from

studies following women with laparoscopically confirmed salpingitis are reasonably homogeneous, at

≈7–10%. The study by Ness et al.228 estimates a much lower proportion (≈1%). It follows women with mild

to moderate PID, not laparoscopically confirmed salpingitis, and the most serious 3% of cases are excluded.

The results from the prospective studies are otherwise broadly similar.

Our quantitative analysis of the prospective risk of EP following salpingitis is based solely on the Lund

study,124 for four reasons: it is by far the largest study; it is the only study to include a control group;

uniquely it presents EP risk by age, severity of salpingitis in women with PID, and numbers of episodes of

PIDs; and also it delivers a related set of estimates of the risk of TFI following hospital diagnosed PID with

salpingitis. This last feature is especially significant, as it provides an opportunity to check the consistency

between observed and predicted EP and TFI frequency in the UK on the same basis.

Application of the Lund results to the epidemiology of pelvic inflammatory
disease in the UK
As described in Chapter 8, we assume that the proportion of diagnosed ‘probable/definite’ PID that would

be accompanied by salpingitis if examined on laparoscopy is 0.429 (95% CrI 0.27 to 0.63). We further

assume that this proportion is the same regardless of PID severity, clinical presentation, place of diagnosis

or whether it is diagnosed or not. Note that this implies the existence of undiagnosed but symptomatic

salpingitis, and asymptomatic or ‘silent’ salpingitis, as discussed by Wolner-Hanssen.103 We assume that

only PID that would be confirmed under laparoscopy (salpingitis) can cause EP or TFI. This is supported by

observations in the control group in the Lund study33 (women with hospital-diagnosed PID but no visual

evidence of laparoscopy) that 0 out of 601 women developed TFI. The EP rate in this group was slightly

higher than the general population but there is considerable uncertainty (only six cases).
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Outline of prospective analysis
The prospective analysis of EP proceeds in the following four steps:

1. A logistic regression model is fitted to the data available from the Lund study (Table 28),124 to estimate

the risks that the pregnancy will be ectopic ηm,s,a in women whose index salpingitis of severity s at age a

was followed by m= 0,1,2+ subsequent episodes of PID. The non-salpingitis control group informs an

age-specific baseline θ
EPjpreg

Control,a, the probability that a pregnancy is ectopic in age group a in women with

no previous salpingitis.

2. Because the Lund analysis relates only to hospital-diagnosed PID, we explore a range of five scenarios

that relate the EP risks θEPjSalp,preg
m,d,a following d= hospital diagnosed PID (HD), PID diagnosed outside of

hospital (nHD), or undiagnosed PID (UD), to the EP risks at different severities s adjusted by the

proportion of PID estimated to be salpingitis. These five models can be thought of as ‘mappings’

between the ηm,s,a and the θ
EPjSalp,preg
m,d,a parameters.

3. The proportion of PID at age a in the categories HD, nHD, and UD, κd,a, is derived from the UK routine

data on PID and information on the proportion of PID that is diagnosed, ψDiag. This is multiplied into the

proportion of population prevalence of salpingitis in age band a, followed by m= 0, 1, 2+ subsequent

PID episodes πS+PID
m,a from Chapter 8, to form πS+PID

m,d,a, which has the same interpretation but breaks the

population into nine groups by age, diagnosis setting, and number of subsequent PIDs.

4. Estimates of the population proportion of conceptions that are ectopic because of salpingitis are formed

by weighting the estimates θEPjSalp,preg
m,d,a , generated by the five ‘mapping’ models (see below), by the

population proportions πS+PID
m,d,a.

The full prospective synthesis is shown in the form of a DAG in Figure 22.

TABLE 28 Proportion of pregnancies that are ectopic by number of PIDs, severity and age group: comparison of
observed marginal risks with those predicted from the logistic regression model

Risk factor
Original data, Westrom:124

no. with EP/total pregnancies
Crude estimates as
published (95% CI)

Marginal estimates based on
regression model (95% CrI)

Control group 6/439 0.014 (0.005 to 0.026) 0.014 (0.005 to 0.026)

No. of PIDs

One 61/912 0.067 (0.052 to 0.084) 0.067 (0.058 to 0.077)

Two 24/148 0.162 (0.108 to 0.225) 0.163 (0.107 to 0.228)

Three 15/39 0.384 (0.240 to 0.54) 0.382 (0.242 to 0.536)

Age (years)a

16–24 39/713 0.055 (0.039 to 0.073) 0.054 (0.042 to 0.067)

25–44 22/199 0.111 (0.071 to 0.158) 0.113 (0.077 to 0.153)

Severityb

Mild 7/309 0.023 (0.009 to 0.042) 0.021 (0.008 to 0.039)

Moderate 19/420 0.045 (0.028 to 0.067) 0.045 (0.029 to 0.064)

Severe 35/185 0.191 (0.138 to 0.251) 0.195 (0.150 to 0.242)

a Women with one PID only, read from figure 2 in Westrom et al.124

b Taken from table 2 in Westrom et al.124 first pregnancy only.
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Five models relating the Lund estimates in hospital-diagnosed pelvic
inflammatory disease to other diagnostic settings
We fit a series of five models with different assumptions about the relation between the risk of ectopic

pregnancy reported in the Lund study124 and the risk in the UK in three groups: (1) hospital diagnosed

salpingitis; (2) salpingitis not diagnosed in hospital; and (3) undiagnosed salpingitis. In all five models, we

assume that women with hospital diagnosed PID have the same average risk as women (of the same age) in

the Lund study. The following five models can be ranked in order from the highest predicted progression

rate. To assist distinguishing between the models we use the abbreviations ‘Av’ for the average progression

rate observed in the Lund study, and ‘Mi’ for the rate in the ‘mild’ salpingitis.

Model 1 (Av, Av, Av): Lund average for all salpingitis following PID. Here, salpingitis in those with PID

diagnosed outside hospital and salpingitis in undiagnosed PID are assumed to have the same risk of EP as

hospital diagnosed PID in the Lund study.

Model 2 (Av, Av, Mi): Lund average for salpingitis following diagnosed PID, Lund ‘mild’ for undiagnosed PID.

Salpingitis in all diagnosed PIDs, whether diagnosed in hospital or not, carries the same EP risk as the Lund study;

salpingitis in undiagnosed PID has the same level of EP risk as the ‘mild’ salpingitis group in the Lund study.

Model 3 (Av, Mi, Mi): Lund average for salpingitis following hospital diagnosed PID, Lund ‘mild’ for

salpingitis in GP diagnosed and undiagnosed salpingitis. In this model, salpingitis associated with

hospital-diagnosed PID progresses to EP at the average rate observed in the Lund study; salpingitis

associated with non-hospital diagnosed and undiagnosed PID progress at the Lund study ‘mild’ rate.

Model 4 (Av, Mi, Mi/2): Lund average for salpingitis following hospital diagnosed PID, Lund ‘mild’ for

non-hospital-diagnosed. Salpingitis in undiagnosed PID progresses at a rate that is half-way between the

‘mild’ rate and zero.

Model 5 (Av, Mi, 0): Lund average for salpingitis following hospital diagnosed PID, Lund ‘mild’ for

non-hospital-diagnosed, no risk following salpingitis in those whose PID is undiagnosed.

This choice of models was based on a presumption that the risk of EP will be lower in PID that is diagnosed

outside of hospital, and the same or lower again in undiagnosed PID. This is based on the assumption that

the risk of poor reproductive outcomes will be lower in women with less severe clinical symptoms, who will

be less likely to be diagnosed. This assumption is not necessarily correct. It is also perfectly possible that the

milder the clinical manifestation of PID, the later the diagnosis, and the more damage that follows.

In addition to severity of salpingitis, the numbers of subsequent PID episodes also impact on EP risk. Below

we describe how we derive predictions for the EP risk attaching to each of the 18 (3 × 3 × 2) number of

subsequent PID episodes, severity and age strata from the information that has been published.

Distribution of pelvic inflammatory disease diagnostic status in the
English population
In order to apply the prospective risks informed by the Lund studies to predict EP outcomes in England, it is

necessary to have estimates of the risk factor distributions, by age. Estimates of the proportion of women

in age band a who have had an episode of salpingitis that has been followed by m= 0,1,2+ episodes of

PID, πS+PID
m,a , where obtained in Chapter 8. However, we need to consider the proportions κd,a of women in

age band a who were hospital diagnosed (d=HD), diagnosed elsewhere (d= nHD) or undiagnosed

(d=UD). To do this, we make several fundamental simplifying assumptions, in the absence of clear

information to the contrary, and in order to make the analytic task tractable. First, that the probability a

PID is diagnosed in hospital is independent of the number of previous PIDs a woman has had; second that

the increase in odds of EP given one or two or more as compared to zero, subsequent PID episodes

conditional on having an initial PID that is confirmed as salpingitis is independent of whether or where the

initial PID was diagnosed, and clinical severity of the initial salpingitis.
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Routine ectopic pregnancy data
The premise behind the use of routine data on EP is that it should be possible to compare the observed

risk of EP in pregnant woman of age a, based on routine HES data for 2002 (Table 29), taking account

that not all EP is caused by salpingitis, to what would be predicted from the Lund study.

In order to avoid having to explicitly model the complex processes underlying conception including the

competing risk of TFI, we have taken as our outcome the proportion of conceptions that are EPs. This is

estimated by dividing the number of EPs in HES (see Table 29), by the number of conceptions in England

and Wales (Table 30), to obtain the proportion of conceptions that are ectopic (Table 31).

TABLE 29 Hospital episode statistics EP numbers reported, by age and year117

Age (years)

Year

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

15 8 10 6 18 9 10 11 20 14 16

16–19 305 321 291 356 361 362 416 411 386 381

20–24 1156 1098 1154 1284 1342 1381 1397 1511 1546 1530

25–34 4471 4317 4340 4283 4461 4520 4674 4864 4768 4895

35–44 1750 1862 1840 1957 2038 2048 2141 2223 2221 2213

TABLE 30 Numbers of conceptions, by age and year118

Age
(years)

Year

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

13–15 8100 7900 7900 8000 7600 7900 7800 8200 7600 7200

15–17 41,300 41,000 42,000 42,200 42,200 42,300 41,800 43,000 41,400 38,300

15–19 97,700 96,000 97,100 98,600 101,300 102,300 103,100 106,300 103,300 97,900

20–24 159,000 161,600 167,800 175,300 181,300 185,500 191,200 198,700 198,500 199,500

25–29 209,300 199,300 199,400 199,800 205,100 211,300 222,200 234,800 237,800 242,200

30–34 195,300 196,700 204,300 209,000 209,600 209,200 212,400 211,500 207,100 213,300

35–39 88,700 92,200 98,900 103,100 106,800 110,000 115,400 118,000 115,600 116,500

40+ 17,000 17,800 19,600 20,900 22,800 23,600 25,500 26,500 26,500 26,800

TABLE 31 Percentage of conceptions that are ectopic, by age and year

Age (years)

Year

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

16–19 0.34 0.36 0.33 0.39 0.39 0.38 0.44 0.42 0.40 0.42

20–24 0.73 0.68 0.69 0.73 0.74 0.74 0.73 0.76 0.78 0.77

25–34 1.11 1.09 1.08 1.05 1.08 1.07 1.08 1.09 1.07 1.07

35–44 1.66 1.69 1.55 1.58 1.57 1.53 1.52 1.54 1.56 1.54

Note
We assume that all conceptions in females aged 13–15 years occur at age 15 years, and all conceptions in females aged
40+ years occur between the ages of 40 and 44.
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This conditions out all of the complexities of conception rates, such as their dependency on fecundity and

time taken to conceive, and it links directly to the Lund study, in which outcomes are also reported as the

proportion of conceptions that are EPs.

Retrospective case–control studies of ectopic pregnancy and pelvic
inflammatory disease/salpingitis
We searched for case–control studies comparing history of salpingitis in cases with EP and pregnant

controls with no EP. A meta-analysis of studies on risk factors for EP147 identifies previous gonorrhoea,

serological evidence of previous CT, PID, smoking, number of previous sexual partners, and previous EP

and tubal surgery as risk factors for EP. Another risk factor that was not included in this study, but which

has received considerable attention, is previous use of an IUD.244,245 There was, however, considerable

heterogeneity between studies, with different risk factors being reported in different studies. Therefore, as

in our search for case–control studies looking at PID, we limited attention to studies conducted in Europe

during the 1990s or later in order to exclude studies for which the spectrum of causative agents for EP,

such as smoking, were likely to have been different. We also only consider studies in which PID history was

assessed through laparoscopy because of the poor specificity of clinically diagnosed PID as a proxy for

salpingitis. Papers were identified through the knowledge of collaborators and our wider review of the

literature, from modelling studies and economic evaluations, and citation and reference searches of a

systematic review,147 and any studies that were identified as relevant.246,247 Retrospective studies were not

considered in the recent series of systematic reviews by the CDC. We identified two studies,246,247 both

carried out in France.

The study by Bouyer et al.246 is the largest and most recent. It provides estimates of both the crude OR for

probable PID (fever, abdominal pain, vaginal discharge) and for laparoscopically confirmed PID (salpingitis).

Estimates were based on a logistic regression model that adjusts for a number of possible confounders.

The unadjusted OR (5.42, 95% CI 2.60 to 11.28) is likely to be an overestimate, in view of the likely

positive correlation between risk factors, the adjusted estimate (3.39, 95% CI 1.44 to 7.96) is likely to be

too low as a result of ‘over-controlling’. For example, history of infertility is included as a covariate. But, it

seems unlikely that a history of infertility causes EP; instead, both of these outcomes will share some of

the same risk factors, including PID. We therefore assume that the crude OR represents an upper bound,

whereas the adjusted OR from the regression model is a lower bound for the OR for PID. The above

figures are for ‘confirmed PID’ (see below), which constituted 90% of all PID reported in the study. The

fact that the ORs for confirmed are higher than for probable PID suggests that the more stringent criteria

are better predictors of subsequent EP and therefore a better reflection of the causal process.

The Coste study247 reports crude ORs of 5.8 (95% CI 2.4 to 14.3) for laparoscopically confirmed PID, and 3.2

(95% CI 1.3 to 7.8) for probable PID. This study247 also reports an adjusted estimate based on a regression

controlling only for age, hospital, current smoking, previous use of IUD, and current contraception method.

This adjusted OR (4.7, 95% CI 1.7 to 13.6) seems less likely to be ‘over-controlled’, and is between the

higher and lower estimates from the Bouyer et al. study.246 Rather than attempt a formal synthesis of these

estimates we use the higher and lower limits from Bouyer et al.246 in the analyses reported below.

It should be noted that the definition of ‘confirmed’ PID in both studies is not entirely clear. It appears that

confirmation could be either by laparoscopy or positive CT serology. The circumstances under which

laparoscopy was routinely carried out in cases of suspected PID is not specified, nor is it known what

proportion of ‘confirmed PID’ was confirmed by serology alone or what cut-offs and tests were used.

As EP is a rare disease, we may use the adjusted OR from these studies to estimate the proportion of EP

attributable to salpingitis, based on the standard formula (see Chapter 3). Values for the prevalence of

exposure to salpingitis are derived from Chapter 8.
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Statistical methods

Risk of ectopic pregnancy in pregnant women as a function of age, PID
severity and number of PID episodes, based on Lund data
We fit the following logistic regression model to the data in Table 28 on EP outcomes in patients with an

index salpingitis:

logit(ηm,s,a) = β0 + β1,mM + β2,sS + β3,aA (36)

where ηm,s,a is the risk factor specific risk of EP, β0 is the (baseline) log odds that a pregnancy will be ectopic

following a mild salpingitis episode at age < 29 years and not followed by any further PID episodes.

Similarly, β1,m is the log odds ratio (LOR) of EP for a woman with m subsequent PID episodes compared

with none, β2,s is the LOR for a woman whose index salpingitis was moderate, or severe compared with

mild, and β3,a is the log OR for age group a compared with age group 1. The dummy variables M,S, and A

denote M= one or two further episodes, S moderate or severe, A= age ≥ 29 years.

Note that the risks of EP due to salpingitis are considered to be additional to a baseline risk η
EPjpreg

Control

experienced by the general population, which we estimate from the non-salpingitis PID controls in

Table 28.

The parameters of equation 37 model can be identified from the published data124 that are available

(see Table 28) but we are unable to identify interaction terms. Although this does not necessarily oblige us

to assume there are no interactions, in the absence of any evidence, this is the assumption that is made.

Finally, we note that, in the Lund study,124 the results are reported by the age groups of < 25 years and

≥ 25 years. This refers to age-at-diagnosis, at study entry, and our analysis requires knowledge of the age

when EP occurs. The study has almost a 9-year follow-up, so we assume that EP happens on average just

over halfway through and that the ≤ 24 age group represents women who have EP by the age of 29 years.

We assume that the numerators, the number of EPs, in the Lund data (see Table 28), by number of PIDs

r1,m, by severity r2,s, and by age r3,a, have binomial likelihoods:

r1,me Binomial (p1,m,n1,m)
r2,s e Binomial (p2,s,n2,s)
r3,a e Binomial (p3,a,n3,a)

where:

p1,m =

∑
2

a=1

∑
3

s=1

ηm,s,a⋅n3,a

∑
3

s=1

n2,s

0
BB@

1
CCA

∑
2

a=1

n3,a

, p2,s =

∑
2

a=1

η1,s,a⋅n3,a

∑
2

a=1

n3,a

, p3,a =

∑
3

s=1

η1,s,a⋅n2,s

∑
3

s=1

n2,s

(37)

The assumption of independence of the likelihoods is not quite correct, as the same data are being used in

different breakdowns, and this will have the effect of exaggerating somewhat the precision of our

estimated risk coefficients.

The parameters β0, β1,m, β2,s and β3,a are given flat normal priors.
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Distribution of number of salpingitis episodes and number of subsequent
PID episodes and severity in the English population
We embed the WBDEV code described in Chapter 8 directly into the program to estimate πS+PID

m,a from

parameters relating to PID incidence from previous chapters. These are λPIDa,1 , the incidence of a first PID of

any cause, diagnosed or not; ηGP the ratio of CT re-infection to infection rates in the GP group; ψDiag the

proportion of PID that is diagnosed; and ϕsalpjPID the probability of salpingitis given PID. These are given a

multivariate normal prior, as described in Chapter 8. In parallel, we use the PEF(CT←PID) to estimate the

equivalent distribution πNoCT,S+PID
m,a in a world with no CT.

To estimate κHD,a, the age-specific proportion who have experienced m subsequent PID episodes following

a hospital-diagnosed PID confirmed as salpingitis, we consider the ratio of HES PID episodes by age to the

total number of PIDs diagnosed using the same model, as in Chapter 7, for the same age groups; this is

multiplied by our estimate of the proportion of PID episodes that are diagnosed, ψDiag, from Chapter 7.

The proportion diagnosed but not hospital referred κnHD,a can be calculated from this and the proportion

diagnosed, which leads directly to an estimate of the proportion undiagnosed κUD,a. The calculations are

shown below.

Routine data on PID diagnoses in different settings in the general population have binomial likelihoods:

rHESPIDa
∼ Binomial(pHESPID

a , Na)

rGPRDa
∼ Binomial(pGPRD

a , Na)

rkc−60:08a
∼ Binomial(pkc−60:08

a , Na)

(38)

where Na is the total number of women in age group a in the general population in 2002 estimated from

census data. KC-60 returns for PID diagnosed in GUM clinics are not available by age before 2008. Data

for 2008 are available from Genitourinary Medicine Clinic Activity Dataset (GUMCAD)248 for approximately

70% of cases. We assume that these cases are a representative sample and that the age distribution

within this setting was the same in 2002. The number of cases for each age from GUMCAD are then

rescaled to the total number of KC-60 cases in 2002 so:

pkc−60:02
a =

13421:pkc−60:08
a

12117
(39)

Using the same model as in Chapter 7:

pmin
a = pkc−60

a +max(pHESPID
a ,pGPRD

a )

pmax
a = pkc−60

a + pHESPID
a + pGPRD

a

Xa ∼ Uniform(pmin
a ,pmax

a )

(40)

The parameters pHESPID
a , pGPRD

a , pkc�60
a are given Beta(1,1) priors and:

κHD,a = ψDiag
pHES PID
a

Xa

κnHD,a = 1− κHD,a − κUD,a

κUD,a = 1−ψDiag

(41)

Finally, we form the full breakdown of population weights, πS+PID
m,d,a, as follows:

πS+PID
m,d,a = πS+PID

m,a κd,a (42)
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Prospective estimate of the probability that a pregnancy was ectopic
due to salpingitis
An estimate of the proportion of pregnancies that are ectopic as a result of salpingitis in the UK in 2002

from prospective evidence from the Lund study,124 and estimates of the distribution of numbers and

severity of PID, can be generated as follows. First, the proportion of pregnancies that are ectopic because

of PID with salpingitis – in women who have had an episode of PID that would confirm as salpingitis on

laparoscopy – is constructed by subtracting the proportion of EP pregnancies in women from the same

population, the control group with no index salpingitis, from a weighted average of the risks in women

with mild, moderate and severe PID:

θEPjSalp,preg
m,HD,a =

∑
3

s=1

ηm,s,a⋅n
Lund
s

∑
3

s=1

nLund
s

� θ
EPjpreg

Control,a (43)

The weights nLund
s are the number of women with salpingitis of severity level.

Then the population proportion of pregnancies that are ectopic due to salpingitis, as a function of age,

severity of salpingitis, and number of subsequent PID episodes, is constructed as a weighted average using

the estimated proportions πS+PID
m,d,a of women in the UK exposed to d=Hospital Diagnosed (HD), Not

Hospital Diagnosed (nHD), and Undiagnosed PID (UD), and the prevalence of zero, one and two-plus PID

episodes subsequent to the index salpingitis:

θPOP,EPjSalp,preg
a = ∑

d=HD,nHD,UD
∑

m=0,1,2+
πS+PID
m,d,a θ

EPjSalp,preg
m,d,a (44)

The five different models of how the EP rates in the Lund hospital-diagnosed PID might apply to GP

diagnosed and undiagnosed PID can then be set out in the following way, where ‘Av’ refers to the

average rate reported in the Lund study124 and ‘Mi’ to the rate in Mild PID:

Model 1 (Av, Av, Av): Lund average for all salpingitis

θEPjSalp,preg
m,nHD,a = θEPjSalp,preg

m,UD,a =

∑
3

s =1

ηm,s,a⋅n
Lund
s

∑
3

s=1

nLund
s

− θ
EPjpreg

Control,a (45)

Model 2 (Av, Av, Mi): Lund average for salpingitis following all diagnosed PID, Lund ‘mild’ for

Undiagnosed PID

θ
EPjSalp,preg
m,nHD,a =

∑
3

s=1

ηm,s,a⋅n
Lund
s

∑
3

s=1

nLund
s

− θ
EPjpreg

Control,a

θEPjSalp,preg
m,UD,a = ηm,1,a− θ

EPjpreg

Control,a

(46)
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Model 3 (Av, Mi, Mi): Lund average for salpingitis following HD PID, Lund ‘mild’ for salpingitis following

nHD diagnosed and UD PID.

θEPjSalp,preg
m,nHD,a = θEPjSalp,preg

m,UD,a = ηm,1,a− θ
EPjpreg

Control,a (47)

Model 4 (Av, Mi, Mi/2): Lund average for salpingitis following HD PID, Lund ‘mild’ for nHD. Salpingitis

following UD PID progresses at a rate that is half-way between the ‘mild’ rate and zero.

θ
EPjSalp,preg
m,nHD,a = ηm,1,a− θ

EPjpreg

Control,a

θ
EPjSalp,preg
m,UD,a ∼Uniform (0,Am,a)

Am,a = ηm,1,a− θ
EPjpreg

Control,a

(48)

Model 5 (Av, Mi, 0): Lund average for salpingitis following HD PID, Lund ‘mild’ for nHD, no risk with

salpingitis following UD PID.

θ
EPjSalp,preg
m,nHD,a = ηm,1,a−θ

EPjpreg

Control,a

θEPjSalp,preg
m,UD,a = 0

(49)

The risk in the control arm η
EPjpreg

Control is not reported by age. While keeping the average risk the same as in the

controls in the Lund study,124 we assume that the age distribution of EP in the control group is the same as

in the general population in England in 2002.

θ
EPjpreg

Control,a = η
EPjpreg

Control

ϕEPjpreg
a

∑
4

a=1

ϕEPjpreg
a

(50)

Model for routine ectopic pregnancy data
Data on numbers of conceptions, and hospital episodes of EP for 2002 by age, have a binomial likelihood

with the denominator taken from census population estimates for that year.

rHES,EPa
∼ Binomial(pHES,EP

a , Na)

rCONCa
∼ Binomial(pCONC

a , Na)
(51)

The parameters pHESPID
a and pGPRD

a are given effectively uninformative Beta(1,1) priors. Finally, the proportion

of pregnancies that were ectopic in the English population in 2002 ϕEPjpreg
a equals:

ϕEPjpreg
a =

pHES,EP
a

pCONC
a

(52)

We use the routine data on EP in two ways. The first involves informally comparing the all-cause

probability that a pregnancy is ectopic to the predicted proportions due to PID from our model. Second,

we combine it with retrospective data to estimate the proportion of EPs caused by PID.

A DAG for the prospective analysis is shown in Figure 22, and WinBUGS code is shown in Appendix 12.
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Model for retrospective data
Lower and upper bounds for the odds of past PID in women with EP compared with women who gave

birth (controls) are given informative log-normal priors based on Bouyer et al.246 respectively:

OR̂l = 3:39, (95%CI : 1:44−7:96)= > log(ORl)∼ Normal(1:22,0:19)

OR̂u = 5:42, (95%CI : 2:60−11:28)= > logðORu)∼ Normal(1:69,0:14)
(53)

The age-specific prevalence of a history of salpingitis is:

π
S+PID
�,a = ∑

m= 0,1,2þ
π
S+PID
m,a (54)

which is calculated using the method described in Chapter 8 and uses the same MCMC samples as those

used in the prospective analysis described above. An analogous estimate can be formed for the prevalence

of a history of non-CT-related salpingitis:

π
NoCT,S+PID
�,a = ∑

m= 0,1,2þ
π
NoCT,S+PID
m,a (55)

Estimates of the PEF(Salpingitis←EP) and PEF(Non-CT-related Salpingitis←EP) can then be found using

equation 1:

γ
Salp←EP
a =

π
S+PID
�,a (OR−1)

πS+PID
�,a (OR−1) + 1

γ
NoCT.Salp←EP
a =

π
NoCT.S+PID
�,a (OR−1)

πNoCT.S+PID
�,a (OR−1) + 1

(56)

Finally, we can form an estimate for the PEF(CT-related Salpingitis←EP). Bearing in mind that an EP can be

caused by CT only through a CT-related salpingitis:

γ
CT←EP
a = γ

Salp←EP
a −γNoCT.Salp←EP

a (57)

Lower and upper bounds for all these PEFs based on retrospective data are then calculated by substituting

the lower and upper estimates of the OR into the formula. Note, however, this final calculation generates

an underestimate, because it assumes the distribution of PIDs in women with a salpingitis would be the

same in a world where CT does not exist. However, we might expect the shape of the whole distribution

to change such that a higher proportion of women who have ever had salpingitis would have fewer

subsequent PID episodes. Because of the multiplicative dose–response relationship observed in the Lund

study124 we would expect to observe a lower OR in this population. This would likely be true of the removal

of any risk factor. As such the true PEF could perhaps be up to 50% higher than our estimate.

Figure 23 shows a DAG for the retrospective analyses, and WinBUGS code is given in Appendix 12.
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Results

Risk of ectopic pregnancy in based on prospective data from the Lund study
Table 32 shows the full conditional estimates ηm,s,a from the model by number of subsequent PID episodes,

age group and severity. It also shows the average for hospital diagnosed salpingitis (i.e. averaged over

severity with numbers of mild, moderate and severe salpingitis observed in the Lund study.124 The

assumption of no interaction yields a set of cell-specific estimates (where cell is defined as a combination

of age, severity, and number of episodes) with an extraordinary range of risk, ranging over 40-fold in the

16- to 24-year-old group from 0.017 for a single ‘mild’ PID, to 0.698 in a women with three or more

subsequent PID episodes following a ‘severe’ index salpingitis.

The adequacy of these estimates can be judged only from the close agreement of the marginal estimates

of the probability that a pregnancy is ectopic by number of subsequent PID episodes, age group and

severity, from our model (see Table 28, column 3) compared with the crude estimates from the Lund

study124 (see Table 28, column 2). The residual deviance was 7.2 for a model with seven parameters and

nine data points. The very good fit of the model is to be expected, given the number of parameters

and the number of observations.

Table 33 shows the proportions πS+PID
m,d,a and πNoCT S+PID

m,d,a of the female population at each level of clinical

severity of the index episode of salpingitis and the subsequent PID episodes, for the 16–24 and 25–44 age

bands, for all salpingitis and non-CT-related salpingitis, respectively.

Population Excess Fraction: the contribution of salpingitis and Chlamydia
trachomatis to ectopic pregnancy
The upper and lower bounds on the PEF of EP due to salpingitis, PEF (Salpingitis←EP) are given in Table 34,

by age, based on the PEF formula (see equation 1). Also shown for completeness are the cumulative PID

prevalence figures used in the calculation and the ORs. Averaging over the age range 16–44 years, between

21% and 33% of EP is due to salpingitis, these being the lower and upper estimates, with CrIs spanning

11% to 46%. We can take the mean, 27%, as a best estimate. In the absence of CT, the equivalent overall

estimates would be 22%, with CrIs spanning 7% to 43%. The proportion of EP attributable to CT is found

by subtraction: 4.9% (95% CrI 1.2% to 12.1%).

TABLE 32 Probability a pregnancy is ectopic by age, severity of salpingitis, and number of subsequent PID episodes

Risk factor Controlb
No further PID
episodes (95% CrI)

One further PID
episode (95% CrI)

Two or more further
PID episodes (95% CrI)

Age 16–24 yearsa 0.010

Mild – 0.017 (0.007 to 0.033) 0.052 (0.019 to 0.103) 0.183 (0.066 to 0.351)

Moderate – 0.035 (0.021 to 0.053) 0.101 (0.052 to 0.169) 0.316 (0.154 to 0.514)

Severe – 0.162 (0.117 to 0.211) 0.371 (0.236 to 0.522) 0.698 (0.492 to 0.857)

Overall 0.054 (0.042 to 0.067) 0.139 (0.087 to 0.200) 0.350 (0.209 to 0.505)

Age 25–44 years 0.026

Mild – 0.040 (0.015 to 0.076) 0.113 (0.041 to 0.224) 0.335 (0.133 to 0.582)

Moderate – 0.078 (0.043 to 0.123) 0.207 (0.105 to 0.341) 0.509 (0.280 to 0.733)

Severe – 0.310 (0.203 to 0.434) 0.572 (0.384 to 0.750) 0.836 (0.664 to 0.943)

Overall 0.112 (0.076 to 0.153) 0.250 (0.153 to 0.361) 0.517 (0.329 to 0.705)

a Assume lower age group applies to 16- to 29-year-olds for the time of the EP.
b Assumes the same age ratio in the control group as the general population. There is no severity distribution in women

without salpingitis (controls).
Cell-specific estimates, ηm,s,a derived from the logistic regression model of the marginal data in Table 28.
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TABLE 33a Proportion of the entire population in each risk group by age at index salpingitis, diagnosis category,
and number of subsequent episodes of PID, expressed as per cent (95% CrI)

Age (years)

No. of subsequent PIDs

Total0 1 2+

16–24

Undiagnosed 3.26 (1.68 to 5.37) 0.87 (0.34 to 1.71) 0.31 (0.01 to 0.89) 4.44 (2.16 to 6.24)

Non-hospital diagnosed 1.21 (0.70 to 1.77) 0.30 (0.16 to 0.47) 0.09 (0.03 to 0.23) 1.61 (0.96 to 2.31)

Hospital diagnosed 0.58 (0.33 to 0.88) 0.16 (0.08 to 0.25) 0.06 (0.02 to 0.14) 0.80 (0.47 to 1.19)

Total 5.05 (2.89 to 7.61) 1.33 (0.61 to 2.36) 0.47 (0.12 to 1.24) 6.85 (3.78 to 10.7)

25–44

Undiagnosed 6.34 (3.39 to 5.37) 2.12 (0.89 to 3.99) 0.97 (0.22 to 2.65) 9.42 (4.67 to 16.1)

Non-hospital diagnosed 1.45 (0.70 to 2.38) 0.47 (0.22 to 0.78) 0.20 (0.06 to 0.46) 2.11 (1.05 to 3.40)

Hospital diagnosed 2.04 (1.11 to 3.25) 0.67 (0.36 to 1.08) 0.29 (0.10 to 0.65) 3.00 (1.70 to 4.67)

Total 9.83 (5.77 to 14.4) 3.26 (1.59 to 5.50) 1.46 (0.41 to 3.66) 14.5 (8.16 to 22.3)

16–44

Undiagnosed 5.02 (2.64 to 8.02) 1.58 (0.65 to 2.98) 0.68 (0.16 to 1.86) 7.27 (3.58 to 12.4)

Non-hospital diagnosed 1.34 (0.74 to 2.07) 0.39 (0.20 to 0.63) 0.16 (0.05 to 0.36) 1.89 (1.06 to 2.86)

Hospital diagnosed 1.41 (0.79 to 2.19) 0.45 (0.24 to 0.71) 0.19 (0.06 to 0.43) 2.05 (1.19 to 3.11)

Total 7.77 (4.52 to 11.5) 2.42 (1.17.4.13) 1.03 (0.28 to 2.59) 11.2 (8.14 to 17.3)

Table gives estimates of πS+PID
m,d,a .

TABLE 33b Proportion of the entire population in each risk group by age at index not-CT-related salpingitis,
diagnosis category, and number of subsequent episodes of PID, expressed as per cent (95% CrI)

Age (years)

No. of subsequent PIDs

Total0 1 2+

16–24

Undiagnosed 2.42 (0.94 to 4.44) 0.52 (0.13 to 1.22) 0.15 (0.02 to 0.51) 3.08 (1.10 to 6.02)

Non-hospital diagnosed 0.86 (0.40 to 1.38) 0.17 (0.06 to 0.33) 0.04 (0.01 to 0.13) 1.08 (0.48 to 1.76)

Hospital diagnosed 0.44 (0.22 to 0.71) 0.10 (0.04 to 0.18) 0.03 (0.00 to 0.08) 0.57 (0.27 to 0.92)

Total 3.73 (1.63 to 6.30) 0.78 (0.23 to 1.70) 0.22 (0.03 to 0.71) 4.73 (1.93 to 8.44)

25–44

Undiagnosed 5.41 (2.57 to 9.13) 1.51 (0.47 to 3.22) 0.55 (0.08 to 1.74) 7.47 (3.20 to 13.66)

Non-hospital diagnosed 1.22 (0.57 to 2.03) 0.32 (0.12 to 0.60) 0.11 (0.02 to 0.30) 1.65 (0.75 to 2.78)

Hospital diagnosed 1.74 (0.93 to 2.79) 0.47 (0.20 to 0.84) 0.16 (0.03 to 0.43) 2.37 (1.24 to 3.84)

Total 8.36 (4.47 to 12.98) 2.30 (0.85 to 4.47) 0.82 (0.14 to 2.42) 11.48 (5.64 to 19.11)

16–44

Undiagnosed 4.12 (1.88 to 7.10) 1.08 (0.33 to 2.35) 0.37 (0.05 to 1.21) 5.58 (2.31 to 10.36)

Non-hospital diagnosed 1.06 (0.53 to 1.71) 0.26 (0.10 to 0.47) 0.08 (0.02 to 0.22) 1.40 (0.68 to 2.29)

Hospital diagnosed 1.18 (0.63 to 1.87) 0.31 (0.13 to 0.55) 0.11 (0.02 to 0.28) 1.59 (0.84 to 2.55)

Total 6.37 (3.28 to 10.08) 1.65 (0.58 to 3.27) 0.56 (0.10 to 1.68) 8.57 (4.07 to 14.49)

Table gives estimates of πNoCT,S+PID
m,d,a .
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Comparison of prospective and retrospective estimates of the proportion of
pregnancies that are ectopic as a result of salpingitis
The overall proportion of pregnancies that are ectopic, shown in the last column of Table 35, represents an

absolute upper bound on the proportion of pregnancies that can be ectopic and due to salpingitis. Taken

over the 16- to 44-year age range, 1.13% of conceptions are ectopic. Predictions of the proportion of

pregnancies that are ectopic as a result of salpingitis based on the estimate PEF from retrospective data are

given in columns 6 and 7: between 0.24% and 0.36%.

The predictions from the five prospective model range from a minimum 0.38 (Model 5: Av, Mi, 0) to a

maximum 1.54 (Model 1: Av, Av, Av). This means that, given that the PEF is in the range of 21–33%, the

Lund study estimates are consistent with the EP rates for England only under Model 5, that is only if we

assume there is no EP risk from undiagnosed salpingitis and the risk following salpingitis diagnosed outside

the hospital setting is at the rate seen in ‘mild’ salpingitis in the Lund study (Figure 24).

Note that the steep age gradient seen in the observed HES data is closely mirrored by the age gradient in

the predictions from the prospective models. This provides a degree of support for the model of

cumulative CT and PID incidence developed in Chapter 8 and our view that EP risk is determined by

cumulative exposure to risk factors.

TABLE 34 Retrospective evidence on EP

Age (years) OR (95% CI)

Cumulative
salpingitis
(95% CI)

Cumulative
salpingitis,
no CT

PEFSal←EP

(95% CI)
PEFNoCTSalp←EP

(95% CI)
PEFCT←EP

(95% CI)

16–24

Lower bound 3.39
(1.44 to 7.96)

4.15
(2.27 to 6.51)

2.48
(0.66 to 4.83)

9.11
(4.13 to 16.1)

5.65
(1.37 to 12.0)

3.46
(0.92 to 7.95)

Upper bound 5.42
(2.60 to 11.3)

4.15
(2.27 to 6.51)

2.48
(0.66 to 4.83)

15.44
(8.33 to 24.4)

9.80
(2.69 to 18.8)

5.65
(1.61 to 12.4)

25–44

Lower bound 3.39
(1.44 to 7.96)

13.9
(7.75 to 21.3)

10.84
(5.28 to 18.1)

24.7
(12.8 to 38.8)

20.4
(9.36 to 34.5)

4.28
(1.23 to 9.20)

Upper bound 5.42
(2.60 to 11.3)

13.9
(7.75 to 21.3)

10.84
(5.28 to 18.1)

37.4
(23.6 to 51.4)

31.8
(17.7 to 47.0)

5.63
(1.62 to 11.9)

16–44

Lower bound 3.39
(1.44 to 7.96)

11.22
(6.27 to 17.3)

8.57
(4.07 to 14.49)

21.1
(10.58 to 34.0)

16.9
(7.41 to 29.6)

4.13
(1.17 to 8.98)

Upper bound 5.42
(2.60 to 11.3)

11.22
(6.27 to 17.3)

8.57
(4.07 to 14.49)

32.7
(20.02 to 46.2)

27.04
(14.2 to 41.4)

5.70
(1.66 to 12.1)

ORs at upper and lower limits, cumulative prevalence and PEFs (as percentages), by age.
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Discussion

Summary of present findings and relation to previous work
The overall proportion of pregnancies that are EP in women aged 16–44 years, based on HES data, is

around 1.13%. Based on retrospective studies on the prevalence of a history of salpingitis in EP versus

non-EP control subjects, we have suggested that the proportion of EP attributable to PID is between 21%

and 33%, so that the proportion of pregnancies that are PID-related EP should be between 0.24% and

0.36%. However, these results are only compatible with progression rates from the Lund study if we

assume that there is no EP risk following salpingitis associated with undiagnosed PID, and a level of risk

only at the ‘mild’ level for all salpingitis associated with PID that is diagnosed outside of hospital. Further

discussion of these results is deferred to the summary (see Chapter 12), where they can be considered

alongside results from other chapters, and particular alongside similar analyses of the role

of PID/salpingitis in TFI.

Comparison of our results with other studies is problematic because of the different methodologies used,

the different assumptions being made about CT and PID, and different ways of taking into account that

there must be a pregnancy for there to be an EP. Roberts et al.,2 for example, assumed that the risk that a

future pregnancy would be an EP was 0.008 per day of CT duration, but this was based on a calibration

against the Uppsala data, where women with CT were treated, and on CT duration of 200 days,

compared with our estimate which is approximately double that.

A slightly different calculation based on similar assumptions was proposed by Low et al.15 But in both cases

the EP rate was assumed to be independent of the PID rate, which runs counter to what is known about

their relationship. Adams et al.106 assumed the risk of EP following PID (conditional on conception) was

7.6%, based on the Lund study,124 equating to a risk of 0.76% per incident CT infection, given a 10%

progression rate from CT to PID. Van Valkengoed et al.,39 based on a form of argument critiqued in

Appendix 9, proposed that the risk of EP following CT was 10 times less, at 0.07%. Comparison of

these results with predictions from this report are reserved till Chapter 12, at which point we will have

established a credible estimate for the proportion of conceptions that are EP due to PID.
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FIGURE 24 Predicted proportions of conceptions that are ectopic due to salpingitis based on five prospective
models of the Lund data, and retrospective estimates.
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Limitations
There are a wide range of limitations, many of which have already been implicit in the description of our

methodology. Undoubtedly, the main difficulty has been the complete lack prospective data on the

sequelae of undiagnosed PID, let alone salpingitis following undiagnosed PID, and our reliance on

progression rates observed in the Lund study,124 which was carried out between 30 and 50 years ago, at a

time when the microbiological spectrum of PID was more weighted towards gonorrhoea and treatment for

PID was quite different. There have been other studies following PID cases forward (see Table 27), but

these have lacked controls, have been very considerably smaller and have not generally produced

different results.

The derivation of predictions from our prospective model also involved a wide range of assumptions

that are based on no or very limited evidence. At a technical level our analysis of the separate risk

factor-specific risks is not quite correct, as we have taken the age, severity and number of PID episodes as

independent data samples. Methods have been developed for deriving estimates from marginal data,249,250

but these require full conditional data from at least one study. However, Table 28 shows that our

estimates accord well with the evidence available; the precision is overstated as a result of our assumptions

about the data, but probably not by very much. Our assumption that there are no interactions between

the risk factors cannot be verified with these data.

Also difficult to verify are our assumptions that the severity distribution of any salpingitis remains the same

following first, second and third episodes of PID, and that the proportion of clinical PID episodes that are

salpingitis is the same in undiagnosed and non-hospital-referred PID as hospital PID.

Our estimates of the PEFs relating to salpingitis and non-CT-related salpingitis must be considered only

approximate because the distribution of salpingitis exposure would be different in the absence of CT.

However, the use of these retrospective studies is a much greater cause for concern due to the general

difficulties with case–control designs (recall bias, confounding), and the uncertain applicability of these

results from France to the UK in the present day.

The interpretation of the results in Table 35 comparing retrospective and prospective results will be

discussed further in Chapters 10 and 12, where they will be considered alongside similar analyses of TFI.

Summary of assumptions and findings

Summary of assumptions

1. The proportion of all PID, whether diagnosed or not and whether CT related or not, in which salpingitis

would be found on laparoscopy, is the same.

2. The severity distribution of salpingitis observed in the Lund study holds for all salpingitis, and whether

CT-related or not.

3. The proportion of EP that is due to salpingitis, estimated in a French study in 2001, approximates the

proportion in the UK.

Summary of findings

1. Of UK pregnancies, 1.13% are ectopic.

2. An estimated 27% (95% CrI 11% to 46%) of EP in women aged 16–44 years is due to salpingitis.

3. An estimated 4.9% (95% CrI 1.2% to 12.1%) of EP in women aged 16–44 years is due to CT.

4. These results are compatible with the Lund study124 if it is assumed that there is no EP risk following

salpingitis in women with undiagnosed PID, and that in women with salpingitis associated with PID

diagnosed outside of hospital, the EP risk is at or below the rate for ‘mild’ salpingitis.
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Chapter 10 Pelvic inflammatory disease and tubal
factor infertility

Objectives

To:

1. estimate the proportion of women in the UK with TFI at the end of their reproductive lives

2. apply the information on group-specific risks of TFI reported in the Lund study (number of PID episodes,

severity of PID) to estimates of the distribution of these risk factors in the UK to predict the proportion

of proportion of women who have TFI

3. compare the predictions based on the Lund study with estimates of the proportion of women with

TFI derived from UK fertility surveys

4. estimate the proportion of TFI attributable to CT.

Introduction

This chapter examines the relationship between PID, and particularly salpingitis, and TFI. The structure of the

chapter and the methods used mirror Chapter 9 on EP. We can carry over a substantial part of the analysis

from the previous chapter, including the estimates of the UK distribution of risk factors (numbers of previous

episode of salpingitis, by severity and age: see Table 33). As with EP, we use the Lund study33 on risk of TFI

in women with salpingitis who were hospitalised for PID, to define the risk of TFI in the specific subgroups.

We then apply the five prediction models that map the Lund study risks in women with hospitalised PID to

what might be expected in other diagnosed salpingitis and in undiagnosed salpingitis.

These predictions are then compared with estimates of the prevalence of TFI in the UK, based on fertility

surveys. As noted in Chapter 2, in order to achieve a definition of TFI prevalence that allows us to compare

predictions from the Lund study33 to prevalence in the UK, we adopt the strategy of considering infertility,

including both primary and secondary, as an unresolved failure to conceive at the end of a woman’s

reproductive life, defined here as age 44 years.

The particular point of interest is whether the prediction model that agrees best with prospective evidence

on EP is also the best fit for TFI. This will be examined in Chapter 12.

Outline of evidence sources and approach to synthesis

Prospective evidence: following pelvic inflammatory disease forward to
tubal factor infertility
A number of prospective studies228,240–242,251–254 have followed up women with PID to infertility-related

outcomes. However, there are major differences in the way that exposures and outcomes have been

defined. Studies have recruited women with mild/moderate PID, with severe PID, with all except the most

severe PID, or with any PID which is sometimes subclassified to ‘mild’, ‘moderate’ or ‘severe’. PID was

clinical or with laparoscopically confirmed salpingitis, whereas the outcome was either laparoscopically

confirmed TFI, unilateral or bilateral tubal occlusion, both, pregnancy rates, or all-cause infertility defined as

either 1 or 2 years of trying for a baby, and this could have been primary or all infertility. Finally, a number

of studies are based on the same sample. Because of these difficulties, we do not consider these

studies further.
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Instead, as with EP, rather than attempting to synthesise these disparate studies, we have relied on the

Lund study33 because of its size, length of follow-up, relatively specific exposures and outcomes, and

because it uses a similar set of definitions in the follow-up to EP.124 Table 36 shows the number of women

diagnosed with TFI during follow-up by age group at index salpingitis (< 25 years, ≥ 25 years), its severity

and number of subsequent PID episodes during follow-up.

Prevalence of infertility and tubal factor infertility in the UK
The types of evidence sources used to estimate the prevalence of infertility and TFI in the UK were

reviewed in Chapter 2, and definitions of these terms were given. We identified papers on the prevalence

of infertility in the UK and on the prevalence of TFI (Table 37), relying on the recent review and synthesis

paper by Kavanagh256 and on references found in our wider review of the literature.

TABLE 36 Prospective data on the risk of TFI following PID from the Lund study33 by number of PIDs, age
and severity

Number of PIDs

Aged < 25 years at index Aged > 25 years at index

r n Crude risk, % (95% CrI) r n Crude risk, % (95% CrI)

One 59 771 7.7 (6.0 to 9.7) 20 220 9.1 (6.0 to 13.7)

Mild 2 241 0.8 (0.3 to 3.0) 0 71 0.0 (0.0 to 5.1)

Moderate 23 361 6.4 (4.3 to 9.4) 5 89 5.6 (2.5 to 12.6)

Severe 34 369 9.2 (6.7 to 12.6) 15 60 25.0 (16.0 to 37.8)

Two 29 158 18.4 (13.2 to 25.3) 7 27 25.9 (13.7 to 46.2)

Three plus 23 61 37.7 (27.0 to 51.0) 3 4 75.0 (39.7 to 99.4)

Total 111 990 11.2 (9.4 to 13.3) 30 251 12.0 (8.5 to16.7)

r, numerators; n, denominators.

TABLE 37 Data used to estimate the prevalence of TFI in women aged 44 years

Publication Age (years) r n p= r/n(%) (95% CrI)

Primary infertility

Templeton126 46–50 27 766 3.5 (2.4 to 5.1)

Gunnell128 41–50 31 1609 1.9 (1.4 to 2.7)

Bhattacharya127 41–50 79 2347 3.4 (2.7 to 4.2)

Oakley129 40–55 159 6584 2.4 (2.1 to 2.8)

Oakley, adjusted129 40–55 153.8 6128 2.5 (2.2 to 2.9)

Not involuntarily childless

Templeton126 and Bhattacharya127 41–50 2910 3113 93.5 (92.6 to 94.3)

Secondary infertility

Templeton126 46–50 17 766 2.2 (1.4 to 3.5)

Gunnell128 41–50 41 1609 2.5 (1.9 to 3.4)

Bhattacharya127 41–50 5 2347 0.2 (0.1 to 0.5)

Proportion TFI

Maheshwari255 > 35 442 1782 24.8 (22.9 to 26.9)

n, denominator; p= study-specific estimate; r, numerator.
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The approach we adopt takes the following steps:

1. The data on primary infertility in women aged 41–50 years from four surveys126–129 is pooled. The data

from one of the surveys129 has to be adjusted to take account of the proportion of women who were

voluntarily childless, which was estimated from data in two surveys.126,127

2. A second synthesis was carried out for the prevalence of secondary infertility, using data from three

surveys,126–128 and this estimate was adjusted for the possibility that these women would have become

pregnant subsequently (see Appendix 13).

3. The primary infertility and adjusted secondary infertility estimates were added together to form an

estimate of the prevalence of infertility.

4. This was multiplied by an estimate of the proportion of infertility due to TFI. Because data from the

HFEA are unlikely to be representative, we have used an estimate of the proportion of infertility due to

TFI of approximately 25%, based on women aged > 35 years old from a clinic-based study conducted

in Aberdeen between 1993 and 2006.255 This is the only UK survey of infertility reporting this statistic.

Approximately 13% of tubal damage can be caused by endometriosis257 but this is classified as

endometriosis rather than TFI in that study.

As noted in Chapter 2, we assume that virtually all TFI has an infective aetiology and is caused by

salpingitis, and that PID that does not confirm as salpingitis on laparoscopy does not carry a risk of TFI.35

Statistical methods

Model for the prospective data of the risk of tubal factor infertility
following pelvic inflammatory disease
The Lund study33 provides data on the risk of TFI first by age and severity of index salpingitis, and second by

age and number of subsequent PID episodes, zero, one and two-plus, averaging over severity (see Table 36).

Each of the 10 data points describing progression to TFI has a binomial likelihood,

r1,s,a ∼ Binomial(η1,s,a,n1,s,a)

r ′
m,a ∼ Binomial(p′

m,a,n′
m,a) : m = 2,3

(58)

where a indexes over age group (< 25 or > 25 years at recruitment), m over number of subsequent PID

episodes during follow-up (zero, one, two-plus) and s over severity of the index salpingitis episode (s= 1,

mild; 2, moderate; 3, severe). r1,s,a is the number of women with one salpingitis episode of severity s at age

a developing TFI in a sample size n1,s,a of women in these groups who were follow-up and tried to

conceive. r′m,a is the number of women with one or two subsequent PID episodes by age group

(aggregated over severity) in a sample size of n′m,a with probability parameter p′m,a where:

p′
m,a =

∑
3

s=1

ηm,s,a⋅n1,s,a

∑
3

s=1

n1,s,a

: m = 2,3 (59)
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As with EP, we fit a model to the marginal data to estimate the risk factor-specific risk of TFI, ηm,s,a:

logit(ηm,s,a) = β0 + β1,mM + β2,sS + β3,aA (60)

β0 is the log odds of TFI in a woman aged < 30 years at the time of her mild index salpingitis, with no

further PID episodes, β1,m is the LOR of TFI for a woman with m subsequent PID episodes compared with

none, β2,s is the LOR for a woman whose index salpingitis was moderate or severe compared with mild and

β3,a is the LOR in women aged 30 years or over relative to those aged under 30 years. The covariates M, S

and A have the same interpretations as in Chapter 9. The parameters β0, β1,m, β2,s and β3,a are given flat

normal priors. As with our model in Chapter 9, the reported data do not provide the sufficient statistics to

identify interaction terms. Although this does not necessarily mean there are no interactions, we assume

there are none, as in the analysis of EP. We assume that results for 16- to 24-year-old women are

applicable for women aged 16–29 years because of the mean 9-year follow-up.

In the Lund study,33 TFI was not found in any of 601 control women with PID which was not confirmed as

salpingitis on laparoscopy.

Model for the distribution and diagnostic setting of pelvic inflammatory
disease in the general population.
Estimates of the proportion of women in age band a who had experienced an episode of salpingitis at age

a, diagnosed in setting d, and followed by m subsequent PID episodes, πS+PID
m,d,a and π

NoCT,S+PID
m,d,a were

introduced in Chapter 9 (see Table 33).

Prospective estimate of the prevalence of tubal factor infertility caused by
CT-related PID
To estimate the prevalence of TFI due to salpingitis in the UK θPOP,TFIjsalp

a , we use the same approach as in

Chapter 9 for EP. We adopt the same five ‘models’ to ‘map’ the ηm,s,a severity-specific estimates of TFI risk

into θ
TFIjsalp

m,d,a diagnostic-setting specific estimates of risk. Then, the population estimates θPOP,TFIjsalp
a are found

by taking a weighted average of the θ
TFIjsalp

m,d,a using the πS+PID
m,d,a as weights.

As the Lund study33 was set in the Hospital Diagnosed setting, we can estimate θ
TFIjsalp
m,HD,a directly from the

ηm,s,a. Note that, because there were no TFI cases among the non-salpingitis controls, we interpret the

parameters θTFIjsalp

m,d,a as causal estimates:

θTFIjsalp
m,HD,a =

∑
3

s=1

ηm,s,a⋅n
Lund
s

∑
3

s=1

nLund
s

(61)

Then, the risk of TFI due to salpingitis as a function of age group, severity and number of subsequent PID

episodes is constructed as a weighted average using the proportion of women at each severity level and

the cumulative prevalence of salpingitis and zero, one or two-plus subsequent PID episodes, πS+PID
m,d,a. An

analogous estimate can be formulated for salpingitis that is not CT related:

θPop,TFIjsalp
a = ∑

d =HD,nHD,UD
∑

m= 0,1,2+
πS+PID
m,d,a⋅θ

TFIjsalp

m,d,a (62)

θPopnoCT,TFIjsalp
a = ∑

d =HD,nHD,UD
∑

m= 0,1,2+
π
noCT,S+PID
m,d,a ⋅θTFIjsalp

m,d,a (63)
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The five different models of how the TFI risks in the Lund hospital-diagnosed PID might apply to

non-hospital-diagnosed PID, and undiagnosed PID can then be set out in the same way as in Chapter 9,

where, as before, ‘Av’ refers to the average risk reported in the Lund study33 and ‘Mi’, to the risk in mild

salpingitis, with HD, nHD and UD referring to hospital diagnosed, non-hospital diagnosed and

undiagnosed PID:

Model 1 (Av, Av, Av): Lund average risk of TFI due to salpingitis following all PID. All salpingitis, whether

associated with HD, nHD, or UD PID, carries the same risk of TFI as those with hospital diagnosed PID in

the Lund study:

θTFIjsalp
m,nHD,a = θTFIjsalp

m,UD,a =

∑
3

s=1

ηm,s,a⋅n
Lund
s

∑
3

s=1

nLund
s

(64)

Model 2 (Av, Av, Mi): Lund average for salpingitis following diagnosed PID, Lund ‘mild’ following

undiagnosed PID. Salpingitis associated with both HD and nHD PID carries the same TFI risk as in the Lund

study; salpingitis associated with UD PID has the same TFI risk as the ‘mild’ salpingitis group in the

Lund study.

θ
TFIjsalp
m,nHD,a =

∑
3

s=1

ηm,s,a⋅n
Lund
s

∑
3

s=1

nLund
s

θTFIjsalp
m,UD,a = ηm,1,a

(65)

Model 3 (Av, Mi, Mi): Lund average for salpingitis following hospital diagnosed, Lund ‘mild’ following

non-hospital diagnosed and undiagnosed salpingitis. In this model HD salpingitis progresses to TFI at the

average rate observed in the Lund study; nHD and UD at the Lund ‘mild’ rate.

θTFIjsalp
m,nHD,a = θTFIjsalp

m,UD,a = ηm,1,a (66)

Model 4 (Av, Mi, Mi/2): Lund average for salpingitis following HD PID, Lund ‘mild’ following nHD PID.

Salpingitis following UD PID progresses at a rate that is half-way between the ‘mild’ rate and zero.

θ
TFIjsalp
m,nHD,a = ηm,1,a

θTFIjsalp
m,UD,a ∼ Uniform(0,ηm,1,a)

(67)

Model 5 (Av, Mi, 0): Lund average for salpingitis following HD PID, Lund ‘mild’ for following nHD PID,

no risk following UD PID:

θ
TFIjsalp
m,nHD,a = ηm,1,a

θTFIjsalp
m,UD,a = 0

(68)

The WinBUGS code for the prospective analyses of TFI is set out in Appendix 15.
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Model for the prevalence of tubal factor infertility based on UK
fertility surveys
All the data, which have binomial likelihoods, are set out in Table 37. The data on primary infertility in

women aged 41–50 years is pooled on the assumption that the proportions are from a common beta

distribution, whose parameters are estimated from the binomial data, and are given vague exponential

prior distributions. The target parameter is the mean of this distribution. The data from one of the

surveys129 is adjusted to take account of the proportion of women who were voluntarily childless. This

fraction was estimated from data in two surveys.126,127 The effective sample size of the Oakley survey

was imputed based on a simulation taking account of the uncertainty in both fractions.

The synthesis of secondary infertility, based on three surveys, is also based on a common beta distribution,

and adjusted for over-reporting, which was assumed to be between 0% and 12% (see Appendix 13).

Total infertility was multiplied by an estimate of the proportion of infertility due to TFI,255 based on a vague

Beta prior and binomial likelihood. WinBUGs code for the synthesis is provided in Appendix 14.

The proportion of tubal factor infertility episodes caused by
chlamydia trachomatis
Under our assumption that all TFI is caused by salpingitis, we can estimate the proportion of TFI due to CT,

the PEF, by age group, as a function of the prevalence of TFI due to salpingitis, and the predicted

prevalence of TFI due to salpingitis if there is no CT. These are based on the estimates of πS+PID
m,d,a and

πnonCT S+PID
m,d,a from Chapter 8, through equations 61 and 62, respectively:

γCT←TFI
a =

θPOP,TFIjsalp
a −θPOPnoCT,TFIjsalp

a

θPOP,TFIjsalp
a

(69)

The same estimate will be derived from each of the five prospective models. A DAG of the prospective

analysis can be found in Figure 25.
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Results

Population prevalence of tubal factor infertility based on infertility surveys
The posterior summaries from our synthesis of the British fertility surveys are shown in Table 38. The

prevalence of infertility in women at the end of their reproductive lives, notionally age 44 years for the

purposes of this project, including both primary and secondary infertility, is 4.4% (95% CrI 3.2% to 6.2%)

and the prevalence of TFI is 1.1% (95% CrI 0.8% to 1.6%).

Risk of tubal factor infertility following salpingitis, by age, severity and
number of exposures
Our modelled cell-specific risks ηm,s,a of TFI, based on the marginal risk table in the Lund study,33 are set out

in Table 39. The risk of TFI in women aged 16–29 years is only slightly less than in women aged 30–44 years,

but there is a 20-fold increase in risk as one goes from mild to severe disease, and a more than threefold

increase from no subsequent PID episodes, to one and then two or more episodes, suggesting a positive

multiplicative relationship between number of salpingitis episodes and risk of TFI.

TABLE 38 Estimates of primary, secondary infertility and proportion TFI: posterior means and 95% CIs

Parameter Mean (%) 95% CI

Primary infertility 2.82 2.25 to 3.50

Secondary infertility 1.63 0.66 to 3.44

Secondary infertility, adjusted 1.54 0.63 to 3.26

All infertility 4.36 3.23 to 6.19

Prevalence of TFI 1.08 0.79 to 1.55

TABLE 39 Risk of TFI due to PID, by age, severity of index salpingitis and number (95% CrI) of subsequent
PID episodes

Risk factor No salpingitis

PID episode(s)

No further One further Two further

16–24

Mild – 0.01 (0.00 to 0.02) 0.02 (0.00 to 0.06) 0.07 (0.01 to 0.18)

Moderate – 0.06 (0.04 to 0.08) 0.17 (0.11 to 0.25) 0.44 (0.28 to 0.63)

Severe – 0.21 (0.15 to 0.27) 0.46 (0.34 to 0.60) 0.76 (0.61 to 0.88)

Overall 0

25–44

Mild – 0.01 (0.00 to 0.02) 0.02 (0.00 to 0.07) 0.08 (0.01 to 0.23)

Moderate – 0.07 (0.04 to 0.11) 0.21 (0.11 to 0.33) 0.49 (0.29 to 0.71)

Severe – 0.24 (0.16 to 0.33) 0.51 (0.35 to 0.67) 0.79 (0.63 to 0.91)

Overall 0

Cell-specific estimates of ηm,s,a derived from the logistic regression model of the marginal data in Table 36 (mean 8.9-year
follow-up).
Assumes lower age group applies to 16- to 29-year-olds for the time of the TFI.
There is no severity distribution in controls.
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Comparison of tubal factor infertility prevalence predicted from the Lund
study with tubal factor infertility in British surveys
The 1.08% (95% CrI 0.79% to 1.54%) prevalence of TFI in 44-year-old women, based on the above

synthesis of the British fertility surveys can now be compared with the range of projected TFI prevalence

obtained when the Lund study progression rates from salpingitis to TFI33 are applied to the distribution of

age, severity of index salpingitis, and number of subsequent PID episodes (Table 40 and Figure 26). The

estimates for age 44 years appear to fall between the Model 1 (Av, Av, Av) projection of 1.74% (95% CrI

0.9,2.9) (all salpingitis progresses at the average rate observed in the Lund study), and the Model 2

(Av, Av, Mi) projection of 0.70% (95% CrI 0.4% to 1.2%) (all diagnosed salpingitis progresses at the

average rate, undiagnosed at the ‘mild’ rate). The estimates are not compatible with the Model 3 (Av, Mi,

Mi) projection of 0.5% (95% CrI 0.2% to 0.9%), even taking into account the uncertainty in the estimates

and the projections.

TABLE 40 Prevalence (95% CrI) of TFI as predicted from the distribution of salpingitis severity and exposure, and
Lund study progression rates33 (prospective models 1–5), compared with prevalence of TFI in England, based on
fertility surveys

Age (years)

Prospective model
All TFI in
England1 (Av, Av, Av) 2 (Av, Av, Mi) 3 (Av, Mi, Mi) 4 (Av, Mi, Mi/2) 5 (Av, Mi, 0)

16–19 0.14
(0.07 to 0.23)

0.06
(0.03 to 0.09)

0.02
(0.01 to 0.04)

0.01
(0.01 to 0.03)

0.01
(0.01 to 0.02)

–

20–24 0.44
(0.23 to 0.73)

0.18
(0.10 to 0.28)

0.06
(0.03 to 0.14)

0.05
(0.02 to 0.11)

0.04
(0.02 to 0.07)

–

25–34 1.00
(0.52 to 1.64)

0.40
(0.22 to 0.63)

0.21
(0.10 to 0.38)

0.19
(0.09 to 0.32)

0.16
(0.09 to 0.26)

–

35–44 1.57
(0.78 to 2.67)

0.63
(0.33 to 1.04)

0.45
(0.21 to 0.81)

0.41
(0.20 to 0.70)

0.37
(0.18 to 0.65)

–

44 1.74
(0.88 to 2.94)

0.70
(0.36 to 1.16)

0.50
(0.23 to 0.89)

0.46
(0.22 to 0.80)

0.41
(0.17 to 0.53)

1.08
(0.79 to 1.54)

16–44 1.03
(0.53 to 1.71)

0.41
(0.22 to 0.66)

0.26
(0.13 to 0.45)

0.23
(0.12 to 0.39)

0.21
(0.11 to 0.34)

–

0.00

0.02

0.04

0.06
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FIGURE 26 Predicted prevalence of TFI in 44-year-olds, based on five prospective models of the Lund data.33
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Estimates of the population excess fraction (Chlamydia trachomatis←tubal
factor infertility) based on the prospective analysis
Table 41 compares the predicted population prevalence of TFI under Models 1 and 2, as presented in

Table 40, with alternative predictions under a scenario in which CT-related salpingitis did not exist.

A prediction for TFI prevalence caused by CT-related salpingitis is formed by subtraction, leading to an

estimate of the PEF(CT←TFI) of 28.7% (95% CrI 8.9% to 56.3%). Note that this estimate of the PEF does

not depend on the model for TFI risk that is adopted.

TABLE 41 Estimates of the percentage (95% CrI) of the female population with TFI caused by all salpingitis,
with TFI caused by non-CT-related salpingitis, and CT-related salpingitis, and estimates of the PEF(CT←TFI)

Age (years)

Prevalence of TFI due to:

PEF(CT←TFI),
(A–B)/A (as %)Salpingitis A

Non-CT-related
salpingitis B

CT-related
salpingitis A–B

Model 1 (Av, Av, Av)

16–19 0.14 (0.07 to 0.23) 0.07 (0.00 to 0.16) 0.07 (0.02 to 0.16) 52.7 (16.1 to 100)

20–24 0.44 (0.23 to 0.73) 0.28 (0.08 to 0.54) 0.17 (0.05 to 0.36) 38.1 (11.9 to 74.5)

25–34 1.00 (0.52 to 1.64) 0.75 (0.33 to 1.33) 0.25 (0.08 to 0.54) 25.8 (8.1 to 50.5)

35–44 1.57 (0.78 to 2.67) 1.26 (0.57 to 2.28) 0.31 (0.08 to 0.67) 20.0 (5.9 to 40.0)

44 1.74 (0.88 to 2.94) 1.41 (0.61 to 2.54) 0.33 (0.10 to 0.71) 19.2 (6.0 to 38.0)

16–44 1.03 (0.53 to 1.71) 0.79 (0.35 to 1.42) 0.24 (0.07 to 0.51) 28.7 (8.9 to 56.3)

Model 2 (Av, Av, Mi)

16–19 0.06 (0.03 to 0.09) 0.03 (0.00 to 0.06) 0.03 (0.01 to 0.07) 52.7 (16.1 to 100)

20–24 0.18 (0.10 to 0.28) 0.11 (0.04 to 0.20) 0.07 (0.02 to 0.15) 38.1 (11.9 to 74.5)

25–34 0.40 (0.22 to 0.63) 0.30 (0.14 to 0.50) 0.10 (0.03 to 0.22) 25.8 (8.1 to 50.5)

35–44 0.63 (0.33 to 1.04) 0.50 (0.24 to 0.87) 0.12 (0.03 to 0.28) 20.0 (5.9 to 40.0)

44 0.70 (0.36 to 1.16) 0.56 (0.27 to 0.97) 0.13 (0.04 to 0.30) 19.2 (6.0 to 38.0)

16–44 0.41 (0.22 to 0.66) 0.31 (0.15 to 0.54) 0.10 (0.03 to 0.21) 28.7 (8.9 to 56.3)
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Discussion

In this section we comment on the relation between our results in this chapter on risks of TFI following

salpingitis, in the light of previous work on this topic. We then turn to consider the relationship between

the results in this chapter and those from Chapter 9, where the observed UK EP rates were compared with

the same five models of prospective risk derived from the Lund study.

Comparison with previous work on Chlamydia trachomatis, pelvic
inflammatory disease and tubal factor infertility
We have already provided some comments on the relation between CT, PID and TFI in the HPA and ClaSS

economic models, and on the approach taken by van Valkengoed et al.39 (see Appendix 9). There appear

to have been few attempts to reconcile information on incidence and prevalence of CT, PID and TFI in a

quantitative way since then, until the important recent work by Kavanagh et al.256 This attempts to

estimate the risk of TFI associated with CT infection. This study does not use PID or salpingitis as an

intermediate variable, but, instead, considers only previous CT. For women aged 40–44 years (estimates

are also provided for younger age groups) they estimated a prevalence of TFI of 0.75%, that 43% of

women in this age group in the general population have ever had chlamydia, and that, based on

serological surveys of women with TFI, 72% have ever had chlamydia. From this the authors estimate the

probability of TFI in women ever infected with chlamydia to be 1.3%, and estimate a PEF for CT of 62.9%.

Although there are similarities with our estimates, there are several difficulties with Kavanagh el al.’s

approach, many of which are highlighted in their paper: first, the estimated prevalence of TFI at age

40–44 years (0.75%) may be too low, as only primary infertility was considered. Our estimate was 1.1%,

which includes both primary and secondary infertility. Second, the estimate of cumulative incidence of CT,

which is taken to be 42.9% by age 44 years, based on testing and prevalence data, must be an

overestimate because it sums over incidence rates rather than summing over conditional incidence

proportions applied to women who have never been infected.

Their estimates of the prevalence of TFI in women with a history of CT are derived by substituting the

above parameters into the Bayes’ theorem. However, as the authors point out (also see Appendix 9), this is

not a causal estimate. Even if CT never caused TFI, and CT exposure was not confounded with other STIs,

we would still expect this estimate to equal the background prevalence of TFI. As a result of the above

issues, Kavanagh et al.’s estimates of the proportion of TFI attributable to CT must be considered to be an

upper bound, and, on this basis, are not incompatible with our estimated PEF(CT←TFI) of 28.7%.

This estimate, it should be emphasised, although derived from the prospective models based on the Lund

study, is entirely independent of the model selected, and is chiefly influenced by the estimates of the CT

incidence (see Chapter 5), PID incidence and the PEF(CT←PID) (see Chapter 7), and the Markov model for

repeat infection (see Chapter 8).

Changes in pelvic inflammatory disease management since the Lund study
There are a number of reasons for questioning whether the rates of progression of laparoscopically

defined PID to EP reported in the Lund study would apply to the UK now.

Antibiotic treatments for PID have certainly changed since the Lund study, with an increasing use of broad-

spectrum antibiotics capable of treating the range of micro-organisms that are now implicated in PID.258

Although these treatments are highly effective in achieving microbiological cure and elimination

of PID symptoms, little is known about their effect on reproductive outcomes.
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One treatment variable that is known to have a major impact is time to treatment. In the Lund study

(1960–84), in which it was reported that 18% were treated within 72 hours, treatment in less than

72 hours from the onset of symptoms was associated with a 2.8-fold reduction in risk of infertility (95% CI

1.3 to 6.1).107 During the PEACH study (1996–1999),259 there were still only 23% treated within 3 days. It

is generally believed that in the UK, where access to health care is universal, there was a distinct shift in

the mid to late 1990s towards presumptive treatment and treatment of milder cases.260

If we assume, optimistically, that 50% of diagnosed PID is treated within 3 days, and that the risk

reduction is by 2.8, then we would predict that progression rates among diagnosed PID cases, which

would confirm on laparoscopy, should be approximately 76.7% of the rates reported in the Lund study.

Applying this reduced risk to the prevalence of TFI predicted by the five models in Table 40, and bearing in

mind that the reduction in progression rates would apply to only the minority diagnosed salpingitis, it is

evident that changes in treatment efficacy and management do not materially affect our conclusions, other

than to shift the balance more in favour of Model 1 (Av, Av, Av).

Relation between predictions for ectopic pregnancy and tubal
factor infertility
The main finding from this chapter is that the model of the Lund study that could predict the UK EP rates

adjusted down to reflect the proportion of EP caused by salpingitis, namely Model 5 (Av, Mi, 0), cannot

predict the UK TFI rates, which are compatible with Models 1 (Av, Av, Av) or 2 (Av, Av, Mi) and vice versa.

Specifically, the models that were compatible with the EP data would under-predict the TFI results by a

factor of 2–2.5, whereas the models compatible with the TFI data would over-predict the EP results by

a factor of 1.5–3, if we accept the retrospective estimates of the proportion of EP due to salpingitis. This

issue is taken up in Chapter 12.

Assumptions and limitations
The evidence on infertility is based on studies undertaken over a 20-year period. However, following our

comments on the aetiology of TFI, we expect that TFI prevalence will respond relatively slowly to changes

in CT and PID incidence. We therefore assume that our analyses of this data are approximately relevant to

the target period for this report, 2002.

We also need to acknowledge assumptions inherent in our interpretation of the Lund study results on

progression from PID to TFI.33 The limited follow-up of the Lund cohort means that, although the study has

a relatively long follow-up time (mean 8 years), there is still the possibility that some cases of TFI will not

have been identified at the end of the observation period, leading to a potential underestimation of the

risk of TFI. However, because the denominator is women who have ever been pregnant this should not

cause bias. Also, the same women may have gone on to experience further PID episodes leading to TFI at

a later date.

A second issue to bear in mind is the small amount of data available on the risk of TFI in those with a

single ‘mild’ salpingitis. Only 2 out of 241 women aged < 25 years at the index PID with a single mild

salpingitis developed TFI, and 0/71 women aged ≥ 25 years developed TFI (see Table 36). Although this is

fairly strong evidence of low risk, this is the largest risk group, and projections for a number of the five

models are therefore very sensitive to this particular parameter. If there had been just one observed case of

TFI, rather than none, in those aged > 25 years, this would have had a substantial impact on our estimates

of θpopTFIjsalp
a in that group.
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Summary of assumptions and findings

Summary of assumptions

1. The proportion of PID in which salpingitis would be found on laparoscopy is the same, whether

diagnosed or not, and whether CT related or not.

2. The distribution of severity of salpingitis observed in the Lund study holds for all salpingitis, whether

diagnosed or not, and whether CT related or not.

Summary of findings

1. The proportion of women in the UK who are infertile at the end of their reproductive lives (age 44 years)

is estimated to be 4.4% (95% CrI 3.2% to 6.2%).

2. The proportion with TFI is 1.1% (95% CrI 0.8% to 1.6%).

3. These results are compatible with the Lund study if it is assumed that the TFI risk following salpingitis in

women with diagnosed PID is at the average level observed in the Lund study,33 and among those with

undiagnosed PID the rate is between the ‘mild’ and average rates.

4. The estimated proportion of TFI attributable to CT is 29% (95% CrI 9% to 53%).

5. The prospective model of the Lund data that provides the best fit between observed and predicted

TFI prevalence, does not agree with the best-fitting model for EP.
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Chapter 11 Tubal factor infertility: previous
exposure to Chlamydia trachomatis infection

Objectives

To estimate the proportion of TFI attributable to CT using retrospective serological case–control studies.

Introduction

There have been a large number of retrospective studies comparing the prevalence of serum antibodies to

CT in women with TFI and controls.143,261,262 The motivation was to assess the diagnostic potential of

serological tests, or to study the causal role of CT in TFI. In some cases the purpose was to estimate the

proportion of TFI that could be causally attributable to CT,263 using the formula for PEF (equation 1)

presented in Chapter 3.

Besides the issue of positive confounding with other STIs (see Chapter 3), the use of this formula in

serological studies comparing TFI with controls faces two further obstacles. First, as indicators of previous

CT infection, CT antibody tests are relatively insensitive. Their specificity is also poor, with earlier assays

showing cross-reactivity with antigens to Chlamydia pneumoniae.262,264 Even so, given estimates of

sensitivity and specificity,55 estimates of true prevalence can be recovered from observed CT prevalence in

cases and controls. Unfortunately, reliable estimates of sensitivity and specificity are not generally available.

Sensitivity can be assessed in individuals identified as infected following bacterial culture or NAATs. But a

true-negative population in which specificity can be estimated is less easy to identify: patients who are

culture negative and/or NAAT negative cannot be regarded as ‘never infected’, as they may have

experienced a CT infection which subsequently cleared.169 ‘Discrepancy analysis’, as proposed by Morre

et al.,265 is recognised to overestimate test accuracy.266,267 A better strategy to assess specificity is to take

samples from children, who would not normally be expected to have been exposed to CT. It is necessary

to choose children who old enough to have cleared maternal antibody.268,269

A further complication is that antibody levels, and hence test sensitivity, may not be the same in women

with TFI whose TFI was caused by CT and women who were previously infected but do not have TFI. There

are consistent reports of higher antibody titres in women with TFI270,271 compared with controls, including

control subjects who have been previously exposed to CT. It is believed that these high titres reflect an

inflammatory response to CT, which may, in turn, cause tubal occlusion.272 The same findings have been

reported in women with salpingitis and women with EP.88,273

The standard formula that allows estimation of the PEF from case–control studies is, therefore, not to be

relied on. For example, one study263 using a micro-immunofluorescence (MIF) assay reported antibody

prevalence in TFI cases was 72%, compared with 22%, an OR of 9.2, and an aetiological fraction of 64%.

This would imply that 64% of all TFI could be attributed to CT. The high reported prevalence in TFI cases is

sometimes attributed to false positives, but sensitivity must always be higher than observed prevalence.

For example, if we make an optimistic assumption that sensitivity is 85% and specificity 95%, the

corrected prevalences would be 90% and 21.5%, an OR of 33.4 and an aetiological fraction of 87.3%.

However, lower levels of sensitivity yield ORs and aetiological fractions that are even more extreme.

The study can be explained if it is assumed that CT antibody titre, and hence sensitivity, is higher in the

subgroup whose TFI was caused by CT. This hypothesis, suggested above, forms the basis for the

approach we have taken.
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In this chapter we propose a new way to estimate the population aetiological fraction of TFI due to CT.

The method is applied to a comparative study of antibody prevalence in TFI cases and controls, which used

three peptide-based assays and two MIF assays.274 Our re-analysis of this data set addresses the problems

attaching to equation 1: we adjust for the bias caused by imperfect sensitivity and specificity of the assays;

we take account of the especially high antibody levels in women with TFI caused by CT; and for the

confounding influence of other STIs.

We begin by setting out our approach to literature identification, and explaining the reason why have

focused attention on the Land et al. study.274 We then show how test sensitivity and specificity can be

characterised, and how properties of the tests may depend on the stage that the patient has reached in

the natural history of CT infection. We then outline how the Land et al. data274 on the prevalence of

anti-CT antibody in women with TFI and control subjects, in several tests, can be re-analysed to estimate of

the proportion of TFI that might be due to CT. Some additional analyses and technical details are given in

Appendix 16. The work in this chapter has been published previously.275

Methods

Evidence identification
We identified studies from review papers,143,261,276 from co-authors’ knowledge of the literature, and as part

of a wider review of the literature on the natural history of CT.

Although there have been many studies of CT antibody prevalence in TFI cases and controls, the statistical

modelling methods used in this paper require that the assays are used at more than one cut-off in order

to estimate the large number of parameters in the model. Only one study, by Land et al.,274 met this

requirement, using five different assays at between two and five different cut-offs. The study population,

whose age was not reported, were recruited in an infertility clinic.

Having identified this study, our method further required information on the sensitivity and specificity of

the assays used. These were the Biomérieux and Labsystems MIF assays and three peptide-based assays: the

Medac pELISA, the Savyon ELISA, and the Labsystems ELISA (ELISA, enzyme-linked immunosorbent assay).

Three studies265,268,269 were identified which provided evidence of sensitivity and specificity in these assays.

We provide analyses of test resolution based on each of these sources (see Appendix 16). However, the

estimates used in the analyses were those from Wills et al.,269 for reasons explained below (see Discussion).

Analysis of serological assay performance
We characterise test performance as follows. The resolution (R) of each test T is a fixed property of the

test, reflecting its intrinsic ability to distinguish between true positives and true negatives: high resolution

implies greater discrimination. As the threshold titre at which a sample is declared ‘positive’ is moved from

low titres to high titres, sensitivity is raised and specificity lowered. This traces out the receiver operator

characteristic (ROC) curve,277 which defines the sensitivity that is achieved for a given false-positive rate.

Resolution for test T is defined as:

RT = logit(sensivityT )− logit(1− specif icityT ) (70)

We use data on the sensitivity and specificity of a pgp-3 assay studies by Wills et al.,269 and three

peptide-based assays: the Medac pELISA, Savyon SeroCT ELISA and Labsystems ELISA. The mean RT for

these four assays was 4.1, with a SD of 0.8. The analyses on which this estimate is based are shown in

Appendix 16, along with analyses of the performance of tests described by Morre et al.265 and Narvanen

et al.268 To give an example of the relationship between resolution, sensitivity and specificity: if RT= 4.1,

and if we set sensitivity to 65%, then, from equation 70, specificity is 97%; with a sensitivity of 75%,

we obtain specificity 95.3%.
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Test sensitivity in individuals with an inflammatory reaction to
Chlamydia trachomatis
Using a whole cell immunofluorescence (WIF) assay,278 Akande et al.270 reported that in women with

antibody titres of > 64, and therefore likely to be previously exposed to CT, 84% (301/357) of those with

tubal damage had titres of ≥ 256 compared with only 43% (83/193) of those with no signs of tubal

damage (figures read from the published histogram). If the logit probability of a positive test result

increases with log titre, then these results correspond to an increase in logit (sensitivity), and hence in test

resolution of 1.96 (95% CrI 1.56 to 2.37). Similar results are found if a cut-off of 1 : 512 or 1 : 1024 is

used. This provides an estimate of the difference in sensitivity, and hence test resolution, between

those previously exposed to CT, with and without a CT-related inflammatory process: ΔSe= logit

(SeMax) – logit(SePrevious)= 1.96.

Thus, based on results from Akande et al.,270 we estimate that test sensitivity, and hence resolution, is 1.96

(95% CI 1.56 to 2.37) higher in this group than in women with previous CT but no inflammatory reaction.

For example if resolution RT= 4.1 in women who were previously infected with CT, but who have not

experienced an inflammatory reaction, it would be 4.1+ 1.96= 6.06 in women with TFI caused by CT.

This illustrates how the interpretation of sensitivity and specificity depend on the population being tested.

For example, if we take 97% as a benchmark specificity, then the sensitivity in the group whose TFI was

caused by CT would be 93%, but only 75% in CT-exposed women without an inflammatory reaction.

Analysis of a retrospective study of antibody prevalence in women with
tubal factor infertility and control subjects
In a test T, given information on its sensitivity in a control group, SeT,Previous, and a false-positive rate (FpT),

the true prevalence in the control group, π0, can be deduced from the observed prevalence pT,Controls,

via the equation:55

pT,Controls = π0⋅SeT.Previous + (1−π0)⋅FpT (71)

Here, the observed prevalence is conceived as a weighted average of true positives and false-positives,

with π0 as the weight.

The same reasoning can be applied to the prevalence in the TFI group. Their observed prevalence pT,TFI has

three components. First, a proportion π1 has been previously exposed to CT without it causing TFI. This

group has a sensitivity SeT,Previous. Second, there is a further proportion π2 of TFI cases whose TFI was caused

by CT. The sensitivity in this group is SeT,TFI. Third, the remaining 1 – π1 – π2 patients are true negatives,

and so the prevalence of antibody in this group is the false-positive rate, FpT:

PT,TFI = π1⋅SeT,Previous + π2⋅SeT,TFI + (1−π1−π2)⋅FpT (72)

We should expect that the prevalence of past CT infection in women with TFI not caused by CT is higher

than in an otherwise comparable control group of fertile women. This is because most TFI is caused by

STIs.257 Therefore, women whose TFI is caused by other infections are more likely to have been exposed to

CT. To capture this belief, we impose the constraint π1/(1 – π2)≥ π0 and rely on sensitivity analyses to assess

its impact on results.

The Land et al. study274 reports CT antibody prevalence in 51 laparoscopically verified TFI cases and 264

controls, on five different antibody tests, and at between two and five different cut-offs. The above model

is fitted to this data set as described below.
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In our base-case model, the difference ΔSe in sensitivity between SeT,Previous and SeT,TFI is assumed to be the

same for every assay. Alternative models are explored in the sensitivity analyses. We fit the model with

RT, ΔSe and π0 ranging over a wide ‘grid’ of fixed values, in a total 7 × 3 × 9 × 5= 945 combinations,

as follows:

l Test resolution RT associated with each test T, is assumed to come from a normal distribution with

means fixed at 0.5, 1.5, 2.5, 3.5, 4.5, 5.5 and 6.5, and SDs fixed at 0.5, 0.8 or 1.1. As reported above,

the mean and SD in the Wills et al. study269 (above) were 4.1 and 0.8, respectively. To give an idea of

what this range in RT would mean: with sensitivity 60%, RT= 0.5 implies 52.4% specificity, whereas

RT= 6.5 implies 99.8% specificity.
l We fixed ΔSe values at 0, 1, 2, 3, 4, 5, 6, 7 and 8. Based on Akande et al.,270 ΔSe= 1.96. Values above

3 or 4 imply sensitivity in the region of 100% at typically accepted levels of specificity.
l The prevalence of previous CT exposure, π0, i.e. the cumulative incidence, in the control group, was set

to 25%, 30%, 35%, 40% and 45%.

The parameter estimates and goodness of fit for each model were recorded.

Statistical estimation
Appendix 16 details the prior distributions, and describes methods for taking account of the uncertainty

regarding the true status of serological samples. Appendix 17 gives the WinBUGS code and data sets used

to compute the reported results.

Results

Goodness of fit of the data in the Land et al. study,274 based on residual deviance, is plotted against mean

resolution, with different values of Δse in Figure 27. In this graph, π0 has been held fixed at 0.25, and SD

at 0.8. Based on the size of the data set, a model that fits well would be expected to have a residual

deviance of 34. Residual deviance of > 40 suggests a conflict between data and model. If we adopt a

residual deviance of 40 as a maximum, the evidence in the Land et al. data suggests that values of RT of

> 3.5 and values of Δse of < 2 are implausible, although Δse= 2 is the best fitting. The poor fit obtained

when Δse= 0 or 1 provides strong support for our interpretation of Akande et al.’s results.270
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The estimated mean PEF (π2) is plotted against baseline prevalence of past infection in the control arm (π0)

(Figure 28). This is restricted to models with SD= 0.8 and mean residual deviance of less than 40. Also

excluded are models with a mean resolution below 2, which is unrealistically low, given Wills et al.’s

findings269 (see Appendix 16). A reasonable maximum Δse was set at 3, and this restriction was also applied.

To take account of the uncertainty in choice of model, we have applied an averaging procedure to the

Figure 28 models. This uses the smoothed residual deviance to calculate a weighted parameter estimate.279

This generates a central estimate of π2, the aetiological fraction, of 0.45, with CrI (0.28 to 0.62). Finally,

the observed prevalence in TFI cases and controls reported in the Land study is compared with the

predictions from the best-fitting model: (resolution= 2.5, Δse= 2, and π0= 25%, with residual deviance

of 34), in which the aetiological fraction was estimated to be 50% (95% CrI 37% to 60%) (Figure 29).
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Sensitivity analyses
Altering the SD over the range 0.5 or 1.1 does not have a material impact on results (not shown).

Increasing π0 to 45% increased the residual deviance by around 15% at all points on Figure 27, but did

not change the overall pattern of results.

The model identified as best fitting in Figure 27 shows a systematic lack of fit. Fitted values for the control

group in this model are very close to the data, as can be seen from their proximity on the horizontal axis

(see Figure 29). For the TFI cases, the model underpredicts some of the data where the detection rates are

highest (particularly the MIF tests), but overpredicts the data where the detection rates are low (particularly

the Labsystems ELISA and the Savyon ELISA). A similar pattern is found for all sets of parameter values.

These results point to an apparent anomaly in the Land data: some tests detect more positives in the

control group than others yet identify fewer positives in the case group. One explanation is that assays

differ in which CT serovars they are sensitive to. Thus, the detection threshold can be lowered, raising the

false-positive rate without detecting any more cases. The low correlation sometimes observed between

titres on different tests may be a reflection of this.280 As a second sensitivity analysis, we performed a

post-hoc analysis in which all parameters were held at the same values, but the Labsystems and Savyon

ELISAs were able to detect only a proportion of CT cases detected by other tests. This model fitted well

(residual deviance of 25) and removed the systematic lack of fit (Figure 30). The Labsystems detected an

estimated 60% (95% CrI 42% to 82%) and the Savyon 69% (95% CrI 51% to 88%) of CT cases. The

attributable fraction was 58% (95% CrI 47% to 67%), somewhat higher than the model in the main text,

but suggesting that results are not overly sensitive to this aspect of the model assumptions.

A third sensitivity analysis explored the assumption that ΔSe was the same in all tests. Alternative models

were explored in which the mean RT is set to 2.5 or 3.5, with a between-test SD of 0.8, as in the main

analyses, but ΔSe was allowed to vary between tests with mean values set at 2 or 3 and with between-test

SD set at 1 or 1.5. The eight models all fitted well (residual deviance between 27 and 36). Estimates of the

aetiological fraction ranged from 44% (95% CrI 31% to 54%) to 51% (95% CrI 38% to 62%).
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A fourth sensitivity analysis was run to assess the impact of dropping the constraint π1/(1 – π2)≥ π0, which

builds into the models the assumption that women with TFI whose TFI is not caused by CT are likely to

have a higher probability of prior exposure to CT than control subjects. Twelve models were evaluated

(RT= 2.5, 3.5; ΔSe= 2,3; π0= 0.25, 0.35, 0.45). The aetiological fraction was between 0 and 6.3 percentage

points higher. In the four models that conformed to our criterion for goodness of fit, i.e. mean residual

deviance of < 40, the increase was between 0 and 4.3 percentage points.

Discussion

In this chapter we have derived estimates of the performance of contemporary serological assays for CT in

different populations, based on literature. This literature suggests that CT antibody levels, and with it test

sensitivity, depend on the population tested. Specifically, antibody levels – and thus sensitivity – are higher

in women with TFI caused by CT than in women whose TFI was caused by another organism, or in women

with a previous CT infection and no TFI. The model of serology induced from this evidences was used to

obtain estimates of the PEF, the proportion of TFI that is caused by CT from a published case–control study

comparing antibody prevalence in TFI cases compared with non-TFI controls.

We estimated that 45% (95% CrI 28% to 62%) of TFI cases were caused by CT. Although the CrIs are

wide, consistent results were obtained from a range of models. It was also possible to demonstrate a fair

degree of insensitivity to reasonable variation in modelling assumptions.

Our approach contrasts with the standard method of estimating PEF from ORs. Rather than control for

the positive confounding between TFI and CT that is not causally related, which would be difficult to

implement in this data set, we model the PEF directly based on assumptions about the titre distributions in

cases and controls. If we apply the standard formula to the Land data as it stands, we obtain PEF of

between 28% (95% CrI 13% to 44%) and 60% (95% CrI 37% to 78%).

The study gives us some fresh insights into the interpretation of sensitivity and specificity as typically

reported, and suggests that contemporary CT antibody assays may be less sensitive than has been

reported. The test resolution of 4.1 derived from the Wills et al. study269 would imply 71% sensitivity at

96% specificity. However, judging from our results from the Land data set, it appears that resolution is,

at best, only 3.5. This would imply, at best, 58% sensitivity at 96% specificity. Although disappointingly

low, in a population where most antibody positive women are likely to have already cleared their CT

infection, this is probably a reasonable estimate. Sensitivity is normally defined in currently infected

individuals, and antibody levels are known to decline with time since infection.281 Previous experience with

a pgp3 Indirect ELISA assay, suggested that sensitivity was 89% (95% CrI 75% to 98%) within 6 months

of infection, but no more than 64% (95% CrI 51% to 77%) 2 years after the last known infection. This is

equivalent to a 1.5-point drop in test resolution after infection has cleared.

Two further studies265,268 of test performance in peptide-based assays are re-analysed in Appendix 16.

In one study,265 a discrepancy analysis was used to examine the same three peptide-based assays and a

MIF test. We estimated an average test resolution of 5.9, possibly due to the well-recognised tendency of

discrepancy analysis to exaggerate sensitivity at a given specificity.266,267 An even higher estimate of

resolution, 6.29 (95% CI 4.84 to 8.19), was obtained from a second study of an EIA peptide assay,268

which was sponsored by its manufacturers. In this study true positives were identified using CT culture.

As this is much less sensitive than the NAAT tests used by Wills et al.269 we can expect that the

manufacturer study preferentially selected patients with more severe infections, and therefore higher

antibody levels.
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We observed above that raised antibody levels have often been reported in women suffering from

complications of CT. Our analysis of the Land data decisively rejects the hypothesis that sensitivity in

women with CT-related TFI is the same as in women previous CT infection and no complications.

The analysis further suggested a 2-point difference in resolution between these groups, which is exactly

consistent with the findings from the Akande et al. study.270

We must conclude that most published estimates of CT antibody test performance lack face validity, as it

depends wholly on the criteria and method for patient selection. Among the critical factors are: current

infection versus previous infection; NAAT versus culture to identify true positives; methodology to identify

true negatives; and inclusion versus exclusion of women with an inflammatory response to CT. This tells us

that, although the development of assays with superior performance must be welcome, methods for

characterising test performance should perhaps be given even higher priority.

Limitations of the analysis
The study has relied on a series of assumptions about parameter values. Although we have done as much

as possible to justify these values and base them on published literature, further systematic study is

needed. The final estimate of the PEF emerging from our study (45%, 95% CrI 28% to 62%) has wide

credible limits, reflecting, in part, the uncertainty about parameter values and modelling assumptions.

Even so, we suspect that other assumptions and other models could be found to fit these data, so the

uncertainty in the estimate may yet be understated.

A second set of limitations relate to the extent to which the results generalise to the UK situation. As

noted in earlier chapters, estimates of PEF are specific to time and place, and it is not known how close

the spectrum of infections leading to salpingitis in the Netherlands and the UK might be. Given the decline

in the CT PEF estimates in PID (see Chapter 8), in projecting the results to the UK we must certainly take

into account the age of the women recruited into the Land study. The authors do not report an age range,

but as the study was based in an infertility clinic, we can infer that, on average, women would be older

than typical pregnant women, and the majority would be aged > 24 years.

A further concern about generalisability relates to the specific selection procedures in the Land study. The

authors reported that MIF titres were assessed at the first visit and were used to assess TFI risk. Those with

titres of > 64 had laparoscopy to establish TFI status, whereas others received laparoscopy only after a

positive result on hysterosalpingography. This may have induced a reduced probability of recruiting TFI

cases with low titres. Similarly, the laparoscopic criteria for a diagnosis of TFI was selected on the basis that

it had been shown previously to ‘reflect chlamydia-related tubal disease most accurately’. The authors

noted that selection and verification biases were difficult to avoid and that likelihood ratios would be

overestimated by the procedures followed. It is not clear how the extent of the upwards bias in PEF

estimates can be assessed.

Looking to the future, the study suggests that a greater role for direct modelling of the distributions of

titres in TFI or EP cases compared with carefully chosen controls. This could be invaluable both in

aetiological studies of CT and its sequelae, and in surveillance of CT for purposes of prevention and

control. Serology could help assess the impact of public health interventions, including the NCSP, to

reduce the population burden of genital CT.264 The possibility that serology could improve our estimates of

the burden of CT, and contribute to understanding its natural history,38,98 will be taken up later in the

research recommendations.
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Summary of assumptions and findings

Summary of assumptions and limitations

1. TFI caused by CT is associated with higher serum antibody levels than previous CT infection not leading

to TFI.

2. Sensitivity of CT antibody tests depends on the stage of CT natural history.

3. It is not known how closely the proportion of TFI attributable to CT (PEF) in the Netherlands

approximates the PEF in the UK.

Summary of findings

1. High CT titres are associated with TFI.

2. CT titres can be used to estimate the proportion of TFI attributable to CT.

3. The estimated PEF from the Land study is 45% (95% CrI 28% to 62%).

This estimate relates primarily to women aged > 24 years, and, in view of the age gradients reported in

Chapters 7 and 10, would be likely to be an underestimate of the PEF for the female population aged

16–24 years.
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Chapter 12 Summary and conclusions

Objectives

To:

1. identify and, if necessary, reconcile inconsistencies in the results presented in previous chapters

2. summarise the additional risks of poor reproductive outcomes following from CT infection in

individual women

3. summarise the public health significance of the research

4. identify remaining areas of uncertainty and make research recommendations to address them.

Introduction

In this final chapter we review the results of previous chapters, and ask whether or not, when everything is

put together, this programme of work has generated a consistent picture of the clinical epidemiology of

CT and its sequelae in the UK, as it was in 2002. We then consider what further assumptions are needed

to reconcile inconsistencies that remain.

Having proposed what we regard as the most plausible overall model, consistent with all sources of

evidence, we then set out the implications for individual women and for public health. We include some

brief comments summarising the contribution of this report to the study of the clinical and population

epidemiology of chlamydia, and the role of the MPES methodology. We conclude by proposing research

recommendations, based on our judgement of the key areas of uncertainty and the research designs that

have the best chance of decreasing the uncertainty in policy-sensitive parameters.

Summary of findings from previous chapters

Chlamydia trachomatis and pelvic inflammatory disease
Chapters 4–7 provided a comprehensive account of the CT incidence, prevalence and duration, the

proportion of CT that is symptomatic, the incidence of diagnosed ‘probable/definite’ PID and total PID

(diagnosed and undiagnosed), the CT-to-PID progression risk, and the proportion of PID attributable to CT.

Summary
The main results were as follows (see chapter summaries for more detailed quantitative results):

1. The extreme heterogeneity of results in studies of CT duration could be effectively explained by

(1) distinguishing screening studies of prevalent infection from clinic studies of incident infection

and (2) assuming that a proportion of infections are ‘passive’, which accords with existing biological

understanding of infection (see Chapter 2).

2. The estimate of duration is consistent with independent sources of evidence on age-specific CT

incidence in the UK, age-specific CT prevalence in the UK, and the proportion of infections that

are asymptomatic.

3. We derived an estimate of the CT-to-PID progression risk from CT screening trials. This was based on a

Markov model that allowed for CT clearance as a ‘competing risk’. Trials of different designs gave consistent

results, with a pooled estimate of the CT-to-clinical PID risk of 14.8% (95% CrI 4.8% to 24.8%).
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4. We interpret this progression risk as representative of a level of ascertainment of PID that can be

expected to be seen in prospective studies of women at risk of PID. The risk of progression to all PID,

including symptomatic and asymptomatic, is 17.1% (95% CrI 5.6% to 29%).

5. Two independent sources of evidence on the incidence of clinical PID were derived: one from the

control arm of the POPI trial19 taking into account the degree of ascertainment expected in prospective

studies, the other from routine GPRD, HES and KC-60 data, taking account of overlap, and of

independent data on the proportion diagnosed. The two sources were in agreement, and a pooled

incidence of PID is 2.5% per year in women aged 16–24 years, and 1.8% per year in women age

16–44 years.

6. If age-specific CT incidence, age-specific PID incidence and CT-to-clinical PID progression risk are put

together, assuming progression risk is independent of age, we predict that the proportion of clinical PID

attributable to CT is 35% in the 16–24 years age group, and 20% overall (age 16–44 years).

7. These predictions of the PEF are in agreement with (a) estimates based on retrospective studies of CT

infection in PID cases and controls, corrected for under-ascertainment of infection in cases, and

(b) estimates based directly on the POPI trial corrected for independent testing in the control group.

However, there is considerable uncertainty in all these estimates.

In our analysis of the PEF there was an element of post-hoc reasoning: this arose from conflicts between

our initial estimates and results of later chapters (see Chapter 7 discussion).

Clinical pelvic inflammatory disease, salpingitis, ectopic pregnancy and tubal
factor infertility
Chapter 8 developed estimates of the proportion of women who have experienced PID, salpingitis and

subsequent episodes of PID in the UK. In Chapters 9 and 10, the risks of EP and TFI in women with

salpingitis that were observed in the Lund study were then applied to these risk factor distributions to

predict the risk of EP per pregnancy and the prevalence of TFI in the UK. Chapter 11 reports an estimate

of the PEF (CT←TFI) based on analyses of serological data. More detailed results appear in the

chapter summaries.

Summary

1. The proportion of ‘probable/definite’ PID in which salpingitis can be confirmed on laparoscopy is

estimated to be 43%.

2. An estimated 16.1% of 35- to 44-year-old women have experienced at least one episode

of salpingitis.

3. Based on HES data, the rate of ectopic pregnancies as a proportion of pregnancies rises with age and

averages 1.1% in women aged 16–44 years.

4. Based on UK fertility surveys, 1.1% of women aged 44 years have TFI (including both primary and

secondary infertility).

5. Of EPs, 27% are due to salpingitis, based on French case–control studies.

6. Of EPs, 4.9% are due to CT.

7. Given our core assumptions, the observed EP incidence in the UK is compatible with the Lund study if

it is assumed that salpingitis in those whose PID is not diagnosed in hospital has the same risk of EP as

was observed in those with ‘mild’ salpingitis, and that undiagnosed salpingitis carried no risk of EP.

8. Given our core assumptions, the observed TFI prevalence in the UK is compatible with the Lund study

if it is assumed that the risk of TFI following salpingitis is the same as, or slightly less than, the

average risk observed in the Lund study, in which the salpingitis is associated with diagnosed or

undiagnosed PID.

9. Based on our analysis of the proportion of salpingitis due to CT and the relation between salpingitis

and TFI, 29% of TFI is due to CT.

10. In an analysis of retrospective serological data collected from women attending an infertility clinic in

the Netherlands, 45% (95% CrI 28% to 62%) of TFI was due to CT.
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Conflicts in the overall evidence and their resolution

Two clear points of conflict emerge in the evidence presented in the report:

1. The models that correctly predict the risk of TFI following salpingitis seriously over-predict the risk of EP

following salpingitis.

2. The two estimates of the proportion of TFI due to CT are inconsistent, one based on our prospective

analysis of salpingitis and TFI, the other on retrospective serological data.

Ectopic pregnancy and tubal factor infertility
It is important to note that, to the extent that we are correct in assuming that salpingitis-related

reproductive damage represents a single common pathway to EP and TFI, the conflict between prediction

for EP incidence per pregnancy and TFI prevalence is largely independent of the way we have analysed the

Lund data on EP and TFI, and also of our analyses of the incidence of PID, the cumulative incidence of PID,

the relation between clinical PID and salpingitis, and the role of undiagnosed PID. Whatever the precise

truth about these factors, they should be operating the same way in EP as in TFI.

One major difference between EP and TFI in this context is that salpingitis is not the only cause of EP,

but it is virtually the only cause of TFI.35 As a result, the Lund study findings for EP are more vulnerable to

confounding, whereas those on TFI are not. One well-recognised confounding factor is smoking, which is

likely to have been more prevalent in women with more exposure to STIs. A second possible confounder

is IUD use. The role of the earlier IUDs in the aetiology of EP is not entirely clear. Chavkin282 reviews

mechanisms that could generate a positive confounding effect. First, it is likely that IUDs are highly

effective in preventing uterine implantation, but much less effective at preventing tubal implantation, so

that women with IUD are selectively more likely to experience an EP. However, this does not explain why

no increased risk of EP was observed in the Lund study in women with IUDs but without salpingitis.110

A second possibility is that the older-generation non-medical IUDs were associated with some form of

non-bacterial salpingitis that raises the risk of EP in the absence of any infective mechanism. This seems to

be ruled out by the observation that women with no visible infection on laparoscopy did not have elevated

risks of EP or TFI.283

A third proposal was that the presence of an IUD could have raised the risk of PID-associated EP. On this

model, IUD is not so much a confounder as a risk-modifier. Based on changes in salpingitis exposure and

changes in IUD exposure, the Lund investigators themselves attributed a high proportion of the observed

doubling in EP rates during the course of their study to an increase in IUD use.110 It is likely, indeed, that

the Lund study could even have underestimated the role of IUDs, because the pain and discomfort

associated with PID and IUDs can be similar, and many IUDs could have been removed prior to entry to

the study.

It is unlikely that further study will resolve this issue, because the IUDs used during that period have been

replaced by medicated IUDs, which are much less likely to cause problems.77,114 We can, therefore, only

offer the suggestion that the EP progression rates in the Lund study may be greatly overestimated through

the presence of confounders, such as smoking, or effect modifiers, such IUD use. As there seems to be no

way of estimating the extent of this bias independently, in coming to final conclusions we will effectively

discount the prospective Lund data on EP risk entirely, and accept salpingitis-related EP rates based on the

PEF from the retrospective French studies applied to the observed HES data, which give between 0.24%

and 0.37% of all conceptions as salpingitis-related EPs.

We note again that this estimate is based on a post-hoc re-interpretation of the evidence, after

examination of other results, and therefore requires independent confirmation.

DOI: 10.3310/hta20220 HEALTH TECHNOLOGY ASSESSMENT 2016 VOL. 20 NO. 22

© Queen’s Printer and Controller of HMSO 2016. This work was produced by Price et al. This issue may be freely reproduced for the purposes of private research and study and
extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any
form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies
Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

137



Causal role of Chlamydia trachomatis in tubal factor infertility
The applicability of the PEF from the serological data from the Netherlands to the UK must be considered

doubtful. This is not so much because of the uncertain relevance to the UK of evidence from the

Netherlands, but, more seriously, because the study authors explicitly warn of the high risk of verification

and selection biases in the study, which would artificially raise the PEF (see discussion in Chapter 11).

We therefore proceed with the lower estimates based on the Chapter 10 analyses – 29% in women aged

16–44 years – but note once again a post-hoc element to this decision.

Final set of coherent estimates

A set of coherent estimates for the parameters covered in Chapters 5–7 was provided in those chapters.

The retrospective estimates on EP (see Chapter 9) and the prospective estimates on TFI (see Chapter 10)

are also technically coherent with estimates from earlier chapters, as they are based on estimates of

salpingitis prevalence from Chapter 8, which are based on forward simulation from the estimates in

Chapters 5–7, and there is no feedback of the evidence on EP and TFI back on to these earlier parameters.

Future investigators citing or using the marginal results directly from the tables included throughout the

report are accessing a fully coherent set of estimates. However, these summaries are insufficient to

characterise the full joint distribution of the parameters, as they do not express the correlations between

parameters. Investigators using our results in ways that take uncertainty into account should therefore

obtain the joint parameter distributions by running the WinBUGs code in the appendices.

Significance for patient, clinicians and public health

Summary outcomes and contribution of Chlamydia trachomatis in
the population
Table 42 gives an impression of the numbers of PID, EP and TFI outcomes that occur in England each year,

and the numbers attributable to CT, based on our estimates of PEF in previous chapters. Based on our

estimate that the incidence of CT in women aged 16–44 is 2.1 per 100 person-years (see Chapter 7), we

can use the information in Table 42 on the numbers of sequelae attributable to CT, to calculate the risk of

sequelae following CT infection. Every 1000 CT infections on average give rise to approximately 171 PID

episodes, 73 salpingitis episodes, 2.0 EPs, and 5.1 women with TFI by age 44.

Public health implications
We have estimated in Chapter 7 that that only 12.6% of PID is asymptomatic, although a much higher

proportion is undiagnosed in practice. These findings require confirmation from large contemporary

studies, but, if accepted, they have the important public health implication that, in women who are aware

of the risk of PID and aware of the symptoms, few PID episodes will be missed. This suggests that much

could be gained from improved public understanding of signs and symptoms that should lead women to

seek early medical attention to avoid the risk of reproductive damage.

Our findings do not suggest any changes to current guidelines on diagnosis and management of PID,

which advise early treatment with broad-spectrum antibiotics. However, there is a degree of ambiguity and

inconsistency in current UK guidance, which focuses on younger women and possibly overemphasises the

role of STIs (see Chapter 2). It is relevant, here, that our analyses of PID incidence in Chapter 7 suggest that

about 63% of PID occurs in women aged > 25 years.

Although the trial evidence demonstrates that treating prevalent asymptomatic CT infection is effective in

preventing clinical PID, we estimated that, at best, a woman aged 16–24 years undergoing screening at

annual intervals would on average prevent only 61% of CT-related PID. Given our analysis of the
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proportion of PID that can be attributed to CT, it appears that annual screening would directly prevent no

more than 22% (95% CrI 7% to 43%) of all-cause PID in this age range.

Although our estimates of the risks of PID and salpingitis are high compared with previous estimates, this

assessment of the benefits of annual testing to individual women is relatively pessimistic. Taken together,

the findings suggest that greater benefit to individual women could be achieved by increased attention to

incident infection, in other words a greater focus on women at an increased risk of recent exposure, as is

the intention of current policy that advises screening after partner change, and re-screening 3 months after

a diagnosis (acknowledging a high risk of re-infection). This could also suggest testing women following

unprotected sex with a high-risk partner. Such strategies should have a higher yield, in terms of the

number of infections detected per test carried out, and should also increase the chance that treatment

would prevent the development of PID. This also fits well with an integrated public health approach to all

STIs (chlamydia, gonorrhoea, human immunodeficiency virus (HIV), syphilis, genital herpes, genital warts

and trichomonas) in the general population, with an emphasis both on prevention and on the early

detection of infection and treatment, and effective management strategies to reduce onwards

transmission, for example through rapid partner notification.284

The study has also clarified both the incidence of PID and the risks PID poses to reproductive health. These

may be greater than has been appreciated. We have estimated a relatively high incidence of PID in women

aged 16–44 years, 1.8% per year, of which 66% undiagnosed. But we have also shown that it is difficult

to explain the UK prevalence of TFI, unless it is assumed that the risk of salpingitis is the similar in

diagnosed and undiagnosed PID and that salpingitis, whether diagnosed or not, carries a similar risk of

TFI – at, or close to – the level of risk reported in the Lund study.

It has been suggested, based on a systematic review of prospective studies, that there is no evidence for a

causal link between CT and TFI.145 Our estimate is that 29% of TFI is due to CT. Although the CrIs on this

estimate are wide (95% CrI 9% to 56%), it derives from our estimates of the proportion of PID due to CT.

In addition, although it is difficult to obtain reliable quantitative estimates of the PEF from serological and

microbiological studies, an extensive body of literature, some of which is cited in Chapter 2, as well as our

analyses in Chapter 11, confirms that CT is strongly implicated in TFI.

Effective commissioning of interventions and services is key to improving outcomes. Most sexual health

services will be commissioned by local authorities, but Clinical Commissioning Groups (CCGs) and the NHS

Commissioning Board (NHS CB) will also have a role.

Priorities for future research

It is possible to envisage more randomised studies of screening, perhaps involving different populations,

infection ascertainment, treatment or partner-tracing methods. However, there is little realistic foreseeable

prospect of interpretable comparative studies following CT infection to longer-term outcomes. The

obligation to treat CT infection makes non-randomised designs, including linked register studies, virtually

uninterpretable. In addition, the extended follow-up required to assess reproductive outcomes inevitably

leads to dilution of the effects, as a proportion of women in both comparison groups will seek testing and

treatment independently, acquire subsequent CT infections, and experience episodes of PID.

In view of the difficulties associated with prospective studies, we outline, below, a series of relatively easy

to conduct field studies based on routine health service activity. Further dynamic modelling using a MPES

approach is also required to assess the cost-effectiveness of the NCSP as currently configured, extensions

to it, and other chlamydia preventive measures.
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Serological case–control studies and the age profiles of Chlamydia trachomatis,
pelvic inflammatory disease, ectopic pregnancy and tubal factor infertility
Serological case–control studies were popular over 20 years ago, when they were used to throw light on

the aetiology of these conditions; there was also an interest in using CT serology in treatment decisions.

On a few occasions they have been used to estimate a PEF.

These studies fell out of favour because of the poor sensitivity and specificity of the assays, and also

because these properties were difficult to characterise. However, better performing assays are now

available, and there is better information on their performance characteristics. More recent assays have

high specificity,269 and the relation between the measured ‘sensitivity’ and the time since the infection is

better understood.281

A number of investigators have reported that exceptionally high CT antibody titres can be found in a

proportion of women with PID, EP or TFI,88,270,271,273,285 with many studies reporting a clearly bimodal

distribution of positive titres. These high titres have been attributed to an upper genital tract inflammatory

response.61,113 Using finite mixture models,286 it would be possible to draw conclusions about the

proportion of PID, EP and TFI cases that can be associated with these high CT titres. Given suitable control

samples, and assuming that the high titres are indicative of causation, this form of analysis could provide

direct estimates of PEF for CT.

Such studies could also be used to explore other assumptions made in this report. First, they could confirm

or disconfirm whether the age profile of the PEFs accord with the predictions in this report. Variation with

age in the proportion of PID, salpingitis, EP and TFI that is due to CT, is of considerable scientific interest

and public health importance. Second, information could be collected on sexual and reproductive history,

referral pathways, and, particularly, on previous clinical PID and previously unreported related symptoms.

This could improve our quantification of all-cause PID through routine data, and the level of completeness

of ascertainment that is achieved in trials. The study on which our estimates are based had only 36 TFI

cases.103 Possible risk factors for salpingitis, such as IUD use, could also be re-examined. Finally,

microbiological evidence,287 as well as our own analyses of the proportion of PID attributable to CT,

suggests that the majority of PID is not due to CT. Possibly, these non-CT causes of PID become

progressively more important with age. If this can be confirmed in microbiological studies, this would add

further to our understanding of the aetiology of salpingitis (see Chapter 2).

A relatively simple and inexpensive series of case–control studies could, therefore, provide a great deal of

information about the incidence of undiagnosed PID, the role of CT in diagnosed and undiagnosed PID,

the role of CT in EP and TFI, and how that role depends on age. If this is successful, a set of sentinel clinics

could be established for each of these surveys, providing a stable platform for ongoing surveillance of

trends in PEF of CT, to be considered alongside surveillance of trends in overall EP and TFI rates.

Dynamic modelling
This report has focused on the risks of CT in downstream PID, salpingitis, EP and TFI. It has also touched

on the role of screening in prevention of PID. The focus has therefore been on the reproductive risks to the

individual women exposed to CT infection and the benefits of screening. The other objective of screening

is to lower CT prevalence, and therefore incidence, to reduce the number of CT infections and

downstream complications in the wider population.

Further dynamic modelling is now required, incorporating the new information on natural history that has

been reported in this study, in order to fully assess the potential role for screening, as implemented in the

NSCP, or in other ways. There is a wide consensus that the cost-effectiveness of screening is strongly

determined by the risk of downstream illness and reproductive damage,1,2 and this is relevant to both the

individual and the population motivations for screening. The new information contained in this report is

therefore critical to new modelling exercises in the UK.
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At the same time, it is evident that the methodology of dynamic modelling needs itself to be developed

further using MPES. This will enable more evidence to be incorporated into the models, and will allow the

consistency of the evidence sources to be evaluated.

A distinction is often made between ‘mathematical’ models, which make predictions about long-term

changes in incidence and prevalence, based on estimates previously derived from ‘statistical’ models of

data,288 suggesting a two-stage approach. However, in a multi-parameter evidence synthesis, the same

mathematical models are estimated from the available data in a single step, but in a way that allows

proper statistical inference and uncertainty propagation. In MPES there is no artificial distinction between

evidence sources that are seen as model ‘outputs’ and those that are considered model ‘inputs’ in the

standard mathematical modelling literature, or between data used for model ‘calibration’ and data used to

estimate ‘predictions’. These distinctions inevitably lead to failure to incorporate all the evidence.

Fundamentally, the MPES framework ensures that the (mathematical) model that generates the predictions

is exactly the same model that generates the evidence. Once a certain level of complexity is reached, this

cannot be achieved by a two-stage approach (see Chapter 6).

Although there are technical difficulties in applying the MPES methodology in infectious disease dynamic

modelling, there are already case studies that establish its feasibility.289,290 However, combination of

infectious disease transmission dynamics with sexual network dynamics raises computational challenges,

and the development of other methods of Bayesian computation besides, or in addition to, MCMC has

become an active area of research.291

Contribution of this report

Many of the estimates in this report are similar to estimates that have appeared previously in the literature.

Others, such as the estimates of the proportion of the population exposed to salpingitis, the consequent

risks of EP and TFI, and the proportion of these outcomes that can be attributed to CT, have been based

on new methods and new types of evidence, or have not been attempted at all. Of greater significance

than the individual estimates, however, is the fact that, taken together, they form a coherent and internally

consistent set of estimates which are at the same time consistent with an extensive and multifaceted body

of evidence, including routinely collected statistics on PID, EP and TFI.

The parameters estimates are, in many cases, imprecise, but they have been estimated with as much

precision as the evidence allows. Unlike previous estimates, the evidence base for each parameter has

been explicitly delineated and, wherever possible, cross-validated against other sources of evidence. In the

course of the project, inconsistencies between sources of evidence have been revealed, making it

inevitable that evidence must be re-interpreted in order for inconsistencies to be reconciled. Where we

have resorted to post-hoc reasoning of this sort, this has been made clear. Readers can judge for

themselves whether or not they find the arguments convincing, and whether they can find alternative,

perhaps more plausible, sets of assumptions and interpretations under which coherent sets of estimates

can be obtained.

A key part of the research programme has been the use of MPES, which allows users to combine

information provided in different epidemiological studies which inform different functions of the same

underlying set of parameters. This permits us to include more kinds of evidence in each set of estimates,

and to check consistency of different kinds of evidence, and to propagate uncertainty in evidence correctly

through the model.
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Even so, although the use of MPES methods in the report has required some sophisticated modelling,

much of the intellectual content of the report has gone into understanding the relationships between the

target parameters and what the studies are actually estimating, and to understanding the biases to which

the key study designs are vulnerable. The major contribution of the report may, in fact, not be in the

estimates, nor even in their coherence, but in the consistent set of interpretations we have proposed for all

of the various study designs discussed in the report. These are expressed in the DAGs appearing in each

chapter, which make explicit the relationship between what each study estimates and the parameters

of interest.

No doubt, future investigators will be able to improve on these characterisations, perhaps based on a

better understanding of the same evidence, or perhaps on new evidence. However, we have shown, for

the first time, that the clinical and population epidemiology of CT can be effectively studied by developing

a formal and explicit analysis of the data-generating mechanisms in the many study designs

contributing information.

Summary of findings

1. Two areas of conflict in the work from earlier chapters were identified, and both were resolved by

post-hoc re-interpretations of evidence sources and potential biases.

i. A final estimate of the risk of EP following salpingitis is based on the UK reported rates, multiplied

into an estimate of the proportion of EP due to salpingitis, from case–control studies.

ii. A final estimate of the proportion of TFI attributable to CT, 29%, is derived from our

prospective analysis.

2. The public health messages were:

i. In women aged 16–24 years, annual screening can directly prevent at best 61% of CT-related PID,

and 22% of all-cause PID.

ii. Current guidance for diagnosis and management of PID should not be changed.

iii. Guidance is required on when women should seek early medical attention to avoid the risk of

reproductive damage.

iv. CT carries a significant risk of reproductive damage, particularly TFI. Every 1000 CT infections in

women aged 16–44 years, on average, gives rise to approximately 171 episodes of PID and 73 of

salpingitis, 2.0 EPs and 5.1 women with TFI at age 44.

3. Research recommendations:

i. Serological case–control studies are needed to estimate the proportions of PID, EP and TFI that are

caused by CT.

ii. The same studies could provide information on the relation between age and PEF, on the proportion

of PID that is diagnosed, and on the microbiological basis of salpingitis. They would also allow better

quantification of the overlap between routine data sources on PID, leading to better estimates of

PID incidence.

iii. Further dynamic modelling should be undertaken, using the estimates of the sequelae of CT

infection from this report, to assess whether or not CT screening is cost-effective. This should use a

MPES approach to uncertainty propagation and inference, which may require development of new

methods of Bayesian computation.
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Appendix 1 Mean duration of follow-up in
the Chlamydia trachomatis duration studies
(see Chapter 4)

This appendix gives details of how mean duration of follow-up was estimated for the studies in Table 4

when it was not specified in the original publication.

l Johannisson et al.183 report a group of patients followed up after 5–8 weeks and we assume a mean

follow-up of (5+ 8)/2= 6.5 weeks.
l For the study by Joyner et al.,79 the centres of the reported ranges are used except for the last

observation were we use the geometric mean= 100 days.
l Geisler et al.73 report a median follow-up of 13 days, with a range of 4–59 days. The distribution is

skewed but is approximately symmetrical on the log scale. If µ and σ are, respectively, the mean and SD

of the natural log of the follow-up time then the mean follow-up is exp(µ+ σ2/2). We estimate σ as

being one-quarter of the range and µ is the natural log of the reported median follow-up.
l Sorensen et al.185 report a median of 11 months and a range of 2–24 months. This distribution is nearly

symmetrical. The mean is estimated as [11+ (24+ 2)/2]/2= 12 months.
l McCormack et al.186 reported a follow-up of 16–17 months, so we assume a mean follow-up of

16.5 months.
l Sheffield et al.181 report that patients were examined 16–23 weeks into pregnancy and a second time

at 24–29 weeks into pregnancy. In total, 52 out of 140 were followed up for < 5 weeks. The minimum

follow-up is therefore 24 – 23= 1 week and the maximum follow-up is 29 – 16= 13 weeks. We assume

that the first group were followed for 3 weeks, and the second group for 9 weeks.
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Appendix 2 WinBUGS code and data for the
two-rate model (see Chapter 4)

WinBUGS code and Data for the 2-rate model

model {

# likelihood

for (i in 1:studnum) {
for (j in 1:studobs[i]) {
r[i,j] ~ dbin(theta[i,j],n[i,j])
}

}

# model

for (i in 1:studnum-2) {
for (j in 1:studobs[i]) {
theta[i,j] <- ((z[i,j] / n[i,j]) * (1 - exp(-lambda.C[1] * t[i,j])) 

+ (1 - (z[i,j] / n[i,j])) * (1 - exp(-lambda.C[2]
* t[i,j])))

/ (psi / (1 - ((1-psi) * equals(seind[i,j],0))))
}

}
# Left-truncated studies with repeat observations

for (i in 8:9) {
for (j in 1:studobs[i]) {
temp[i,j,1] <- ((z[i,1] / n[i,1]) * exp(-lambda.C[1] * T[i,j]) / 

((z[j,1] / n[i,1]) * exp(-lambda.C[1] * T[i,j]) + 
(1 - (z[i,1] / n[i,1])) * exp(-lambda.C[2] * 

T[i,j]))) *
(1 - exp(-lambda.C[1] * t[i,j]))

temp[i,j,2] <- ((1 - (z[i,j] / n[i,1])) * exp(-lambda.C[2] * 
T[i,j]) / 

(0.00001+(z[i,1] / n[i,1]) * exp(-lambda.C[1] * 
T[i,j]) + 

(1 - (z[i,1] / n[i,1])) * exp(-lambda.C[2] * 
T[i,j]))) *

(1 - exp(-lambda.C[2] * t[i,j]))
theta[i,j] <- (temp[i,j,1] + temp[i,j,2]) /

(psi / (1 - ((1-psi) * equals(seind[i,j],0))))
}

}

# priors

p1 ~ dbeta(1,1)
lambda.C[1] <- 120
lambda.C[2] ~ dexp(0.001)
psi ~ dbeta(78,8) #sensitivity of culture given initial positive
# culture

# Class proportions

# t=0 studies
for (i in 1:4) {
for (j in 1:studobs[i]) {
z[i,j] ~ dbin(p1,n[i,j]) # start at t=0
}

}

# Left-truncated studys
for (i in 5:studnum) {
for (j in 1:studobs[i]) {
z[i,j] ~ dbin(w1,n[i,j]) 
}
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}

# deviance

for (i in 1:studnum) {
for (j in 1:studobs[i]) {

dev[i,j] <- 2 * (r[i,j] * log(r[i,j] / (theta[i,j] * n[i,j])) +
(n[i,j] - r[i,j]) * log((n[i,j] - r[i,j]) /
(n[i,j] - (n[i,j] * theta[i,j]))))

}
dev.stud[i] <- sum(dev[i,1:studobs[i]])
}

sumdev <- sum(dev.stud[])

# left truncation
w1 <- (p1 / lambda.C[1]) / (p1 / lambda.C[1] + (1 - p1) / 
lambda.C[2])

# summary statistics

dur <- 1 / lambda.C[2]

# Predicted values for Forest plot

for (i in 1:studnum) {
for (j in 1:studobs[i]) {
stud.lambda.Cexpect[i,j] <- -log(1 - theta[i,j]) / t[i,j]
stud.dur.expect[i,j] <- 1 / stud.lambda.Cexpect[i,j]
}

}
}

# Data

list(

# duration

# study order

# 1 Johhanisson
# 2 Joyner
# 3 Geisler
# 4 Paavonen
# 5 Rahm
# 6 Sorensen
# 7 McCormack
# 8 Morre
# 9 Mollano

r = structure(.Data=c(
10,7,6,6,NA,
2,7,1,0,3,
23,NA,NA,NA,NA,
3,NA,NA,NA,NA,
17,0,0,NA,NA,
8,NA,NA,NA,NA,
3,NA,NA,NA,NA,
2,2,4,0,2,
44,23,7,2,NA
),.Dim=c(9,5)),

n = structure(.Data=c(
23,14,14,8,NA,
12,28,4,8,6,
129,NA,NA,NA,NA,
15,NA,NA,NA,NA,
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93,1,1,NA,NA,
13,NA,NA,NA,NA,
7,NA,NA,NA,NA,
20,5,15,1,13,
82,37,14,6,NA
),.Dim=c(9,5)),

t=structure(.Data=c(
0.038,0.058,0.077,0.125,NA,
0.012,0.03,0.049,0.088,0.274,
0.045,NA,NA,NA,NA,
0.083,NA,NA,NA,NA,
0.25,0.5,0.75,NA,NA,
1,NA,NA,NA,NA,
1.375,NA,NA,NA,NA,
0.083,0.5,0.417,0.917,0.5,
1,1,1,1,NA
),.Dim=c(9,5)),

seind = structure(.Data=c(
1,1,1,1,NA,
0,0,0,0,0,
0,NA,NA,NA,NA,
1,NA,NA,NA,NA,
1,1,1,NA,NA,
0,NA,NA,NA,NA,
1,NA,NA,NA,NA,
0,0,0,0,0,
0,0,0,0,NA
),.Dim=c(9,5)),

T=structure(.Data=c(
NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,
0,0,0.083,0.083,0.5,
0,1,2,3,NA
),.Dim=c(9,5)),

studnum = 9,
studobs = c(4,5,1,1,3,1,1,5,4),
)

# Initial values - 1

list(
psi = 0.9,
lambda.C = c(NA,0.7),
p1 = 0.2,
)

# Initial values - 2

list(
psi = 0.6,
lambda.C = c(NA,0.1),
p1 = 0.5
)
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Appendix 3 Assessment of statistical modelling
assumptions in Chapter 5

Appendix 5.1: Regression analysis of the LaMontagne data

We fit the following nine regression models to the 18 data points from the LaMontagne study192 shown in

Table 9:

l Model 1 log(λa,s,i)= α+ γa+ ρs+ ηi+ γρas+ γηai+ ρηsi+ γρηasi
l Model 2 log(λa,s,i)= α+ γa+ ρs+ ηi+ γρas+ γηai+ ρηsi
l Model 3 log(λa,s,i)= α+ γa+ ρs+ ηi+ γηai+ ρηsi
l Model 4 log(λa,s,i)= α+ γa+ ρs+ ηi+ γρas+ ρηsi
l Model 5 log(λa,s,i)= α+ γa+ ρs+ ηi+ γρas+ γηai
l Model 6 log(λa,s,i)= α+ γa+ ρs+ ηi+ γρas

l Model 7 log(λa,s,i)= α+ γa+ ρs+ ηi+ γηai
l Model 8 log(λa,s,i)= α+ γa+ ρs+ ηi+ ρηsi
l Model 9 log(λa,s,i)= α+ γa+ ρs+ ηi,

where γ1, ρ1, η1, γρa1, γρ1s, γηai, γη1i, ρηs1, ρηl1, γρηas1, γρηa1i, γρη1si= 0; γρas represents an interaction between

age and setting, γηai between age and reinfection, ρηsi between setting and reinfection, and γρηasi is a

three-way interaction between age, setting and re-infection.

The estimates of λa,s,i along with estimates of duration are used to estimate κ(t)a,s,i, which is the parameter

in the likelihood function for the LaMontagne data192 (see Figure 8, DAG). Model fit statistics together with

the nominal numbers of parameters for each model are shown in Table 43. Results are based on two

chains, run for 40,000 samples after a 10,000 burn-in. The results show that Model 8, which includes only

the main effects and an interaction between setting and infection/re-infection status has the lowest DIC

(see Chapter 3). A plot of the deviance residuals for Model 8 revealed no evidence of a systematic bad fit.

Model 8 is identical to the one described in the main text, although it has been re-parameterised slightly

to simplify the notation. It is only marginally better in terms of DIC than a model that also includes an

interaction between age and setting (Model 4) or a model that assumes no interactions (Model 9).

TABLE 43 Model fit statistics for each of the regression models fitted to infection and re-infection data, Chapter 5

Model Residual deviance Nominal no. of parameters DIC pD

1 18.6 18 103.2 17.9

2 15.8 14 96.2 13.2

3 19.0 10 95.8 10.1

4 14.5 12 93.1 11.9

5 22.6 12 101.1 11.9

6 21.1 10 97.7 10.0

7 24.1 8 98.9 8.0

8 17.3 8 91.9 8.0

9 22.3 6 95.0 6.0
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Appendix 5.2: assumed relationship between setting-specific
odds ratios from Adams and hazard ratios in the model for the
LaMontagne data

We assume that the between-setting ORs are equivalent to between-setting RRs because of the rare

disease assumption, and that these inform the between-setting HRs in the LaMontagne study.192 This is not

strictly correct, as they should inform the between-setting incidence ratios.

We assess the sensitivity of the results to this assumption. Table 44 shows the between-setting infection

ratios (column 1), FOI ratios (column 2) and incidence ratios (column 3) estimated from the LaMontagne

data192 alone. The corresponding results from Adams et al.106 (introduced in Table 11) are repeated in

column 4. The infection ratios from LaMontagne et al.192 are almost identical to the ORs from Adams

et al.106 However, this is not a reason to conclude that our model is better than the ‘correct’ model, where

they inform incidence ratios. There is some discrepancy between the infection ratios compared with the

incidence or FOI ratios. The FOI and incidence ratios are almost identical.

Because of the lack of data for the general population in LaMontagne et al.,192 it is very difficult to

correctly parameterise the model so that the ORs inform the incidence ratios. It is, however, possible,

although considerably more mathematically complicated than the model described in Chapter 5, to apply

the ORs to FOI ratios. We performed this analysis for the full synthesis model and found that incidence

changed by less than a multiplicative factor of 5% in all age groups (mean < 3%). From this, and the fact

that the incidence and FO ratios agree so closely, we conclude that there is only very negligible bias from

not parameterising the model so that ORs inform incidence ratios.

TABLE 44 Between-setting ratios of infection, FOI and incidence rates, Chapter 5

Ratio

LaMontagne (2007)192 Adams (2004)106

Infection ratios
(95% CrI)

FOI ratios
(95% CrI)

Incidence ratios
(95% CrI)

OR (95% CI)
(repeated from Table 11)

FP to GP 1.27 (0.59 to 2.48) 1.10 (0.65 to 1.74) 1.11 (0.61 to 1.88) 1.27 (1.00 to 1.62)

STD to GP 2.31 (1.11 to 4.45) 1.60 (0.95 to 2.53) 1.74 (0.94 to 2.97) 2.39 (0.72 to 3.33)
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Appendix 4 Details of the statistical methods in
Chapter 5

A full list of basic and functional parameters along with brief descriptions is provided in Table 45, which

should be viewed alongside the DAG (see Figure 8).

TABLE 45 Master list of parameters for Chapter 5

Basic parameters Priors Interpretation

Incidence

λ1,1,1 Log-normal CT infection rate in women aged 16–17 years
in the GP setting

γa Log-normal HR across age groups

ρs Log-normal HR across settings

ηs Log-normal Setting specific re-infection to infection HRs

pa,s Beta Baseline prevalence of LaMontagne192

sampling frame

Duration

Δs Normal Mean duration of symptomatic CT infection

ΔA Uniform Mean duration of asymptomatic CT infection

ϕ Binomial Proportion of CT episodes in which symptoms
will develop

Prevalence

πa.pop Note: Prevalence is a basic parameter
in method B but a functional
parameter in the full synthesis model

πa.pop= π1.pop.γa Population prevalence of CT by age group

Functional parameters Function Interpretation

Incidence

λa,s,1 γa.ρ.λ111 Infection rate for women in age group a and
setting s

λa,s,2 ηs.λa,s,1 Re-infection rate for women in age group a
and setting s

~λFOIa,GP
(1−pa,s).λa,s,1 + pa,s.λa,s,2 FOI for women in age group a in the GP

setting

~λFOIa,pop ρpop
~λFOa,GP FOI for women in age group a in the general

population

~λINC1a,pop λFOa,pop

1−λFOa,popΔ

Incidence rate of CT for women in age group
a in the general population estimated using
method A

~λINC2a,pop
πa,pop

Δ
Incidence rate of CT for women in age group
a in the general population estimated using
method B

κ(t)a,s,i See Figure 8 Proportion of CT– women in age group a,
setting s and re-infection status i, expected to
be CT+ after 6 months

continued
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Most of the functional relationships have been spelled out in the methods section as equations 11–17, or

in the DAG. Some expressions require further explanation.

The expression:

κ(t) = 1−
λC
+ λe−(λ+λC )t

λ + λC
(73)

relates the proportion of infected individuals κ(t), who were initially uninfected, observed after time t, to an

incidence rate λ and a clearance rate λC. This can be derived from the Kolmogorov’s forward equations.209

In the DAG, the more complex relationship for proportion infected at time t represents a weighted average

of two clearance rates: one being in symptomatic women and the other in asymptomatic women. The

proportion of infections in which symptoms develop is the weight, and the clearance rates in each group

are the reciprocals of the mean duration of symptomatic and asymptomatic infections.

Strictly speaking, Figure 8 sets out the relationships as they would be if the incidence and prevalence data

were available on the exact same age groups. As the age groupings in the studies were slightly different,

we used Census information on the English female population sizes from 2002 for each year of age

16–44 years to re-weight the parameters. Readers can see what was done from the WinBUGS code

provided in Appendix 5, which is annotated to make these adjustments clear.

Prior distributions

Vague normal priors were placed on the log incidence rate in the LaMontagne study192 in age group 1 and

GP setting: ln(λ1,GP,1)∼N(0,1002), and also on the rate ratios ρs for setting s relative to the GP setting, and γa

for age group a relative to the 16- to 17-year-old group, and for the ratios ηs in re-infection rate to

infection rate in setting s: ρa, γs, ηs∼N(0,1002).

Priors for the duration of infection and proportion symptomatic were as follows: proportion symptomatic

φ∼ Beta(1,1); ΔA∼ n(0,1002), ΔS∼Uniform(0.0767,0.1533), i.e. uniform between 4 and 8 weeks.

Information on the proportion of patients at recruitment in the GP setting, pa,GP in the LaMontagne study192

who were in the re-infection group (re-weighted to account for disproportionate inclusion into the study

of initially CT+ women) was introduced via informative Beta priors, derived from table 1 in LaMontagne

et al.192 For example, in women aged 16–19 years, who were tested at GP clinics, 663+ 137= 800 were

CT– and 45+ 48= 93 were CT+. So the correct weights for the infection and re-infection groups are

800/893 and 93/893, respectively. We repeated the same calculation for women aged 20–24 years, and

TABLE 45 Master list of parameters for Chapter 5 (continued )

Basic parameters Priors Interpretation

Duration

Δ Δs.ϕ+ΔA.(1 –ϕ) Mean duration of CT infection

λCA
1
�
ΔA

Mean clearance rate of asymptomatic CT
infections

λCS
1
�
ΔS

Mean clearance rate of symptomatic CT
infections

Prevalence

πa.pop Note: Prevalence is a basic parameter
in method B but a functional
parameter in the full synthesis model

~λINC

a,pop.Δ Population prevalence of CT by age group
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we assume that the weights are constant within these two age groups. Although testing and treatment

every 6 months interferes with the natural history, CT+ women are subsequently placed in the re-infection

group so this does not bias the results.

Information on two parameters, ΔS, and the proportion of women in the re-infections group, pa,GP, was

introduced via informative priors rather than through the data likelihood. This prevents these ‘data’ from

contributing directly to the global goodness of fit assessment. The decision to treat these inputs differently

was because the source of evidence on the first was expert clinical knowledge that was quite unrelated to

the other sources of data in the synthesis, whereas the second was local to the LaMontagne study.192 We

were therefore interested less in the ‘goodness of fit’ of this information, and more in the goodness of fit

of the other data, conditional on the priors we assigned to these parameters. In addition, we applied the

‘Cut Function’ to both these parameters (see Chapter 3), so in these cases the posterior for the parameter

is the same as the informative prior.

Data likelihoods

The age-specific prevalence data Da,pop in Table 10 was given a normal likelihood on the logit scale:

logit(Da,pop)∼N(πa,pop,Va,pop), with the variance calculated from the 95% CIs. The setting-specific ORs in

Table 11 were handled in the same way: logit(ORs)∼N(γs,Vs). The data on duration of asymptomatic

infection (see Table 8) was entered as a normal likelihood: DurA∼N(ΔA,VA).

The numbers infected in Table 9 denoted ‘r’ are considered as having a binomial likelihood, with

parameters κ(t)a,s,i, and denominators also shown in the table so that ra,s,i∼ Bin(κa,s,i(0.5),na,s,i). The number of

symptomatic infections, (r= 26), reported by Geisler et al.73 is binomially distributed with parameter φ and

denominator 115.

The WinBUGS code in Appendix 5 consists of the priors and likelihoods as described above, and the

functional relationships described exactly as in Figure 8 and in the text.
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Appendix 5 WinBUGS code and data for the
Chapter 5 analysis

model {

# Duration 

# Duration of asymptomatic infection

dura ~ dnorm(0,0.0001) I(0,)
D ~ dnorm(dura,pr.D) 
dev.D <- pr.D*pow((dura-D),2)  # Duration Deviance
lambdaC <- 1/dura              # clearance rate

# Duration of symptomatic infection

durs ~ dunif(0.0767,0.1533) # symptomatic, 4-8 weeks

#durs ~ dunif(0.0577,0.2308) #symptomatic, 3-12 weeks sensitivity 
# analysis

cut.durs <- cut(durs)        # pevents updating of durs
lambdaS <- 1 / cut.durs # clearance rate

# Probability ct is symptomatic

r.phi ~ dbin(phi,n.phi) phi ~ dbeta(1,1) 
dev.phi <- 2 * (r.phi * log(r.phi / (phi *  n.phi)) +  (n.phi -
r.phi) *

log((n.phi - r.phi) / (n.phi - (n.phi * phi)))) #

# Deviance

# Mean duration of infection

dur <- phi*cut.durs + (1-phi)*dura

# Incidence model

# Likelihood and model

for (i in 1:2) { # loop over rate, 1=infection, 2=reinfection
for (s in 1:3) { # loop over setting - GP=1, fP=2, GUM=3
for (a in 1:3) { # loop over age group:1=16,17;2=18-20, 3=21-24
lambda[i,s,a] <- equals(i,1)*(gamma[a] * rho[s] * lambda111) +

equals(i,2)*(gamma[a] * rho[s] * lambda111 * 
eta[s])

r.inc[i,s,a] ~ dbin(theta.inc[i,s,a],n.inc[i,s,a])
theta.inc[i,s,a] <- phi * (

(1 - (lambdaS + lambda[i,s,a] *
exp(-(lambdaS + lambda[i,s,a]) * 0.5)) /

(lambdaS + lambda[i,s,a]))
) + (1 - phi) * (
(1 - (lambdaC + lambda[i,s,a] *
exp(-(lambdaC + lambda[i,s,a]) * 0.5)) /
(lambdaC + lambda[i,s,a]))

)
dev.inc.rat[i,s,a] <- 2 * (r.inc[i,s,a] * log(r.inc[i,s,a] /

(theta.inc[i,s,a] * n.inc[i,s,a])) + 
(n.inc[i,s,a]-

r.inc[i,s,a]) * log((n.inc[i,s,a] -
r.inc[i,s,a]) /

(n.inc[i,s,a] - (n.inc[i,s,a] *
theta.inc[i,s,a]))))

}
}

}
sumdev.inc.rat <- sum(dev.inc.rat[ , , ]) # Deviance, # LaMontagne

#priors for log incidence parameters
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loglambda111 ~ dnorm(0,.0001)                  #Age 16-17, GP, 
# infection
log(lambda111) <- loglambda111

for (s in 1:3) {
logeta[s] ~ dnorm(0,.0001)     # GP=1, fP=2, GUM=3
log(eta[s]) <- logeta[s]
}

logrho[1] <- 0                  # GPtheta.inc
for (s in 2:4) {
logrho[s] ~ dnorm(0,.0001) # 2=fp, 3=GUM, 4=pop, rel to GP
}

for (s in 1:4) {
log(rho[s]) <- logrho[s]
}

loggamma[1] <- 0            #1 = 16-17
for (a in 2:5) {
loggamma[a] ~ dnorm(0,.01) #2=18-19, 3=20-24,4=25-29,5=30-44 rel to 

# 16-17
}
for (a in 1:5) {
log(gamma[a]) <- loggamma[a]
}

# setting specific Odds ratios from Adams

for (s in 1:3) {                            #s+1= 2=FP, 3=GUM, 4=pop, 
# rel to GP

r.OR[s] ~ dnorm(logrho[s+1],pr.OR[s]) 
dev.OR[s] <- pr.OR[s] * pow((r.OR[s]-logrho[s+1]),2)  # OR 

# deviance
}
sumdev.OR <- sum(dev.OR[])

# overall age-specific incidence in population, 1=16-17, 2=18-19,

# 3=20-24,

#                                               4=25-29, 5=30-44

for (a in 1:3) {
p[a] ~ dbeta(aprior[a],bprior[a])
cut.p[a] <- cut(p[a]) # prevents updating p[a]

lamda.F[a] <- rho[4]*((1-cut.p[a])*lambda[1,1,a] + 
cut.p[a]*lambda[2,1,a])

lamda.pop[a] <- lamda.F[a] / (1 - lamda.F[a] * dur)
}

for (a in 4:5) { 
lamda.pop[a] <- lamda.pop[1] * gamma[a]
}

# Age-specific Prevalence from Adams, 1=18-19, 2=20-24, 3=25-29,

# 4=30-44

for (a in 1:4) {
Lprev[a]~dnorm(lprev[a+1],pr.Lprev[a])
dev.prev[a] <- pr.Lprev[a] * pow((Lprev[a]-lprev[a+1]),2)
}

for (a in 1:5) {
lprev[a] <- logit(prev[a])
}

for (a in 1:3) {
prev[a] <- min(.999,(dur * lamda.pop2[a])) 

}
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prev[4] <- prev[3] * gamma[4]/gamma[3]
prev[5] <- prev[3] * gamma[5]/gamma[3]

sumdev.prev <- sum(dev.prev[])

sumdev <- dev.D + sumdev.inc.rat + sumdev.OR + sumdev.prev + dev.phi

# incidence in difference age bands, using population weights N[]

for (a in 16:17) {inc[a] <- lamda.pop[1]}
for (a in 18:20) {inc[a] <- lamda.pop[2]}
for (a in 21:24) {inc[a] <- lamda.pop[3]}
for (a in 25:29) {inc[a] <- lamda.pop[4]}
for (a in 30:44) {inc[a] <- lamda.pop[5]}

lamda.pop2[1] <- lamda.pop[1]  # age 16,17
lamda.pop2[2] <- lamda.pop[2]  # age 18,19.
lamda.pop2[3] <- inprod(inc[20:24],N[20:24])/sum(N[20:24])  # age 20-
# 24

inc1624 <- inprod(inc[16:24],N[16:24])
inc2544 <- inprod(inc[25:44],N[25:44])
inc1644 <- inprod(inc[16:44],N[16:44])

lamda.pop2[4] <- inc1624 / sum(N[16:24]) # age 16-24
lamda.pop2[5] <- inc2544 / sum(N[25:44]) # age 25-44
lamda.pop2[6] <- inc1644 / sum(N[16:44]) # age 16-44

# other population summaries

prop.treat.1624.2002 <- 31510 / inc1624
prop.treat.1624.2003 <- 34660 / inc1624
prop.asymp.clin.1624.2003 <- 1 - (phi / prop.treat.1624.2003)

# prevalence in reconstructed age groups

for (a in 1:6) {
prev.pop2[a] <- dur * lamda.pop2[a] 
}

} # end of program

Data

list(

# duration

D=1.36, pr.D=59.17,    # from Duration paper 2-Class estimate 

# incidence 

r.inc=structure(.Data=c(
4,3,4, 9,5,7, 5,16,9, 
5,7,10, 13,12,5, 6,15,5
),.Dim=c(2,3,3)),

n.inc=structure(.Data=c(
73,195,188, 194,273,201, 102,235,245, 
14,65,79, 95,127,63, 40,139,81
),.Dim=c(2,3,3)),

# priors for infection/reinfection weights, 16-17, 18-20, 21-24

aprior=c(46.5,73.1,106.4), bprior=c(400,634.6,938.4),

# Logit Prevalence 
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Lprev=c(-2.987,-3.41,-4.185,-4.82),
pr.Lprev=c(19.3,20.8,18.4,17.2),

# Setting-specific Log Odds Ratios. Fp,GUM, pop

r.OR= c(0.239,0.871, -.511),
pr.OR= c(67.03,35.21, 17.28),

# symptomatic ct - Geisler

r.phi = 26, n.phi = 115,

# Population sizes from census, age =1...44 - 2002

N=c(NA,NA,NA,NA,NA, NA,NA,NA,NA,NA, NA,NA,NA,NA,NA, 
305500,306300,296400,291400,294800,
310100,313900,305600,294700,295000,
304100,317000,329600,349600,370300,
380900,376900,387800,390900,399400,
401200,402600,398700,391900,381900, 370900,356200,349000,343800)
)

# Initial values - 1

# Duration

list(dura=1,  durs=.115,

# incidence

loglambda111=-2.5,
logeta=c(1,.5,.5),
logrho=c(NA, 1, 1.5,-.5),
loggamma=c(NA,-.2,-.5,-.7,-.8),

# probability symptomatic

phi = 0.5,

# proportion re-infection

p=c(.1, .1, .1)
)

# Initial values - 2

# Duration

list(dura=.2,  durs=.112,

# incidence

loglambda111=-4,
logeta=c(.5,1,1),
logrho=c(NA, 0, 0,0), 
loggamma=c(NA,0,0,0,0),

# probability symptomatic

phi = .1,

# proportion re-infection

p=c(.3, .05, .2)
)
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Appendix 6 Sensitivity analyses in Chapter 6

We performed three sets of sensitivity analysis.

First, the proportion of patients in the Scholes et al. trial13 who were assumed to have been tested during

the trial was lowered from 32% to 15%. This had no measurable effect on results of the final synthesis

(results not shown).

The effect on key model results of changing the infection and reinfection rates for both the one- and

two-rate models is shown in Table 46. The results show clearly that in the full synthesis the assumed

infection/re-infection rates have a minimal impact on the results altering the estimates of κ, the probability

that an incident CT episode causes PID, by at most a multiplicative factor of 4%.

In summary, we found that results from the full synthesis models were insensitive to these

modelling assumptions.

TABLE 46 Effect on key results of altering the assumed infection and reinfection rates, Chapter 6

Infection rate
(Scholes 1996,13

Ostergaard
200012)

Re-infection
rate (POPI
2010,18 Rees
1980199)

Mean
residual
deviance

Causal rate of PID
(95% CrI)

Probability CT
causes clinical
PID (95% CrI)

Proportion
prevented by
screening
(95% CrI)

One-rate model: all controlled studies

0 0 10.8 0.19 (0.06 to 0.36) 0.16 (0.06 to 0.26) 0.61 (0.55 to 0.67)

0 0.05 10.7 0.19 (0.06 to 0.36) 0.16 (0.06 to 0.26) 0.61 (0.55 to 0.67)

0 0.1 10.6 0.19 (0.06 to 0.35) 0.16 (0.06 to 0.26) 0.61 (0.55 to 0.67)

0.05 0.1 10.6 0.19 (0.06 to 0.35) 0.16 (0.06 to 0.26) 0.61 (0.55 to 0.67)

0.05 0.15 10.7 0.19 (0.06 to 0.34) 0.16 (0.06 to 0.25) 0.61 (0.55 to 0.68)

0.05 0.20 10.8 0.19 (0.06 to 0.34) 0.15 (0.06 to 0.25) 0.61 (0.55 to 0.68)

0.1 0.15 10.6 0.18 (0.06 to 0.31) 0.15 (0.05 to 0.24) 0.61 (0.56 to 0.68)

0.1 0.20 10.7 0.18 (0.05 to 0.31) 0.15 (0.05 to 0.24) 0.62 (0.56 to 0.68)

Two-rate models: all controlled studies – 60 days

0 0 10.3 δ1 0.74 (0.07 to 1.72) 0.20 (0.09 to 0.31) 0.40 (0.13 to 0.68)

δ2 0.16 (0.03 to 0.33)

0 0.05 10.4 δ1 0.62 (0.05 to 1.46) 0.19 (0.09 to 0.30) 0.43 (0.16 to 0.69)

δ2 0.17 (0.03 to 0.34)

0 0.1 10.8 δ1 0.48 (0.03 to 1.18) 0.18 (0.08 to 0.28) 0.48 (0.20 to 0.70)

δ2 0.17 (0.04 to 0.34)

continued
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TABLE 46 Effect on key results of altering the assumed infection and reinfection rates, Chapter 6 (continued )

Infection rate
(Scholes 1996,13

Ostergaard
200012)

Re-infection
rate (POPI
2010,18 Rees
1980199)

Mean
residual
deviance

Causal rate of PID
(95% CrI)

Probability CT
causes clinical
PID (95% CrI)

Proportion
prevented by
screening
(95% CrI)

0.05 0.1 10.6 δ1 0.32 (0.02 to 0.68) 0.16 (0.07 to 0.26) 0.54 (0.30 to 0.72)

δ2 0.18 (0.04 to 0.35)

0.05 0.15 10.9 δ1 0.29 (0.02 to 0.64) 0.16 (0.07 to 0.26) 0.55 (0.32 to 0.72)

δ2 0.18 (0.05 to 0.35)

0.05 0.20 11.2 δ1 0.25 (0.01 to 0.60) 0.16 (0.07 to 0.25) 0.57 (0.34 to 0.72)

δ2 0.18 (0.05 to 0.35)

0.1 0.15 11.0 δ1 0.18 (0.01 to 0.38) 0.15 (0.06 to 0.25) 0.61 (0.43 to 0.73)

δ2 0.19 (0.05 to 0.36)

0.1 0.20 11.1 δ1 0.17 (0.01 to 0.37) 0.15 (0.06 to 0.24) 0.61 (0.44 to 0.73)

δ2 0.19 (0.05 to 0.36)
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Appendix 7 Development of functional
relationships (see Chapter 6)

Note that the notation used in the chapter is extended here to facilitate a full mathematical description

of the non-homogeneous model. Here we develop the mathematical relationships between the model

parameters and data estimands.

Note: in our analyses the values of λl, u’, u, θCT– and hence any functions of them such as pij(t) are all study

dependent but the s subscript has been dropped for ease of reading.

Expression in a homogeneous model

In a single rate model θCT+ is constant over time and the data from women who are CT+ and the women

who are CT– at baseline in study s inform the transition probabilities p13(t) and p23(t), respectively, where t

is the mean follow-up time of the study. These transition probabilities are obtained by solving equation 19

numerically in each iteration of the MCMC simulation using the Runge–Kutta method in WBDiff.

Expression in a two-step piecewise homogeneous model

We use a 1-day discrete time approximation to the underlying continuous process to simplify the

calculations. It is necessary to extend the notation used in the paper. Let πi,h be the state occupancy

proportion for state i in day h of the study. The proportion in state i= 1 is further subdivided into the

proportion πhi
i,h, who are subject to developing PID caused by CT at rate δ1, and the proportion π low

i,h who

develop PID caused by CT at rate δ2 where π1,h = π low
1,h + πhi

1,h.

Finally, phi
i j and plow

i j are the daily transition probabilities from state i to state j, for women who are subject

to developing PID caused by CT at rates δ1 and δ2, respectively. p
hi
i j and plow

i j are calculated using equation 19,

and solved using WBDiff, with the appropriate expression for θCT+
s substituted into equation 18. The observed

data inform the proportions π3,H calculated for each arm where H is equal to the follow-up period of the study

in days. So π3,H is the proportion of patients in state 3 at the end of the study, which is the parameter in the

binomial likelihood. Equations for the state occupancy proportions on day h of the study can be written

as follows:

π1,h = π low
1,h−1⋅p

low
11 + πhi

1,h−1⋅p
hi
11 + π2,h−1⋅phi

21

π2,h = π2,h−1⋅p
hi
22 + π low

1,h−1⋅p
low
12 + πhi

1,h−1⋅p
hi
12

π3,h = 1−π2,h−π1,h

(74)

where π1,0 = π low
1,0 + πhi

1,0, π2,0 = 1−π1,0, π3,0 = 0.

It just remains to specify equations for πhi
1,h and π low

1,h , which depend on whether the study is clinic or

screening based. To speed up the processing time, the code is written in WBDev.160
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Clinic-based studies

πhi
1,h = π1,h

o
h = 1,…, B

πhi
1,h = ∑

h

i= (h+1−B)

(π2, i−1⋅p
hi
21)p

hi(h−i)

11

o
h = B + 1,…, H

π low
1,h = π1,h−π

hi
2,h

(75)

Recall from the main text that B is the number of days for which patients are subject to the rate δ1 of PID

caused by CT after entering state 1 if they do not leave during this period. So, in clinic-based studies,

all women in state 1 during the first B days are subject to the rate δ1. Equation 19 shows the proportion of

women who are in state 1 and progress at rate δ1 for each day h in the study after B days have elapsed.

Equation 18 sums over all patients who have moved to state 1 in the last B days multiplied by the

probability they have remained there until day h. In the case arm, πhi
1,0 = 1 and π low

1,0 and π2,0 equal 0. In the

control arm, πhi
1,0 and π low

1,0 equal 0, and π2,0 equals 1.

Screening-based studies

In screened populations women who are CT+ have already been infected for a period of time before

recruitment. We assume that a proportion, ϕ, of incident CT cases are symptomatic and treated, clearing

at rate λT, and the remaining infections, 1 – ϕ, are asymptomatic and clear at rate λC. The probability wb

that a recruited patient was recruited exactly b days after infection is:

ωb = φ⋅ exp −λT ⋅
(b−1)

365

� �
−exp −λT ⋅

b

365

� �� �

+(1−φ)⋅ exp −λC ⋅
(b−1)

365

� �
−exp −λC ⋅

b

365

� �� �

(76)

The proportions in the high and low rate groups are:

πhi
1,h = ∑

B

i=h

ωB+1−iπ1,0.p
h
11 + ∑

h

i=1

(π2, i−1.p
hi
21)p

hi(h−i)

11

o
h = 1,…, B (77)

πhi
1,h = ∑

h

i= (h+1−B)

(π2, i−1.p
hi
21)p

hi(h−i)

11

o
h = B + 1,…, H

π low
1,h = π1,h−π

hi
2,h

(78)

Equation 77 calculates the proportion of women who are in state 1 and subject to the first causal

progression rate δ1 on each day h of the study from 1 to B. The first term is the proportion of women who

began the study as CT+ and were infected within 60 days of day h, multiplied by the probability they have

remained in state 1 until day h. This term is not included in equation 78 because, after B days, all of the

remaining patients move to the δ2 rate. The second term sums over all patients who have moved to state 1

by day h, multiplied by the probability they have remained there until day h. Equation 78 is the same as for

clinic based studies. In the CT+ group, πhi
1,0 = ∑

B

b=1

ωb, π
low
1,0 = 1−πhi

1,0 and π2,0 equals 0. In the CT– group,

πhi
1,0 and π low

1,0 equal 0, and π2,0 equals 1.
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Proportion of Chlamydia trachomatis-related pelvic
inflammatory disease that is prevented by screening

We consider an annual screening programme, in which women are screened at exactly 365-day intervals.

We derive an expression for the proportion of episodes of PID prevented by annual screening in women

who become infected with CT. We assume that treatment is administered 14 days after testing (the results

are fairly insensitive to different reasonable assumptions about this time period). Women are screened

within a year of infection, with each day having an equal probability (1/365) of this occurring. The

expression differs between the one- and two-rate models.

One-rate model

The probability that an episode of PID is caused by a CT episode exactly b days after infection is:

κb = φ.ð 1− exp − λT + δ
� �

.tu0ub

� �� �
− 1− exp − λT + δ

� �
.tu0u b−1ð Þ

� �� �
.

δ

λT + δ

+ ð1−φÞ.ð 1− exp − λC + δ
� �

.tu0ub

� �� �
− 1−exp − λC + δ

� �
.tu0u b−1ð Þ

� �� �
.

δ

λC + δ

(79)

Under the assumptions outlined above, the probability κSCN a CT infection causes an episode of PID in a

woman who is screened at random annually is:

kSCN
= ∑

14

b=1

κb’ + ∑
379

b=15

κb’ 1−
(b−14)

365

� �
(80)

And the proportion of PID episodes that are caused by CT, in women with CT, which are prevented by

annual testing, χ, equals:

χ = 1−
κSCN

κ
(81)

Two-rate model

In a two-rate model the probability that an episode of PID develops exactly b days after infection equals:

κb =

φ.ðexp − λT + δ1
� �

.tu0u b−1ð Þ
−exp − λT + δ1

� �
.tu0ub

� �� �
.

δ1

λT + δ1
+

1−φð Þ.ðexp − λC + δ1
� �

.tu0u b−1ð Þ
−exp − λC + δ1

� �
.tu0ub

� �� �
.

δ1

λC + δ1

φ. expð− λT + δ2
� �

.tu1u b−1ð Þ
−exp − λT + δ2

� �
.tu1ub

� �� �
.

δ2

λT + δ2
+

ð1−φÞ. exp − λC + δ2
� �

.tu1u b−1ð Þ
−expð− λC + δ2

� �
.tu1ub

� �� �
.

δ2

λC + δ2

g b ≤ B

b > B

(82)

Where B= 30, 60, 90 days, the proportion of PID cases prevented by screening is calculated from

equation 80 and 81 as before.
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Appendix 8 WinBUGS code for the two-rate
model (see Chapter 6)

model {

# chlamydia informative priors

r.phi ~ dbin(phi,129)
lambda.c ~ dnorm(0.743,193)
dur.symp ~ dunif(0.077,0.15) # 4 - 8 weeks

lambda.t <- 1 / cut(dur.symp)

# Prospective PID analysis constant progression rate

# Likelihood

for (s in 1:4) {
for (i in 1:2) {
r[s,i] ~ dbin(p[s,i],n[s,i])
}

}
# transistion probability calulations 

for (s in 1:4) {
for (i in 1:2) {
for(j in 1:3) {
theta[s,1,index[i,j]] <- lambda[s,1,i,j]
theta[s,2,index[i,j]] <- lambda[s,2,i,j]
}

}
lambda[s,1,1,1] <- - lambda[s,1,1,2] - lambda[s,1,1,3]
lambda[s,1,1,3] <- theta.CTpos1[s]
lambda[s,1,2,2] <- - lambda[s,1,2,1] - lambda[s,1,2,3]
lambda[s,1,2,3] <- theta.CTneg[s]

lambda[s,2,1,1] <- - lambda[s,2,1,2] - lambda[s,2,1,3]
lambda[s,2,1,3] <- theta.CTpos2[s]
lambda[s,2,2,2] <- - lambda[s,2,2,1] - lambda[s,2,2,3]
lambda[s,2,2,3] <- theta.CTneg[s]
}

# Infection rate
for (s in 1:2) {
lambda[s,1,2,1] <- 0.0

lambda[s,2,2,1] <- 0.0

}

for (s in 3:4) {
lambda[s,1,2,1] <- 0.0

lambda[s,2,2,1] <- 0.0

}

# Clearance + treatment rate
lambda[1,1,1,2] <- lambda.c + 0.64

lambda[1,2,1,2] <- lambda.c + 0.64

lambda[2,1,1,2] <- lambda.c + 0.43
lambda[2,2,1,2] <- lambda.c + 0.43

lambda[3,1,1,2] <- lambda.c + 0.32
lambda[3,2,1,2] <- lambda.c + 0.32

lambda[4,1,1,2] <- lambda.c + 0.32
lambda[4,2,1,2] <- lambda.c + 0.32

# Models for rates

for (s in 1:4) {
theta.CTpos1[s] <- alpha[s] + delta[1]
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theta.CTpos2[s] <- alpha[s] + delta[2]
theta.CTneg[s] <- alpha[s]
}

# Other data

r.sch ~ dbin(pi.sch,n.sch) # Scholes - ct prevalence

r.ost ~ dbin(pi.ost,n.ost) # Ostergaard - ct prevalence

# Priors

delta[1] ~ dexp(0.00001) 
delta[2] ~ dexp(0.00001) 
for (s in 1:4) {
alpha[s] ~ dexp(0.00001)
}

pi.sch ~ dbeta(1,1)
pi.ost ~ dbeta(1,1)
phi ~ dbeta(1,1)

# Calculation of parameters in the likekihood

for (s in 1:4) {
solution1d[s,1,1:dim] <-

three.state(init[1:dim],time,theta[s,1,1:n.par],
origin, tol)

solution1d[s,2,1:dim] <-
three.state(init[1:dim],time,theta[s,2,1:n.par],

origin, tol)
for (i in 1:2) {
for (z in 1:6) {
vectorforwbdev[s,i,z] <- solution1d[s,1,z]
vectorforwbdev[s,i,z+6] <- solution1d[s,2,z]
}

vectorforwbdev[s,i,13] <- round(t[s] * 365)
vectorforwbdev[s,i,14] <- B
vectorforwbdev[s,i,15] <- lambda.c
vectorforwbdev[s,i,16] <- lambda.t
vectorforwbdev[s,i,17] <- phi
vectorforwbdev[s,i,18] <- clinorscreen[s]
vectorforwbdev[s,i,19] <- caseprop[s,i]

p[s,i] <- generatep(vectorforwbdev[s,i,1:19])
}

caseprop[s,2] <- 0
}

caseprop[1,1] <- 1
caseprop[2,1] <- 1
caseprop[3,1] <- pi.sch
caseprop[4,1] <- pi.ost

clinorscreen[1] <- 0 # clinic based study
for (s in 2:4) {
clinorscreen[s] <- 1 # screening studies
}

# Residual Deviance

for (s in 1:4) {
for (i in 1:2) {
dev[s,i] <- 2 * (r[s,i] * log(r[s,i] / (p[s,i] * n[s,i])) +

(n[s,i] - r[s,i]) * log((n[s,i] - r[s,i]) /
(n[s,i] - (n[s,i] * p[s,i]))))

}
}
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dev.sch <- 2 * (r.sch * log(r.sch / (pi.sch * n.sch)) + 
(n.sch - r.sch) * log((n.sch - r.sch) /
(n.sch - (n.sch * pi.sch))))

dev.ost <- 2 * (r.ost * log(r.ost / (pi.ost * n.ost)) + 
(n.ost - r.ost) * log((n.ost - r.ost) /
(n.ost - (n.ost * pi.ost))))

sumdev <- sum(dev[ , ]) + dev.sch + dev.ost

# Results

kappa  <- (1 - phi) * ( 
(1 - (exp( - (lambda.c + delta[1]) * (B / 365)))) *
delta[1] / (lambda.c + delta[1]) +
exp( - (lambda.c + delta[1]) * (B / 365)) *
delta[2] / (lambda.c + delta[2])
) +
phi * (

(1 - (exp( - (lambda.t + delta[1]) * (B / 365)))) *
delta[1] / (lambda.t + delta[1]) +
exp( - (lambda.t + delta[1]) * (B / 365)) *
delta[2] / (lambda.t + delta[2])
)

# proportion of PIDs prevented by annual screening 

# assumes two-week delay between test and treatment

for (i in 1:B) {
temp1[i] <- phi * (

((1 - exp(-(lambda.t + delta[1]) * (i/365))) -
(1 - exp(-(lambda.t + delta[1]) * ((i-1)/365)))) *
(delta[1] / (lambda.t + delta[1])) *
(1 - (max(0,(i-14)) / 365))) +

(1 - phi) * (
((1 - exp(-(lambda.c + delta[1]) * (i/365))) -
(1 - exp(-(lambda.c + delta[1]) * ((i-1)/365)))) *
(delta[1] / (lambda.c + delta[1])) *
(1 - (max(0,(i-14)) / 365)))

}
for (i in B+1:379) {
temp1[i] <- phi * (

((1 - exp(-(lambda.t + delta[2]) * (i/365))) -
(1 - exp(-(lambda.t + delta[2]) * ((i-1)/365)))) *
(delta[2] / (lambda.t + delta[2])) *
(1 - (max(0,(i-14)) / 365))) +

(1 - phi) * (
((1 - exp(-(lambda.c + delta[2]) * (i/365))) -
(1 - exp(-(lambda.c + delta[2]) * ((i-1)/365)))) *
(delta[2] / (lambda.c + delta[2])) *
(1 - (max(0,(i-14)) / 365)))

}
prop.prevent <- 1 - (sum(temp1[ ]) / kappa)

# Bayesian p-value

test <- delta[1] - delta[2]
B.p <- step(test)
}

# Data

list(
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# PID (1 month) prospective

# 1. Rees
# 2. POPI 
# 3. Scholes
# 4. Ostergaard

r=structure(.Data=c(
8,3,
7,1,
33,7,
20,9
),.Dim=c(4,2)),

n=structure(.Data=c(
67,62,
74,63,
1598,645,
487,443
),.Dim=c(4,2)),
t = c(0.125,1,1,1),
B = 60,   # If this were set above 365 WBDEV code would need changing
r.sch = 44,
n.sch = 645,
r.ost = 43,
n.ost = 867,
r.phi=30,
time = 0.00274,

# forward equations

dim=6,origin=0,tol=1.0E-4, init=c(1,0,0, 0,1,0),n.par=6,
index=structure(.Data=c(1,2,3,

4,5,6), .Dim=c(2,3))
)

# Initial values - 1

list(
# Prospective

phi = 0.23, lambda.c = 0.74, delta = c(0.2,0.1),
alpha = c(0.01,0.01,0.01,0.01),
pi.sch = 0.051, pi.ost = 0.07, dur.symp = 0.1
)

# Initial values - 2

list(
# Prospective

phi = 0.7, lambda.c = 2, delta = c(0.1,0.6),
alpha = c(0.15,0.15,0.15,0.15),
pi.sch = 0.2, pi.ost = 0.2, dur.symp = 0.145
)

WBDiff Program to calculate the transition probabilities

MODULE WBDiffThreeState;

IMPORT
WBDiffODEMath,
Math;

TYPE
Equations = POINTER TO RECORD (WBDiffODEMath.Equations) END;
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Factory = POINTER TO RECORD (WBDiffODEMath.Factory) END;

CONST

nEq = 6;
nSt = 4; (* one higher as arrays start at zero*)

VAR
fact-: WBDiffODEMath.Factory;

PROCEDURE (e: Equations) Derivatives (IN theta, C: ARRAY OF REAL; n: INTEGER; t: 
REAL;

OUT dCdt: ARRAY OF REAL);
VAR

index: ARRAY nSt, nSt OF INTEGER;

BEGIN

(* define index of parameters (look-up table) *)
index[1,1] := 0;
index[1,2] := 1;
index[1,3] := 2;
index[2,1] := 3;
index[2,2] := 4;
index[2,3] := 5;

(* define system of nEq Differential Equations *)
dCdt[index[1,1]]:= C[index[1,1]]*theta[index[1,1]] + C[index[1,2]]*theta[index[2,1]];
dCdt[index[1,2]]:= C[index[1,1]]*theta[index[1,2]] + C[index[1,2]]*theta[index[2,2]];
dCdt[index[1,3]]:= C[index[1,1]]*theta[index[1,3]] + C[index[1,2]]*theta[index[2,3]];

dCdt[index[2,1]]:= C[index[2,1]]*theta[index[1,1]] + C[index[2,2]]*theta[index[2,1]];
dCdt[index[2,2]]:= C[index[2,1]]*theta[index[1,2]] + C[index[2,2]]*theta[index[2,2]];
dCdt[index[2,3]]:= C[index[2,1]]*theta[index[1,3]] + C[index[2,2]]*theta[index[2,3]];

END Derivatives;

PROCEDURE (equations: Equations) SecondDerivatives (IN theta, x: ARRAY OF REAL;
numEq: INTEGER; t: REAL; OUT d2xdt2: ARRAY OF REAL);

BEGIN
HALT(126)

END SecondDerivatives;

PROCEDURE (equations: Equations) Jacobian (IN theta, x: ARRAY OF REAL;
numEq: INTEGER; t: REAL; OUT jacob: ARRAY OF ARRAY OF REAL);

BEGIN
HALT(126)

END Jacobian;

PROCEDURE (f: Factory) New (option: INTEGER): WBDiffODEMath.GraphNode;
VAR
equations: Equations;
node: WBDiffODEMath.GraphNode;

BEGIN
NEW(equations);
node := WBDiffODEMath.New(equations, nEq);
RETURN node
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END New;

PROCEDURE Install*;
BEGIN
WBDiffODEMath.Install(fact)

END Install;

PROCEDURE Init;
VAR
f: Factory;

BEGIN
NEW(f); fact := f

END Init;

BEGIN
Init

END WBDiffThreeState.

WBDEV code to calcuate the Binomial likelihood probabilities of PID for the 2-rate 

model

MODULE WBDevgeneratep;

IMPORT
WBDevScalar,
Math;

TYPE
Function = POINTER TO RECORD (WBDevScalar.Node) END;
Factory = POINTER TO RECORD (WBDevScalar.Factory) END;

VAR
fact-: WBDevScalar.Factory;

PROCEDURE (func: Function) DeclareArgTypes (OUT args: ARRAY OF CHAR);
BEGIN
args := "v";

END DeclareArgTypes;

PROCEDURE calculation (func: Function; OUT output: REAL);
VAR
term1, term2, omega, omega_cum,pi_hi, pi_low: ARRAY 366 OF REAL;
pi: ARRAY 4,366+1 OF REAL;

p_hi, p_low: ARRAY 3,4 OF REAL;
H,B,h,i,b: INTEGER;
Hin, Bin, lambdaC, lambdaT, phi, clinicorscreen, caseprop: REAL;

BEGIN
(* Read in the parameter values *)
p_hi[1,1] := func.arguments[0][0].Value();
p_hi[1,2] := func.arguments[0][1].Value();
p_hi[1,3] := func.arguments[0][2].Value();
p_hi[2,1] := func.arguments[0][3].Value();
p_hi[2,2] := func.arguments[0][4].Value();
p_hi[2,3] := func.arguments[0][5].Value();
p_low[1,1] := func.arguments[0][6].Value();
p_low[1,2] := func.arguments[0][7].Value();
p_low[1,3] := func.arguments[0][8].Value();
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p_low[2,1] := func.arguments[0][9].Value();
p_low[2,2] := func.arguments[0][10].Value();
p_low[2,3] := func.arguments[0][11].Value();

Hin := func.arguments[0][12].Value();
Bin := func.arguments[0][13].Value();
lambdaC := func.arguments[0][14].Value();
lambdaT := func.arguments[0][15].Value();
phi := func.arguments[0][16].Value();
clinicorscreen := func.arguments[0][17].Value();
caseprop := func.arguments[0][18].Value();

(* Converts H and B to integer format *)
FOR i:= 1 TO 5000 DO
IF (Hin = i) THEN;
H := i;

END;
END;
FOR i:= 1 TO 5000 DO
IF (Bin = i) THEN;
B := i;

END;
END;

(* Sets B to equal H if follow-up time is shorter than B - Note the program would need 
changing if a  

screening study with a follow-up time shorter than B was included *)
IF (H < B) THEN;
B := H;

END;

(* Calculates the proportion of cases in screening studies infected in the last c = 1 to C days 
*)

IF (clinicorscreen = 1) THEN;
omega_cum[0] := 0;
FOR b := 1 TO B DO
omega[b] := phi * (Math.Exp( - lambdaT * (b - 1) / 365) - Math.Exp( - lambdaT * b / 365)) + 

(1 - phi) * (Math.Exp( - lambdaC * (b - 1) / 365) - Math.Exp( - lambdaC * b / 
365)); omega_cum[b] := omega_cum[b-1] + omega[b];

END;

(* specifies the proportion of women in each state at time zero *)
pi_hi[0] := caseprop * omega_cum[B];   

ELSE
pi_hi[0] := caseprop;

END;
pi[1,0] := caseprop;
pi[2,0]:= 1 - pi[1,0];
pi[3,0] := 0;
pi_low[0] := pi[1,0] - pi_hi[0]; 

(* main analysis *)
FOR h := 1 TO B DO;
pi[1,h] := pi_low[h-1] * p_low[1,1] + pi_hi[h-1] * p_hi[1,1] + pi[2,h-1] * p_hi[2,1];
pi[2,h] := pi[2,h-1] * p_hi[2,2] + pi_low[h-1] * p_low[1,2] + pi_hi[h-1] * p_hi[1,2];
pi[3,h]:= 1 - pi[2,h] - pi[1,h];

IF (clinicorscreen =0) THEN;
pi_hi[h] := pi[1,h];
pi_low[h] := 0
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END;

IF (clinicorscreen =1) THEN;
term1[h] := 0;
FOR i := h TO B DO
term1[h] := term1[h] + omega[B+1-i] * pi[1,0] * Math.Power(p_hi[1,1],h);

END;
term2[1] := 0;
IF (h >= 2) THEN;
FOR i := 1 TO h DO
term2[h] := term2[h-1] + (pi[2,i-1] * p_hi[2,1]) * Math.Power(p_hi[1,1],h-i);

END;
END;
pi_hi[h] := term1[h] + term2[h];
pi_low[h] := pi[1,h] - pi_hi[h];

END;
END;

IF (H > B) THEN;
FOR h := B+1 TO H DO
pi[1,h] := pi_low[h-1] * p_low[1,1] + pi_hi[h-1] * p_hi[1,1] + pi[2,h-1] * p_hi[2,1];
pi[2,h] := pi[2,h-1] * p_hi[2,2] + pi_low[h-1] * p_low[1,2] + pi_hi[h-1] * p_hi[1,2];
pi[3,h]:= 1 - pi[2,h] - pi[1,h];

term1[h] := 0;
FOR i := h+1-B TO h DO
term2[h] := term2[h-1] + (pi[2,i-1] * p_hi[2,1]) * Math.Power(p_hi[1,1],h-i);

END;
pi_hi[h] := term1[h] + term2[h];
pi_low[h] := pi[1,h] - pi_hi[h];

END;
END;
output := pi[3,H];

END calculation;

PROCEDURE (func: Function) Evaluate (OUT value: REAL);
VAR
output: REAL;

BEGIN
calculation(func, output);
value := output;

END Evaluate;

PROCEDURE (f: Factory) New (option: INTEGER): Function;
VAR
func: Function;

BEGIN
NEW(func); func.Initialize; RETURN func;

END New;

PROCEDURE Install*;
BEGIN
WBDevScalar.Install(fact);

END Install;

PROCEDURE Init;
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VAR
f: Factory;

BEGIN
NEW(f); fact := f;

END Init;

BEGIN
Init;

END WBDevgeneratep.
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Appendix 9 Van Valkengoed’s method of
estimating the probability that a case of Chlamydia
trachomatis causes pelvic inflammatory disease
(see Chapter 7)

Van Valkengoed292 pointed out that the incidence of sequelae of CT, including PID, can provide an

upper bound on the progression rate. Subsequently,39 she proposed a way of using Bayes’ theorem

to convert information on PID incidence and other items of data into an estimate of the progression

probability, i.e. the probability that an episode of CT causes a case of PID. Here we briefly review

her approach.

The method begins with the observation that, according to register information in Amsterdam, the

incidence of laparoscopically confirmed PID is 34 per 10,000 per year, in women aged 15–40 years. 50%

of them would show evidence of previous CT infection, based on serology, but this estimate would

provide a highly unreliable estimate of the PEF because of the poor sensitivity of serology tests used at the

time and the poor specificity of lifetime exposure to CT as evidence that a PID was caused by CT.

The argument then takes the following form (Table 47):

l The incidence of confirmed PID is 34/10,000/year or 0.0034 per year.
l The prevalence of CT is 3%, 0.03.
l The probability of CT in women with PID is 3.84%. This is based on a series of inferences concerning

the proportions of women previously exposed to CT, and currently exposed to CT, which is

examined below.
l The 3.84% is applied to the 0.0034 incidence of PID, to obtain 0.0001306 in the top left cell in

Table 47.
l Bayes’ theorem is then used:

Pr(PIDjCT ) =
Pr(CT jPID).Pr(PID)

Pr(CT )
(83)

l In terms of Table 47, as a proportion of the CT+ column total 0.03, 0.0001306 is 0.0043 – or 0.43%.

This is the final estimate of the probability that a case of incident CT progresses to PID.

TABLE 47 van Valkengoed’s method of estimating the proportion of incident CT that progresses to PID

CT status

PID status

PID+ PID– Total

CT+ 0.0001306 0.00327 0.0034

CT– 0.029864 0.966136 0.9966

Total 0.03 0.97 1
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The 0.43% progression probability is a far lower estimate than had ever been suggested, so low that one

might conclude that CT was not a serious public health issue, in the sense that if we multiplied it by our

CT incidence estimates from Chapter 5, we would predict such a low incidence of PID that screening

would be most unlikely to be cost-effective. However, there are a number of problems with the approach.

The main difficulty with the argument lies in the derivation of 3.84% as Pr(CT|PID), which is highly

inconsistent with evidence from retrospective studies.62

This is based on a further chain of reasoning:

l Serological studies have shown a seroprevalence of 70% in women with current CT infection, and of

26% in currently uninfected women. Assuming perfect sensitivity and specificity, and using serology as

a maker of previous or current infection, it was concluded that the proportion of current infection

among those who have ever been exposed to CT is: 0.70 × 0.03/(0.70 × 0.03+ 0.26 × 0.97)= 0.0769.
l However, only 50% of PID cases were found to have been ever exposed to CT (as measured by

serology), so 0.0769 times 0.5= 0.0384, or 3.84% is the proportion of those with clinical PID who are

expected to be currently infected with CT.

It is immediately clear that this argument assumes that there is no causal role of CT in PID, and indeed no

form of association whatsoever. More precisely, it is assumed that the proportion of current CT among

PID cases ever exposed to CT is exactly the same as the proportion of current CT among the total

population ever exposed to CT. Estimates of the progression rates from CT to both EP and TFI were also

published,39 based on precisely the same flawed technique.

There are several other aspects of the method that are problematic. The incidence of CT should be used,

not its prevalence. Because the duration of CT is in the order of 1 year, however, this does not make much

difference to the calculations. The calculations assume that all PID is diagnosed, and, as stated by van

Valkengoed,292 do not account for the poor sensitivity and specificity of CT antibody tests used at the time.

Finally, setting aside the difficulties with the reasoning that generated the 3.84 estimate for Pr(CT|PID), it is

important to appreciate that, even if this estimate was credible, the use of Bayes’ theorem in this context

cannot in and of itself generate a valid estimate of the probability that a CT infection will cause PID. In

particular, the ‘conditional’ symbol ‘| ’ cannot be interpreted as denoting causation in any way, although if

genuinely causal estimates are plugged in, causal inferences from the results would be legitimate. Bayes’

theorem as applied to 2 × 2 tables is simply a method for calculating a row proportion from a column

proportion, given knowledge of the marginal totals (see Table 15). It implements an equation of the form:

a

X
=

a

Y

Y

X
(84)

Where, for example, a is the top left cell, and X and Y are the proportions of PID and CT, respectively.

Nothing in this procedure implies causality or even association. It tells us nothing about the role of CT in

the aetiology of PID.
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Appendix 10 WinBUGS code for pelvic
inflammatory disease incidence synthesis
(see Chapter 7)

model {
# Routine data
for (ag in 1:4) {
r.routine[ag] ~ dbin(p.routine[ag],N.routine[ag])
p.routine[ag] <- 1 - exp(-lambda.PID.diag[ag])
lambda.PID.diag[ag] ~ dexp(0.0001) 
range.temp[ag] ~ dunif(0,range.max[ag])
range[ag] <- cut(range.temp[ag])
lambda.PID[ag] <- (lambda.PID.diag[ag] + (range[ag] / 

N.routine[ag])) /
(1 - psi[1])

# output for Multivariate Normal #prior
lnlambda.PID[ag] <- log(lambda.PID[ag])
}

N.routine[1] <- sum(N[16:19])
N.routine[2] <- sum(N[20:24])
N.routine[3] <- sum(N[25:34])
N.routine[4] <- sum(N[35:44])

lambda.PID1624 <- (lambda.PID[1] * N.routine[1] + 
lambda.PID[2] * N.routine[2]) / sum(N[16:24])

lambda.PID2544 <- (lambda.PID[3] * N.routine[3] + 
lambda.PID[4] * N.routine[4]) / sum(N[25:44])

lambda.PID1644 <- (lambda.PID[1] * sum(N[16:19]) +
lambda.PID[2] * sum(N[20:24]) +
lambda.PID[3] * sum(N[25:34]) +
lambda.PID[4] * sum(N[35:44])) / 

sum(N[16:44])
RatioofPIDnums <- (lambda.PID2544 * (N.routine[3] + N.routine[4])) /

(lambda.PID1624 * (N.routine[1] + N.routine[2]) +
lambda.PID2544 * (N.routine[3] + N.routine[4]))

# Wolner Hanssen
r.wh.undiagpop ~ dbin(psi[1],n.wh.all)
r.wh.asymp ~ dbin(psi[2],n.wh.undiag)
log(lgpsi[1]) <- psi[1]
log(lgpsi[2]) <- psi[2]
logit(lgtpsi[1]) <- psi[1]
logit(lgtpsi[2]) <- psi[2]
psi[1] ~ dbeta(1,1)
psi[2] ~ dbeta(1,1)

# POPI data
r.POPI ~ dbin(p.POPI,n.POPI)
p.POPI <- 1 - exp(-lambda.POPI)
lambda.POPI <- lambda.PID1624 * (1 - (psi[1] * psi[2]))

# Residual Deviance
for (ag in 1:4) {
dev[ag] <- 2 * (r.routine[ag] * log(r.routine[ag] / (p.routine[ag] *

N.routine[ag])) + (N.routine[ag] - r.routine[ag]) * 
log((N.routine[ag] - r.routine[ag])
/ (N.routine[ag] - (N.routine[ag] * 

p.routine[ag]))))
}

dev[5] <- 2 * (r.wh.undiagpop * log(r.wh.undiagpop / (psi[1] * 
n.wh.all)) + 

(n.wh.all - r.wh.undiagpop) * log((n.wh.all -
r.wh.undiagpop)

/(n.wh.all - (n.wh.all * psi[1]))))
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dev[6] <- 2 * (r.wh.asymp * log(r.wh.asymp / (psi[2] * n.wh.undiag)) 
+

(n.wh.undiag - r.wh.asymp) * log((n.wh.undiag -
r.wh.asymp) /

(n.wh.undiag - (n.wh.undiag * psi[2]))))
dev[7] <- 2 * (r.POPI * log(r.POPI / (p.POPI * n.POPI)) + 

(n.POPI - r.POPI) * log((n.POPI - r.POPI) /
(n.POPI - (n.POPI * p.POPI))))

sumdev <- sum(dev[ ])
}

# Data
list(
# Routine data
r.routine = c(8295,13241,18851,11914),
range.max = c(1233,3101,9756,9609),

# Census data - 2002
N=c(NA,NA,NA,NA,NA, NA,NA,NA,NA,NA, NA,NA,NA,NA,NA,
305500,306300,296400,291400,294800,
310100,313900,305600,294700,295000,
304100,317000,329600,349600,370300,
380900,376900,387800,390900,399400,
401200,402600,398700,391900,381900, 370900,356200,349000,343800),

# Wolner-Hansenn
r.wh.undiagpop = 25, n.wh.all = 36
r.wh.asymp = 4, n.wh.undiag = 25

# POPI
r.POPI = 23,n.POPI = 1186
)

# Initial values 1
list(
# population PID incidence
lambda.PID.diag = c(0.01,0.01,0.01,0.01), range.temp = c(1,1,1,1),

# Proportion of PID cases diagnosed
psi = c(0.4,0.5)
)

# Initial values 2
list(
# population PID incidence
lambda.PID.diag = c(0.1,0.1,0.1,0.1), range.temp = 
c(1000,1000,1000,1000),

# Proportion of PID cases diagnosed
psi = c(0.1,0.1)
)
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Appendix 11 WinBUGS code for cumulative
pelvic inflammatory disease exposure (see Chapter 8)

This Appendix provides the programming code used to estimate the distribution of 

salpingitis and number of subsequent PID episodes in the population. The appendix is 

set out in three sections. (A) provides the WBDev functions written in Component 

Pascal which are called by the WinBUGS code shown in sections B and C. (B) is the 

WinBUGS code that calculates the numbers of PIDs, CT-related and non-CT-related. 

(C) is the WinBUGS code that develops the comparisons with the Lund data. 

(A).  WBDEV code

Note that in appendix A the, philap (the proportion of PID cases that would be diagnosed 

as salpingitis on laparoscopy) parameter can be removed to generate estimates of the 

distribution of clinical PID and diagnosed clinical PID. To generate estimates for 

the distribution of salpingitis it can be included as a multiplier in the exponents 

MODULE WBDevCumulativePIDlap;

IMPORT
WBDevVector,
Math;

TYPE
Function = POINTER TO RECORD (WBDevVector.Node) END;
Factory = POINTER TO RECORD (WBDevVector.Factory) END;

VAR
fact-: WBDevVector.Factory;

PROCEDURE (func: Function) DeclareArgTypes (OUT args: ARRAY OF CHAR);
BEGIN
args := "vv";

END DeclareArgTypes;

PROCEDURE readindata1 (func: Function; OUT lambda_PID: ARRAY OF REAL);
VAR
index,a: INTEGER;

BEGIN
index := 0;
FOR a := 1 TO 4 DO
lambda_PID[a] := func.arguments[0][index].Value();
INC(index);

END;
END readindata1;

PROCEDURE readindata2 (func: Function; OUT psi: REAL);

for all of the transition probabilities.
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BEGIN
psi := func.arguments[0][4].Value();

END readindata2;

PROCEDURE readindata3 (func: Function; OUT eta1: REAL);
BEGIN
eta1 := func.arguments[0][5].Value();

END readindata3;

PROCEDURE readindata4 (func: Function; OUT EF: ARRAY OF REAL);
VAR
index,a: INTEGER;

BEGIN
index := 6;
FOR a := 1 TO 4 DO
EF[a] := func.arguments[0][index].Value();
INC(index);

END;
END readindata4;

PROCEDURE readindata5 (func: Function; OUT philap: REAL);
BEGIN
philap := func.arguments[0][10].Value();

END readindata5;

PROCEDURE readindata6 (func: Function; OUT N: ARRAY OF REAL);
VAR
index,a: INTEGER;

BEGIN
index := 0;
FOR a := 16 TO 44 DO
N[a] := func.arguments[1][index].Value();
INC(index);

END;
END readindata6;

PROCEDURE tranratesall (lambda_PID: ARRAY OF REAL; eta1: REAL; 
OUT lambda_PID2: ARRAY OF ARRAY OF REAL);

VAR
a : INTEGER;

BEGIN
FOR a := 16 TO 19 DO
lambda_PID2[1,a] := lambda_PID[1] * 0.85;
lambda_PID2[2,a] := lambda_PID2[1,a] * eta1;

END;

FOR a := 20 TO 24 DO
lambda_PID2[1,a] := lambda_PID[2] * 0.85;
lambda_PID2[2,a] := lambda_PID2[1,a] * eta1;

END;

FOR a := 25 TO 34 DO
lambda_PID2[1,a] := lambda_PID[3] * 0.85;
lambda_PID2[2,a] := lambda_PID2[1,a] * eta1;
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END;

FOR a := 35 TO 44 DO
lambda_PID2[1,a] := lambda_PID[4] * 0.85;
lambda_PID2[2,a] := lambda_PID2[1,a] * eta1;

END;
END tranratesall;

PROCEDURE tranratesnct (lambda_PID: ARRAY OF REAL; eta1: REAL; EF: ARRAY OF 
REAL;

OUT lambda_PID2nct: ARRAY OF ARRAY OF REAL);
VAR
a : INTEGER;

BEGIN
FOR a := 16 TO 19 DO
lambda_PID2nct[1,a] := (lambda_PID[1]  - lambda_PID[1] * EF[1]) * 0.85; 
lambda_PID2nct[2,a] := lambda_PID2nct[1,a] * eta1;

END;

FOR a := 20 TO 24 DO
lambda_PID2nct[1,a] := (lambda_PID[2]  - lambda_PID[2] * EF[2]) * 0.85;
lambda_PID2nct[2,a] := lambda_PID2nct[1,a] * eta1;

END;

FOR a := 25 TO 34 DO
lambda_PID2nct[1,a] := (lambda_PID[3]  - lambda_PID[3] * EF[3]) * 0.85;
lambda_PID2nct[2,a] := lambda_PID2nct[1,a] * eta1;

END;

FOR a := 35 TO 44 DO
lambda_PID2nct[1,a] := (lambda_PID[4]  - lambda_PID[4] * EF[4]) * 0.85;
lambda_PID2nct[2,a] := lambda_PID2nct[1,a] * eta1;

END;
END tranratesnct;

PROCEDURE tranproball (lambda_PID2: ARRAY OF ARRAY OF REAL; philap: REAL;
OUT p: ARRAY OF ARRAY OF ARRAY OF REAL);

VAR
a: INTEGER;

BEGIN
FOR a := 14 TO 15 DO
p[1,2,a] := 0;
p[1,1,a] := 0;

p[2,2,a] := 0;
p[2,5,a] := 0;
p[2,3,a] := 0;

p[3,3,a] := 0;
p[3,5,a] := 0;
p[3,4,a] := 0;

p[4,5,a] := 0;
p[4,4,a] := 0;

p[5,5,a] := 0;
p[5,8,a] := 0;
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p[5,6,a] := 0;

p[6,6,a] := 0;
p[6,8,a] := 0;
p[6,7,a] := 0;

p[7,8,a] := 0;
p[7,7,a] := 0;

p[8,8,a] := 0;
END;

FOR a := 16 TO 44 DO
p[1,2,a] := 1 - Math.Exp(-lambda_PID2[1,a] * philap);
p[1,1,a] := 1 - p[1,2,a];

p[2,2,a] := 0;
p[2,5,a] := 1 - Math.Exp(-lambda_PID2[2,a]);
p[2,3,a] := 1 - p[2,5,a];

p[3,3,a] := 0;
p[3,5,a] := 1 - Math.Exp(-lambda_PID2[2,a]);
p[3,4,a] := 1 - p[3,5,a];

p[4,5,a] := 1 - Math.Exp(-lambda_PID2[1,a]);
p[4,4,a] := 1 - p[4,5,a];

p[5,5,a] := 0;
p[5,8,a] := 1 - Math.Exp(-lambda_PID2[2,a]);
p[5,6,a] := 1 - p[5,8,a];

p[6,6,a] := 0;
p[6,8,a] := 1 - Math.Exp(-lambda_PID2[2,a]);
p[6,7,a] := 1 - p[6,8,a];

p[7,8,a] := 1 - Math.Exp(-lambda_PID2[1,a]);
p[7,7,a] := 1 - p[7,8,a];

p[8,8,a] := 1;
END;

END tranproball;

PROCEDURE tranprobnct (lambda_PID2nct: ARRAY OF ARRAY OF REAL; philap: REAL;
OUT pnct: ARRAY OF ARRAY OF ARRAY OF REAL);

VAR
a : INTEGER;

BEGIN
FOR a := 16 TO 44 DO
pnct[1,2,a] := 1 - Math.Exp(-lambda_PID2nct[1,a] * philap);
pnct[1,1,a] := 1 - pnct[1,2,a];

pnct[2,2,a] := 0;
pnct[2,5,a] :=  1 - Math.Exp(-lambda_PID2nct[2,a]);
pnct[2,3,a] :=  1 - pnct[2,5,a];

pnct[3,3,a] := 0;
pnct[3,5,a] := 1 - Math.Exp(-lambda_PID2nct[2,a]);
pnct[3,4,a] := 1 - pnct[3,5,a];
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pnct[4,5,a] := 1 - Math.Exp(-lambda_PID2nct[1,a]);
pnct[4,4,a] := 1 - pnct[4,5,a];

pnct[5,5,a] := 0;
pnct[5,8,a] := 1 - Math.Exp(-lambda_PID2nct[2,a]);
pnct[5,6,a] := 1 - pnct[5,8,a];

pnct[6,6,a] := 0;
pnct[6,8,a] := 1 - Math.Exp(-lambda_PID2nct[2,a]);
pnct[6,7,a] := 1 - pnct[6,8,a];

pnct[7,8,a] := 1 - Math.Exp(-lambda_PID2nct[1,a]);
pnct[7,7,a] := 1 - pnct[7,8,a];

pnct[8,8,a] :=1;
END;

END tranprobnct;

PROCEDURE stateoccpropall (p: ARRAY OF ARRAY OF ARRAY OF REAL; 
OUT pi: ARRAY OF ARRAY OF REAL);

VAR
a,s: INTEGER;

BEGIN
FOR a := 13 TO 15 DO
pi[1,a] := 1;
FOR s := 2 TO 8 DO
pi[s,a] := 0;

END;
END;

FOR a := 16 TO 44 DO
pi[1,a] := pi[1,a-1] * p[1,1,a]; 
pi[2,a] := pi[1,a-1] * p[1,2,a]; 
pi[3,a] := pi[2,a-1] * p[2,3,a];
pi[4,a] := pi[3,a-1] * p[3,4,a] + pi[4,a-1] * p[4,4,a];
pi[5,a] := pi[2,a-1] * p[2,5,a] + pi[3,a-1] * p[3,5,a] + pi[4,a-1] * p[4,5,a] + pi[5,a-1] * p[5,5,a];
pi[6,a] := pi[5,a-1] * p[5,6,a]; 
pi[7,a] := pi[6,a-1] * p[6,7,a] + pi[7,a-1] * p[7,7,a];  
pi[8,a] := pi[5,a-1] * p[5,8,a] + pi[6,a-1] * p[6,8,a] + pi[7,a-1] * p[7,8,a] + pi[8,a-1];

END;

END stateoccpropall;

PROCEDURE stateoccpropnct (pnct: ARRAY OF ARRAY OF ARRAY OF REAL; 
OUT pinct: ARRAY OF ARRAY OF REAL);

VAR
a,s: INTEGER;

BEGIN
FOR a := 13 TO 15 DO
pinct[1,a] := 1;
FOR s := 2 TO 8 DO
pinct[s,a] := 0;

END;
END;

FOR a := 16 TO 44 DO
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pinct[1,a] := pinct[1,a-1] * pnct[1,1,a];
pinct[2,a] := pinct[1,a-1] * pnct[1,2,a]; 
pinct[3,a] := pinct[2,a-1] * pnct[2,3,a]; 
pinct[4,a] := pinct[3,a-1] * pnct[3,4,a] + pinct[4,a-1] * pnct[4,4,a];
pinct[5,a] := pinct[2,a-1] * pnct[2,5,a] + pinct[3,a-1] * pnct[3,5,a] + pinct[4,a-1] * pnct[4,5,a] +                  

pinct[5,a-1] * pnct[5,5,a];
pinct[6,a] := pinct[5,a-1] * pnct[5,6,a]; 
pinct[7,a] := pinct[6,a-1] * pnct[6,7,a] + pinct[7,a-1] * pnct[7,7,a];  
pinct[8,a] := pinct[5,a-1] * pnct[5,8,a] + pinct[6,a-1] * pnct[6,8,a] + pinct[7,a-1] * pnct[7,8,a] +                            

pinct[8,a-1];
END;

END stateoccpropnct;

PROCEDURE numberPIDsageall (pi: ARRAY OF ARRAY OF REAL; N: ARRAY OF REAL;
OUT PIDnum: ARRAY OF ARRAY OF REAL);

VAR
a: INTEGER; 

BEGIN
FOR a := 16 TO 44 DO
PIDnum[1,a] := (pi[2,a] + pi[3,a] + pi[4,a]);
PIDnum[2,a] := (pi[5,a] + pi[6,a] + pi[7,a]);
PIDnum[3,a] := pi[8,a];

END;
END numberPIDsageall;

PROCEDURE numberPIDsagegpall (PIDnum: ARRAY OF ARRAY OF REAL; N: ARRAY OF 
REAL;

OUT numPIDs: ARRAY OF ARRAY OF REAL);
VAR
n: INTEGER; 

BEGIN
FOR n := 1 TO 3 DO
numPIDs[n,1] := (PIDnum[n,16] * N[16] + PIDnum[n,17] * N[17] + PIDnum[n,18] * N[18] +                                

PIDnum[n,19] * N[19]) / 
(N[16] + N[17] + N[18] + N[19]);

numPIDs[n,2] := (PIDnum[n,20] * N[20] + PIDnum[n,21] * N[21]  + PIDnum[n,22] * N[22]  +                              
PIDnum[n,23] * N[23] + PIDnum[n,24] * N[24]) / 
(N[20] + N[21] + N[22] + N[23] + N[24]);

numPIDs[n,3] := (PIDnum[n,25] * N[25] + PIDnum[n,26] * N[26] + PIDnum[n,27] * N[27]  +  
PIDnum[n,28] * N[28] + PIDnum[n,29] * N[29] + PIDnum[n,30] * N[30] + 
PIDnum[n,31] * N[31] + PIDnum[n,32] * N[32] + PIDnum[n,33] * N[33]+       
PIDnum[n,34] * N[34]) /

(N[25] + N[26] + N[27] + N[28] + N[29] + N[30] + N[31] + N[32] + N[33] + 
N[34]);
numPIDs[n,4] := (PIDnum[n,35] * N[35] + PIDnum[n,36] * N[36] + PIDnum[n,37] * N[37] +          

PIDnum[n,38] * N[38] + PIDnum[n,39] * N[39] +PIDnum[n,40] * N[40] + 
PIDnum[n,41] * N[41] + PIDnum[n,42] * N[42] + PIDnum[n,43] * N[43] + 
PIDnum[n,44] * N[44]) /

(N[35] + N[36] + N[37] + N[38] + N[39] + N[40] + N[41] + N[42] + N[43] + 
N[44]);

END;
END numberPIDsagegpall;

PROCEDURE numberPIDsobsageall (PIDnum: ARRAY OF ARRAY OF REAL; psi: REAL;
OUT PIDnumobs: ARRAY OF ARRAY OF REAL);
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VAR
a: INTEGER; 

BEGIN
FOR a := 16 TO 44 DO
PIDnumobs[1,a] :=  PIDnum[1,a] * psi + 2 * PIDnum[2,a] * psi * (1 - psi) + 

3 * PIDnum[3,a] * psi * (1 - psi) * (1 - psi);
PIDnumobs[2,a] :=  PIDnum[2,a] * psi * psi + 3 * PIDnum[3,a] * psi * psi * (1 - psi);
PIDnumobs[3,a] :=  PIDnum[3,a] * psi * psi * psi

END;
END numberPIDsobsageall;

PROCEDURE numberPIDsagenct (pinct: ARRAY OF ARRAY OF REAL;  N: ARRAY OF 
REAL;

OUT PIDnumnct: ARRAY OF ARRAY OF REAL);
VAR
a: INTEGER; 

BEGIN
FOR a := 16 TO 44 DO
PIDnumnct[1,a] := (pinct[2,a] + pinct[3,a] + pinct[4,a]);
PIDnumnct[2,a] := (pinct[5,a] + pinct[6,a] + pinct[7,a]);
PIDnumnct[3,a] := pinct[8,a];

END;
END numberPIDsagenct;

PROCEDURE numberPIDsagegpnct (PIDnumnct: ARRAY OF ARRAY OF REAL; N: 
ARRAY OF                                      

REAL;
OUT numPIDsnct: ARRAY OF ARRAY OF REAL);

VAR
n: INTEGER; 

BEGIN
FOR n := 1 TO 3 DO
numPIDsnct[n,1] := (PIDnumnct[n,16] * N[16] + PIDnumnct[n,17] * N[17] + 

PIDnumnct[n,18] * N[18] + PIDnumnct[n,19] * N[19]) / 
(N[16] + N[17] + N[18] + N[19]);

numPIDsnct[n,2] := (PIDnumnct[n,20] * N[20] + PIDnumnct[n,21] * N[21] + 
PIDnumnct[n,22] * N[22] + PIDnumnct[n,23] * N[23] + 
PIDnumnct[n,24] * N[24]) / 

(N[20] + N[21] + N[22] + N[23] + N[24]);
numPIDsnct[n,3] := (PIDnumnct[n,25] * N[25] + PIDnumnct[n,26] * N[26] + 

PIDnumnct[n,27] * N[27] + PIDnumnct[n,28] * N[28] + 
PIDnumnct[n,29] * N[29] + PIDnumnct[n,30] * N[30] + 
PIDnumnct[n,31] * N[31] + PIDnumnct[n,32] * N[32] + 
PIDnumnct[n,33] * N[33] + PIDnumnct[n,34] * N[34]) /

(N[25] + N[26] + N[27] + N[28] + N[29] + N[30] + N[31] + N[32] + N[33] + 
N[34]);

numPIDsnct[n,4] := (PIDnumnct[n,35] * N[35] + PIDnumnct[n,36] * N[36] + 
PIDnumnct[n,37] * N[37] + PIDnumnct[n,38] * N[38] + 
PIDnumnct[n,39] * N[39] + PIDnumnct[n,40] * N[40] +
PIDnumnct[n,41] * N[41] + PIDnumnct[n,42] * N[32] + 
PIDnumnct[n,43] * N[43] + PIDnumnct[n,44] * N[44]) /

(N[35] + N[36] + N[37] + N[38] + N[39] + N[40] + N[41] + N[42] + N[43] + 
N[44]);

END;
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END numberPIDsagegpnct;

PROCEDURE numberPIDsobsageallnct (PIDnumnct: ARRAY OF ARRAY OF REAL; psi: 
REAL;

OUT PIDnumobsnct: ARRAY OF ARRAY OF REAL);
VAR
a: INTEGER; 

BEGIN
FOR a := 16 TO 44 DO
PIDnumobsnct[1,a] :=  PIDnumnct[1,a] * psi + 2 * PIDnumnct[2,a] * psi * (1 - psi) + 

3 * PIDnumnct[3,a] * psi * (1 - psi) * (1 - psi);
PIDnumobsnct[2,a] :=  PIDnumnct[2,a] * psi * psi + 3 * PIDnumnct[3,a] * psi * psi * (1 - psi);
PIDnumobsnct[3,a] :=  PIDnumnct[3,a] * psi * psi * psi

END;
END numberPIDsobsageallnct;

PROCEDURE eventsin8 (pi: ARRAY OF ARRAY OF REAL; p: ARRAY OF ARRAY OF 

ARRAY OF 
REAL; lambda_PID2: ARRAY OF ARRAY OF REAL;  N: ARRAY 

OF REAL;
OUT PIDsin8: ARRAY OF REAL);

VAR
a: INTEGER; 
last2yrs: ARRAY 45 OF REAL;

BEGIN
PIDsin8[14] := 0;
PIDsin8[15] := 0;
FOR a := 16 TO 44 DO
last2yrs[a] := pi[5,a-3] * p[5,8,a-2] + pi[5,a-2] * p[5,8,a-1] + 

pi[6,a-3] * p[6,8,a-2] + pi[6,a-2] * p[6,8,a-1] + 
pi[7,a-3] * p[7,8,a-2] + pi[7,a-2] * p[7,8,a-1];

PIDsin8[a] := last2yrs[a] * ( 1 - Math.Exp(-lambda_PID2[2,a])) + 
(pi[8,a] - last2yrs[a]) * (1 - Math.Exp(-lambda_PID2[1,a])) 

END;
END eventsin8;

PROCEDURE eventsin8nct (pinct: ARRAY OF ARRAY OF REAL; pnct: ARRAY OF ARRAY 
OF 

ARRAY OF REAL; lambda_PID2nct: ARRAY OF ARRAY OF 
REAL;  N: 

ARRAY OF REAL;
OUT PIDsin8nct: ARRAY OF REAL);

VAR
a: INTEGER; 
last2yrs: ARRAY 45 OF REAL;

BEGIN
PIDsin8nct[14] := 0;
PIDsin8nct[15] := 0;
FOR a := 16 TO 44 DO
last2yrs[a] := pinct[5,a-3] * pnct[5,8,a-2] + pinct[5,a-2] * pnct[5,8,a-1] + 

pinct[6,a-3] * pnct[6,8,a-2] + pinct[6,a-2] * pnct[6,8,a-1] + 
pinct[7,a-3] * pnct[7,8,a-2] + pinct[7,a-2] * pnct[7,8,a-1];

PIDsin8nct[a] := last2yrs[a] * ( 1 - Math.Exp(-lambda_PID2nct[2,a])) + 
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(pinct[8,a] - last2yrs[a]) * (1 - Math.Exp(-lambda_PID2nct[1,a])); 
END;

END eventsin8nct;

PROCEDURE predincforpop (pi: ARRAY OF ARRAY OF REAL; p: ARRAY OF ARRAY OF 
ARRAY 

OF REAL; PIDsin8: ARRAY OF REAL;
OUT PIDinc: ARRAY OF ARRAY OF REAL);

VAR
a: INTEGER; 

BEGIN
FOR a := 16 TO 44 DO
PIDinc[1,a] := pi[1,a-1] * p[1,2,a]; 
PIDinc[2,a] := pi[2,a-1] * p[2,5,a] + pi[3,a-1] * p[3,5,a] + pi[4,a-1] * p[4,5,a];
PIDinc[3,a] := pi[5,a-1] * p[5,8,a] + pi[6,a-1] * p[6,8,a] + pi[7,a-1] * p[7,8,a]; 
PIDinc[4,a] := PIDsin8[a];

END;
END predincforpop;

PROCEDURE predincforpopnct (pinct: ARRAY OF ARRAY OF REAL; pnct: ARRAY OF 
ARRAY OF                                                                    

ARRAY OF REAL; PIDsin8nct: ARRAY OF REAL;
OUT PIDincnct: ARRAY OF ARRAY OF REAL);

VAR
a: INTEGER; 

BEGIN
FOR a := 16 TO 44 DO
PIDincnct[1,a] := pinct[1,a-1] * pnct[1,2,a]; 
PIDincnct[2,a] := pinct[2,a-1] * pnct[2,5,a] + pinct[3,a-1] * pnct[3,5,a] + 

pinct[4,a-1] * pnct[4,5,a];
PIDincnct[3,a] := pinct[5,a-1] * pnct[5,8,a] + pinct[6,a-1] * pnct[6,8,a] + 

pinct[7,a-1] * pnct[7,8,a]; 
PIDincnct[4,a] := PIDsin8nct[a];
END;

END predincforpopnct;

PROCEDURE predincgpforpop (PIDinc: ARRAY OF ARRAY OF REAL; N: ARRAY OF 
REAL; 

PIDsin8: ARRAY OF REAL;
OUT pred_prop_ag: ARRAY OF REAL);

VAR
a: INTEGER; 
pred_pop: ARRAY 45 OF REAL;
sumN: REAL;

BEGIN
FOR a := 16 TO 44 DO
pred_pop[a] := (PIDinc[1,a] + PIDinc[2,a] + PIDinc[3,a] + PIDinc[4,a]) *  N[a];

END;
pred_prop_ag[1] := (pred_pop[16] + pred_pop[17] + pred_pop[18] + pred_pop[19]) /

(N[16] + N[17] + N[18] + N[19]);
pred_prop_ag[2] := (pred_pop[20] + pred_pop[21] + pred_pop[22] + pred_pop[23] + 

pred_pop[24]) /
(N[20] + N[21] + N[22] + N[23] + N[24]);

pred_prop_ag[3] := (pred_pop[25] + pred_pop[26] + pred_pop[27] + pred_pop[28] + 
pred_pop[29] + 
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pred_pop[30] + pred_pop[31] + pred_pop[32] + pred_pop[33] + 
pred_pop[34]) /

(N[25] + N[26] + N[27] + N[28] + N[29] + N[30] + N[31] + N[32] + N[33] 
+ N[34]);

pred_prop_ag[4] := (pred_pop[35] + pred_pop[36] + pred_pop[37] + pred_pop[38] + 
pred_pop[39] + 

pred_pop[40] + pred_pop[41] + pred_pop[42] + pred_pop[43] + 
pred_pop[44]) /

(N[35] + N[36] + N[37] + N[38] + N[39] + N[40] + N[41] + N[42] + N[43] + 
N[44]);

pred_prop_ag[0] := 0;
sumN := 0;
FOR a := 16 TO 44 DO
pred_prop_ag[0] := pred_prop_ag[0] + pred_pop[a];
sumN := sumN + N[a];

END;
pred_prop_ag[0] := pred_prop_ag[0] / sumN;

END predincgpforpop;

PROCEDURE predincgpforpopnct (PIDincnct: ARRAY OF ARRAY OF REAL; N: ARRAY OF 
REAL;                                                                         

PIDsin8nct: ARRAY OF REAL;
OUT pred_prop_agnct: ARRAY OF REAL);

VAR
a: INTEGER; 
pred_pop: ARRAY 45 OF REAL;
sumN: REAL;

BEGIN

FOR a := 16 TO 44 DO
pred_pop[a] := (PIDincnct[1,a] + PIDincnct[2,a] + PIDincnct[3,a] + PIDincnct[4,a]) *  N[a];

END;
pred_prop_agnct[1] := (pred_pop[16] + pred_pop[17] + pred_pop[18] + pred_pop[19]) /

(N[16] + N[17] + N[18] + N[19]);
pred_prop_agnct[2] := (pred_pop[20] + pred_pop[21] + pred_pop[22] + pred_pop[23] + 

pred_pop[24])  / (N[20] + N[21] + N[22] + N[23] + N[24]);
pred_prop_agnct[3] := (pred_pop[25] + pred_pop[26] + pred_pop[27] + pred_pop[28] + 

pred_pop[29] + pred_pop[30] + pred_pop[31] + pred_pop[32] + 
pred_pop[33] + pred_pop[34]) /

(N[25] + N[26] + N[27] + N[28] + N[29] + N[30] + N[31] + N[32] + N[33] 
+ N[34]);

pred_prop_agnct[4] := (pred_pop[35] + pred_pop[36] + pred_pop[37] + pred_pop[38] + 
pred_pop[39] + pred_pop[40] + pred_pop[41] + pred_pop[42] + 
pred_pop[43] + pred_pop[44]) /

(N[35] + N[36] + N[37] + N[38] + N[39] + N[40] + N[41] + N[42] + N[43] 
+ N[44]);

pred_prop_agnct[0] := 0;
sumN := 0;
FOR a := 16 TO 44 DO
pred_prop_agnct[0] := pred_prop_agnct[0] + pred_pop[a];
sumN := sumN + N[a];

END;
pred_prop_agnct[0] := pred_prop_agnct[0] / sumN;

END predincgpforpopnct;

PROCEDURE (func: Function) Evaluate (OUT values: ARRAY OF REAL);
VAR
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a, n, i: INTEGER;
eta1, psi, philap: REAL;
lambda_PID, EF, pred_prop_ag, pred_prop_agnct: ARRAY 5 OF REAL;
PIDsin8,PIDsin8nct,N: ARRAY 45 OF REAL;
lambda_PID2, lambda_PID2nct: ARRAY 3,45 OF REAL;
p, pnct: ARRAY 9,9,45 OF REAL;
pi, pinct: ARRAY 9,45 OF REAL;
numPIDs, numPIDsnct: ARRAY 4,5 OF REAL;
PIDinc, PIDincnct: ARRAY 5,45 OF REAL;
PIDnum, PIDnumnct, PIDnumobs,PIDnumobsnct: ARRAY 4,45 OF REAL;

BEGIN
readindata1(func, lambda_PID);
readindata2(func, psi);
readindata3(func, eta1);
readindata4(func, EF);
readindata5(func, philap);
readindata6(func, N);

tranratesall(lambda_PID, eta1, lambda_PID2);
tranratesnct(lambda_PID, eta1, EF,   lambda_PID2nct);

tranproball(lambda_PID2, philap, p);
tranprobnct(lambda_PID2nct, philap, pnct);

stateoccpropall(p,  pi );
stateoccpropnct(pnct,  pinct );

numberPIDsageall(pi, N,  PIDnum);
numberPIDsagenct(pinct, N,   PIDnumnct);

numberPIDsagegpall(PIDnum, N,  numPIDs);
numberPIDsagegpnct(PIDnumnct, N,   numPIDsnct);

numberPIDsobsageall(PIDnum, psi,  PIDnumobs);
numberPIDsobsageallnct(PIDnumnct, psi,  PIDnumobsnct);

eventsin8(pi, p, lambda_PID2, N,   PIDsin8);
predincforpop(pi, p, PIDsin8,  PIDinc); 
predincgpforpop(PIDinc, N, PIDsin8,    pred_prop_ag);

eventsin8nct(pinct, pnct, lambda_PID2nct, N,   PIDsin8nct);
predincforpopnct(pinct, pnct, PIDsin8nct,     PIDincnct);
predincgpforpopnct(PIDincnct, N, PIDsin8nct,     pred_prop_agnct);

i := 0;
FOR n := 1TO 3 DO
FOR a := 1 TO 4 DO
values[i] := numPIDs[n,a];
values[i+12] := numPIDsnct[n,a];
INC(i);

END;
END;
FOR i := 24 TO 28 DO
values[i] := pred_prop_ag[i-24];

END;

i := 29;
FOR n := 1 TO 3 DO
FOR a := 16 TO 44 DO

DOI: 10.3310/hta20220 HEALTH TECHNOLOGY ASSESSMENT 2016 VOL. 20 NO. 22

© Queen’s Printer and Controller of HMSO 2016. This work was produced by Price et al. This issue may be freely reproduced for the purposes of private research and study and
extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any
form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies
Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

211



values[i] := PIDnum[n,a];
values[i+87] := PIDnumnct[n,a];
INC(i);

END;
END;
i := 203;
FOR n := 1 TO 4 DO
FOR a := 16 TO 44 DO
values[i] := PIDinc[n,a];
values[i+116] := PIDincnct[n,a];
INC(i);

END;
END;
i := 435;
FOR n := 1 TO 3 DO
FOR a := 16 TO 44 DO
values[i] := PIDnumobs[n,a];
values[i+87] := PIDnumobsnct[n,a];
INC(i);

END;
END;

END Evaluate;

PROCEDURE (f: Factory) New (option: INTEGER): Function;
VAR
func: Function;

BEGIN
NEW(func); func.Initialize; RETURN func;

END New;

PROCEDURE Install*;
BEGIN
WBDevVector.Install(fact);

END Install;

PROCEDURE Init;
VAR
f: Factory;

BEGIN
NEW(f); fact := f;

END Init;

BEGIN
Init;

END WBDevCumulativePIDlap.

(B).  WinBUGS code to calculate numbers of PIDs and non-CT related 
PIDs 

model {

# PID incidence and ct GP re-infection rate ratio informative priors

Y[1:10] ~ dmnorm(mu[], Omega[ , ]) 
for (ag in 1:4) {
log(lambda.PID[ag]) <- Y[ag]
EF[ag]  <- Y[ag+5] * Y[ag+5]
}

logit(psi) <- Y[5]
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log(eta1) <- Y[10]

# WBDEV call

for (ag in 1:4) {
input1[ag] <- lambda.PID[ag]
input1[ag+6] <- EF[ag]
}

input1[5] <- psi
input1[6] <- eta1

for (i in 1:29) {
input2[i] <- N[i+15]
}

philap ~ dbeta(12,16)
input1[11] <- philap

solution[1:609] <- cumulativePIDlap(input1[1:11],input2[1:29])

for (ag in 1:4) {
Expect.prop[ag] <- 1 - exp(-lambda.PID[ag])
}

total.expect.prop <- (Expect.prop[1] * sum(N[16:19]) +
Expect.prop[2] * sum(N[20:24]) +
Expect.prop[3] * sum(N[25:34]) +
Expect.prop[4] * sum(N[35:44])) / 
sum(N[16:44])

}

# Data

list(

# PID incidence, r-infection raqte, Etological fractions and re-

# infection rate

mu = c(-3.865, -3.595, -3.964, -4.402, -0.5856, 0.7104, 0.4815, 0.3117, 0.3277, 

1.919),

Omega = structure(.Data =c(
573.855, -49.264, -10.817, -3.992, 323.371, 97.687, -112.351, -30.198, -5.401, -2.713,

-49.264, 301.419, -14.194, -3.299, 147.591, -78.069, 176.480, -72.284, -11.551, 2.012,

-10.817, -14.194, 105.908, -20.063, 37.684, -13.275, -46.636, 236.305, -118.245,
0.515,

-3.992, -3.299, -20.063, 57.687, 19.172, -2.664, -8.418, -125.677, 138.728, 0.088,

323.371, 147.591, 37.684, 19.172, 351.620, 1.363, -1.443, -1.164, 1.537, 0.030,

97.687, -78.069, -13.275, -2.664, 1.363, 285.706, -324.389, -85.846, -16.864, -7.957,
-112.351, 176.480, -46.636, -8.418, -1.443, -324.389, 734.182, -295.254, -50.046,

8.090,

-30.198, -72.284, 236.305, -125.677, -1.164, -85.846, -295.254, 1512.713, -758.618,

3.088,
-5.401, -11.551, -118.245, 138.728, 1.537, -16.864, -50.046, -758.618, 839.634, 0.705,

-2.713, 2.012, 0.515, 0.088, 0.030, -7.957, 8.090, 3.088, 0.705, 13.711

),
.Dim = c(10,10)),

# Population sizes from census, age =1...44 - 2002

N=c(NA,NA,NA,NA,NA, NA,NA,NA,NA,NA, NA,NA,NA,NA,NA, 
305500,306300,296400,291400,294800,
310100,313900,305600,294700,295000,
304100,317000,329600,349600,370300,
380900,376900,387800,390900,399400,
401200,402600,398700,391900,381900, 370900,356200,349000,343800)
)

# Initial values 1

list(
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Y = c(-5,-5,-5,-5,-1,-5,-5,-5,-5,-1)
)

# Initial values 2

list(

Y = c(-1,-1,-1,-1,3,-1,-1,-1,-1,3)
)

(C).  WinBUGS code comparisons to Lund data 

# Westrom proportions
model {
r1[1:3] ~ dmulti(p1[1:3],N1)
r2[1:3] ~ dmulti(p2[1:3],N2)

p1[1:3] ~ ddirch(a1[1:3])
p2[1:3] ~ ddirch(a2[1:3])
}

# Data
list(r1 = c(771,158,61),r2 = c(220,27,4), N1 = 990, N2 = 251, 

a1 =c(1,1,1), a2 = c(1,1,1))

# Initial Values
list(p1 = c(0.7,0.2,0.1),p2 = c(0.7,0.2,0.1))

# twelve - comparison of cumulative PID to Westrom
model {
Y[1:10] ~ dmnorm(mu[], Omega[ , ]) 
for (ag in 1:4) {
log(lambda.PID[ag]) <- Y[ag]
}

logit(psi) <- Y[5]
log(eta1) <- Y[10]

# transition rates
for (a in 16:19) {
lambda.PID2[1,a] <- lambda.PID[1] * 0.85
lambda.PID2[2,a] <- lambda.PID2[1,a] * eta1
}

for (a in 20:24) {
lambda.PID2[1,a] <- lambda.PID[2] * 0.85
lambda.PID2[2,a] <- lambda.PID2[1,a] * eta1
}

for (a in 25:34) {
lambda.PID2[1,a] <- lambda.PID[3] * 0.85
lambda.PID2[2,a] <- lambda.PID2[1,a] * eta1

}
for (a in 35:44) {
lambda.PID2[1,a] <- lambda.PID[4] * 0.85
lambda.PID2[2,a] <- lambda.PID2[1,a] * eta1
}

# transition probabilities
# state 1 = 1 PID <1 year
# state 2 = 1 PID 1-2 years
# state 3 = 1 PID 2+ years
# state 4 = 2 PIDs <1 year
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# state 5 = 2 PIDs 1-2 years
# state 6 = 2 PIDs 2+ years
# state 7 = 3 PIDs < 1 year 
# state 8 = 3 PIDs 1-2 years 
# state 9 = 3 PIDs 2+ years 
# state 10 = 4 PIDs < 1 year 
# state 11 = 4 PIDs < 1-2 years 
# state 12 = 4 PIDs < 2+ years 
# state 13 = 5 PIDs assume no more than 5 PIDs

for (a in 16:44) {
p[1,1,a] <- 0
p[1,2,a] <- 1 - p[1,4,a]
p[1,4,a] <- 1 - exp(-lambda.PID2[2,a])

p[2,2,a] <- 0
p[2,3,a] <- 1 - p[2,4,a]
p[2,4,a] <- 1 - exp(-lambda.PID2[2,a])

p[3,3,a] <- 1 - p[3,4,a]
p[3,4,a] <- 1 - exp(-lambda.PID2[1,a])

p[4,4,a] <- 0
p[4,5,a] <- 1 - p[4,7,a]
p[4,7,a] <- 1 - exp(-lambda.PID2[2,a])

p[5,5,a] <- 0
p[5,6,a] <- 1 - p[5,7,a]
p[5,7,a] <- 1 - exp(-lambda.PID2[2,a])

p[6,6,a] <- 1 - p[6,7,a]
p[6,7,a] <- 1 - exp(-lambda.PID2[1,a])

p[7,7,a] <- 0
p[7,8,a] <- 1 - p[7,10,a]
p[7,10,a] <- 1 - exp(-lambda.PID2[2,a])

p[8,8,a] <- 0
p[8,9,a] <- 1 - p[8,10,a]
p[8,10,a] <- 1 - exp(-lambda.PID2[2,a])

p[9,9,a] <- 1 - p[9,10,a]
p[9,10,a] <- 1 - exp(-lambda.PID2[1,a])

p[10,10,a] <- 0
p[10,11,a] <- 1 - p[10,13,a]
p[10,13,a] <- 1 - exp(-lambda.PID2[2,a])

p[11,11,a] <- 0
p[11,12,a] <- 1 - p[11,13,a]
p[11,13,a] <- 1 - exp(-lambda.PID2[2,a])

p[12,12,a] <- 1 - p[9,10,a]
p[12,13,a] <- 1 - exp(-lambda.PID2[1,a])

p[13,13,a] <- 1
}

# State occupancy proportions
for (i in 16:37) {
pi[i,1,i-1] <- 1
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pi[i,2,i-1] <- 0
pi[i,3,i-1] <- 0
pi[i,4,i-1] <- 0
pi[i,5,i-1] <- 0
pi[i,6,i-1] <- 0
pi[i,7,i-1] <- 0
pi[i,8,i-1] <- 0
pi[i,9,i-1] <- 0
pi[i,10,i-1] <- 0
pi[i,11,i-1] <- 0
pi[i,12,i-1] <- 0
pi[i,13,i-1] <- 0

}

for (i in 16:37) {
for (a in i:i+7) {
pi[i,1,a] <- pi[i,1,a-1] * p[1,1,a] 
pi[i,2,a] <- pi[i,1,a-1] * p[1,2,a] + pi[i,2,a-1] * p[2,2,a] 
pi[i,3,a] <- pi[i,2,a-1] * p[2,3,a] + pi[i,3,a-1] * p[3,3,a] 
pi[i,4,a] <- pi[i,1,a-1] * p[1,4,a] + pi[i,2,a-1] * p[2,4,a] +

pi[i,3,a-1] * p[3,4,a] + pi[i,4,a-1] * p[4,4,a]
pi[i,5,a] <- pi[i,4,a-1] * p[4,5,a] + pi[i,5,a-1] * p[5,5,a] 
pi[i,6,a] <- pi[i,5,a-1] * p[5,6,a] + pi[i,6,a-1] * p[6,6,a] 
pi[i,7,a] <- pi[i,4,a-1] * p[4,7,a] + pi[i,5,a-1] * p[5,7,a] +

pi[i,6,a-1] * p[6,7,a] + pi[i,7,a-1] * p[7,7,a]

pi[i,8,a] <- pi[i,7,a-1] * p[7,8,a] + pi[i,8,a-1] * p[8,8,a]
pi[i,9,a] <- pi[i,8,a-1] * p[8,9,a] + pi[i,9,a-1] * p[9,9,a]
pi[i,10,a] <- pi[i,7,a-1] * p[7,10,a] + pi[i,8,a-1] * p[8,10,a] +

pi[i,9,a-1] * p[9,10,a] + pi[i,10,a-1] * p[10,10,a]
pi[i,11,a] <- pi[i,10,a-1] * p[10,11,a] + pi[i,11,a-1] * 

p[11,11,a]
pi[i,12,a] <- pi[i,11,a-1] * p[11,12,a] + pi[i,12,a-1] * 

p[12,12,a]
pi[i,13,a] <- pi[i,10,a-1] * p[10,13,a] + pi[i,11,a-1] * 

p[11,13,a] +
pi[i,12,a-1] * p[12,13,a] + pi[i,13,a-1] * 

p[13,13,a]
}

}

# Proportion in each state by age
for (i in 16:37) {
prop[i,1] <- sum(pi[i,1:3,i+7])
prop[i,2] <- sum(pi[i,4:6,i+7])
prop[i,3] <- sum(pi[i,7:9,i+7])
prop[i,4] <- sum(pi[i,10:12,i+7])
prop[i,5] <- pi[i,13,i+7]
propcomp[i,1] <- prop[i,1]
propcomp[i,2] <- prop[i,2]
propcomp[i,3] <- sum(prop[i,3:5])

}
propunder25[1] <- sum(propcomp[16:24,1]) / 9
propunder25[2] <- sum(propcomp[16:24,2]) / 9
propunder25[3] <- sum(propcomp[16:24,3]) / 9
propover25[1] <- sum(propcomp[25:37,1]) / 13
propover25[2] <- sum(propcomp[25:37,2]) / 13
propover25[3] <- sum(propcomp[25:37,3]) / 13

# Proportion expected to be observed in state by age
for (i in 16:37) {
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prop.obs[i,1] <- prop[i,1] +
prop[i,2] * (1 - psi) +
prop[i,3] * (1 - psi) * (1 - psi) +
prop[i,4] * (1 - psi) * (1 - psi) * (1 - psi) +

prop[i,5] * (1 - psi) * (1 - psi) * (1 - psi) * (1 
- psi)

prop.obs[i,2] <- prop[i,2] * psi + 
2 * prop[i,3] * psi * (1 - psi) +
3 * prop[i,4] * psi * (1 - psi) * (1 - psi) +
4 * prop[i,5] * psi * (1 - psi) * (1 - psi) * (1 -

psi)

prop.obs[i,3] <- prop[i,3] * psi * psi +
3 * prop[i,4] * psi * psi * (1 - psi) +
6 * prop[i,5] * psi * psi * (1 - psi) * (1 - psi)

prop.obs[i,4] <- prop[i,4] * psi * psi * psi +
4 * prop[i,5] * psi * psi * psi * (1 - psi)

prop.obs[i,5] <- prop[i,5] * psi * psi * psi * psi

prop.obscomp[i,1] <- prop.obs[i,1]
prop.obscomp[i,2] <- prop.obs[i,2]
prop.obscomp[i,3] <- sum(prop.obs[i,3:5])
}

prop.obsunder25[1] <- sum(prop.obscomp[16:24,1]) / 9
prop.obsunder25[2] <- sum(prop.obscomp[16:24,2]) / 9
prop.obsunder25[3] <- sum(prop.obscomp[16:24,3]) / 9
prop.obsover25[1] <- sum(prop.obscomp[25:37,1]) / 13
prop.obsover25[2] <- sum(prop.obscomp[25:37,2]) / 13
prop.obsover25[3] <- sum(prop.obscomp[25:37,3]) / 13

}

# Data

list(

# PID incidence, r-infection raqte, Etological fractions and re-

# infection rate

mu = c(-3.865, -3.595, -3.964, -4.402, -0.5856, 0.7104, 0.4815, 0.3117, 0.3277, 

1.919),

Omega = structure(.Data =c(
573.855, -49.264, -10.817, -3.992, 323.371, 97.687, -112.351, -30.198, -5.401, -2.713,

-49.264, 301.419, -14.194, -3.299, 147.591, -78.069, 176.480, -72.284, -11.551, 2.012,
-10.817, -14.194, 105.908, -20.063, 37.684, -13.275, -46.636, 236.305, -118.245,

0.515,

-3.992, -3.299, -20.063, 57.687, 19.172, -2.664, -8.418, -125.677, 138.728, 0.088,

323.371, 147.591, 37.684, 19.172, 351.620, 1.363, -1.443, -1.164, 1.537, 0.030,
97.687, -78.069, -13.275, -2.664, 1.363, 285.706, -324.389, -85.846, -16.864, -7.957,

-112.351, 176.480, -46.636, -8.418, -1.443, -324.389, 734.182, -295.254, -50.046,

8.090,

-30.198, -72.284, 236.305, -125.677, -1.164, -85.846, -295.254, 1512.713, -758.618,
3.088,

-5.401, -11.551, -118.245, 138.728, 1.537, -16.864, -50.046, -758.618, 839.634, 0.705,

-2.713, 2.012, 0.515, 0.088, 0.030, -7.957, 8.090, 3.088, 0.705, 13.711

),
.Dim = c(10,10))
)

# Initial values 1

list(

Y = c(-5,-5,-5,-5,-1,-5,-5,-5,-5,-1)
)
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# Initial values 2

list(

Y = c(-1,-1,-1,-1,3,-1,-1,-1,-1,3)
)
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Appendix 12 WinBUGS code for prediction of
ectopic pregnancy rates in Table 35 (see Chapter 9)

model {

# Population (disecrete time) model - 2 year higher rate

# PID incidence and ct GP re-infection rate ratio informative priors

Y[1:10] ~ dmnorm(mu[], Omega[ , ]) 
for (ag in 1:4) {
log(lambda.PID[ag]) <- Y[ag]
EF[ag] <- Y[ag+5] * Y[ag+5]
}

logit(psi) <- Y[5]
log(eta1) <- Y[10]

# WBDEV call

for (ag in 1:4) {
input1[ag] <- lambda.PID[ag]
input1[ag+6] <- EF[ag]
}

input1[5] <- psi
input1[6] <- eta1

philap ~ dbeta(12,16)
input1[11] <- philap

for (i in 1:29) {
input2[i] <- N[i+15]
}

solution[1:609] <- cumulativePIDlap(input1[1:11],input2[1:29])

# number of previous PIDs [n,a] n = number: 0,1,2,3; a = age-group

for (a in 1:4) { 
numPIDs[1,a] <- 1 - numPIDs[2,a] - numPIDs[3,a] - numPIDs[4,a]
numPIDs[2,a] <- solution[a]
numPIDs[3,a] <- solution[a+4]
numPIDs[4,a] <- solution[a+8]
numPIDsnct[1,a] <- 1 - numPIDsnct[2,a] - numPIDsnct[3,a] -

numPIDsnct[4,a]
numPIDsnct[2,a] <- solution[a+12]
numPIDsnct[3,a] <- solution[a+16]
numPIDsnct[4,a] <- solution[a+20]
numPIDsct[1,a] <- numPIDs[1,a] - numPIDsnct[1,a]
numPIDsct[2,a] <- numPIDs[2,a] - numPIDsnct[2,a]
numPIDsct[3,a] <- numPIDs[3,a] - numPIDsnct[3,a]
numPIDsct[4,a] <- numPIDs[4,a] - numPIDsnct[4,a]
}

# population denominators - 2002

N1619 <- sum(N[16:19])
N2024 <- sum(N[20:24])
N2534 <- sum(N[25:34])
N3544 <- sum(N[35:44])
N1644 <- sum(N[16:44])
N1617 <- sum(N[16:17])
N1820 <- sum(N[18:20])
N2124 <- sum(N[21:24])
N2529 <- sum(N[25:29])
N3044 <- sum(N[30:44])
N1819 <- sum(N[18:19])
N3034 <- sum(N[30:34])
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# Distribution of PID severity - 2002

# hospital

r.HESPID[1] ~ dbin(HESPID[1],N1619) 
r.HESPID[2] ~ dbin(HESPID[2],N2024) 
r.HESPID[3] ~ dbin(HESPID[3],N2534) 
r.HESPID[4] ~ dbin(HESPID[4],N3544) 

# priors

for (a in 1:4) {
HESPID[a] ~ dbeta(1,1)
}

# kc60

r.kc602008[1] ~ dbin(kc602008[1],N1619)
r.kc602008[2] ~ dbin(kc602008[2],N2024)
r.kc602008[3] ~ dbin(kc602008[3],N2534)
r.kc602008[4] ~ dbin(kc602008[4],N3544)

# priors

for (a in 1:4) {
kc602008[a] ~ dbeta(1,1)
}

# data by age not available until 2008

# 13421 / 12117 is the ratio of totals for 2002 and GUMCAD data for 

# 2008

# assumes GUMCAD data representative of all kc60

# assumes age distribution is the same in 2002 as 2008

for (a in 1:4) { 
kc60[a] <- kc602008[a] * 13421 / 12117
}

# GPRD

r.GPRDPID[1] ~ dbin(GPRDPID[1],N1619)
r.GPRDPID[2] ~ dbin(GPRDPID[2],N2024) 
r.GPRDPID[3] ~ dbin(GPRDPID[3],N2534) 
r.GPRDPID[4] ~ dbin(GPRDPID[4],N3544) 

# priors

for (a in 1:4) {
GPRDPID[a] ~ dbeta(1,1)
}

# Distribution

for (a in 1:4) {
pmin[a] <- kc60[a] + max(HESPID[a],GPRDPID[a])
pmax[a] <- kc60[a] + HESPID[a] + GPRDPID[a]
X[a] ~ dunif(pmin[a],pmax[a])
hospdiag[a] <- psi * HESPID[a] / X[a] 
milddiag[a] <- 1 - hospdiag[a] - undiag[a]
undiag[a] <- (1 - psi)
}

# proportion with PIDs by each age, severity, and number 

# all PID

# n = 1
for (s in 1:3) {
for (a in 1:4) {
PIDcat[1,s,a] <- 1 - (PIDcat[2,s,a] + PIDcat[3,s,a] + 

PIDcat[4,s,a])
}
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}

# n = 2-4
for (n in 2:4) {

for (a in 1:4) {
PIDcat[n,1,a] <- numPIDs[n,a] * undiag[a]
PIDcat[n,2,a] <- numPIDs[n,a] * milddiag[a]
PIDcat[n,3,a] <- numPIDs[n,a] * hospdiag[a]
}

}

for (n in 2:4) {
for (s in 1:3) {
PIDcat1624_2544[n,s,1] <- (PIDcat[n,s,1] * sum(N[16:19]) +

PIDcat[n,s,2] * sum(N[20:24]) + 
PIDcat[n,s,3] * sum(N[25:29])) /

sum(N[16:29])
PIDcat1624_2544[n,s,2] <- (PIDcat[n,s,3] * sum(N[30:34]) +

PIDcat[n,s,4] * sum(N[35:44])) /
sum(N[30:44])

PIDcat1624_2544[n,s,3] <- (PIDcat[n,s,1] * sum(N[16:19]) +
PIDcat[n,s,2] * sum(N[20:24]) +
PIDcat[n,s,3] * sum(N[25:34]) +
PIDcat[n,s,4] * sum(N[35:44])) /

sum(N[16:44])
}

}

for (a in 1:2) {
for (n in 2:4) {
sumsevPIDcat1624_2544[n,a] <- sum(PIDcat1624_2544[n, ,a])
}

sum2sevPIDcat1624_2544[a] <-sum(sumsevPIDcat1624_2544[2:4,a])
for (s in 1:3) {
sumnumPIDcat1624_2544[s,a] <- sum(PIDcat1624_2544[2:4,s,a])
}

sum2numPIDcat1624_2544[a] <- sum(sumnumPIDcat1624_2544[ ,a])
}

# non-CT related PID

# n = 1
for (s in 1:3) {
for (a in 1:4) {
PIDcatnct[1,s,a] <- 1 - (PIDcatnct[2,s,a] + PIDcatnct[3,s,a] +

PIDcatnct[4,s,a])
}

}

# n = 2-4
for (n in 2:4) {
for (a in 1:4) {
PIDcatnct[n,1,a] <- numPIDsnct[n,a] * undiag[a]
PIDcatnct[n,2,a] <- numPIDsnct[n,a] * milddiag[a]
PIDcatnct[n,3,a] <- numPIDsnct[n,a] * hospdiag[a]
}

}

for (n in 2:4) {
for (s in 1:3) {
PIDcat1624_2544nct[n,s,1] <- (PIDcatnct[n,s,1] * sum(N[16:19]) +

PIDcatnct[n,s,2] * sum(N[20:24]) + 
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PIDcatnct[n,s,3] * sum(N[25:29])) /
sum(N[16:29])

PIDcat1624_2544nct[n,s,2] <- (PIDcatnct[n,s,3] * sum(N[30:34]) +
PIDcatnct[n,s,4] * sum(N[35:44])) /

sum(N[30:44])
PIDcat1624_2544nct[n,s,3] <- (PIDcatnct[n,s,1] * sum(N[16:19]) +

PIDcatnct[n,s,2] * sum(N[20:24]) +
PIDcatnct[n,s,3] * sum(N[25:34]) +
PIDcatnct[n,s,4] * sum(N[35:44])) /

sum(N[16:44])
}

}

for (a in 1:3) {
for (n in 2:4) {
sumsevPIDcat1624_2544nct[n,a] <- sum(PIDcat1624_2544nct[n, ,a])
}

sum2sevPIDcat1624_2544nct[a] <-sum(sumsevPIDcat1624_2544nct[2:4,a])
for (s in 1:3) {
sumnumPIDcat1624_2544nct[s,a] <- sum(PIDcat1624_2544nct[2:4,s,a])
}

sum2numPIDcat1624_2544nct[a] <- sum(sumnumPIDcat1624_2544nct[ ,a])
}

# CT related PID
# n = 1
for (s in 1:3) {
for (a in 1:4) {
PIDcatct[1,s,a] <- 1 - (PIDcatct[2,s,a] + PIDcatct[3,s,a] +

PIDcatct[4,s,a])
}

}

# n = 2-4
for (n in 2:4) {
for (a in 1:4) {
PIDcatct[n,1,a] <- numPIDsct[n,a] * undiag[a]
PIDcatct[n,2,a] <- numPIDsct[n,a] * milddiag[a]
PIDcatct[n,3,a] <- numPIDsct[n,a] * hospdiag[a]
}

}

for (n in 2:4) {
for (s in 1:3) {
PIDcat1624_2544ct[n,s,1] <- (PIDcatct[n,s,1] * sum(N[16:19]) +

PIDcatct[n,s,2] * sum(N[20:24]) + 
PIDcatct[n,s,3] * sum(N[25:29])) /

sum(N[16:29])
PIDcat1624_2544ct[n,s,2] <- (PIDcatct[n,s,3] * sum(N[30:34]) +

PIDcatct[n,s,4] * sum(N[35:44])) /
sum(N[30:44])

PIDcat1624_2544ct[n,s,3] <- (PIDcatct[n,s,1] * sum(N[16:19]) +
PIDcatct[n,s,2] * sum(N[20:24]) +
PIDcatct[n,s,3] * sum(N[25:34]) +
PIDcatct[n,s,4] * sum(N[35:44])) /

sum(N[16:44])

}
}

for (a in 1:3) {
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for (n in 2:4) {
sumsevPIDcat1624_2544ct[n,a] <- sum(PIDcat1624_2544ct[n, ,a])
}

sum2sevPIDcat1624_2544ct[a] <-sum(sumsevPIDcat1624_2544ct[2:4,a])
for (s in 1:3) {
sumnumPIDcat1624_2544ct[s,a] <- sum(PIDcat1624_2544ct[2:4,s,a])
}

sum2numPIDcat1624_2544ct[a] <- sum(sumnumPIDcat1624_2544ct[ ,a])
}

# Probability of EP given PID and conception 

# Likelihood

# Westrom progression to EP by number of episodes

for (n in 1:4) {
r.EPnum[n] ~ dbin(EPnum[n],n.EPnum[n])
}

# Westrom progression to EP by severity in women with 1 PID

for (s in 1:3) {
r.EPsev[s] ~ dbin(EPsev[s],n.EPsev[s])
}

# Westrom progression to EP by age in women with 1 PID

for (a in 1:2) {
r.EPage[a] ~ dbin(EPage[a],n.EPage[a])
}

# functional retionship between model (see below) parameters and 

# likelihood

EPnum[1] <- (control[1] * 713 + control[2] * 199) / 912

for (n in 2:4) {
EPnum[n] <- (((PIDconctoEP[n,1,1] * n.EPsev[1] +

PIDconctoEP[n,2,1] * n.EPsev[2] +
PIDconctoEP[n,3,1] * n.EPsev[3]) /

sum(n.EPsev[1:3])) * n.EPage[1] 
+

((PIDconctoEP[n,1,2] * n.EPsev[1] +
PIDconctoEP[n,2,2] * n.EPsev[2] +
PIDconctoEP[n,3,2] * n.EPsev[3]) /

sum(n.EPsev[1:3])) * n.EPage[2]) / 
sum(n.EPage[1:2])

}

for (s in 1:3) {
EPsev[s] <- (PIDconctoEP[2,s,1] * n.EPage[1] +

PIDconctoEP[2,s,2] * n.EPage[2]) /
sum(n.EPage[1:2])

}

for (a in 1:2) {
EPage[a] <- (PIDconctoEP[2,1,a] * n.EPsev[1] +

PIDconctoEP[2,2,a] * n.EPsev[2] +
PIDconctoEP[2,3,a] * n.EPsev[3]) / 

sum(n.EPsev[1:3])
}

# probability of EP by age - all PID
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# assume EPs occur 5yrs into Westrom (8.9 year foll) for distribution 

# of EP #age 

# Progression probabilities by age, severity, and number

# progress[n,s,a] n: number of PIDs 0,1,2,3+, sev mild,mod,sev, a: 
# age<=29, #30+
# model

for (s in 1:3) {
for (a in 1:2) {
PIDconctoEP[1,s,a] <- EPnum[1] # constant across age!!!
for (n in 2:4) {
logit(PIDconctoEP[n,s,a]) <- beta0 + beta1[n] + beta2[s] + 

beta3[a]
}

}
}

control[1] <- alphatemp * propEP.1624 / (propEP.1624 + propEP.2544)
control[2] <- alphatemp * propEP.2544 / (propEP.1624 + propEP.2544)

logit(alphatemp) <- alpha

# Priors

# alpha control group thing 
alpha ~ dnorm(0,0.0001)

# beta0 = 1 PID, mild, young, 
beta0 ~ dnorm(0,0.0001)

# beta1[n] = effect of 0,1,2or3 PIDs beta1[1] = 0, beta1[2] = 0
beta1[1] <- 0
beta1[2] <- 0
for (n in 3:4) {
beta1[n] ~ dnorm(0,0.0001)
}

# beta2[s] = effect of severity: beta2[1] = 0
beta2[1] <- 0
for (s in 2:3) {
beta2[s] ~ dnorm(0,0.0001)
}

# beta3[a] = effect of age: beta3[1] = 0 
beta3[1] <- 0
beta3[2] ~ dnorm(0,0.0001)

# RESIDUAL DEVIANCE

for (m in 1:4) {
dev1[m] <- 2 * (r.EPnum[m] * log(r.EPnum[m] / (EPnum[m] * 

n.EPnum[m])) +
(n.EPnum[m] - r.EPnum[m]) * log((n.EPnum[m] -

r.EPnum[m]) /
(n.EPnum[m] - (n.EPnum[m] * EPnum[m]))))

}

for (s in 1:3) {
dev2[s] <- 2 * (r.EPsev[s] * log(r.EPsev[s] / (EPsev[s] * 

n.EPsev[s])) +
(n.EPsev[s] - r.EPsev[s]) * log((n.EPsev[s] -

r.EPsev[s]) /
(n.EPsev[s] - (n.EPsev[s] * EPsev[s]))))

}
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for (a in 1:2) {
dev3[a] <- 2 * (r.EPage[a] * log(r.EPage[a] / (EPage[a] * 

n.EPage[a])) +
(n.EPage[a] - r.EPage[a]) * log((n.EPage[a] -

r.EPage[a]) /
(n.EPage[a] - (n.EPage[a] * EPage[a]))))

}
sumdev1 <- sum(dev1[])
sumdev2 <- sum(dev2[])
sumdev3 <- sum(dev3[])
sumdev.tot <- sumdev1 + sumdev2 + sumdev3

# Progression probabilities by age, diagnostic status, and number

# progress[n,s,a] n: number of PIDs 0,1,2,3+,
# 1: undiagnosed (mild), 
# 2: diagnosed outside of Hospital (mild), 
# 3: hospital diagnosed(overall Westrom)
# a: age<=29, 30+

# model 1

#for (n in 2:4) {
# for (a in 1:2) {
#  PIDconctoEP2[n,1,a] <- ((PIDconctoEP[n,1,a] * n.EPsev[1] +
# PIDconctoEP[n,2,a] * n.EPsev[2] +
#                           PIDconctoEP[n,3,a] * n.EPsev[3]) / 
#                          sum(n.EPsev[1:3])) - control[a]
#  PIDconctoEP2[n,2,a] <- ((PIDconctoEP[n,1,a] * n.EPsev[1] +
# PIDconctoEP[n,2,a] * n.EPsev[2] +
#                           PIDconctoEP[n,3,a] * n.EPsev[3]) / 
#                          sum(n.EPsev[1:3])) - control[a]
#  PIDconctoEP2[n,3,a] <- ((PIDconctoEP[n,1,a] * n.EPsev[1] +
# PIDconctoEP[n,2,a] * n.EPsev[2] +
#                          PIDconctoEP[n,3,a] * n.EPsev[3]) / 
#                         sum(n.EPsev[1:3])) - control[a]
#  }
# }

# model 2

#for (n in 2:4) {
# for (a in 1:2) {
#  PIDconctoEP2[n,1,a] <- PIDconctoEP[n,1,a] - control[a]
#  PIDconctoEP2[n,2,a] <- (PIDconctoEP[n,1,a] * n.EPsev[1] +
#                          PIDconctoEP[n,2,a] * n.EPsev[2] +
#                          PIDconctoEP[n,3,a] * n.EPsev[3]) / 
#                         sum(n.EPsev[1:3]) - control[a]
#  PIDconctoEP2[n,3,a] <- (PIDconctoEP[n,1,a] * n.EPsev[1] +
#                          PIDconctoEP[n,2,a] * n.EPsev[2] +
#                          PIDconctoEP[n,3,a] * n.EPsev[3]) / 
#                         sum(n.EPsev[1:3]) - control[a]
#  }
# }

# model 3

#for (n in 2:4) {
# for (a in 1:2) {
#  PIDconctoEP2[n,1,a] <- PIDconctoEP[n,1,a] - control[a]
#  PIDconctoEP2[n,2,a] <- PIDconctoEP[n,1,a] - control[a]
#  PIDconctoEP2[n,3,a] <- (PIDconctoEP[n,1,a] * n.EPsev[1] +
#                          PIDconctoEP[n,2,a] * n.EPsev[2] +
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#                          PIDconctoEP[n,3,a] * n.EPsev[3]) / 
#                         sum(n.EPsev[1:3]) - control[a]
#  }
# }

# model 4

for (n in 2:4) {
for (a in 1:2) {
A[n,a] <- PIDconctoEP[n,1,a] - control[a]
PIDconctoEP2[n,1,a] ~ dunif(0,A[n,a])
PIDconctoEP2[n,2,a] <- PIDconctoEP[n,1,a] - control[a]
PIDconctoEP2[n,3,a] <- (PIDconctoEP[n,1,a] * n.EPsev[1] +

PIDconctoEP[n,2,a] * n.EPsev[2] +
PIDconctoEP[n,3,a] * n.EPsev[3]) / 

sum(n.EPsev[1:3]) - control[a]
}

}

# model 5

#for (n in 2:4) {
# for (a in 1:2) {
#  PIDconctoEP2[n,1,a] <- 0
#  PIDconctoEP2[n,2,a] <- PIDconctoEP[n,1,a] - control[a]
#  PIDconctoEP2[n,3,a] <- (PIDconctoEP[n,1,a] * n.EPsev[1] +
#                          PIDconctoEP[n,2,a] * n.EPsev[2] +
#                          PIDconctoEP[n,3,a] * n.EPsev[3]) / 
#                         sum(n.EPsev[1:3]) - control[a]
#  }
# }

# Risk a pregnancy will be ectopic due to PID by age

# all PID

for (n in 2:4) {
for (s in 1:3) {
EPs[n,s,1] <- PIDcat[n,s,1] * PIDconctoEP2[n,s,1]
EPs[n,s,2] <- PIDcat[n,s,2] * PIDconctoEP2[n,s,1]
EPs[n,s,3] <- PIDcat[n,s,3] * (

(PIDconctoEP2[n,s,1] * N2529 + PIDconctoEP2[n,s,2] * 
N3034)

/ N2534)
EPs[n,s,4] <- PIDcat[n,s,4] * PIDconctoEP2[n,s,2]
}

}
for (a in 1:4) {
EPbyage[a] <- sum(EPs[2:4 , ,a])
}

EPbyage.tot <- (EPbyage[1] * sum(N[16:19]) +
EPbyage[2] * sum(N[20:24]) + 
EPbyage[3] * sum(N[25:34]) + 
EPbyage[4] * sum(N[35:44])) / 

sum(N[16:44])

# non-CT related PID

for (n in 2:4) {
for (s in 1:3) {
EPsnct[n,s,1] <- PIDcatnct[n,s,1] * PIDconctoEP2[n,s,1]
EPsnct[n,s,2] <- PIDcatnct[n,s,2] * PIDconctoEP2[n,s,1]
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EPsnct[n,s,3] <- PIDcatnct[n,s,3] * (
(PIDconctoEP2[n,s,1] * N2529 + PIDconctoEP2[n,s,2] * 

N3034)
/ N2534)

EPsnct[n,s,4] <- PIDcatnct[n,s,4] * PIDconctoEP2[n,s,2]
}

}
for (a in 1:4) {
EPbyagenct[a] <- sum(EPsnct[2:4 , ,a])
}

EPbyagenct.tot <- (EPbyagenct[1] * sum(N[16:19]) +
EPbyagenct[2] * sum(N[20:24]) + 
EPbyagenct[3] * sum(N[25:34]) + 
EPbyagenct[4] * sum(N[35:44])) / 

sum(N[16:44])

for (a in 1:4) {
EPduetoCTbyage[a] <- EPbyage[a] - EPbyagenct[a]
}

EPduetoCTbyage.tot <- (EPduetoCTbyage[1] * sum(N[16:19]) +
EPduetoCTbyage[2] * sum(N[20:24]) + 
EPduetoCTbyage[3] * sum(N[25:34]) + 
EPduetoCTbyage[4] * sum(N[35:44])) / 

sum(N[16:44])

# proportion of PID related EPs due to CT

for (a in 1:4) {
propCTofPIDEPs[a] <- 1 - (EPbyagenct[a] / EPbyage[a])
}

propCTofPIDEPs.tot <- (propCTofPIDEPs[1] * sum(N[16:19]) +
propCTofPIDEPs[2] * sum(N[20:24]) + 
propCTofPIDEPs[3] * sum(N[25:34]) + 
propCTofPIDEPs[4] * sum(N[35:44])) / 

sum(N[16:44])

propCTofPIDEPs.tot2 <- (propCTofPIDEPs[1] * r.HESEP[1] +
propCTofPIDEPs[2] * r.HESEP[2] + 
propCTofPIDEPs[3] * r.HESEP[3] + 
propCTofPIDEPs[4] * r.HESEP[4]) / 

sum(r.HESEP[1:4])

# Population EP rate by age - 2002

# Conception rate by age - 2002

concdata[1] ~ dbin(conc[1],N1619)
concdata[2] ~ dbin(conc[2],N2024)
concdata[3] ~ dbin(conc[3],N2534)
concdata[4] ~ dbin(conc[4],N3544)

# priors

for (a in 1:4) {
conc[a] ~ dbeta(1,1)
}

# EP rate by age - 2002

r.HESEP[1] ~ dbin(HESEP[1],N1619) 
r.HESEP[2] ~ dbin(HESEP[2],N2024) 
r.HESEP[3] ~ dbin(HESEP[3],N2534) 
r.HESEP[4] ~ dbin(HESEP[4],N3544) 

# priors

for (a in 1:4) {
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HESEP[a] ~ dbeta(1,1)
}

# Analysis of retrospective data

# Odds Ratio 

ln.OR.l ~ dnorm(1.22,28.5)
ln.OR.u ~ dnorm(1.69,48.5)
OR.l <- exp(ln.OR.l)
OR.u <- exp(ln.OR.u)

# Population attributable fraction

for (a in 1:4) {
pi.PID[a] <- 1 - numPIDs[1,a]
pi.PIDnct[a] <- 1 - numPIDsnct[1,a]
gamma.l[a] <- (pi.PID[a] * (OR.l - 1)) / (pi.PID[a] * (OR.l -

1) + 1)
gamma.u[a] <- (pi.PID[a] * (OR.u - 1)) / (pi.PID[a] * (OR.u -

1) + 1)
gamma.lnct[a] <- (pi.PIDnct[a] * (OR.l - 1)) / 

(pi.PIDnct[a] * (OR.l - 1) + 1)
gamma.unct[a] <- (pi.PIDnct[a] * (OR.u - 1)) / 

(pi.PIDnct[a] * (OR.u - 1) + 1)
gamma.lct[a] <- gamma.l[a] - gamma.lnct[a]
gamma.uct[a] <- gamma.u[a] - gamma.unct[a]
}

pi.PID1624 <- (pi.PID[1] * sum(N[16:19]) + pi.PID[2] * sum(N[20:24])) 
/

sum(N[16:24])
pi.PID2544 <- (pi.PID[3] * sum(N[25:34]) + pi.PID[4] * sum(N[35:44])) 
/

sum(N[25:44])
pi.PID1644 <- (pi.PID[1] * sum(N[16:19]) + pi.PID[2] * sum(N[20:24]) 
+

pi.PID[3] * sum(N[25:34]) + pi.PID[4] * sum(N[35:44])) 
/

sum(N[16:44])

pi.PID1624nct <- (pi.PIDnct[1] * sum(N[16:19]) +
pi.PIDnct[2] * sum(N[20:24])) / sum(N[16:24])

pi.PID2544nct <- (pi.PIDnct[3] * sum(N[25:34]) +
pi.PIDnct[4] * sum(N[35:44])) / sum(N[25:44])

pi.PID1644nct <- (pi.PIDnct[1] * sum(N[16:19]) + 
pi.PIDnct[2] * sum(N[20:24]) +
pi.PIDnct[3] * sum(N[25:34]) +
pi.PIDnct[4] * sum(N[35:44])) /

sum(N[16:44])

gamma.l.1624 <- (pi.PID1624 * (OR.l - 1)) / (pi.PID1624 * (OR.l - 1)
+ 1)
gamma.u.1624 <- (pi.PID1624 * (OR.u - 1)) / (pi.PID1624 * (OR.u - 1)
+ 1)
gamma.l.2544 <- (pi.PID2544 * (OR.l - 1)) / (pi.PID2544 * (OR.l - 1)
+ 1)
gamma.u.2544 <- (pi.PID2544 * (OR.u - 1)) / (pi.PID2544 * (OR.u - 1)
+ 1)
gamma.l.1644 <- (pi.PID1644 * (OR.l - 1)) / (pi.PID1644 * (OR.l - 1)
+ 1)
gamma.u.1644 <- (pi.PID1644 * (OR.u - 1)) / (pi.PID1644 * (OR.u - 1)
+ 1)
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gamma.l.1624nct <- (pi.PID1624nct * (OR.l - 1)) / 
(pi.PID1624nct * (OR.l - 1) + 1)

gamma.u.1624nct <- (pi.PID1624nct * (OR.u - 1)) / 
(pi.PID1624nct * (OR.u - 1) + 1)

gamma.l.2544nct <- (pi.PID2544nct * (OR.l - 1)) /
(pi.PID2544nct * (OR.l - 1) + 1)

gamma.u.2544nct <- (pi.PID2544nct * (OR.u - 1)) /
(pi.PID2544nct * (OR.u - 1) + 1)

gamma.l.1644nct <- (pi.PID1644nct * (OR.l - 1)) /
(pi.PID1644nct * (OR.l - 1) + 1)

gamma.u.1644nct <- (pi.PID1644nct * (OR.u - 1)) /
(pi.PID1644nct * (OR.u - 1) + 1)

gamma.l.1624ct <- gamma.l.1624 - gamma.l.1624nct
gamma.u.1624ct <- gamma.u.1624 - gamma.u.1624nct
gamma.l.2544ct <- gamma.l.2544 - gamma.l.2544nct
gamma.u.2544ct <- gamma.u.2544 - gamma.u.2544nct
gamma.l.1644ct <- gamma.l.1644 - gamma.l.1644nct
gamma.u.1644ct <- gamma.u.1644 - gamma.u.1644nct

numEPSduePID.l <- gamma.l.1644 * sum(r.HESEP[ ])
numEPSduePID.u <- gamma.u.1644 * sum(r.HESEP[ ])

numEPSdueCT.l <- gamma.l.1644 * sum(r.HESEP[ ]) * propCTofPIDEPs.tot2
numEPSdueCT.u <- gamma.u.1644 * sum(r.HESEP[ ]) * propCTofPIDEPs.tot2

# Proportion of conceptions that are Ectopic - 2002

for (a in 1:4) {
propEP[a] <- HESEP[a] / conc[a]
}

propEP.1624 <- (propEP[1] * sum(N[16:19]) + propEP[2] * 
sum(N[20:24])) /

sum(N[16:24])
propEP.2544 <- (propEP[3] * sum(N[25:34]) + propEP[4] * 
sum(N[35:44])) /

sum(N[25:44])

propEP.tot <- (propEP[1] * sum(N[16:19]) +
propEP[2] * sum(N[20:24]) + 
propEP[3] * sum(N[25:34]) + 
propEP[4] * sum(N[35:44])) / 

sum(N[16:44])

# Retrospective estimate of prop EPS due to PID - 2002

for (a in 1:4) {
retroEPfromPID.l[a] <- propEP[a] * gamma.l[a]
retroEPfromPID.u[a] <- propEP[a] * gamma.u[a]
}

retroEPfromPID.l.tot <- propEP.tot * gamma.l.1644
retroEPfromPID.u.tot <- propEP.tot * gamma.u.1644

# Proportion due to PID and CT - 2002

for (a in 1:4) {
propPID[a] <- EPbyage[a] / propEP[a]
propifnoct[a] <- EPbyagenct[a] / propEP[a]
propnct[a] <- propPID[a] - propifnoct[a]
}

propPID.tot <- (propPID[1] * sum(N[16:19]) +
propPID[2] * sum(N[20:24]) +
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propPID[3] * sum(N[25:34]) + 
propPID[4] * sum(N[35:44])) / 

sum(N[16:44])
propifnoct.tot <- (propifnoct[1] * sum(N[16:19]) +

propifnoct[2] * sum(N[20:24]) + 
propifnoct[3] * sum(N[25:34]) + 
propifnoct[4] * sum(N[35:44])) / 

sum(N[16:44])
propnct.tot <- (propnct[1] * sum(N[16:19]) +

propnct[2] * sum(N[20:24]) + 
propnct[3] * sum(N[25:34]) + 
propnct[4] * sum(N[35:44])) / 

sum(N[16:44])
}

# Data

list(

# PID incidence, r-infection rate, Etological fractions and re-infection rate

mu = c(-3.865, -3.595, -3.964, -4.402, -0.5856, 0.7104, 0.4815, 0.3117, 0.3277, 
1.919),
Omega = structure(.Data =c(
573.855, -49.264, -10.817, -3.992, 323.371, 97.687, -112.351, -30.198, -5.401, -2.713,
-49.264, 301.419, -14.194, -3.299, 147.591, -78.069, 176.480, -72.284, -11.551, 2.012,
-10.817, -14.194, 105.908, -20.063, 37.684, -13.275, -46.636, 236.305, -118.245,
0.515,
-3.992, -3.299, -20.063, 57.687, 19.172, -2.664, -8.418, -125.677, 138.728, 0.088,
323.371, 147.591, 37.684, 19.172, 351.620, 1.363, -1.443, -1.164, 1.537, 0.030,
97.687, -78.069, -13.275, -2.664, 1.363, 285.706, -324.389, -85.846, -16.864, -7.957,
-112.351, 176.480, -46.636, -8.418, -1.443, -324.389, 734.182, -295.254, -50.046,
8.090,
-30.198, -72.284, 236.305, -125.677, -1.164, -85.846, -295.254, 1512.713, -758.618,
3.088,
-5.401, -11.551, -118.245, 138.728, 1.537, -16.864, -50.046, -758.618, 839.634, 0.705,
-2.713, 2.012, 0.515, 0.088, 0.030, -7.957, 8.090, 3.088, 0.705, 13.711),

.Dim = c(10,10)),

r.phi = 26, n.phi = 115,

# Population sizes from census, age =1...44 - 2002

N=c(NA,NA,NA,NA,NA, NA,NA,NA,NA,NA, NA,NA,NA,NA,NA, 
305500,306300,296400,291400,294800,
310100,313900,305600,294700,295000,
304100,317000,329600,349600,370300,
380900,376900,387800,390900,399400,
401200,402600,398700,391900,381900, 370900,356200,349000,343800),

# Routine PID data 

# HES PID data - 2002

r.HESPID = c(1233,3101,9756,10526), # 16-19, 20-24, 25-34, 35-44

# KC-60 PID data 

r.kc602008 = c(2900,3972,3538,1253), #16-19, 20-24, 25-34, 35-44

# predicted GPRD data - 2002

r.GPRDPID = c(5083,8842,14932,9609), # 16-19, 20-24, 25-34, 35-44

# Prospective PID to EP data (Westrom 560238) 

# NB data are for first pregnancy

# results by number of episodes
r.EPnum = c(6,61,24,15),      # 0,1,2,3 diagnosed PIDs
n.EPnum = c(439,912,148,39),  # 0,1,2,3 diagnosed PIDs
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# number by severity, in women with one PID episode only - read from 
# graph!
r.EPsev = c(7,19,35),      # mild, moderate, severe
n.EPsev = c(309,420,183),  # mild, moderate, severe

# number by age group, in women with one PID episode only
r.EPage = c(39,22),     # <25, 25-35 at index?
n.EPage = c(713,199),   # <25, 25-35 at index?

# HES EP data - 2002

r.HESEP = c(291,1154,4340,1840), # 16-19, 20-24, 25-34, 35-44

# Conceptions data - 2002

# 13-15, 15-17, 15-19, 20-24, 25-29, 30-34, 35-39, 40+
#conc = c(7900,42000,97100,167800,199400,204300,98900,19600),
# 16-19, 20-24, 25-34, 35-44 - Guessed!

concdata = c(90000,167800,403700,113900)
)

# Initial values 1

list(

Y = c(-5,-5,-5,-5,-1,-5,-5,-5,-5,-1),

HESPID = c(0.01,0.01,0.01,0.01),
kc602008 = c(0.01,0.01,0.01,0.01),
GPRDPID = c(0.01,0.01,0.01,0.01),

alpha = -2,
beta0 = -2,
beta1 = c(NA,NA,0.5,0.5),
beta2 = c(NA,0.05,0.05),
beta3 = c(NA,0.5),

HESEP = c(0.01,0.01,0.01,0.01),
conc = c(0.01,0.01,0.01,0.01),
philap = 0.3
)

# Initial values 2

list(

Y = c(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1),

HESPID = c(0.1,0.1,0.1,0.1),
kc602008 = c(0.1,0.1,0.1,0.1),
GPRDPID = c(0.1,0.1,0.1,0.1),

alpha = -5,
beta0 = -5,
beta1 = c(NA,NA,0.05,0.05),
beta2 = c(NA,0.5,0.5),
beta3 = c(NA,0.05),

HESEP = c(0.1,0.1,0.1,0.1),
conc = c(0.1,0.1,0.1,0.1),
philap = 0.6
)
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Appendix 13 Overestimation of prevalence of
infertility (see Chapter 10)

I f we took the case of a 34-year-old woman who has been infertile for unknown reasons for 2 years, she

would have an approximately 50% chance of conceiving by the age of 44 years.125 If 50% are sterile,

and the remaining 50% could have 0.65 probability of conceiving in any 12-month period, given that they

have not yet conceived,293 then in women who have been infertile for exactly 2 years, one would observe a

56.1% infertility rate, rather than 50%, a 12% multiplicative overestimation.

By the end of 3 years, the overestimation would be down to 4.3%, and by 4 years, only 1.5%. The exact

distribution of duration of secondary infertility in surveys of women aged 41–55 years is not known. In

estimating the prevalence of secondary infertility in women aged 44 years, we have used a uniform

distribution from 0% to 12% to represent this overestimation.
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Appendix 14 WinBUGS code and data files for
prediction of tubal factor infertility prevalence
(see Chapter 10)

The following WinBUGS code processes the survey data on infertility (see Table 37) and delivers

estimates of the prevalence on primary, secondary, and total infertility, and the prevalence of TFI (see

Table 38). The data input for the Oakley et al.129 study is based on a WinBUGs simulation exercise, shown

later in this appendix.

for (i in 1:4) { 

Model { 

p[i] ~ dbeta(x[1],x[2]) # common beta for pr(1ary infertility)
}

for (i in 5:7) {
p[i] ~ dbeta(x[3],x[4]) # common beta for pr(2ndary infertility)
}

for (i in 8:8) {
p[i] ~ dbeta(.5,.5) # Jeffreys priors p[8]
}

f ~ dunif(0.89,1)        # adjustment for length of follow-up
for (i in 1:4) {
x[i] ~ dexp(.001)       # priors for beta parameters
}

for (i in 1:8) {
r[i] ~ dbin(p[i],n[i])  # likelihood 
rhat[i] <- p[i] * n[i]  # expected value of the numerators
dev[i] <- 2 * (r[i] * (log(r[i])-log(rhat[i])) + (n[i]-r[i]) * 

(log(n[i]- r[i]) - log(n[i]-rhat[i]))) # Deviance 
# contribution
}

x[5] <- x[1]/sum(x[1:2]) # estimate of pr(1ary infertility)
x[6] <- x[3]/sum(x[3:4]) # estimate of pr(2ndary infertility)
x[7] <- x[6] * f         # adjusted pr(2ndary)
x[8] <- x[5] + x[7]      # total infertility
x[9] <- x[8] * p[8]      #  total TFI
dev[9] <- sum(dev[1:8])  # total residual deviance
dev[10] <- sum(dev[1:7]) # totall res dev for fertility data
}

# Initial Values 1

list(x=c(4,6,4,6,NA,NA,NA,NA,NA),p=c(.4,.4,.4,.4,.4,.4,.4,.4),f=.92))

# Initial values 2

list(x=c(20,20,20,20,NA,NA,NA,NA,NA),p=c(.2,.2,.2,.2,.2,.2,.2,.2),
f=0.96))

# Data

# primary (Bhattacharya, Templeton, Gunnell, Oakley (adjusted))
# secondary ( Bhattacharya, Templeton, Gunnell)
# Proportion of total infertility (including males) due to TFI
# (Maheshwari)
list(r=c(79, 27, 31, 158.3, 5, 17, 41, 442), 
n=c(2347, 766, 1609, 6128, 2347, 766, 1609, 1782))

Simulation model to adjust the Oakley % primary infertility data for the 

proportion of women who were involuntarily childless.

model {
for (i in 1:2) {

p[i] ~ dbeta(.5,.5)
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r[i] ~ dbin(p[i],n[i]) }
p[3] <- p[1]/p[2]
}

# Initial values
list(p=c(.5,.5,NA))

# Data
list(r=c(159,2910),n=c(6584,3113))

Results:
node mean     sd MC error 2.5% median 97.5% start sample

p[1] 0.02422 0.001891 7.665E-6 0.02068 0.02418 0.02806 10001 60000
p[2] 0.9347 0.004425 1.77E-5 0.9257 0.9348 0.943 10001 60000
p[3] 0.02592 0.002027 8.251E-6 0.02211 0.02587 0.03004 10001 60000

The output is used as follows: the probability of primary infertility from the Oakley et al.129 study

is taken to be the reported probability divided by the proportion who were not involuntarily childless:

(159/6584) / (2910/3113)= 0.02583. The variance of this estimate, taken from the posterior estimate

of p[3] is 0.0020272. The effective denominator is therefore the solution to n in 0.0025834 ×

(1 – 0.0025834) / n= 0.0020272, which gives n= 6128, with numerator 158.3. These figures are

used as ‘data’ in the previous code.
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Appendix 15 WinBUGS code for the predictions
from prospective models (see Table 40, Chapter 10)

# TFI analysis

model {

# Population (disecrete time) model - 2 year higher rate

# PID incidence and ct GP re-infection rate ratio informative priors

Y[1:10] ~ dmnorm(mu[], Omega[ , ]) 
for (ag in 1:4) {
log(lambda.PID[ag]) <- Y[ag]
EF[ag] <- Y[ag+5] * Y[ag+5]
}

logit(psi) <- Y[5]
log(eta1) <- Y[10]

# WBDEV call

for (ag in 1:4) {
input1[ag] <- lambda.PID[ag]
input1[ag+6] <- EF[ag]
}

input1[5] <- psi
input1[6] <- eta1

philap ~ dbeta(12,16)
input1[11] <- philap

for (i in 1:29) {
input2[i] <- N[i+15]
}

solution[1:609] <- cumulativePIDlap(input1[1:11],input2[1:29])

# number of previous PIDs [n,a] n = number: 0,1,2,3; a = age-group

for (i in 1:4) { 
numPIDs[2,i] <- solution[i]
numPIDs[3,i] <- solution[i+4]
numPIDs[4,i] <- solution[i+8]
numPIDsnct[2,i] <- solution[i+12]
numPIDsnct[3,i] <- solution[i+16]
numPIDsnct[4,i] <- solution[i+20]
}

# number of previous PIDs in women aged 44, n = number: 0,1,2,3; 

num44[2] <- solution[58]
num44[3] <- solution[87]
num44[4] <- solution[116]

num44nct[2] <- solution[145]
num44nct[3] <- solution[174]
num44nct[4] <- solution[203]

# population denominators - 2002

N1619 <- sum(N[16:19])
N2024 <- sum(N[20:24])
N2534 <- sum(N[25:34])
N3544 <- sum(N[35:44])
N1644 <- sum(N[16:44])
N1617 <- sum(N[16:17])
N1820 <- sum(N[18:20])
N2124 <- sum(N[21:24])
N2529 <- sum(N[25:29])
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N3044 <- sum(N[30:44])
N1819 <- sum(N[18:19])
N3034 <- sum(N[30:34])

# Distribution of PID severity - 2002

# hospital

r.HESPID[1] ~ dbin(HESPID[1],N1619) 
r.HESPID[2] ~ dbin(HESPID[2],N2024) 
r.HESPID[3] ~ dbin(HESPID[3],N2534) 
r.HESPID[4] ~ dbin(HESPID[4],N3544) 

# priors

for (a in 1:4) {
HESPID[a] ~ dbeta(1,1)
}

# kc60

r.kc602008[1] ~ dbin(kc602008[1],N1619)
r.kc602008[2] ~ dbin(kc602008[2],N2024)
r.kc602008[3] ~ dbin(kc602008[3],N2534)
r.kc602008[4] ~ dbin(kc602008[4],N3544)

# priors

for (a in 1:4) {
kc602008[a] ~ dbeta(1,1)
}

# data by age not available until 2008

# 13421 / 12117 is the ratio of totals for 2002 and GUMCAD data for 

# 2008

# assumes GUMCAD data representative of all kc60

# assumes age distribution is the same in 2002 as 2008

for (a in 1:4) { 
kc60[a] <- kc602008[a] * 13421 / 12117
}

# GPRD

r.GPRDPID[1] ~ dbin(GPRDPID[1],N1619) 
r.GPRDPID[2] ~ dbin(GPRDPID[2],N2024) 
r.GPRDPID[3] ~ dbin(GPRDPID[3],N2534) 
r.GPRDPID[4] ~ dbin(GPRDPID[4],N3544) 

# priors

for (a in 1:4) {
GPRDPID[a] ~ dbeta(1,1)
}

# Distribution
for (a in 1:4) {
pmin[a] <- kc60[a] + max(HESPID[a],GPRDPID[a])
pmax[a] <- kc60[a] + HESPID[a] + GPRDPID[a]
X[a] ~ dunif(pmin[a],pmax[a])

hospdiag[a] <- psi * HESPID[a] / X[a] 
milddiag[a] <- 1 - hospdiag[a] - undiag[a]
undiag[a] <- (1 - psi)
}

# proportion with PIDs by each age, severity, and number 

# all PID
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# n = 1
for (s in 1:3) {
for (a in 1:4) {
PIDcat[1,s,a] <- 1 - (PIDcat[2,s,a] + PIDcat[3,s,a] + 

PIDcat[4,s,a])
}

PIDcat44[1,s] <- 1 - (PIDcat44[2,s] + PIDcat44[3,s] + PIDcat44[4,s])

}

# n = 2-4
for (n in 2:4) {
for (a in 1:4) {
PIDcat[n,1,a] <- numPIDs[n,a] * undiag[a]
PIDcat[n,2,a] <- numPIDs[n,a] * milddiag[a]
PIDcat[n,3,a] <- numPIDs[n,a] * hospdiag[a]
}

PIDcat44[n,1] <- num44[n] * undiag[4]
PIDcat44[n,2] <- num44[n] * milddiag[4]
PIDcat44[n,3] <- num44[n] * hospdiag[4]
}

# non-CT related PID

# n = 1
for (s in 1:3) {
for (a in 1:4) {
PIDcatnct[1,s,a] <- 1 - (PIDcatnct[2,s,a] + PIDcatnct[3,s,a] +

PIDcatnct[4,s,a])
}

PIDcat44nct[1,s] <- 1 - (PIDcat44nct[2,s] + PIDcat44nct[3,s] +
PIDcat44nct[4,s])

}

# n = 2-4
for (n in 2:4) {
for (a in 1:4) {
PIDcatnct[n,1,a] <- numPIDsnct[n,a] * undiag[a]
PIDcatnct[n,2,a] <- numPIDsnct[n,a] * milddiag[a]
PIDcatnct[n,3,a] <- numPIDsnct[n,a] * hospdiag[a]
}

PIDcat44nct[n,1] <- num44nct[n] * undiag[4]
PIDcat44nct[n,2] <- num44nct[n] * milddiag[4]
PIDcat44nct[n,3] <- num44nct[n] * hospdiag[4]
}

# Probability of TFI given PID by age, severity, number of PIDs-

# Westrom

# Likelihood

for (a in 1:2) {
for (s in 1:3) {
onePIDsev[a,s] <- p[a,s,1]
r.onePIDsev[a,s] ~ dbin(onePIDsev[a,s],n.onePIDsev[a,s])
}

twoPID[a] <- (p[a,1,2] * n.onePIDsev[a,1] +
p[a,2,2] * n.onePIDsev[a,2] +
p[a,3,2] * n.onePIDsev[a,3]) / sum(n.onePIDsev[a, ])

r.twoPID[a] ~ dbin(twoPID[a],n.twoPID[a])
threePID[a] <- (p[a,1,3] * n.onePIDsev[a,1] +

p[a,2,3] * n.onePIDsev[a,2] +
p[a,3,3] * n.onePIDsev[a,3]) / sum(n.onePIDsev[a, ])
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r.threePID[a] ~ dbin(threePID[a],n.threePID[a])
}

# model

for (a in 1:2) {
for (s in 1:3) {
for (n in 1:3) {
logit(p[a,s,n]) <- beta0 + beta1[a] + beta2[s] + beta3[n]
PIDtoTFI[n+1,a,s] <- p[a,s,n]
}

}
}

for (a in 1:2) {
onePID[a] <- (onePIDsev[a,1] * n.onePIDsev[a,1] +

onePIDsev[a,2] * n.onePIDsev[a,2] +
onePIDsev[a,3] * n.onePIDsev[a,3]) /

sum(n.onePIDsev[a, ])
}

# priors

beta0 ~ dnorm(0,0.0001)

beta1[1] <- 0
beta1[2] ~ dnorm(0,0.0001)

beta2[1] <- 0
beta2[2] ~ dnorm(0,0.0001)
beta2[3] ~ dnorm(0,0.0001)

beta3[1] <- 0
beta3[2] ~ dnorm(0,0.0001)
beta3[3] ~ dnorm(0,0.0001)

# RESIDUAL DEVIANCE

for (a in 1:2) {
for (s in 1:3) {
dev1[a,s] <- 2 * (r.onePIDsev[a,s] * log(r.onePIDsev[a,s] / 

(onePIDsev[a,s] * n.onePIDsev[a,s])) +
(n.onePIDsev[a,s] - r.onePIDsev[a,s]) * 
log((n.onePIDsev[a,s] - r.onePIDsev[a,s]) /
(n.onePIDsev[a,s] - (n.onePIDsev[a,s] * 
onePIDsev[a,s]))))

}

dev2[a] <- 2 * (r.twoPID[a] * log(r.twoPID[a] / 
(twoPID[a] * n.twoPID[a])) +
(n.twoPID[a] - r.twoPID[a]) * 
log((n.twoPID[a] - r.twoPID[a]) /

(n.twoPID[a] - (n.twoPID[a] * twoPID[a]))))

dev3[a] <- 2 * (r.threePID[a] * log(r.threePID[a] / 
(threePID[a] * n.threePID[a])) +
(n.threePID[a] - r.threePID[a]) * 
log((n.threePID[a] - r.threePID[a]) /

(n.threePID[a] - (n.threePID[a] * 
threePID[a]))))
}

sumdev1 <- sum(dev1[ , ])
sumdev2 <- sum(dev2[])
sumdev3 <- sum(dev3[])
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sumdev.tot <- sumdev1 + sumdev2 + sumdev3

# Progression probabilities by age, diagnostic status, and number

# progress[n,s,a] n: number of PIDs 0,1,2,3+, 
# 1: undiagnosed (mild), 
# 2: diagnosed outside of Hospital (mild), 
# 3: hospital diagnosed(overall Westrom)
# a: age<=29, 30+

# model 1

for (n in 1:3) {
for (a in 1:2) {

PIDtoTFI2[n,1,a] <- (PIDtoTFI[2,a,1] * n.onePIDsev[a,1] +
PIDtoTFI[2,a,2] * n.onePIDsev[a,2] +
PIDtoTFI[2,a,3] * n.onePIDsev[a,3]) / 

sum(n.onePIDsev[a, ])
PIDtoTFI2[n,2,a] <- (PIDtoTFI[2,a,1] * n.onePIDsev[a,1] +

PIDtoTFI[2,a,2] * n.onePIDsev[a,2] +
PIDtoTFI[2,a,3] * n.onePIDsev[a,3]) / 

sum(n.onePIDsev[a, ])
PIDtoTFI2[n,3,a] <- (PIDtoTFI[2,a,1] * n.onePIDsev[a,1] +

PIDtoTFI[2,a,2] * n.onePIDsev[a,2] +
PIDtoTFI[2,a,3] * n.onePIDsev[a,3]) / 

sum(n.onePIDsev[a, ])
}

}

# model 2

#for (n in 1:3) {
# for (a in 1:2) {
#  PIDtoTFI2[n,1,a] <- PIDtoTFI[2,a,1]
#  PIDtoTFI2[n,2,a] <- (PIDtoTFI[2,a,1] * n.onePIDsev[a,1] +
#                       PIDtoTFI[2,a,2] * n.onePIDsev[a,2] +
# PIDtoTFI[2,a,3] * n.onePIDsev[a,3]) / 
# sum(n.onePIDsev[a, ])
#  PIDtoTFI2[n,3,a] <- (PIDtoTFI[2,a,1] * n.onePIDsev[a,1] +
#                       PIDtoTFI[2,a,2] * n.onePIDsev[a,2] +
# PIDtoTFI[2,a,3] * n.onePIDsev[a,3]) / 
# sum(n.onePIDsev[a, ])
#  }
# }

# model 3

#for (n in 1:3) {
# for (a in 1:2) {
#  PIDtoTFI2[n,1,a] <- PIDtoTFI[2,a,1]
#  PIDtoTFI2[n,2,a] <- PIDtoTFI[2,a,1]
#  PIDtoTFI2[n,3,a] <- (PIDtoTFI[2,a,1] * n.onePIDsev[a,1] +
#                       PIDtoTFI[2,a,2] * n.onePIDsev[a,2] +
# PIDtoTFI[2,a,3] * n.onePIDsev[a,3]) / 
# sum(n.onePIDsev[a, ])
#  }
# }

# model 4

#for (n in 1:3) {
# for (a in 1:2) {
#  A[n,a] ~ dunif(0,PIDtoTFI[2,a,1])
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#  PIDtoTFI2[n,1,a] <- A[n,a]
#  PIDtoTFI2[n,2,a] <- PIDtoTFI[2,a,1]
#  PIDtoTFI2[n,3,a] <- (PIDtoTFI[2,a,1] * n.onePIDsev[a,1] +
#                       PIDtoTFI[2,a,2] * n.onePIDsev[a,2] +
# PIDtoTFI[2,a,3] * n.onePIDsev[a,3]) / 
# sum(n.onePIDsev[a, ])
#  }
# }

# model 5

#for (n in 1:3) {
# for (a in 1:2) {
#  PIDtoTFI2[n,1,a] <- 0
#  PIDtoTFI2[n,2,a] <- PIDtoTFI[2,a,1]
#  PIDtoTFI2[n,3,a] <- (PIDtoTFI[2,a,1] * n.onePIDsev[a,1] +
#                       PIDtoTFI[2,a,2] * n.onePIDsev[a,2] +
# PIDtoTFI[2,a,3] * n.onePIDsev[a,3]) / 
# sum(n.onePIDsev[a, ])
#  }
# }

# TFIs by age

# all PID

for (n in 2:4) {
for (s in 1:3) {
TFIs[n,s,1] <- PIDcat[n,s,1] * PIDtoTFI2[n-1,s,1]
TFIs[n,s,2] <- PIDcat[n,s,2] * PIDtoTFI2[n-1,s,1]
TFIs[n,s,3] <- PIDcat[n,s,3] * 

(PIDtoTFI2[n-1,s,1] * N2529 + PIDtoTFI2[n-1,s,2] * 
N3034) /

N2534
TFIs[n,s,4] <- PIDcat[n,s,4] * PIDtoTFI2[n-1,s,2]
TFI44[n,s] <- PIDcat44[n,s] * PIDtoTFI2[n-1,s,2]
}

}
for (a in 1:4) {
TFIbyage[a] <- sum(TFIs[2:4 , ,a])
}

TFI44tot <- sum(TFI44[2:4 , ])
TFIbyage.tot <- (TFIbyage[1] * sum(N[16:19]) +

TFIbyage[2] * sum(N[20:24]) + 
TFIbyage[3] * sum(N[25:34]) + 
TFIbyage[4] * sum(N[35:44])) / 

sum(N[16:44])

# non-CT related PID

for (n in 2:4) {
for (s in 1:3) {
TFIsnct[n,s,1] <- PIDcatnct[n,s,1] * PIDtoTFI2[n-1,s,1]
TFIsnct[n,s,2] <- PIDcatnct[n,s,2] * PIDtoTFI2[n-1,s,1]
TFIsnct[n,s,3] <- PIDcatnct[n,s,3] * 

(PIDtoTFI2[n-1,s,1] * N2529 + PIDtoTFI2[n-1,s,2] * 
N3034) / N2534

TFIsnct[n,s,4] <- PIDcatnct[n,s,4] * PIDtoTFI2[n-1,s,2]
TFI44nct[n,s] <- PIDcat44nct[n,s] * PIDtoTFI2[n-1,s,2]
}

}

for (a in 1:4) {
TFIbyagenct[a] <- sum(TFIsnct[2:4 , ,a])
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}
TFI44totnct <- sum(TFI44nct[2:4 , ])
TFIbyagenct.tot <- (TFIbyagenct[1] * sum(N[16:19]) +

TFIbyagenct[2] * sum(N[20:24]) + 
TFIbyagenct[3] * sum(N[25:34]) + 
TFIbyagenct[4] * sum(N[35:44])) / 

sum(N[16:44])

for (a in 1:4) {
TFIduetoCTbyage[a] <- TFIbyage[a] - TFIbyagenct[a]
}

TFIduetoCTbyage.tot <- (TFIduetoCTbyage[1] * sum(N[16:19]) +
TFIduetoCTbyage[2] * sum(N[20:24]) + 
TFIduetoCTbyage[3] * sum(N[25:34]) + 
TFIduetoCTbyage[4] * sum(N[35:44])) / 

sum(N[16:44])

# proportion of PID related TFIs due to CT

for (a in 1:4) {
propCTofPIDTFIs[a] <- 1 - (TFIbyagenct[a] / TFIbyage[a])
}

propCTofPIDTFIs44 <- 1 - (TFI44totnct / TFI44tot)
propCTofPIDTFIs.tot <- (propCTofPIDTFIs[1] * sum(N[16:19]) +

propCTofPIDTFIs[2] * sum(N[20:24]) + 
propCTofPIDTFIs[3] * sum(N[25:34]) + 
propCTofPIDTFIs[4] * sum(N[35:44])) / 

sum(N[16:44])

}

# Data

list(

# PID incidence, r-infection rate, Etological fractions and re-

infection #rate
mu = c(-3.865, -3.595, -3.964, -4.402, -0.5856, 0.7104, 0.4815, 0.3117, 0.3277, 
1.919),
Omega = structure(.Data =c(
573.855, -49.264, -10.817, -3.992, 323.371, 97.687, -112.351, -30.198, -5.401, -2.713,
-49.264, 301.419, -14.194, -3.299, 147.591, -78.069, 176.480, -72.284, -11.551, 2.012,
-10.817, -14.194, 105.908, -20.063, 37.684, -13.275, -46.636, 236.305, -118.245,
0.515,
-3.992, -3.299, -20.063, 57.687, 19.172, -2.664, -8.418, -125.677, 138.728, 0.088,
323.371, 147.591, 37.684, 19.172, 351.620, 1.363, -1.443, -1.164, 1.537, 0.030,
97.687, -78.069, -13.275, -2.664, 1.363, 285.706, -324.389, -85.846, -16.864, -7.957,
-112.351, 176.480, -46.636, -8.418, -1.443, -324.389, 734.182, -295.254, -50.046,
8.090,
-30.198, -72.284, 236.305, -125.677, -1.164, -85.846, -295.254, 1512.713, -758.618,
3.088,
-5.401, -11.551, -118.245, 138.728, 1.537, -16.864, -50.046, -758.618, 839.634, 0.705,
-2.713, 2.012, 0.515, 0.088, 0.030, -7.957, 8.090, 3.088, 0.705, 13.711),

.Dim = c(10,10)),

# Population sizes from census, age =1...44 - 2002

N=c(NA,NA,NA,NA,NA, NA,NA,NA,NA,NA, NA,NA,NA,NA,NA, 
305500,306300,296400,291400,294800,
310100,313900,305600,294700,295000,
304100,317000,329600,349600,370300,
380900,376900,387800,390900,399400,
401200,402600,398700,391900,381900, 370900,356200,349000,343800),

# Routine PID data 

# HES PID data - 2002
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r.HESPID = c(1233,3101,9756,10526), # 16-19, 20-24, 25-34, 35-44

# KC-60 PID data 

r.kc602008 = c(2900,3972,3538,1253), #16-19, 20-24, 25-34, 35-44

# predicted GPRD data - 2002

r.GPRDPID = c(5083,8842,14932,9609), # 16-19, 20-24, 25-34, 35-44

# Westrom Progression data (A cohort study of 1,844)-assumes a=1 goes 

# to 29

r.onePIDsev = structure(.Data =c(
2,23,34,
0,5,15
),
.Dim = c(2,3)),

n.onePIDsev = structure(.Data =c(
241,361,169,
71,89,60
),
.Dim = c(2,3)),

r.twoPID = c(29,7), n.twoPID = c(158,27),
r.threePID = c(23,3), n.threePID = c(61,4),
# Note: 0 TFIs in 451 control women so assume zero.
)

# Initial values 1

list(

Y = c(-5,-5,-5,-5,-1,-5,-5,-5,-5,-1),

HESPID = c(0.01,0.01,0.01,0.01),
kc602008 = c(0.01,0.01,0.01,0.01),
GPRDPID = c(0.01,0.01,0.01,0.01),

philap = 0.3,

beta0 = -2,
beta1 = c(NA,0.5),
beta2 = c(NA,0.05,0.05),
beta3 = c(NA,0.5,0.5)
)

A = structure(.Data =c(
0.01,0.01,
0.01,0.01,
0.01,0.01
),
.Dim = c(3,2)),
)

# Initial values 2

list(

Y = c(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1),

HESPID = c(0.1,0.1,0.1,0.1),
kc602008 = c(0.1,0.1,0.1,0.1),
GPRDPID = c(0.1,0.1,0.1,0.1),

philap = 0.6,

beta0 = -5,
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beta1 = c(NA,0.05),
beta2 = c(NA,0.5,0.5),
beta3 = c(NA,0.05,0.05),
)

A = structure(.Data =c(
0.1,0.1,
0.1,0.1,
0.1,0.1
),
.Dim = c(3,2)),
)
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Appendix 16 Sensitivity, specificity and
resolution of assays (see Chapter 11)

Analyses of the Wills et al.,269 Morre et al.265 and Narvanen et al.268 data on test performance, according

to our model for Test Resolution, are set out in Table 48.

Wills et al.269 examined four assays in 164 female NAAT-positive patients attending STD clinics who had

been infected for at least 1 month, and in 747 children aged 2–13 years. Twenty-five of the 747 paediatric

samples were positive on MIF, and seven of these were positive on Western blot and were excluded. In our

analysis, we assign the remaining 18 MIF-positive samples a uniform prior probability of between zero and

one as being true positive. The estimates of test resolution varied from 3.0 to 4.9 (mean= 4.1, SD= 0.83).

Morre et al.265 describe a ‘discrepancy analysis’ of MIF and three peptide-based assays in 149 STI clinic

attenders identified through screening. Women were counted as ‘true positive’ if they were positive on

two peptide assays, or MIF on two occasions. ‘Grey’ samples were included in our analysis and assigned a

uniform prior probability of being true positive between zero and one. Values of R range from 4.7 to 6.4

(mean= 5.9, SD= 0.79).

Narvanen et al.268 tested 82 culture-positive infected women and 152 paediatric control subjects with a CT

enzyme immunoassay (CT-EIA). Resolution was 6.29.

TABLE 48 Estimates of sensitivity, false-positive rate and resolution RT from serological studies

Study Assay TP FN TN(a) FP(a) TN(b) FP(b) Grey
SeT%
(95% CI)

FpT%
(95% CI) RT

Morre265 CT-EIA 61 11 72 1 4 82.5
(72.7 to 90.7)

1.4
(0 –5)

6.4
(4.4 to 9.4)

SeroCT 61 11 69 1 7 81.2
(70.6 to 90.2)

1.4
(0 to 5)

6.3
(4.3 to 9.3)

CT
pELISA

50 20 72 2 5 69.3
(57.9 to 79.6)

2.6
(0.3 to 7)

4.7
(3.3 to 6.6)

MIF 57 15 74 1 2 78.1
(67.9 to 86.9)

1.4
(0 to 4.9)

6.1
(4.2 to 9.2)

Wills269 Pgp3 121 43 29 711 17 705 73.8
(66.8 to 80.2)

3.1
(1.9 to 4.6)

4.5
(3.9 to 5.1

Ani
labs

98 66 8 587 6 574 59.8
(52.1 to 67.3)

1.2
(0.6 to 2.0)

4.9
(4.2 to 5.6)

SeroCT 91 73 22 718 20 702 55.5
(47.8 to 63.0)

2.9
(2.0 to 3.9)

3.8
(3.3 to 4.2)

CT
pELISA

75 89 31 709 29 693 45.7
(38.2 to 55.3)

4.1
(3.0 to 5.4)

3.0
(2.6 to 3.4)

Narvanen268 CT-EIA 69 13 150 2 84.2
(75.5 to 91.2)

1.3
(0.2 to 3.6)

6.3
(4.8 to 8.2)

FN, false negative; FP, false positive; TN, true negative; TP, true positive.
The analysis of the Morre study assumes that ‘grey‘ samples were equally likely to be TPs or TNs. The analysis of the
Wills et al.269 study assumes that 18 paediatric samples that were either included (a) or excluded (b) from the calculation of
FP rate were equally likely to be TPs or TNs.
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Appendix 17 WinBUGS code applied to
serology data

model {

# cycles through the different combinations of input parameters
for (a in 1:numcombs) { 
for (i in 1:17) {
for (g in 1:2) {
r[i,a,g] ~ dbin(p[g,a,i],n[i,a,g])
rhat[i,a,g] <- p[g,a,i]*n[i,a,g]
dev[i,a,g] <- 2 * (r[i,a,g] * (log(r[i,a,g])-log(rhat[i,a,g])) +

(n[i,a,g]-r[i,a,g]) * (log(n[i,a,g]-r[i,a,g]) -
log(n[i,a,g]-rhat[i,a,g])))

}
sumdev1[i,a] <- sum(dev[i,a,])
p[1,a,i] <- pi[1,a] * se[i,a] + (1-pi[1,a]) * fp[i,a] 
p[2,a,i] <- pi[3,a]*sec[i,a] + pi[2,a] * se[i,a] + pi[4,a] * 

fp[i,a]
logit(se[i,a]) <- lse[i,a]
logit(sec[i,a]) <- lse[i,a] + dse[a]
lse[i,a] ~ dnorm(0,.01)
lfp[i,a] <- lse[i,a] - res[test[i],a]
logit(fp[i,a]) <- lfp[i,a]
}

for (j in 1:5) {
res[j,a] ~ dnorm(mean[a],prec[a])I(0,)
}

z[a] ~ dbeta(1,1)
x[a] ~ dbeta(1,1)
# Ever exposed in control group
pi[1,a] <- ctprev[a]
# Ever exposed in Non CT caused TFI
pi[2,a] <- (1 - pi[3,a]) * (pi[1,a] + z[a] * (1 - pi[1,a]))
# Proportion of TFI caused by C
pi[3,a] <- x[a]
# the negatices in the tfi group
pi[4,a] <- (1 - pi[3,a]) * ((1 - z[a]) * (1 - pi[1,a]))
# sum check
pi[5,a] <- pi[2,a] + pi[3,a] + pi[4,a]
sumdev2[a] <- sum(sumdev1[,a])
}
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