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Abstract. If (M, g) is a Riemannian manifold, we have the well-known base
preserving vector bundle isomorphism TM =̃ T ∗M given by v → g(v,−)
between the tangent TM and the cotangent T ∗M bundles of M . In the
present note, we generalize this isomorphism to the one T (r)M =̃ T r∗M

between the r-th order vector tangent T (r)M = (Jr(M,R)0)
∗ and the r-th

order cotangent T r∗M = Jr(M,R)0 bundles of M . Next, we describe all

base preserving vector bundle maps CM (g) : T (r)M → T r∗M depending on a
Riemannian metric g in terms of natural (in g) tensor fields on M .

0. All manifolds are assumed to be smooth, Hausdorff, finite dimensional
and without boundaries. Maps are assumed to be smooth (of class C∞).
The category of m-dimensional manifolds and their embeddings is denoted
byMfm.
It is clear that the tangent TM and the cotangent T ∗M bundles of M
are not canonically isomorphic. However, if g is a Riemannian metric on a
manifold M , we have the base preserving vector bundle isomorphism ig :
TM → T ∗M given by ig(v) = g(v,−), v ∈ TxM , x ∈ M .
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In the present note we generalize the isomorphism TM =̃ T ∗M depending
on g, to a base preserving vector bundle isomorphism i<r>

g : T (r)M →
T r∗M canonically depending on g between the r-th order vector tangent
bundle T (r)M = (Jr(M,R)0)

∗ and the r-th order cotangent bundle T r∗M =
Jr(M,R)0 ofM . Next, we study the problem of describing allMfm-natural

operators C : Riem � Hom(T (r), T r∗) transforming Riemannian metrics g
on m-dimensional manifolds M into base preserving vector bundle maps
CM (g) : T (r)M → T r∗M . We prove that this problem can be reduced
to the (partially well-known) one of describing all Mfm-natural operators
t : Riem � SlT ∗⊗SkT ∗ (for l, k = 1, . . . , r) sending Riemannian metric on
M into tensor fields tM (g) of types SlT ∗ ⊗ SkT ∗ on M .
The r-th order cotangent bundle is a functor T r∗ : Mfm → VB sending
any m-manifold M into T r∗M := Jr(M,R)0 (the vector bundle of r-jets
M → R with target 0) and any embedding ϕ : M1 → M2 of two m-
manifolds into T r∗ϕ : T r∗M1 → T r∗M2 given by T

r∗ϕ(jrxγ) = jr
ϕ(x)(γ◦ϕ

−1),

jrxγ ∈ T r∗M . If r = 1, T 1∗M =̃ T ∗M (the usual cotangent bundle) by
j1xγ =̃ dxγ.
The r-th order vector tangent bundle T (r) : Mfm → VB is the natural
bundle dual to the r-th order cotangent bundle, i.e. T (r)M = (T r∗M)∗ and

T (r)ϕ = (T r∗ϕ−1)∗.
The concept of natural bundles can be found in [3], [7], [8]. Natural

constructions on T (r)M has been studied e.g. in [6].
A general definition of natural operators can be found in [3]. In our

note, an Mfm-natural operator C : Riem � Hom(T (r), T r∗) transform-
ing Riemannian metrics g on m-manifolds M into base preserving vec-
tor bundle maps CM (g) : T (r)M → T r∗M is an Mfm-invariant system
C = {CM}M∈obj(Mfm) of regular operators (functions)

CM : Riem(M) → HomM (T (r)M,T r∗M)

for any m-manifold M , where Riem(M) is the set of all Riemannian met-

rics on M and HomM (T (r)M,T r∗M) is the set of all vector bundle maps

T (r)M → T r∗M covering idM . More precisely, the Mfm-invariance of C
means that if g1 ∈ Riem(M1) and g2 ∈ Riem(M2) are ϕ-related by an em-
bedding ϕ : M1 → M2 of m-manifolds (i.e. ϕ is (g1, g2)-isomorphism), then

CM1(g1) and CM2(g2) are ϕ-related (i.e. CM2(g2)◦T
(r)ϕ = T r∗ϕ◦CM1(g1)).

The regularity means that CM transforms smoothly parametrized families
of Riemannian metrics into smoothly parametrized ones of vector bundle
maps.
Similarly, anMfm-natural operator (natural tensor) t : Riem � ⊗pT ⊗

⊗qT ∗ is anMfm-invariant system t = {tM}M∈obj(Mfm) of regular operators

tM : Riem(M) → T p,q(M)
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for any M ∈ Mfm, where T
p,q(M) is the set of tensor fields of type (p, q)

on M .
An explicit example of a natural operator C : Riem � Hom(T (r), T r∗)
will be presented in item 1.
A full description of all polynomial natural tensors t : Riem � ⊗pT ∗ ⊗

⊗qT can be found in [1]. This description is as follows. Each covariant

derivative of the curvature R(g) ∈ T (0,4)(M) of a Riemannian metric g is
a natural tensor and g is a natural tensor. Further every tensor multipli-
cation of two natural tensors and every contraction on one covariant and
one contravariant entry of a natural tensor give new natural tensor. Finally,
we can tensor any natural tensor with a metric independent natural tensor,
we can permute any number of entries in the tensor product and we can
repeat these steps and take linear combinations. In this way we can obtain
any natural tensor of types (p, q) depending polynomially on a Riemannian
metric.
Taking respective type natural tensors and applying respective symmet-
rization, we can produce many natural tensors t : Riem � SlT ∗ ⊗ SkT ∗.

1. We are going to present an example of an Mfm-natural operator C :
Riem � Hom(T (r), T r∗). We start with some preparations.
It is well known (see [2]) that if g is a Riemannian tensor field on a
manifold M and x ∈ M , then there is a g-normal coordinate system ϕ :
(M,x) → (Rm, 0) with center x. If ψ : (M,x) → (Rm, 0) is another g-
normal coordinate system with center x, then there is A ∈ O(m) such that
ψ = A ◦ ϕ near x.
We have the following important proposition.

Proposition 1. Let g be a Riemannian tensor field on a manifoldM . Then
there are (canonical in g) vector bundle isomorphisms

Ig : T r∗M → ⊕r
k=1S

kT ∗M and Jg : T (r)M → ⊕r
k=1S

kTM

covering the identity map of M .

Proof. Let v ∈ T r∗
x M , x ∈ M . Let ϕ : (M,x) → (Rm, 0) be a g-normal

coordinate system with center x. We put

Ig(v) = Iϕg (v) := ⊕r
k=1S

kT ∗ϕ−1 ◦ I ◦ T r∗ϕ(v) ,

where I : T r∗
0 R

m = Jr
0 (R

m,R)0 → ⊕r
k=1S

kT ∗
0R

m = ⊕r
k=1S

k
R

m∗ is the
obvious O(m)-invariant vector space isomorphism. If ψ : (M,x) → (Rm, 0)
is another g-normal coordinate system with center x, then ψ = A ◦ ϕ (near
x) for some A ∈ O(m). Using the O(m)-invariance of I, we deduce that

I
ψ
g (v) = I

ϕ
g (v). So, the definition of Ig(v) is independent of the choice of ϕ.

So, isomorphism Ig : T r∗M → ⊕r
k=1S

kT ∗M is well-defined.

Quite similarly, one can define isomorphism Jg : T (r)M → ⊕r
k=1S

kTM .
�
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Example 1. Given a Riemannian metric g on a manifold M , we have
isomorphism

ig : TM =̃ T ∗M , ig(v) = g(v,−) ,

and then we have (obtained in obvious way from ig) the base preserving
vector bundle isomorphism

i(r)g : ⊕r
k=1S

kTM =̃ ⊕r
k=1S

kT ∗M , i(r)g (v1� . . .�vk) = ig(v1)� . . .� ig(vk) .

Now, using the base preserving vector bundle isomorphisms Jg and Ig (from
Proposition 1), we get the base preserving vector bundle isomorphism

i<r>
g = Ig ◦ i

(r)
g ◦ J−1

g : T (r)M → T r∗M .

Thus the family C(r) : Riem � Hom(T (r), T r∗) of operators

C
(r)
M : Riem(M) → HomM (T (r)M), T r∗M) , C

(r)
M (g) = i<r>

g

for all M ∈ obj(Mfm) is anMfm-natural operator.

2. Let g ∈ Riem(M) be a Riemannian metric on an m-manifold M . By
Proposition 1 and Example 1,

T (r)M = T r∗M = ⊕r
k=1S

kT ∗M = ⊕r
k=1S

kTM

modulo the base preserving vector bundle isomorphisms canonically depend-
ing on g. Consequently, our problem of finding allMfm-natural operators
C : Riem � Hom(T (r), T r∗) is reduced to the one of finding all systems
(C l,k) ofMfm-natural operators

C l,k : Riem � Hom(SlT, SkT ∗)

transforming Riemannian metrics g on m-manifoldsM into base preserving

vector bundle maps C l,k
M (g) : SlTM → SkT ∗M , where l, k = 1, . . . , r, or

(equivalently) our problem is reduced to the one of finding all natural tensors
C l,k : Riem � SlT ∗ ⊗ SkT ∗, l, k = 1, . . . , r.
Thus we have proved the following theorem.

Theorem 1. The Mfm-natural operators C : Riem � Hom(T (r), T r∗)
transforming Riemannian metrics g on m-manifolds M into base preserv-
ing vector bundle maps CM (g) : T (r)M → T r∗M are in bijection with the
systems (C l,k) of Mfm-natural operators (natural tensors) C

l,k : Riem �

SlT ∗ ⊗ SkT ∗ for l, k = 1, . . . , r.

This result is interesting because any natural transformation T (r)M →
T r∗M is the zero one.
Now, using the isomorphism T (r)M =̃ T r∗M depending on g, we have
the following corollary of Theorem 1.
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Corollary 1. The Mfm-natural operators C : Riem � Hom(T r∗, T (r))
transforming Riemannian metrics g on m-manifolds M into base preserving
vector bundle maps CM (g) : T r∗M → T (r)M are in bijection with the sys-
tems (C l,k) of natural tensors C l,k : Riem � SlT ∗⊗SkT ∗ for l, k = 1, . . . , r.

This result is interesting because any natural transformation T r∗M →
T (r)M is the zero one, too.
By the same reason, we have also the following corollary.

Corollary 2. The Mfm-natural operators C : Riem � Hom(T (r), T (r))
transforming Riemannian metrics g on m-manifolds M into base preserving
vector bundle maps CM (g) : T (r)M → T (r)M are in bijection with the
systems (C l,k) of natural tensors C l,k : Riem � SlT ∗ ⊗ SkT ∗ for k, l =
1, . . . , r.

This result is interesting because of the result of I. Kolář and G. Vos-
manská [4] saying that any natural transformation T (r)M → T (r)M is a
constant multiple of the identity.
We have also the next similar corollary.

Corollary 3. The Mfm-natural operators C : Riem � Hom(T r∗, T r∗)
transforming Riemannian metrics g on m-manifolds M into base preserving
vector bundle maps CM (g) : T r∗M → T r∗M are in bijection with the sys-
tems (C l,k) of natural tensors C l,k : Riem � SlT ∗⊗SkT ∗ for l, k = 1, . . . , r.

This result is interesting because of the result of J. Kurek [5] saying (in
particular) that any vector bundle natural transformation T r∗M → T r∗M

is a constant multiple of the identity.
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