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The Natural Vectorial Total Variation

Which Arises from Geometric Measure Theory∗
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Abstract. Several ways to generalize scalar total variation to vector-valued functions have been proposed in
the past. In this paper, we give a detailed analysis of a variant we denote by TVJ , which has not
been previously explored as a regularizer. The contributions of the manuscript are twofold: on the
theoretical side, we show that TVJ can be derived from the generalized Jacobians from geometric
measure theory. Thus, within the context of this theory, TVJ is the most natural form of a vectorial
total variation. As an important feature, we derive how TVJ can be written as the support functional
of a convex set in L

2. This property allows us to employ fast and stable minimization algorithms to
solve inverse problems. The analysis also shows that in contrast to other total variation regularizers
for color images, the proposed one penalizes across a common edge direction for all channels, which
is a major theoretical advantage. Our practical contribution consist of an extensive experimental
section, where we compare the performance of a number of provable convergent algorithms for
inverse problems with our proposed regularizer. In particular, we show in experiments for denoising,
deblurring, superresolution, and inpainting that its use leads to a significantly better restoration
of color images, both visually and quantitatively. Source code for all algorithms employed in the
experiments is provided online.
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1. Introduction. Regularity is of central importance in computer vision. Many problems,
like denoising, deblurring, superresolution, and inpainting, are ill-posed and require the choice
of a good prior in order to arrive at sensible solutions. This prior often takes the form of a
regularization term for an energy functional which is to be minimized. For optimization
purposes, it is important that the regularizer is convex, since only then can one hope to
reliably determine global optima of respective energies within reasonable time. Furthermore,
since natural images are often piecewise smooth, popular regularizers tend to penalize the
function’s gradient. In this context, the total variation (TV) of a function has emerged as
a very successful regularizer for a wide range of applications: It is convex yet discontinuity
preserving in the sense that it assigns the same cost to sharp and smooth transitions. Another
favorable property of the TV is that application to the binary indicator function of a set gives
rise to its boundary length. This geometric interpretation makes it well suited for various shape
optimization problems like image segmentation [18, 15] or multiple view reconstruction [27].
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Original Noisy Result

Figure 1. For inverse problems like denoising, inpainting, or superresolution, TV is among the most
powerful regularizers. We propose a novel generalization of TV to vector-valued images which naturally arises
in the context of geometric measure theory.

While most existing work involving TV focuses on scalar valued functions, the general-
ization to vector-valued (color or multichannel) images remains an important challenge. In
this paper, we will see that this generalization is by no means straightforward, but that in the
context of geometric measure theory there is a natural choice (see Figure 1). Our aim is to
demonstrate that it is possible to perform an efficient minimization for this variant and that
the choice has advantages when solving practical problems.

1.1. Vectorial TV. For a grayscale image modeled as a differentiable function u ∈ C1(Ω,R)
on a domain Ω ⊂ R

m, the scalar total variation TV(u) is defined as the integral over the Eu-
clidean norm |·|2 of the gradient,

(1.1) TV(u) =

∫

Ω
|∇u|2 dx.

The definition can be extended to locally integrable functions u ∈ L1
loc(Ω,R) using a dual

formulation: Let Em denote the closed unit ball in R
m; then

(1.2) TV(u) = sup
ξ∈C1

c (Ω,Em)

{
∫

Ω
udiv(ξ) dx

}

.

The term “dual” means in this context that TV is the support functional of a convex set,
namely, the set

(1.3) KTV :=
{

div(ξ) : ξ ∈ C1
c (Ω,E

m)
}

with respect to the Hilbert space L2(Ω). This means that it is the convex conjugate of the
indicator function of KTV; in particular it is convex and lower semicontinuous on L2(Ω). Note
that the right-hand side of (1.2) makes sense for nondifferentiable u (such as the binary indi-
cator function of a set), as derivatives are taken only of the dual vector fields ξ. For a more
in-depth introduction to TV for image processing problems see [14].
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The idea of vectorial TV is to extend the above definition to vector-valued u : Ω → R
n,

such that in the case n = 1 both definitions coincide. Several variants have been proposed,
which will be discussed in section 2.

An important criterion for a good regularizer is that efficient and reliable minimization
algorithms are available. For the scalar TV, such methods have been developed based on the
dual formulation, pioneered by Chan, Golub, and Mulet [19]. The more recent algorithm by
Chambolle [12] allows one to handle the nondifferentiability of |·|2 without need to regularize,
so one can solve the exact model. In view of this, a useful generalization of scalar to vectorial
TV should comprise a similar dual formulation.

1.2. Contributions. In this work, we analyze a variant of the vectorial TV which has not
been previously explored as a regularizer. While it already appears in the literature as a special
case of the framework introduced by Sapiro and Ringach [35, 37], we show that it also follows
as a natural choice from the context of geometric measure theory. The proposed variant of
vectorial TV is nondifferentiable with no way to smoothen it readily available; in particular, it
cannot be minimized correctly with traditional gradient-descent or diffusion techniques. Our
main contribution is therefore to analyze the regularizer from the point of view of convex
optimization. Like the grayscale TV, it can be written as the support functional of a convex
set in L2, which shows that it is convex and closed. In particular, this characterization leads
to efficient minimization algorithms, which we discuss in detail.

We complete the mathematical analysis with an in-depth characterization of the regular-
izer, proving the existence and uniqueness of solutions for vectorial inverse problems. The
analysis also shows that in contrast to other TV regularizers for color images, the proposed
one penalizes across a common edge direction for all channels, which is a major theoretical
advantage. In experiments, we can show that denoising using the new regularizer thus leads
to improved restoration of color edges. Since the regularizer can be used as a substitute for
vectorial TV in any energy functional, there is a broad spectrum of further applications; see,
e.g., [8, 21, 28, 41]. In the paper, we give further examples for deblurring, superresolution,
and inpainting. Code to reproduce all examples is available on our web page.1

Additional contributions compared to the original conference paper [24] are as follows.
First, we derive the characterization of the vectorial TV as a support functional of a convex
set explicitly. We show exactly how the convex set looks and show how to efficiently compute
the necessary orthogonal projection onto this set. Second, we give a detailed description
of several possible algorithms to solve inverse problems based on the novel regularizer and
compare their performance in additional experiments.

2. Related work. Approaches to defining TV for vector-valued functions can roughly be
divided into two classes. The first class of approaches computes the TV channel by channel
and takes a suitable norm of the resulting vector. The second class of approaches emerges
when considering the Riemann geometry of the image manifold.

2.1. Channel by channel, l1-norm. Probably the most simple and straightforward way
to deal with multidimensional TV is to sum up the contributions of the separate channels [3].

1http://cvpr.in.tum.de.

http://cvpr.in.tum.de
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This leads to the definition

(2.1) TVS(u) :=

n
∑

i=1

TV(ui).

The dual formulation follows immediately from (1.2),

(2.2)
TVS(u) = sup

(ξ1,...,ξn)∈KS

{

n
∑

i=1

∫

Ω
ui div(ξi) dx

}

with KS = C1
c (Ω,E

m × · · · × E
m).

The dual optimization technique of this method is a straightforward generalization of [12] and
is fast, robust, and easy to implement. However, since there is no coupling between channels,
there is no preservation of color edges and significant color smearing, as we will see in the
experiments. Also, there is no rotational invariance in color space. The norm has, for example,
been used in TV-L1 optic flow models [41], where artifacts are not immediately visible as in
color image denoising.

2.2. Channel by channel, Euclidean norm. Blomgren and Chan [9] define multidimen-
sional TV as the Euclidean norm of the vector of channelwise scalar TV,

(2.3) TVBC(u) :=

√

√

√

√

n
∑

i=1

TV(ui)2.

From the Euler–Lagrange equations of this norm,

(2.4)
TV(ui)

TVBC(u)
div

( ∇ui
|∇ui|2

)

= 0 for all 1 ≤ i ≤ n,

one can observe that there is a coupling of channels, but it is global and very weak, i.e.,
the same per-channel weight is used for all image pixels. Furthermore, a regularization is
required for the denominator of (2.4) in the diffusion process. The authors demonstrated
that their variant has quite a few desirable properties, and since it is convex, there is also
a dual formulation available. However, the constraint on the dual variables is global instead
of pointwise, so the reprojection on the constaint set cannot be fully parallelized, and an
implementation will be not as efficient. Because of this shortcoming and the weakness of the
coupling, we do not include this norm in further studies.

2.3. Riemann geometry. In [20], di Zenzo suggests considering a vector-valued image as
a parameterized two-dimensional Riemann manifold in nD-space. The metric tensor of this
manifold is given by

(2.5) gµν = (∂µu, ∂νu), µ, ν = 1, 2.

This is analogous to the structure tensor of an image, and the eigenvector corresponding to
the smaller eigenvalue gives the direction of the vectorial edge; see Figure 2. Several variants
of anisotropic and edge-enhancing diffusion for color images have been developed using this
formulation [37, 40], but in general the diffusion process does not arise as the minimizing flow
of an energy.
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∇u

u(Ω)

R

Ω

Figure 2. The metric tensor of the image manifold u(Ω) is given by (gµν) = (Du)TDu. The eigenvector
corresponding to the largest eigenvalue λ1 gives the direction of the vectorial edge. In the familiar case n = 1
illustrated above, this is the direction of the gradient ∇u, which is always orthogonal to the level lines.

Based on this framework, Sapiro [35] suggests a family of possible definitions for the
vectorial TV, which is of the form

(2.6) TVSR(u) :=

∫

Σ
f(λ+, λ−) ds,

where λ± denote the larger and smaller eigenvalue of (gµν), respectively, and f is a suitable
scalar-valued function. It must be noted that TVSR is in general defined only for differentiable
functions; only for special cases are dual formulations available to extend it to locally integrable
functions.

Another approach based on Riemann geometry was pioneered in the framework by Kim-
mel, Malladi, and Sochen [25, 38, 26]. In contrast to the approaches above, it considers a
higher-dimensional manifold, namely, the graph of the image as a surface in R

2 × R
n. The

surface area is employed for regularization and is minimized in order to smoothen the image.
This approach leads to a diffusion equation with the direction given by the Beltrami flow. It
is possible to derive a dual formulation in the case of grayscale images [10]; however, no such
dualization is known in the vectorial case. Thus, there are currently no efficient algorithms
available to minimize this surface area in the case of vectorial images.

2.4. Pointwise Frobenius norm. A special case of the Sapiro–Ringach TV (2.6) is the
choice f(λ±) =

√

λ+ + λ−, which generalizes to the Frobenius norm of the derivative Du

(2.7) TVF (u) :=

∫

Ω
‖Du(x)‖F dx.

in the case of an n-dimensional image space Ω. The choice above is a remarkable case because
there is a convenient dual formulation, which extends the definition from differentiable to
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locally integrable functions,

(2.8)
TVF (u) = sup

(ξ1,...,ξn)∈KF

{

n
∑

i=1

∫

Ω
ui div(ξi) dx

}

with KF = C1
c (Ω,E

n·m).

This can be seen as another straightforward generalization of single-channel TV if one com-
pares to its dual formulation. Notably, definitions (2.8) and (2.2) are equivalent in the sense
that they lead to the same space BV(Ω,Rn). However, the actual results in image processing
algorithms are quite different, since there is no correlation of channels in TVS , in contrast to
TVF , which has a desirable coupling of channels. In the books [1, 3], both definitions appear
depending on the preference of the authors.

Efficient minimization techniques for functionals based on (2.8) have been intensively
studied by Bresson and Chan [10] as well as Duval, Aujol, and Vese [22]. Because of its good
performance, TVF has emerged as a favorite candidate for vectorial TV, and it is often referred
to as the vectorial TV, although it is only a single one in the large family (2.6) proposed by
Sapiro and Ringach.

However, it was already noted by Blomgren and Chan [9] that TVF has some less-than-
ideal properties. In particular, it actually favors gray value images over colored ones, which
leads to color smearing, for example, in denoising applications. That the coupling of channels
is not optimal can also be seen in the dual formulation. While the edge strength is cor-
rectly weighted over all channels such that common edges are not overly penalized, the edge
directions can be different for the different channels.

3. Vectorial TV. In the following, we will show that in the family of generalizations of TV
to vector-valued functions proposed by Sapiro and Ringach [35] is the one which emerges
naturally in light of geometric measure theory. The resulting vectorial TV approach supports
a common edge direction for all channels, comprises important invariance properties, and
comes with a dual formulation that allows for stable and exact minimization schemes.

This section contains our main theoretical contributions. We first introduce the regular-
izer TVJ from the point of view of geometric measure theory and then show how it relates
to the framework of Sapiro and Ringach. The key results are in subsection 3.2, where we
compute the convex set of which TVJ is the support functional, and thus the convex con-
jugate. This will be central to the efficient minimization methods introduced in later parts
of the paper. The remainder of the section then collects some other useful properties of the
regularizer TVJ .

3.1. Definition. Geometric measure theory [23] is focused on geometric properties of the
measures of sets, for example, a set’s arc length and area. One of the central concepts in
geometric measure theory is the notion of a Jacobian Jk, a generalization of the Jacobian
determinant to the case k ≤ n. We will only require the case k = 1, which we are going to
explain in the following.

For a scalar valued differentiable function u it turns out that J1u = |∇u|2, which implies
that the TV corresponds to the integral of J1u. Therefore, a natural generalization of the TV
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to a vector-valued functions u : Ω → R
n is given by the integral

(3.1) TVJ(u) :=

∫

Ω
J1udx.

The precise meaning is made clear by the following proposition, which relates the Jacobian to
the singular values σ1(Du), . . . , σm(Du) of the derivative matrixDu in case of differentiable u.

Proposition 3.1. For functions u ∈ C1(Ω,Rn), the vectorial total variation TVJ(u) equals
the integral over the largest singular value of the derivative matrix,

(3.2) TVJ(u) =

∫

Ω
σ1(Du) dx.

In particular, TVJ is equal to the standard TV for real-valued functions.
Proof. The Jacobian J1u is defined as the operator norm of

∧

1Du = Du, which can be
computed explicitly via

(3.3)

J1u = ‖∧1Du‖
= sup

ξ∈Em

{

|(∧1Du) (ξ1e1 + · · · + ξmem)|2
}

= sup
(ξ,η)∈Em×En

⎧

⎨

⎩

m
∑

j=1

(ξjDu(ej),η)

⎫

⎬

⎭

= sup
(ξ,η)∈Em×En

⎧

⎨

⎩

n
∑

i=1

ηi

m
∑

j=1

ξj∂jui

⎫

⎬

⎭

= sup
(ξ,η)∈Em×En

{

n
∑

i=1

ηTDu · ξ
}

.

The claim follows now from the singular value decomposition of Du.
Interestingly, although the motivation for the above formulation comes from a completely

different direction, Proposition 3.1 shows an intimate relationship of the proposed formulation
to the Sapiro–Ringach approach [37]. To see this, note that the metric tensor of the image
manifold is equal to (gµν) = (Du)TDu, in particular, σ1(Du) =

√

λ+; see Figure 2. Thus,
TVJ is a special case of (2.6), similar to the model TVF . In previous works, the norm

√

λ+

has already been employed as a local geometry indicator to construct diffusion flows for image
restoration [11, 36, 39]. However, those flows do not appear as gradient flows of an energy,
and to our knowledge, our paper is the first one which actually directly uses the norm as
a regularizer in energy functionals. This is a large conceptual and in particular algorithmic
difference. Note that a correct minimization with diffusion-based methods is not possible,
since the function σ+ is not differentiable—from the explicit formula in the case m = 2, n = 3
of color images one can see that a smooth approximation is not as simple to achieve as in the
case of TV.

From the new context, we can derive a dual formulation for TVJ , which leads to a very
efficient optimization method for the proposed regularizer. Furthermore, this dual formulation
allows us to extend the definition to nondifferentiable functions, which is not possible in the
Sapiro–Ringach formulation.
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ξb

ξg
ξr

ηrξ

ηbξηgξ

TVF TVJ

Figure 3. Theoretical advantage of TVJ . The vectorial total variation TVF based on the Frobenius norm
has different edge directions for each color channel, while TVJ yields only one common direction with channel-
by-channel weights; see also Figure 4 and Proposition 3.2. This leads to a better preservation of color edges in
inverse problems.

Proposition 3.2. On C1(Ω,Rn), the vectorial total variation TVJ can be expressed as

(3.4)
TVJ(u) = sup

(ξ,η)∈KJ

{

n
∑

i=1

∫

Ω
ui div(ηiξ) dx

}

with KJ =C1
c (Ω,E

m × E
n).

The right-hand side is well defined for all u ∈ L1
loc(Ω,R

n).
Proof. The proof follows from the representation (3.3) for J1u and the Gaussian divergence

theorem.
Because σ1(·) and ‖·‖F are equivalent norms on R

n×m, TVJ leads to the same space
BV(Ω,Rn) of functions of bounded vectorial TV.

Note that in representation (3.4), the term below the integral contains products of ξ and ηi,
which means that although KJ is convex, the right-hand side cannot be a support functional
of a convex set. We will see how we can rewrite it to a support functional (and thus derive
the true dual formulation) in section 3.2. However, from representation (3.4) we can notice
one major feature of TVJ . While TVF and TVS have different edge directions ξi for each
color channel, in the formulation TVJ there is a single direction ξ which is weighted among
the channels. This is illustrated in Figure 3, while a theoretical comparison of the different
variants can be seen in Figure 4. We refer to [26] for a discussion of why the coupled edge
direction is ideal for many natural images, in particular, how it follows from a Lambertian
assumption about the lighting model.

3.2. Convex analysis. We now compute the convex conjugate of TVJ . From Proposi-
tion 3.2, it is already obvious that TVJ is equal to the support functional of a closed convex
set K ⊂ L2(Ω,Rn) and that its conjugate TV∗

J is the indicator function of K. In particu-
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Variant Primal Dual Properties

TVS(u)

n
∑

i=1

∫

Ω
|∇ui|2 dx

sup
(ξ1,...,ξn)∈KS

{

n
∑

i=1

∫

Ω
ui div(ξi) dx

}

with KS = C1
c (Ω,E

m × · · · × E
m)

separate

directions,

unweighted

TVF (u)

∫

Ω
‖Du(x)‖F dx

sup
(ξ1,...,ξn)∈KF

{

n
∑

i=1

∫

Ω
ui div(ξi) dx

}

with KF = C1
c (Ω,E

n·m)

separate

directions,

weighted

TVJ(u)

∫

Ω
J1(u) dx

sup
(ξ,η)∈KJ

{

n
∑

i=1

∫

Ω
ui div(ηiξ) dx

}

with KJ = C1
c (Ω,E

m × E
n)

shared

direction,

weighted

Figure 4. Comparison of dual formulations and properties.

lar, TVJ is convex, closed, and positive homogeneous on the Hilbert space L2(Ω,Rn). The
remainder of the section is devoted to computing the set K.

We first require some additional notation. For a vector-valued function u ∈ C1(Ω), we
define the gradient operator Grad componentwise as

(3.5) Grad(u)(x) =

⎡

⎢

⎣

∇u1(x)
...

∇un(x)

⎤

⎥

⎦
∈ R

n×m.

Similarly, for a tensor field ζ ∈ C1
c (Ω,R

n×m), the divergence operator Div is the regular
divergence acting on the rows,

(3.6) Div(ζ)(x) = Div

⎛

⎜

⎝

⎡

⎢

⎣

ζ1
...
ζn

⎤

⎥

⎦

⎞

⎟

⎠
(x) :=

⎡

⎢

⎣

div(ζ1)(x)
...

div(ζn)(x)

⎤

⎥

⎦
∈ R

n.

Note that since ζ has compact support, 〈Grad(u), ζ〉 = 〈u,−Div(ζ)〉 for all such u and ζ,
in particular, Grad∗ = −Div. Here, 〈·, ·〉 denotes the inner product for L2 functions of the
respective dimensionality.

The reformulation of TVJ can best be understood by representing matrices in R
n×m with

Kronecker products. Let a ∈ R
n and b ∈ R

m; then their Kronecker product a ⊗ b is by
definition an n ·m vector, which throughout the rest of the work we identify with an n ×m
matrix

(3.7) a⊗ b :=

⎡

⎢

⎣

a1b
...

anb

⎤

⎥

⎦
=

⎡

⎢

⎣

a1b
T

...
anb

T

⎤

⎥

⎦
.
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Using this notation, one can rewrite the term in the representation (3.4) of TVJ as

(3.8)

n
∑

i=1

∫

Ω
ui div(ηiξ) dx = 〈u,Div(η ⊗ ξ)〉 .

Thus, one can identify the desired convex set K as follows.
Proposition 3.3. Let u ∈ L2(Ω,Rn). Then

(3.9)
TVJ(u) = σK(u) = sup

v∈K
〈u,v〉

with K :=
{

Div(ζ) : ζ ∈ C1
c (Ω, co(E

n ⊗ E
m)
}

;

thus TVJ is convex, closed, and positive homogeneous on the Hilbert space L2(Ω,Rn). Above,
co(En ⊗ E

m) denotes the convex hull of the Kronecker product E
n ⊗ E

m, which is formed
element by element according to (3.7).

Proof. If we rewrite (3.4) using (3.8), we can see that

(3.10) TVJ(u) = sup
(ξ,η)∈En⊗Em

〈u,Div(η ⊗ ξ)〉 .

We arrive at the result by observing that a support functional of a set A is equal to the
support functional of its convex hull co(A) and taking the convex hull commutes with the
linear mapping Div.

What remains to be shown is how to characterize co(En ⊗ E
m). The characterization can

be found in the literature, but we review the arguments here for the sake of completeness.
The following proposition gives the abstract conditions for a matrix to lie in this set.

Proposition 3.4.We identify vectors in R
n·m with matrices R

n×m. Then

(3.11) co(En ⊗ E
m) =

⋂

B∈Rn×m

{

A ∈ R
n×m : 〈A,B〉 ≤ σ1(B)

}

,

where σ1(B) denotes the largest singular value of B.
Proof. Let E := E

n⊗E
m ⊂ R

n·m = R
n×m. According to the Eidelheit separation theorem

(which is itself a direct consequence of the theorem of Mazur, or geometric Hahn–Banach) [33],
the convex hull of E can be written as the intersection of all half-spaces which contain E.
Using the support functional2 σE : Rn×m → R of E, we can write this intersection as

(3.12) co(En ⊗ E
m) =

⋂

B∈Rn×m

{

A ∈ R
n×m : 〈A,B〉 ≤ σE(B)

}

.

Since the support functional can be computed explicitly as

(3.13) σE(B) = sup
η⊗ξ∈En⊗Em

〈η ⊗ ξ,B〉 = sup
η∈En,ξ∈Em

n
∑

i=1

m
∑

j=1

ηibijξj = σ1(B),

we arrive at the claim of the proposition.

2The standard notation σE for the support functional of the set E is not to be confused with the notation
σi(A) for the singular values of a matrix A. Note that the subscript is a set in the first case, an integer in the
second.
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We have now a full characterization of the convex hull; however, it has an infinite number
of constraints. We can replace it with a single constraint when we take into account that
the matrix norm dual to the spectral norm σ1(·) is the nuclear norm, which is the sum of all
singular values,

(3.14) |A|∗ :=
∑

σi(A).

To make this precise, we can formulate the following duality theorem.
Proposition 3.5. For every A ∈ R

n×m,

(3.15) |A|∗ = max{〈A,B〉 : σ1(B) ≤ 1}.

Proof. See [32, Proposition 2.1].
As a consequence, we can write the desired convex hull as follows.
Corollary 3.6. The convex hull of En ⊗ E

m is the nuclear unit ball,

(3.16) co(En ⊗ E
m) =

{

A ∈ R
n×m : |A|∗ ≤ 1

}

.

Proof. For the proof, we note that from (3.15) it follows that for all B ∈ R
n×m,

(3.17) 〈A,B〉 ≤ |A|∗ · σ1(B)

with equality holding for certain B. Plugging this into the support plane characteriza-
tion (3.11), we arrive at the result.

For minimization algorithms later on, it will be necessary to project back onto K. We can
compute the orthogonal projection via the following theorem.

Theorem 3.7. Let A ∈ R
n×m with singular value decomposition A = UΣV T . Then the

orthogonal projection of A onto co(En ⊗ E
m) is

(3.18) Pco(En⊗Em)(A) = U diag(σp)V
T ,

where σp is the projection of (σ1, . . . , σn) onto the l1-unit ball

(3.19)
{

x ∈ R
n :

∑

|xi| ≤ 1
}

.

Proof. This follows from the main theorem proved in [30], which is in turn a consequence
of Mirsky’s inequality [29].

An important special case is to compute the projection for the 3×2 matrices which appear
in color image processing. We give an efficient explicit algorithm for this case in the appendix.

3.3. Relations to other norms. The proposed vectorial total variation TVJ is systemati-
cally smaller than TVF , which is in turn smaller than TVS. This means that when using these
for regularization, different scaling factors have to be used to reach a similar level of smooth-
ing, which makes results not directly comparable. We compensate for this in the experiments
by choosing an optimal value for each regularizer separately.

Proposition 3.8. For all u ∈ BV(Ω,Rn),

(3.20) TVJ(u) ≤ TVF (u) ≤ TVS(u).
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Proof. For differentiable u, we can actually see that the inequality holds pointwise for the
integrands, since

(3.21)

σ1(Du) ≤
√

σ1(Du)2 + · · ·+ σm(Du)2

=

√

|∇u1|22 + · · ·+ |∇un|22
≤ |∇u1|2 + · · ·+ |∇un|2 .

By a standard density argument, it follows for all of BV(Ω,Rn).

3.4. Invariance properties. We show that TVJ(u) is invariant with respect to both or-
thogonal transformations in image space as well as in color space. Those important properties
are not shared by all variants of the vectorial TV; see Blomgren and Chan [9] for an analysis.
The first proposition shows that TVJ is invariant under orthogonal reparametrizations of Ω.

Proposition 3.9. Let Ω′ ⊂ R
m and A : Ω′ → Ω be an orthogonal transformation. Then for

any u ∈ L1
loc(Ω,R

n),
TVJ(u ◦ A) = TVJ(u).

Proof. Since the divergence is invariant under orthogonal transformations, this follows
from representation (3.4) and the integral transformation formula.

Furthermore, TVJ(u) is invariant under isometries of the color space R
n. Note that this

is incorrect for most variants of vectorial TV, a notable exception being TVF .
Proposition 3.10. Let T : Rn → R

n be an isometry with respect to the Euclidean norm.
Then

TVJ(Tu) = TVJ(u).

Proof. The proof follows from the representation (3.3). Note that D(Tu)(ej) = T ·Du(ej)
and T maps the unit sphere in R

n onto itself.

4. TVJ in inverse problems. In image processing problems, one frequently considers
inverse problems where the goal is to recover an original image u ∈ L2(Ω,Rn) from a noisy
observation f ∈ L2(Ω,Rn) of a possibly further degraded version Au. Since the model Au = f

is usually underdetermined and in order to correctly model the noise, it is necessary to impose
a prior model for the original image u and impose Au = f only as a soft constraint. We thus
want to solve the problem

(4.1) argmin
u∈L2(Ω,Rn)

{

TVJ(u) +
1

2λ
‖Au− f‖pp

}

,

where TVJ(u) serves as an objective, improper prior. In the case p = 2, the above model
can be interpreted as a maximum a posteriori estimate under the assumption of Gaussian
noise on the observation, while the choice of p = 1 is suitable for salt-and-pepper noise. The
constant λ > 0 controls the desired smoothness of the result—the larger, the greater the
influence of the regularizer.

In this section, we verify that the usual inverse problems with the regularizer TVJ are
well defined, among them the proximation operator, which is important for algorithms. Most
results are standard, shown in a similar way as for the grayscale or other vectorial TVs, but
for the sake of completeness we reproduce them here and adapt the arguments to our case.
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4.1. Existence and uniqueness of solutions. In order to guarantee existence of solutions,
we need to make further assumptions on the operator A.

Theorem 4.1. Let A : L2(Ω,Rn) → L2(Ω,Rn) be bounded, symmetric, and coercive with
constant α > 0, i.e., for all u ∈ L2(Ω,Rn) we have

(4.2) 〈Au,u〉 ≥ α ‖u‖2 .

Then problem (4.1) admits a unique minimizer u ∈ L2(Ω,Rn).
Proof. Note that coercivity of A implies in particular

(4.3) ‖Au‖2 ≥
〈Au,u〉
‖u‖2

≥ α ‖u‖2 → ∞ as ‖u‖2 → ∞.

Together with the inverse triangle inequality, this implies that the energy of (4.1) is coercive
on L2(Ω,Rn). Proposition 3.3 implies that it is lower semicontinuous and strictly convex as
the sum of the TVJ seminorm and L2 norm. These properties are sufficient to guarantee a
unique minimizer on the Hilbert space L2(Ω,Rn); see Theorems 3.2.5 and 3.3.3 in [3].

Condition (4.2) is probably too strong; see the discussion in the case of grayscale TV
in [16]. However, this analysis is beyond the scope of this work.

4.2. The TVJ -L
2 Model. The ROF model, named after Rudin, Osher, and Fatemi, who

introduced it in [34], is a very popular approach to image denoising, designed to restore an
image which was degraded by Gaussian noise. It is designed for grayscale images and employs
TV as a prior. With the vectorial TV, it can easily be generalized to vector-valued images.
This leads to the TVJ -L2 model for denoising, which is to solve for a given noisy image
f ∈ L2(Ω,Rn) the minimization problem

(4.4) argmin
u∈BV(Ω,Rn)

{

TVJ(u) +
1

2λ
‖u− f‖22

}

.

Choosing A as the identity I, we can see that it is a special case of (4.1) with coercivity
constant α = 1. In this special case, we can refine the proof for existence of a solution and
show an additional property of the minimizer.

Theorem 4.2. Denote the (componentwise) mean of a function u on Ω by uΩ := 1
|Ω|
∫

Ω udx.

Problem (4.4) admits a unique solution ū which has the same mean as f .
Proof. We give the basic ideas of the proof and refer the reader to [22] for more details.

The energy is strictly convex as a sum of the convex TVJ seminorm (see Proposition 3.3) and
the strictly convex norm of the L2-Hilbertspace. Thus, what remains to be shown is existence
of a solution on the space

Vf := {u ∈ L2(Ω,Rn) : uΩ = fΩ}.

We already know that the energy is lower semicontinuous on Vf (Proposition 3.3). In addition,
the energy is coercive on Vf : from the Poincaré inequality (Theorem 5.3.1 in [3]) we have

‖u− fΩ‖2 = ‖u− uΩ‖2 ≤ C · TVJ(u)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

550 B. GOLDLUECKE, E. STREKALOVSKIY, AND D. CREMERS

with a constant C > 0, since the Frobenius and operator norms are equivalent norms on R
n×m.

Weak lower semicontinuity and coercivity imply the existence of a minimizer ū in Vf (The-
orem 3.2.5 in [3]). Since the constant function fΩ is of bounded variation and fΩ ∈ Vf , it
follows that ū ∈ BV(Ω,Rn).

5. Efficient minimization. In this section, we present algorithms to minimize the general
inverse problem of the form

(5.1) min
u∈L2(Ω,Rn)

{

VTV(u) +
1

2λ
‖Au− f‖pp

}

,

where VTV is either channel-by-channel vectorial total variation TVS, the vectorial total
variation TVF based on the Frobenius norm of the derivative matrix, or our novel regular-
izer TVJ . All three regularizers are closed and convex, which allows us to apply powerful
algorithms from convex optimization to solving inverse problems of the type (5.1). In this
paper, we discuss and compare a selected few of them. All algorithms are explicitly detailed
in Figure 8 in the appendix.

5.1. Bermùdez–Moreno algorithm for the VTV-L2 model. The Bermùdez–Moreno (BM)
algorithm was introduced in [7] and subsequently reintroduced in [4] in the context of image
processing problems. It can be shown that for the grayscale ROF model, it is the same as
the projection scheme proposed by Chambolle in [13]. Because VTV is convex and lower
semicontinuous, the BM algorithm can be directly adapted to the VTV-L2 model as well and
leads to a very similar algorithm. The sequence of iterations is detailed in Figure 8 in the
appendix. In [7, 4], it was shown that a step size of σ < 1/(4λ) = 2/(‖Div‖2 ·λ) is optimal, in
the sense that convergence is proved and experimentally the scheme becomes unstable for any
σ ≥ 1/(4λ). Note that we use simple forward and backward differences to discretize gradient
and divergence. The norm of the discrete operator Div is the same as ‖div‖ = 1√

8
, since

(5.2)

‖Div(ζ)‖ =

√

‖div(ζ1)‖2 + · · · + ‖div(ζn)‖2

≤ ‖div‖
√

‖ζ1‖2 + · · ·+ ‖ζn‖2

= ‖div‖ · ‖ζ‖ .
No estimate on the rate of convergence is given in the above references; however, the observed
convergence rate in experiments is O(1/n).

5.2. Primal-dual methods for the general inverse problem. The conjugates of the various
VTV regularizers allow us to transform problem (5.1) into the saddle point problem

(5.3)

min
u∈L2(Ω,Rn)

max
ζ∈L2(Ω,Rn×m)

{

−〈u,Div(ζ)〉 − δK(ζ) +
1

2λ
‖Au− f‖pp

}

,

where K =

⎧

⎪

⎨

⎪

⎩

C1
c (Ω, co(E

n ⊗ E
m)) for TVJ ,

C1
c (Ω,E

n·m) for TVF ,

C1
c (Ω,E

m × · · · × E
m) for TVS ,

and the indicator function δK(ζ) :=

{

0 for ζ ∈ K,

∞ otherwise.
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To solve this formulation, a number of first order primal-dual algorithms were suggested,
of which we compare the following two. Both work for the general inverse problem with both
L1 and L2 regularization in the data term. For handling general operators A and the non-
differentiable L1-norm, we modified the saddle point problem according to a suggestion by
Chambolle and Pock (section 6.3.1 in [17]) to also dualize the norm in the data term. We
arrive at the saddle point problem

(5.4) min
u∈L2(Ω,Rn)

max
ζ∈L2(Ω,Rn×m)
q∈L2(Ω,Rn)

{

−〈u,Div(ζ)〉+ 〈Au− f , q〉 − δK(ζ)− n∗
p(q)

}

.

Here, n∗
p is the convex conjugate of the weighted norm v �→ 1

2λ ‖v‖pp, i.e.,

(5.5) n∗
p(q) =

{

δEn

(

q
2λ

)

if p = 1,
λ
2 |q|

2
2 if p = 2,

with the equalities understood pointwise.

5.2.1. The Arrow–Hurwicz method. For reference, we test the algorithm which we em-
ployed in our original conference paper [24]. It comprises a straightforward subgradient de-
scent in the primal variable u and ascent in the dual variable ζ, as detailed in Figure 8 in
the appendix. This technique was already suggested in [2] and is named the Arrow–Hurwicz
(AH) method after the authors. Unfortunately, it lacks a proof of optimal step sizes for
which the scheme converges as well as a convergence rate. Experiments suggest that the al-
gorithm remains stable up to the suggested step sizes τ, σ = 1/

√
8 = 1/ ‖Div‖, and behaves

asymptotically exactly as the BM scheme.

5.2.2. Acceleration and variable step sizes. Chambolle and Pock suggest a number of
improvements to the simple subgradient descent and ascent scheme in [17], as a variant of the
algorithm presented previously in [31]. From their work, we implemented algorithm 2, which
enjoys a proven convergence rate of O(1/n2).

5.3. Fast iterative shrinking and thresholding for the general inverse problem. A well-
known method to solve problems of the form

(5.6) min
u

J(u) + F (u)

with closed and convex J, F and differentiable F is called iterative shrinking and thresholding
(ISTA). One ISTA step comprises a gradient descent in the differentiable F followed by a
subgradient descent in J . The step size in both cases is 1/L, where L is a Lipschitz constant
of ∇F . Since a subgradient descent step is equal to the evaluation of the proximation operator
for J , this means that a sequence of VTV-L2 problems needs to be solved when the idea is
applied to problem (5.1). Typically, the inner ROF problems are not solved exactly. Instead,
a fixed number k of steps of any iterative ROF solver is applied. In our experiments, we
chose k = 10. For the general inverse problem, L = ‖A∗A‖ /λ.

Beck and Teboulle showed in [6] how to accelerate this simple scheme by applying an
acceleration step with variable step sizes after each ISTA iteration. They called this new
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scheme fast ISTA (FISTA), and it is capable of solving the general inverse problem with L2

data term while achieving the same optimal O(1/n2) convergence as Chambolle and Pock.
Beck and Teboulle also proposed an accelerated algorithm for ROF obtained by applying
FISTA to the dual problem, which they call FGP [5]. We adapted this algorithm to the
VTV-L2 problem as well as to compare it with the other schemes, see Figure 9.

6. Experimental results.

6.1. Denoising: The vectorial ROF model. In our first experiment, we tested the per-
formance of both regularizers and algorithms in solving the basic VTV-L2 model. Since this
model can be interpreted as an image restoration method for images degraded by Gaussian
noise, we first tested which of the regularizers gives the best denoising results. Since the
weight λ is not directly comparable, we solved each denoising problem with a range of differ-
ent λ and only reported the best result for each regularizer in terms of peak signal-to-noise
ratio (PSNR). The results can be observed in Figure 10 in the appendix. We can see that TVJ

systematically yields a higher PSNR, with TVF being a close second. As expected, results
from TVS are significantly worse than from the other two, since there is no coupling of chan-
nels and significant smearing of colors. As previously observed by Blomgren and Chan [9],
TVF also exhibits a tendency to smear colors across edges, but it is less pronounced. The
visually best results are achieved with TVJ . Since all color channels share a common edge
direction, color edges are preserved and no color degradation can be observed.

Besides quality of results, algorithmic performance in solving VTV-L2 is also very impor-
tant. The reason is that solving the VTV-L2 model is equivalent to computing the proximation
operator for VTV, which can be interpreted as a subgradient descent step via the Moreau–
Yosida approximation of the subgradient [4]. Thus, solving VTV-L2 is an integral step of
some algorithms designed for more general functionals, with one example being FISTA. A full
performance comparison of the algorithms detailed in the last section is displayed in Figure 9
in the appendix. We can see the the O(1/n2) algorithms FGP and CP are systematically
superior to BM and AH by a large margin. Since in particular the implementation of CP
only amounts to a simple adaption of step sizes and acceleration step compared to AH, there
is no reason not to use it. Comparing FGP and CP, it seems that FGP is slightly faster in
number of iterations and total time required, although a single iteration is more costly. CP
is slightly more easy to implement, however, and requires less memory. One should also note
that BM has a relatively fast convergence in the first iterations, before acceleration fully kicks
in. Thus, we use it in the core of our FISTA implementation, since in the inner iteration only
a few steps of an ROF solver are applied. We provide source code for all experiments in a
GPL-licensed library.3

6.2. Denoising: L
1 data term. Taking the L2 norm (i.e., p = 2) in the data term of (5.1)

is the suitable choice in the case of Gaussian noise, since in this case the energy corresponds
to the maximum a posteriori estimate. However, if the image is degraded with salt-and-
pepper type noise, then the choice of p = 2 fails and we need to implement the more general
model (5.4) for p = 1. This is illustrated in Figure 11 in the appendix with a performance
comparison.

3http://www.sourceforge.net/p/cocolib.

http://www.sourceforge.net/p/cocolib
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Original Blurred and noisy

TVJ -L
2 deblurring (Chambolle–Pock (CP) algorithm) Closeup of result

Figure 5. Deblurring using TVJ . Colors are reproduced correctly in the result, and sharp edges are restored.

6.3. Deblurring: The general inverse problem. To demonstrate the performance on
general inverse problems, we implemented vectorial versions of TV-deblurring [21] and TV-
based superresolution [28]. Deblurring is based on the general inverse problem (5.1) with
Au := b ∗ u and the convolution defined componentwise. Note that ‖A‖ = ‖A∗‖ = ‖b‖1.
Superresolution slightly generalizes the data term to accommodate for several translated input
images; see [28] for details. Results are displayed in Figure 5 and in Figure 12 in the appendix
for deblurring and in Figure 6 for superresolution. One can again note that TVJ reproduces
sharp color edges correctly without smearing colors.

6.4. Inpainting and different color spaces. All previous experiments were performed
using the standard RGB color space. However, the regularizer TVJ penalizes the different
color channels uniformly. For this reason, it makes sense to assume that the visually most
pleasing results can be achieved if one uses a perceptually uniform color space, a property
which the common RGB space does not have. The color space CIE-L∗a∗b∗ was defined with
this property as a goal. We test if this choice makes a perceptual difference in another standard
application, where we inpaint damaged regions of an image. Note that the transformation
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(a) Low-res and noisy (b) Initialization

(c) Result (d) Original

Figure 6. Superresolution using TVJ . (a) One of 16 low-resolution, noisy input images. (b) Initialization
obtained by averaging the input images. (c) Result from running the algorithm. It can be observed that color
edges are preserved very well and no color smearing occurs. (d) Original image.

between RGB and CIE-L∗a∗b∗ is very complex; in particular, none of the invariance properties
applies.

As a simple inpainting model, we chose the VTV-L2 functional with the data term set
to zero inside the damaged regions. Since the data term is differentiable, optimization can
efficiently be performed with the FISTA algorithm. Results are presented in Figure 13 in
the appendix. One can observe that the choice of the uniform color space leads to a very
slight but nevertheless visually noticeable improvement, independent of the choice of λ. We
conclude that it probably pays off to perform a color space transformation before running
image processing algorithms on color images.

7. Conclusion. By referring to geometric measure theory, we have derived a definition
for TVJ , a TV of vector-valued functions, as an integral over a generalized Jacobian. We
showed that it corresponds to a special case of a family of norms proposed by Sapiro. We
provided a complete mathematical characterization of TVJ . In particular, we proved that
similar to the Frobenius norm TVF , the norm TVJ also admits a dual formulation in the
sense that it can be written as the support functional of a closed and convex set. This
formulation identifies TVJ as a closed and convex functional, which allows us to use powerful
minimization algorithms from convex optimization to solve inverse problems. In experiments,
we demonstrated that denoising results are superior compared to other variants of vectorial TV
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in that color edges are preserved better. We also showed that TVJ can serve as a regularizer
in more general energy functionals, which makes it applicable to general inverse problems like
deblurring, zooming, inpainting, and superresolution.

7.1. Projection ΠS for TVS. Since each channel is treated separately, we can compute
the well-known projection for the scalar TV for each color channel. Let A ∈ R

n×m with rows
a1, . . . , an ∈ R

m. Then ΠS is defined rowwise as

(7.1) ΠS(ai) =
ai

max(1, |ai|2)
.

7.2. Projection ΠF for TVF . Let A ∈ R
n×m with elements aij ∈ R. From (2.8) we see

that we need to compute the projection onto the unit ball in R
n·m when (aij) is viewed as a

vector in R
n·m. Thus,

(7.2) ΠF (A) =
A

max
(

1,
√

∑n
i=1

∑m
j=1 a

2
ij

) .

7.3. Projection ΠJ for TVJ . Let A ∈ R
n×m with singular value decomposition A =

UΣV T and Σ = diag(σ1, . . . , σm). We assume that the singular values are ordered with σ1
being the largest. If the sum of the singular values is less than or equal to one, A already lies
in co(En ⊗ E

m). Otherwise, according to Theorem 3.18,

(7.3) Π(A) = UΣpV
Twith Σp = diag(σp).

To compute the matrix V and the singular values, note that the Eigenvalue decomposition of
the m×m matrix ATA is given by V Σ2V T , which is more efficient to compute than the full
singular value decomposition since m < n. For images, m = 2, so there is even an explicit
formula available. We can now simplify the formula (7.3) to make the computation of U
unnecessary. Let Σ+ denote the pseudoinverse of Σ which is given by

(7.4) Σ+ = diag

(

1

σ1
, . . . ,

1

σk
, 0, . . . , 0

)

,

where σk is the smallest nonzero singular value. Then U = AV Σ+, and from (7.3) we conclude

(7.5) Π(A) = AV Σ+ΣpV
T .

For the special case of color images, where n = 3 and m = 2, the implementation of (7.5) is
detailed in Figure 7.

Appendix A. In this appendix we show explicitly how to compute the projection ΠK :
R
n×m → R

n×m required for the algorithms in Figure 8 for the different types of vectorial total
variation. In all cases, ΠK is the orthogonal projection onto a closed convex set K, which is
given for the different regularizers in (5.3).
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// Input : 3x2 matrix A in doub le v a r i a b l e s a11 . . . a32
// Output : p r o j e c t i on \Pi (A) in doub le v a r i a b l e s a11 . . . a32

// Compute D = AˆT A
double d11 = a11∗a11 + a21 ∗a21 + a31∗a31 ;
double d12 = a12∗a11 + a22 ∗a21 + a32∗a31 ;
double d22 = a12∗a12 + a22 ∗a22 + a32∗a32 ;

// Compute Eigenva lues ( lmax , lmin )
// = squares o f s i n gu l a r va lue s (smax , smin )
double t r a c e = d11 + d22 ;
double det = d11∗d22 − d12∗d12 ;
double d = sq r t ( max( 0 . 0 , 0 .25∗ t r a c e ∗ t r a c e − det ) ) ;
double lmax = max( 0 . 0 , 0 . 5 ∗ t r a c e + d ) ;
double lmin = max( 0 . 0 , 0 . 5 ∗ t r a c e − d ) ;
double smax = sq r t ( lmax ) ;
double smin = sq r t ( lmin ) ;

// Check whether matrix l i e s ou t s i d e K and needs to be pro j e c t e d
i f ( smax + smin > 1 .0 ) {

// Compute orthonormal system of Eigenvectors , such t ha t
// ( v11 , v21 ) be longs to lmax and ( v12 , v22 ) be longs to lmin
double v11 , v12 , v21 , v22 ;
i f ( d12 == 0.0 ) {

i f ( d11 >= d22 ) {v11 = 1 . 0 ; v21 = 0 . 0 ; v12 = 0 . 0 ; v22 = 1 . 0 ; }
else {v11 = 0 . 0 ; v21 = 1 . 0 ; v12 = 1 . 0 ; v22 = 0 . 0 ; }

}
else {

v11 = lmax − d22 ; v21 = d12 ;
double l 1 = hypot ( v11 , v21 ) ;
v11 /= l 1 ; v21 /= l 1 ;
v12 = lmin − d22 ; v22 = d12 ;
double l 2 = hypot ( v12 , v22 ) ;
v12 /= l 2 ; v22 /= l 2 ;

}

// Projec t ( smax , smin ) to l i n e (0 ,1) + tau ∗ (1 ,−1) , 0<=tau<=1.
double tau = 0.5 ∗ ( smax − smin + 1 . 0 ) ;
double s1 = min ( 1 . 0 , tau ) ;
double s2 = 1.0 − s1 ;
// Compute \Sigmaˆ+ ∗ \Sigma p
s1 /= smax ;
s2 = ( smin > 0 . 0 ) ? s2 / smin : 0 . 0 ;

// Compute T = V ∗ \Sigmaˆ+ ∗ \Sigma p ∗ VˆT
double t11 = s1 ∗v11∗v11 + s2 ∗v12∗v12 ;
double t12 = s1 ∗v11∗v21 + s2 ∗v12∗v22 ;
double t21 = s1 ∗v21∗v11 + s2 ∗v22∗v12 ;
double t22 = s1 ∗v21∗v21 + s2 ∗v22∗v22 ;

// Resu l t \Pi (A) = A∗T
a11 = a11 ∗ t11 + a12 ∗ t21 ;
a21 = a21 ∗ t11 + a22 ∗ t21 ;
a31 = a31 ∗ t11 + a32 ∗ t21 ;
a12 = a11 ∗ t12 + a12 ∗ t22 ;
a22 = a21 ∗ t12 + a22 ∗ t22 ;
a23 = a31 ∗ t12 + a32 ∗ t22 ;

}

Figure 7. Computation of the projection Π(A) onto co(E3
⊗ E

2) for a 3× 2 matrix A.
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Initialize

u0 = 0, ζ0 = 0,

σ <
1

4λ

Iterate

ζn+1 = ΠK(ζn + σGrad(un))

un+1 = f + λDiv(ζn+1)

The projection ΠK depends on

the variant of VTV used and is

detailed in the appendix.

BM for VTV-L2 denoising problem

Initialize

u0 = 0, ū0 = u0, ζ0 = 0,

σ =
1

8λ
,L = ‖A∗A‖ /λ, t0 = 1

Iterate

gn = ūn − 1

λL
A∗(Aūn − f)

repeat k times

ζn+1 = ΠK(ζn + σGrad(un))

un+1 = gn +
1

L
Div(ζn+1)

tn+1 = (1 +
√

1 + 4t2n)/2

ūn+1 = un +
tn − 1

tn+1
(un+1 − un)

Beck–Teboulle (FISTA)
for VTV-L2 inverse problem

Initialize

u0 = 0, ζ0 = 0, q0 = 0

τ = σ =
1√
8

Iterate

ζn+1 = ΠK(ζn + σGrad(un))

qn+1 = Πp(qn + σ(Aun − f))

un+1 = un + τ(Div(ζn+1)−A∗qn+1)

with component-wise reprojection

Πp(q̃i) :=

{

q̃i/max(1, 2λ |q̃i|2), p = 1

q̃i/(1 + σnλ), p = 2

AH for VTV-Lp inverse problem

Initialize

u0 = 0, ū0 = u0, ζ0 = 0, q0 = 0

τ0 > 0, σ0 =
1

8τ0

Iterate

ζn+1 = ΠK(ζn + σnGrad(ūn))

qn+1 = Πp(qn + σn(Aūn − f))

un+1 = un + τn(Div(ζn+1)−A∗qn+1)

θn = 1/
√

1 + 2γτn

τn+1 = θnτn σn+1 = σn/θn

ūn+1 = un+1 + θn(un+1 − un)

CP for VTV-Lp inverse problem

Figure 8. Algorithms to solve inverse problems with vectorial TV regularization. The BM algorithm is
suitable only for the VTV-L2 ROF model, while FISTA can handle general inverse problems of the type VTV-
L

2. Only the AH and CP methods can in addition deal with nondifferentiable L
1 data terms. See [12] for the

correct discretization of the gradient and divergence operators.
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Original Gaussian noise, σ = 0.2

TVS, λ = 0.2 TVF , λ = 0.2 TVJ , λ = 0.2

λ = 0.2 TVJ TVF TVS

ǫ = 10−4 ǫ = 10−6 ǫ = 10−4 ǫ = 10−6 ǫ = 10−4 ǫ = 10−6

AH 31 (0.15s) 285 (1.37s) 42 (0.19s) 493 (2.24s) 122 (0.53s) 2220 (9.7s)
BM 31 (0.14s) 284 (1.28s) 41 (0.17s) 493 (2.05s) 121 (0.5s) 2220 (9.11s)
CP 19 (0.09s) 164 (0.79s) 20 (0.09s) 166 (0.75s) 26 (0.11s) 217 (0.95s)
FGP 11 (0.06s) 38 (0.2s) 12 (0.06s) 62 (0.3s) 22 (0.11s) 98 (0.47s)

TVS, λ = 1.0 TVF , λ = 1.0 TVJ , λ = 1.0

λ = 1.0 TVJ TVF TVS

ǫ = 10−4 ǫ = 10−6 ǫ = 10−4 ǫ = 10−6 ǫ = 10−4 ǫ = 10−6

AH 297 (1.42s) 4230 (20.2s) 408 (1.85s) 9236 (41.9s) 889 (3.89s) -
BM 290 (1.31s) 4228 (19.1s) 402 (1.67s) 9235 (38.5s) 880 (3.61s) -
CP 119 (0.57s) 1078 5.2s) 129 (0.59s) 1419 (6.4s) 168 (0.74s) 1459 (6.4s)
FGP 31 (0.16s) 338 (1.8s) 71 (0.35s) 492 (2.4s) 149 (0.71s) 631 (3.0s)

Figure 9. Comparison of convergence speed of several algorithms and regularizers. The tables give the
number of iterations and the time it takes the algorithms shown in Figure 8 to reach an accuracy of ǫ for the
VTV-ROF model. More complicated reprojections have only a small impact on time per iteration. For the
same λ, the more complex regularizers are smaller, so less smoothing occurs, which tends to reduce the total
number of iterations until convergence.
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Noisy TVS TVF TVJ Original

22.57 23.89 24.12

23.31 24.21 24.54

19.73 20.72 20.99

16.98 17.79 17.98

17.76 19.25 19.43

21.67 23.11 23.48

Figure 10. Denoising results for input images with additive Gaussian noise, standard deviation σ = 0.2.
For each method, the value of λ which gave the best results was determined experimentally. The PSNR for each
result is noted below the image. These experiments show that compared to both TVS and TVF , the proposed TVJ

gives rise to signifcantly better visual quality and to systematically superior PSNR values.
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Original 15% of pixels with random color

TVJ-L
2 denoising (CP algorithm) TVJ -L

1 denoising (CP algorithm)

Figure 11. Denoising salt-and-pepper noise using TVJ . The regularization weight λ was optimized for
the visually best result in both cases. The L

2 model in the data term is clearly unsuitable for salt-and-pepper
noise, since it requires too much regularization to even partially get rid of the noise. On the other hand, the
L

1 model works very well and the regularizer preserves colors and sharp edges. Note that this model requires
algorithms CP or AH, where CP exhibits a much faster convergence in practice.
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Original Blurred and noisy

TVJ -L
2 deblurring (CP algorithm) Closeup comparison

Figure 12. Deblurring using TVJ . This example shows much stronger anisotropic blur. Colors are still
preserved very well.
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(a) Damaged input (b) Inpainting result

(c) RGB color space, λ = 0.01 (d) CIE-L∗a∗b∗ color space, λ = 0.01

(e) RGB color space, λ = 0.1 (d) CIE-L∗a∗b∗ color space, λ = 0.1

Figure 13. Inpainting using TVJ with different color spaces. The closeups show using the RGB color space
leads to a slight bleeding of the color red across the edge. It is particularly visible in the bottom left corner of the
closeups, giving some of the green pixels an undesired red taint. The effect is very small but visually noticeable
and is independent of the choice of the regularization parameter λ. It vanishes when transforming the image to
the perceptually uniform CIE-L∗a∗b∗ color space before inpainting.
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