
Discrete Comput Geom 19:1–17 (1998) Discrete & Computational

Geometry
© 1998 Springer-Verlag New York Inc.

The Nature and Meaning of Perturbations in
Geometric Computing∗

R. Seidel†

Computer Science Division, 673 Soda Hall, University of California Berkeley,
Berkeley, CA 94720-1776, USA
seidel@cs.berkeley.edu
and
Fachbereich 14, Informatik, Universit¨at des Saarlandes,
Postfach 151150, D-66041 Saarbr¨ucken, Germany

Abstract. This paper addresses some fundamental questions concerning perturbations as
they are used in computational geometry. How does one define them? What does it mean
to compute with them? How can one compute with them? Is it sensible to use them?

We define perturbations to be curves, point out that computing with them amounts
to computing with limits, and (re)derive some methods of computing with such limits
automatically. In principle, a line can always be used as a perturbation curve. We discuss a
generic method for choosing such a line that is applicable in many situations.

1. Introduction

When faced with the problem of geometric degeneracy, a typical computational geometry
paper, talk, or lecture will simply appeal to “standard perturbation methods.” This may be
followed by a reference, such as [7], [20], or [9], but usually not much more discussion
is offered. This may be okay, were there not the curious fact that when one asks a
typical computational geometer for a precise definition of “perturbation,” one will usually
not receive a satisfactory answer (“You perturb the input a little bit.” “You move the
input points by an infinitesimal amount.” etc.). Consulting the main references does not
guarantee satisfaction either. Usually one finds a lengthy discussion on “degeneracies”
and the distinction between “problem-induced” and “algorithm-induced” ones, and then

∗ A preliminary version of this paper has appeared inProc. 11th STACS, Lecture Notes in Computer
Science, vol. 775, Springer-Verlag, Berlin, 1994.

† Supported by the NSF Presidential Young Investigator Award CCR-9058440.

2 R. Seidel

perturbations are defined, either by what properties they are supposed to have (and not
by what they are supposed to be), or as sequences satisfying some technical, rather
unintuitive conditions.

Why this peculiar situation? The answer, I believe, lies in the somewhat dubious
motivation for using perturbations: Here I have a program that solves some problems in
all nondegenerate instances (whatever nondegenerate means). Give me some automatic,
strictly syntactic method that transforms my program into one that solves the problem
in all instances.

A reasonably cautious researcher will almost immediately raise his (or her) eyebrows.
How can we transform, by purely syntactic means, a program that does not always work
into one that always works? This seems like wishful thinking and is very unlikely to
succeed in general. But, as it turns out, the method of perturbations comes surprisingly
close to achieving just that. The transformed program always “works.” However, it does
not always solve the original problem, but it solves some related problem. The exact
nature of this related problem, though, and its relationship to the original problem, is
usually left unclear.1 However, here exactly seems to be the crux of the difficulty of
understanding, defining, and using perturbations.

It is the goal of this paper to elucidate some of these issues. In Section 2 we define
perturbations (for us they are just curves). Before ever mentioning algorithms or pro-
grams, we show how a perturbation scheme can be used to transform aproblem mapping
into aperturbed problem mappingvia a simple limit construction. We consider under
what circumstances the original mappingF and and the perturbed mappingF agree, and
hence computingF gives the same result as computingF . Finally, we discuss how for
certain models of computation any program that computesF “almost everywhere” can
be purely syntactically transformed into a program that computesF everywhere (which
is great ifF andF agree).

Section 3 considers the choice of perturbation curves. It comes as no big suprise
that the simplest of all possible nontrivial curves, namely a straight line, can always
be chosen to do the job. A somewhat surprising finding though shows that, considering
almost any geometric problem, essentially the same line can be used for all possible
inputs. The finding can be paraphrased as“if you know one nondegenerate input, then
you have a good perturbation for all inputs.” We discuss the ramifications of this insight,
in particular, the problem of producing nondegenerate inputs.

In Section 4 we discuss previous perturbation schemes and how they fit into our
framework. This is almost immediate for the SoS scheme of Edelsbrunner and M¨ucke
[7] and for the efficient linear scheme of Emiris and Canny [9], [8]. It is slightly more
involved for the symbolic scheme of Yap [20], [21], however, it leads to a consistency
proof that is maybe simpler than the ones offered in the original papers.

The last section deals with the shortcomings of the perturbation method, and to some
extent questions the wisdom of using it.

This paper does not contain many new results. It is rather meant mainly as an elucida-
tion and clarification of previous ideas. The topic of perturbations is one of the very few
ones that, in my experience, can cause heated, opinionated discussions among compu-

1 For instance, it isa priori not clear whether the transforms of two different programs for the same original
problem solve the same related problem.

The Nature and Meaning of Perturbations in Geometric Computing 3

tational geometers. Thus I apologize in advance if some of my statements have turned
out more pointed than they should be.

2. The Framework

2.1. Perturbations

In this section we consider the computation of functionsF from someinput spaceI
to someoutput spaceO. We will assume thatI, as well asO, is endowed with some
topology, which allows for the notion of a limit. Typically,I will be RN with the usual
Euclidean topology;O will be RM with Euclidean topology, or some finite set with the
discrete topology, or the product or direct sum of such spaces.

As typical examples considerCHS, theconvex hull sequencefunction, which given
the coordinates of a sequenceS of n points(x1, y1), . . . , (xn, yn) in the plane asks for
the sequence of indices of the points that constitute the vertices of the convex hull ofS,
and considerCHA, theconvex hull areafunction, which, given the sequenceS just asks
for a single real number, namely the area of the convex hull ofS. For both functions the
input spaceI is R2n with its usual topology, where the input sequenceS is encoded as
the(2n)-tupleq = (x1, y1, . . . , xn, yn). ForCHA the output spaceO is justR with the
usual topology. ForCHSthe output spaceO is the (finite) set of all sequences of distinct
integers from{1, . . . ,n} of length at mostn with the discrete topology.

Definition 1. For a pointq ∈ I we define aperturbation of qto be any curveq()
beginning inq, in other words, the image of a continuous mappingq(): [0,∞) 7→ I
with q(0) = q. A perturbation scheme Qassigns to every pointq ∈ I a perturbation
q(). 2

Definition 2. A perturbation schemeQ induces for every functionF : I 7→ O a per-

turbed functionF
Q

: I 7→ O, defined by

F
Q
(q) = lim

ε→0+
F(q(ε)).

We will assume that this limit exists. (If it does not, there is little sense in applying
the method of perturbations.) Since the schemeQ is often clear from context, we will
sometimes omit the superscriptQ and just writeF for the perturbed function. Keep in
mind, though, that the perturbed function does depend on the schemeQ. In general, for

two different perturbation schemesQ andQ′ the perturbed functionsF
Q

andF
Q′

will
be different.

When doF and its perturbed functionF agree? Here is a simple and obvious, but
useful condition.

2 For the sake of better readability we forego a more precise notation where a perturbation schemeπ

assigns to each pointq a curveπq.

4 R. Seidel

Lemma 3. If F is continuous at q, then F(q) = F(q).

Note that the statement in the lemma holds for any perturbation scheme. Also note,
that if F is not continuous atq, very little, if anything at all, can be said in general
about the relationship betweenF(q) andF(q). Of course our hope is that there is some
reasonable relationship, because the whole idea of using the “perturbation method” is to
computeF(q) instead ofF(q).

Why is this useful? Frequently, instead of writing a program that computesF for all
inputs, it is much easier to write a program5 that correctly computesF for almost all
inputs (ignore the special “degenerate” cases!). This partially working program5 can
then rather straightforwardly be transformed into a program5 that computesF for all
inputs. In other words, in order to make5 work for all inputs one simply redefines the
problem that it is supposed to solve.

This certainly seems like a dubious way of proceeding, but is often less crazy than
it looks. If, for instance,F is continuous everywhere, thenF = F everywhere and
the program5 computes the correct thing. This happens, for instance, in the convex
hull area functionCHA mentioned above. But even ifF is not continuous for some
inputq, computingF(q) can yield enough information to recoverF(q) relatively easily.
For instance, the convex hull sequence functionCHSmentioned above is discontinuous
for inputs q representing planar point sets that have more than two points collinear
on a convex hull edge. However, it is easy to see that in this caseCHS(q) must be a
subsequence ofCHS(q); the extra elements correspond to vertices in the middle of edges
and can be discovered and removed easily in a postprocessing step.

Not all discontinuous functions admit such an easy postprocessing step. We will dwell
no further on this now, but discuss this issue in Section 5. For now we will concentrate
on the problem of computingF .

2.2. Computing the Perturbed FunctionF

First we have to settle on the model of computation—what kind of algorithms do we
consider? Most algorithms in computational geometry can be modeled by so-called
extended algebraic decision trees[15]. These are ternary trees, where each interior node
v is labeled by a test functionfv: RN 7→ R and its branches labeled−1, 0, and+1,
respectively; each leafv is labeled with a result functionrv: RN 7→ O (we are now
assuming thatI = RN). Computation with such a tree works as follows: upon input
q ∈ RN the function signfv(q) is evaluated, wherev is the root node; the branch labeled
by the outcome of this evaluation is taken, and the computation is continued in that
subtree; if a leaf̀ is reached, thenr`(q) is evaluated and returned as the “output” of the
computation. It is assumed here that the test functionsfv and the result functionsr` are
defined and continuous for eachq that “reaches” their nodev or `. Moreover, each test
function fv must be “easily computable.” This is the case, for instance, if it is a small
degree polynomial.

There is a slightly more powerful model, calledalgebraic computation trees[15],
which we will not consider in this paper. Extended algebraic decision trees abstract away
all bookkeeping and storage details. They model many geometric algorithms well, since
such algorithms often rely exclusively on a small set of so-called geometric primitive

The Nature and Meaning of Perturbations in Geometric Computing 5

tests (see [11]) for their geometric content. These tests supply the test functionsfv in
the tree model.

For the planar convex hull examples, typical primitives will be coordinate compar-
isons,xi

<

=
>

xj or yi
<

=
>

yj , yielding test functionsfv(q) = xi − xj and fv(q) = yi − yj , and
so-called sidedness tests, that determine the relative orientation of three points(xi , yi),
(xj , yj), (xk, yk), in particular whether they are collinear; this is expressed by the test
function

fv(q) =
∣∣∣∣∣∣
1 xi yi

1 xj yj

1 xk yk

∣∣∣∣∣∣ .
Other geometric primitives tests that typically arise are so-called in-circle or in-sphere
tests, the higher-dimensional version of the sidedness test, distance comparisons, and
others. They can all be expressed by suitable, relatively simple test functionsfv.

Now assume we have an extended algebraic decision treeT that computes some

function F : RN 7→ O. How can we compute the perturbed functionF
Q

for some
perturbation schemeQ? It is easy to see that all we need to do is the followingperturbed
evaluation of T: at each internal nodev, instead ofsv(q) = sign fv(q), evaluate the
“perturbed test function”sv

Q(q) = limε→0+ sign fv(q(ε)); for each leaf̀ compute and
returnr`

Q(q) = limε→0+ r`(q(ε)).
Let us ignore for the time being how the new perturbed test and result functions

involving the limits can be evaluated.

Definition 4. Let f : RN 7→ R be a function, letq ∈ RN , and letq() be a perturbation
(curve) ofq. We say thatq() is valid for f iff lim ε→0+ sign f (q(ε)) exists and is not
zero. A perturbation schemeQ is valid for f iff q() is valid for f for eachq ∈ RN . If
F is a family of functionsf , then we say that a perturbation or a perturbations scheme
is valid forF if it is valid for each f ∈ F .

Let T be a tree for computingF as above and letQ be a perturbation scheme that
is valid forF , the set of all test functionsfv appearing in that tree. If we now use the

method outlined above for usingT to compute the perturbed functionF
Q

, then, as is
easy to see, no branch labeled 0 will ever be followed during a computation. Thus these
branches could all be pruned away. Even better, ifT was incomplete and had some of

the 0-branches missing, it still can be used to computeF
Q

. And this is the observation
that lies at the heart of the whole perturbation method. Even if we have an incomplete
program that computesF for mostq but misses parts that deal with inputsq that make
some geometric primitive tests evaluate to 0 (and are hence deemed “degenerate”), we

can still make this program computeF
Q

for all q. This is all expressed by the following
theorem:

Theorem 5. Let T be a correct extended algebraic decision tree computing some
function F: RN 7→ O, and let Q be a perturbation scheme that is valid for the set of test
functions appearing in T.

1. A perturbed evaluation of T computes the perturbed functionF
Q

.

6 R. Seidel

2. If F is continuous at q, then the perturbed evaluation of T with input q yields
F(q).

3. The above statements remain true, if some, or all, of the 0-branches of T are
removed.

Note one interesting fact: The method prescribes that the perturbed test functionsv
Q

has to be evaluated forall v along the computation path. This means that if we have
a program that has some “degenerate cases” programmed and others missing, and we
introduce the perturbation method, then we have to discard the programmed “degener-
ate” cases (unless there is some additional information and reasoning available)! This
may seem counterintuitive, but here is an example situation that can arise in a planar
convex hull computation. Say we have a program that has dealt with all three cases for
coordinate comparisons, but only with the two “nondegenerate” cases for the sidedness
tests, and we apply perturbation only to the sidedness tests. If now three input points
lie on a common vertical line, then the program might detect their collinearity because
of coordinate comparisons, but also detect noncollinearity because of a perturbed sided-
ness test. Needless to say, this can lead to severe consistency problems within the
program.

Furthermore, note that the assumption of Theorem 5 of the validity of the perturbation
schemeQ for each test functionf appearing inT implies that nof must be the zero
function: f (x) = 0 for all x implies that limε→0+ sign f (q(ε)) = 0. However, it is
conceivable that an all zero test function appears in a decision tree corresponding to a
geometric algorithm. For instance, an algorithm may contain a sidedness test comparing
planar pointa with the straight line defined bya andb. Of coursea always lies on
that line and this fact cannot be removed through perturbation tricks. This means that
there are special “degenerate cases” that cannot be dealt with automatically using any
perturbation method and they have to be taken care of by hand.

In order to apply the perturbation method to some incomplete program we need
three things: (1) a valid perturbation scheme, or at least a way to come up with a valid
perturbation for each input; (2) a way to evaluate the perturbed test functions; and (3) a
way to evaluate the perturbed result functionsr`

Q.
Points (1) and (2) we will deal with in the following sections. Regarding (3) we will

just offer a few comments. Let` be a leaf ofT that is reached from the root by following
only nonzero branches. LetX` be the set of inputsq that reach̀ upon normal evaluation
of T , and letX` be the set of inputs that reach` upon perturbed evaluation. Assuming
reasonably behaved test functions,X` will be an open subset ofRN , andX` will contain
X` plus some boundary points. (Although the notation may suggest it,X` will in general
not be the topological closure ofX`.) Perturbed evaluation ofT requires the evaluation
of the perturbed result functionr` for q ∈ X`. This is no problem ifq ∈ X`, since by
assumptionr` is continuous for suchq, and hencer`(q) = r`(q). Problems can only
arise with boundary points; for instance,r`(q)might not even be defined for such points
q (although this means thatF(q) is not defined either). However, in many cases there
will not be a problem at all. It may be thatr` is constant for allq ∈ X`, and hencer`(q)
is the same constant for boundary pointsq. This happens, for instance, in the convex
hull sequence problem. It may also happen that the expression computingr` actually
yields a function that is continuous for all ofRN , in which case we haver`(q) = r`(q).

The Nature and Meaning of Perturbations in Geometric Computing 7

This happens, for instance, in the convex hull area problem, wherer` will typically be
the sum of the areas of triangles or trapezoids spanned by various input points. At this
point the astute reader will certainly have noticed that the result functionsr` are one of
the weak spots of the extended algebraic decision tree model.

3. Linear Perturbations

A perturbationq() of a pointq ∈ RN is calledlinear if q(ε) = q + εaq, whereaq is
some direction, i.e., nonzero vector inRN . A perturbation schemeQ is calledlinear if
q() is linear for eachq.

Linear perturbations are interesting because they tend to allow relatively easy evalu-
ation of perturbed functions.

Theorem 6. Let f : RN 7→ R be a multivariate polynomial of total degree at most1,
and let Bf be a “black box algorithm” computing f. Let q() be a linear perturbation
of q that is valid for f. Then

lim
ε→0+

sign f (q(ε))

can be determined using at most1+ 1 calls to Bf plus some small overhead.

Proof. Sinceq() is linear, f (q(ε)) is a polynomialp(ε) of degree at most1. The
desired limit is given by the sign of the smallest degree nonzero coefficient ofp (which
exists because of the validity of the perturbation). But the coefficients ofp can be
determined by first computingp(ε) = f (q + εaq) for ε = 0, 1, . . . , 1 using the black
box Bf , and then using polynomial interpolation. Using a naive method this interpolation
incurs an overhead ofO(13) time.

Note that ifp(0) evaluates to nonzero, nothing more needs to be done, since it is the
smallest degree coefficient ofp.

A similar theorem can be proven iff is, say, the quotient of two multivariate poly-
nomials of bounded degree.

This theorem makes the perturbation method readily applicable to a large class of
programs computing geometric functions. Almost all geometric primitive tests seem to
be expressible by test functions that are small degree multivariate polynomials. This is
certainly true for all those mentioned before, such as coordinate comparisons, sidedness
tests, in-sphere tests, and distance comparisons. We are still not home free, though, since
the theorem makes the assumption that a valid linear perturbation is available. How can
we obtain such a perturbation?

3.1. A Random Construction

Let us first consider the geometric meaning of validity. Letf be some continuous real
valued function onRN . Then f −1(0), the zero set off , forms a surfaceσ in RN . Let

8 R. Seidel

q() be some curve starting at the pointq. If some open initial segment ofq() does
not intersectσ , i.e., f (q(ε)) 6= 0 for 0 < ε < ε1 for someε1 > 0, then for all points
x = q(ε) on this segmentf (x) must have the same nonzero signs. This follows from
applying the mean value theorem to the continuous functiong(ε) = f (q(ε)). But this
immediately implies that limε→0+ sign f (q(ε)) = s, i.e., the limit exists and is nonzero.
In other words, if some open initial segment of the curveq() fails to intersect the surface
σ , thenq() is valid for f .

Now let q() be a linear perturbation, i.e., a line, or more precisely, a ray starting at
some pointq, and letσ be some surface. How couldq() not be valid, i.e., how could
every open initial segment of this ray intersectσ? Certainly there is no problem ifq does
not lie inσ . Otherwise, ifq lies inσ , validity may fail because either: (1)σ contains some
entire initial segment or even all of the ray; or (2)σ is very badly behaved (e.g., some
analogue of a space-filling curve, or ofx sin(1/x)). Let us ignore (2) and assume thatσ

is well behaved, in a sense “smooth.” (For practically all interesting functionsf , such as
for instance polynomials,σ = f −1(0) is “smooth.”) In that case, “most” rays starting in
q will be okay; the setA of all directionsa so that the perturbationq(ε) = q+ εa is not
valid will be of measure 0. This means that if we pick a directiona fromRN at random,
with probability 1 the resulting linear perturbation ofq will be valid for σ . It follows
that this “random” linear perturbation ofq is also valid with probability 1 for any finite
set6 of smooth surfaces (or any finite setF of functions whose zero sets form smooth
surfaces).

This method of selecting a valid perturbation is less attractive than it looks at first, since
it is not clear how to randomly select a random directiona fromRN within reasonable
time. So the question arises whether one can choosea randomly from a much smaller,
finite set. This is possible and was first analyzed in [9] for polynomial and rational
surfaces of bounded degree. We present a somewhat modified version here, just dealing
with the polynomial case. The rational case is similar.

Let T be some extended algebraic decision tree, where each test function is a mul-
tivariate polynomial of total degree at mostd. Let F be the set of test functions inT ,
and letS = |F |. Certainly S ≤ 3t , wheret is the height ofT (in other words, the
worst-case running time of the program modeled byT). In many cases, however,Swill
be much smaller; for instance, for a tree modeling a typical planar convex hull algorithm
S= O(n3), sincen planar points allow only these many different sidedness tests. Let
[m] denote{1, 2, . . . ,m}. Let q ∈ RN be some fixed input toT . The question now is:
What is the probability that for a directiona chosen from [m]N uniformly at random the
perturbationq(ε) = q + εa is valid for all3 S test functions inF . Moreover, how large
do we need to makem so that this probability becomes suitably small?

Theorem 7. Let T be an extended algebraic decision tree with a setF of S different
test functions, each a multivariate polynomial of total degree at most d, and let q∈ RN

be a fixed input to T. If direction a is chosen uniformly at random from[m]N , then the
linear perturbation q(ε) = q + εa fails to be valid with probability at most dS/m.

3 One would think that validity for the at mostt-test functions encountered byq on its path down the tree
during a perturbed evaluation usinga would be good enough. Note however, that this path depends on the
choice ofa.

The Nature and Meaning of Perturbations in Geometric Computing 9

Proof. If for any f ∈ F the probability that some randoma ∈ [m]N does not yield
a linear perturbation ofq valid for f is upper bounded by some numberp, then the
probability of nonvalidity of such a randoma for all ofF is upper bounded byp|F | = pS.
Now it only remains to show that we can usep = d/m.

The perturbationq(ε) = q+εa is not valid for some polynomialf meansf (q(ε)) = 0
for all ε, in particular, forε = 1, i.e., f (q + a) = 0 has to happen. The function
g(a) = f (q + a) is a multivariate polynomial ina of total degree at mostd. Assuming
that f does not vanish everywhere,gdoes not either. For such aga lemma due to Schwartz
[17] now says that ifa is chosen uniformly at random from [m]N the probability that
g(a) = 0 is at mostd/m.

Of course, if such a randomly chosena turns out to be bad, i.e., during the perturbed
evaluation ofT a 0-branch is to be taken, one simply aborts and restarts with a linear
perturbation given by a new randomly chosena.

3.2. A Deterministic Construction

Deterministic construction of a valid linear perturbation seems to be rather difficult for the
general case. However, for most of the important special cases arising in computational
geometry interesting things can be said.

Definition 8. Letσ = f −1(0) be the surface formed by the zero set of some continuous
function f : RN 7→ R.

We call σ and f well-behavediff every straight lineL is either contained inσ or
every bounded segment ofL intersectsσ in at most finitely many points.

We callσ and f scale-invariantiff a ∈ σ impliesλa ∈ σ for all λ ∈ R.

Many functions are well-behaved; for instance, polynomials, rational functions, and
even analytic functions.

Practically all primitive test functions arising in geometric algorithms are scale-
invariant. The reason can be exemplified by the sidedness test: if applied to three planar
points such a test evaluates to zero, then these points must be collinear, and this happens
irrespective of the scale of the coordinate system.

Some natural geometric tests are not scale-invariant because they involve constants,
for instance, the test whether the triangle spanned by three planar points has area 1.
However, by applying homogenization such a test can usually be transformed into a
scale-invariant one, as in our example, where we can replace the constant 1 by the
expressionu2, and makeu another parameter of the test function.

Lemma 9. Let f : RN 7→ R be continuous, well-behaved, and scale-invariant, and let
a be a direction inRN such that f(a) 6= 0.

Then for every q∈ RN the linear perturbation q(ε) = q + εa is valid for f.

Proof. If f (q) 6= 0, then every linear perturbation ofq is valid for f , in particular,
the one with directiona. So assumef (q) = 0. Since f is well-behaved, validity of the

10 R. Seidel

perturbationq(ε) = q + εa can only fail because the line spanned by the perturbation
is contained in the zero-surface off , i.e., f (q + εa) = 0 for all ε ∈ R. But this cannot
happen. For in that case scale-invariance off implies that f (λ(q + εa)) = 0 for all λ,
in particular forλ = 1/ε, i.e., we would havef ((1/ε)q + a) = 0 for all ε. But taking
the limit asε → ∞ and appealing to the continuity off we would get f (a) = 0,
contradicting the assumptionf (a) 6= 0.

Rote [16] has pointed out that the assumption of scale-invariance can be dropped.

Lemma 10. Let f : RN 7→ R be continuous and well-behaved, and let a be a point
in RN such that f(a) 6= 0. Then for every q∈ RN , the linear perturbation q(ε) =
q + ε(a− q) is valid for f .

Proof. The line described byq(ε) contains at least one point that is not in the zero-set
of f , namely the pointq(1) = a. Thus the well-behavedness and continuity off imply
that limε→0+ sign f (q(ε)) exists and is not zero, i.e.,q() is a valid perturbation, as
claimed.

These lemmas immediately yield the following important theorem.

Theorem 11. Let T be an extended algebraic decision tree algorithm and letF be its
set of test functions. Assume that all f∈ F are well-behaved.

1. If all f ∈ F are scale-invariant and if a is a direction inRN such that f(a) 6= 0
for all f ∈ F , then foreveryq ∈ RN the perturbation q(ε) = q+ εa is valid for
F .

2. If a is a point inRN such that f(a) 6= 0 for all f ∈ F , then foreveryq ∈ RN the
perturbation q(ε) = q + ε(a− q) is valid forF .

This theorem can be paraphrased as“if you know just one nondegenerate input, then
you can use it for a valid linear perturbation foreverypossible input.”

As already mentioned, the setF of test functions that appear in algorithms in com-
putational geometry is usually quite limited. An algorithm computing some function
on n points inRd will typically use geometric primitives such as thed

(n
2

)
coordinate

comparisons, the
(n

d+1

)
sidedness tests, the

(n
d+2

)
in-sphere tests, and maybe theO(n4)

possible interpoint distance comparisons. In order to apply our theorem, we now need
to come up with a setS of n points inRd that are nondegenerate with respect to these
primitives, i.e., (1) no two points inSagree in any coordinate; (2) nod + 1 points inS
lie on the same hyperplane; (3) nod + 2 points lie on the same sphere; and (4) all the
interpoint distances are distinct.

If we choosen points from the positive branch (i.e.,t > 0) of the moment curve
γ (t) = (t, t2, . . . , td), then (1) is obviously satisfied and because of the nonvanishing
of the Vandermonde determinant (2) is satisfied. Using Descartes’ Rule of Sign for
polynomials it is easy to show that the positive branch of the moment curve intersects
no sphere in more thand+1 points; thus choosing then points from the positive branch
ensures (3) also holds. Whether (4) is also satisfied clearly depends on which points are

The Nature and Meaning of Perturbations in Geometric Computing 11

actually chosen fromγ (). This becomes particularly challenging if one insists on points
with integral coordinates. It may be that{γ (1), γ (2), . . . , γ (n)} actually satisfies (4) but
I have been unable to prove it. (The fact that ford = 2 the pointsγ (20) andγ (−16) are
equidistant fromγ (18) provides some negative evidence.) However, note thatk points
on γ () can make at worst the firstk2 integral places onγ () ineligible for placing a
(k+ 1)st point. Performing a greedy construction this implies that there always is a set
I of n integers between 0 andn2 such thatS= {γ (i)|i ∈ I } satisfies (4) besides (1), (2),
and (3).

Although the moment curve construction yields nondegenerate point sets for the
most commonly occurring geometric primitive test functions it is certainly not a panacea
that can be applied as easily to other primitives. Moreover, even for the test functions
considered here it is not completely satisfying, since integral points are used with rather
large coordinates. The question naturally arises how small an integerm we can use so
that the grid{1, 2, . . . ,m}d contains a setS of n points nondegenerate with respect to
various geometric primitives.

Let γp(t) = (t mod p, t2 mod p, . . . , td mod p) a “modular” moment curve, where
p is prime. If we useS= {γp(1), . . . , γp(n)} it is not too hard to see that this will satisfy
(2) if p > n, and hence we getm = O(n). This choice will not necessarily satisfy
the disjoint coordinate condition (1), sincet j mod p = c will have up to j solutions.
However, by eliminating points fromS that duplicate coordinates, we can obtain a 1/d!
fraction of the points inSthat also satisfy (1), and thus we getm= O(d! n) for that case.
Thiele [19] has shown that by choosingp = Ä(nd−1) this setS can be made to satisfy
the noncosphericity condition (3) also, thus obtainingm= O(nd−1) for that case.

Explicitly constructing “nondegenerate” point sets seems to be a difficult problem.
In general, it is a special case of the so-called zero avoidance problem of computational
algebra.

4. Previous Work

The perturbation method has been used for quite a while in the sense that for specific
algorithmsad hocperturbation schemes were proposed. Maybe the first instance was the
perturbation of the right-hand side vector in the simplex algorithm proposed by Dantzig
[5]. Examples in the computational geometry literature are: the Euclidean maximum
spanning tree algorithm in [14], where one needed to avoid duplication among interpoint
distances; the general shelling algorithm for computing convex hulls in [18], where one
needed to avoid an inadmissible shelling line; and the polyhedron intersection algorithm
in [6], where one needed to avoid all kinds of incidences and parallelism between the
faces of the polyhedra.

More or less general perturbation methods have been proposed and discussedper se
by four different groups of authors. Edelsbrunner and M¨ucke with their SoS (“Simulation
Of Simplicity”) scheme [7]; Yap with his general symbolic scheme [20], [21]; Canny and
Emiris with their efficient linear scheme [9], [8], [4]; and Michelucci with his random
scheme [13]. We will briefly review each scheme, and in particular discuss: what kind
of perturbation curves are used; for what kind of test functions is the scheme valid for;
and how are the perturbed test functions evaluated.

12 R. Seidel

4.1. The SoS Scheme of Edelsbrunner and Mücke

This work concentrates mainly on the sidedness test ford+1 amongn pointsp1, . . . , pn

inRd, and on related tests that can be expressed by determinants of matrices whose entries
are coordinates of the points.

The perturbation scheme uses polynomial curves of high degree that varypi, j , the
j th coordinate ofpi , as

pi, j (ε) = pi, j + ε2i ·d− j
.

The determinant of a matrixA(ε) involving such entities is then an extremely high degree
polynomialP(ε).

Evaluation of such a perturbed test now means evaluating limε→0+ P(ε), which
amounts to finding the smallest degree nonzero coefficient ofP. These coefficients
turn out to be determinants of certain submatrices ofA(0). Slightly involved analysis
then shows how these submatrices can be generated in the desired order.

4.2. The Linear Scheme of Canny and Emiris

The main emphasis of this work by Canny and Emiris lies in the fast evaluation of
perturbed test functions. They proposed the use of linear perturbation, and proved the
validity of the specific perturbation given by

pi, j (ε) = pi, j + ε · i j

for the coordinate comparison, sidedness, and in-sphere test functions mentioned above.
(Of course, this is precisely the perturbation induced by directions from the moment curve
described at the end of the previous section. Directions stemming from the modular
moment curve were also considered by those authors.) For the perturbed sidedness
function they noticed that evaluation really amounted to determining the coefficients of
the polynomial given by the determinant det(A + εB), whereA and B are matrices,
and that this polynomial is essentially the same as the characteristic polynomial of
A · B−1, which can be computed very quickly. They also showed that the evaluation
of the perturbed in-sphere function could be reduced to some characteristic polynomial
computation.

Along more general lines they proved a version of Theorem 7, thus showing that using
random choice linear perturbations could be found that are valid for finite sets of bounded
degree polynomial and rational functions. For the evaluation of the perturbed version of
such functions they seem to have overlooked the interpolation-based Theorem 6. Instead
they assumed that programs were available for the original function which, by replacing
arithmetic on reals with arithmetic onε-polynomials and rationals, could be transformed
into programs for the perturbed functions.

The running times of all the various evaluations were very carefully analyzed under
different cost models of computation.

The Nature and Meaning of Perturbations in Geometric Computing 13

4.3. The Random Scheme of Michelucci

This scheme has the components of the perturbation curves given by randomly chosen
power series. Computation is then performed on those power series instead of on the
original variables. In order to avoid computing with an infinite object such as a complete
power series, only an initial portion of the coefficients are generated lazily in a piecemeal
fashion and used. With probability 1 finite initial portions of such a power series will
suffice in order to avoid 0-branches of sign tests.

This scheme has the advantage that it quite naturally also works in the algebraic
computation tree model, and not just the decision tree model. However, the programming
effort needed to deal lazily with such possibly expanding initial portions of power series
is only reasonably achievable if relatively sophisticated language constructs such as
streams are available. In addition, the overhead incurred in terms of time and space
seems formidable.

4.4. The Symbolic Scheme of Yap

Yap’s scheme is the most general, and in a way the most intriguing. It applies to arbitrary
polynomial and rational test functions, and, as we will see shortly, even to analytic
functions. Interestingly, it does not specify perturbation curves at all. Instead, it just
gives a method that for any functionf and anyq produces a signs ∈ {−1,+1} such that
s = sign f (q) if f (q) 6= 0. The “difficulty” with this scheme is understanding why it
really works, why it is not like an arbitrary sign assignment, and why no inconsistencies
can occur. Yap offers two proofs for the consistency of his scheme, an algebraic proof
based on the theory of sign functions [20], and a highly technical geometric proof, in
which perturbations are understood as converging point sequences [21]. After describing
Yap’s method we will give a rather simple argument based on our framework showing
that Yap’s symbolic method behaves as if certain polynomial perturbation curves were
used.

Let us establish some notation. Forx, y ∈ Rn we let〈x, y〉 denote the inner product∑
1≤i≤n xi yi . Recall the identity〈x,W y〉 = 〈WT x, y〉, whereW is ann× n matrix and

WT its transpose. Forx, y ∈ Rn we let xy denote the scalarxy1
1 · xy2

2 · · · xyn
n , and for

λ ∈ R we letλx denote the vector(λx1, λx2, . . . , λxn). Thus ifa ∈ Rn and if n denotes
(n, n−1, . . . ,1), then〈a, λn〉 is just strange notation for the polynomiala1λ

n+a2λ
n−1+

· · ·+ anλ
1. Forµ ∈ Nn we letµ! denoteµ1! µ2! · · ·µn!, and for a functionf : Rn 7→ R

we let f (µ) stand for the partial derivative(∂µ1/∂xµ1
1)(∂

µ2/∂xµ2
2) · · · (∂µn/∂xµn

n) f .
Let<` denote the usual lexicographic ordering onNn. Now anyn×n invertible matrix

W induces a total ordering<W onNn, whereµ <W ν iff Wµ <` Wν. If an invertible
W contains only nonnegative integer entries we call<W anadmissible ordering.4 The
best-known examples of admissible orderings are<I , where I is the identity matrix,
which is of course nothing but the lexicographic ordering, and<U , whereU is all zero,
except for the first row, which is all 1, and 1’s below the main diagonal, i.e.,Ui,i−1 = 1

4 Yap also allows matrices with nonnegative real entries.

14 R. Seidel

for 1< i ≤ n. In the theory of multivariate polynomials<U is known as the total degree
order.

After fixing an admissible ordering<W, Yap uses the following method, that given a
function f : Rn 7→ R and aq ∈ Rn produces ans= s(f,q) ∈ {−1,+1}:

As s = s(f,q) produce signf (µ)(q), whereµ is the minimum element ofNn under
<W with f (µ)(q) 6= 0.

Note that since for any admissible ordering the 0-vector is the minimum inNn, thes
produced by this method has the property that iff (q) 6= 0, thens= sign f (q). However,
the interesting case isf (q) = 0. Is there a perturbation curveq() producing the same
sign? i.e., is there a curveq() such thats(f,q) = limε→0+ sign f (q(ε)) holds? This is
indeed the case, if one considers only a single functionf or a finite set of such functions.

Theorem 12. Let<W be an admissible ordering induced by matrix W. Let F be a
finite set of not everywhere vanishing analytic functions f: Rn 7→ R, let q ∈ Rn be in
the domains of those functions, and let s(f,q) be the sign produced by Yap’s method.

For any sufficiently large integerλ the perturbation curve q(ε) = q+ εWTλn
has the

property that for all f ∈ F we have s(f,q) = limε→0+ sign f (q(ε)).

Note. A function f : Rn 7→ R is analytic if for each pointq of its domain f can be
represented as a multivariate convergent power series, i.e.,f (x) =∑µ∈Nn aµ(x−q)µ in
some neighborhood ofq, wherex = (x1, . . . , xn) andaµ ∈ R. It is one of the properties
of analytic functions thataµ = f (µ)(q)/µ!. Analytic functions are closed under the
usual arithmetic operations and under composition. They include polynomials, rational
functions, and many more. See [12] for more information.

Proof. SinceF is finite it suffices to prove the claim of the theorem for anyf ∈ F .

For such anf we need to determine limε→0+ sign f (q + εWTλn
).

Using the power series representation
∑

µ∈Nn aµ(x − q)µ for f aroundq we get

f (q + εWTλn
) =

∑
µ∈Nn

aµ(ε
WTλn

)µ =
∑
µ∈Nn

aµε
〈WTλn,µ〉 =

∑
µ∈Nn

aµε
〈λn,Wµ〉 ,

i.e., we have representedf (q(ε)) as a (convergent) power series inε which does not
vanish everywhere becausef does not. Now ifg(ε) =∑i∈N bi ε

i , then limε→0+ signg(ε)
is given by the sign ofbi wherei is the smallest index such thatbi 6= 0. This means
that, since signaµ = sign f (µ)(q), we are done if we can show the following: Let
M = {ν ∈ Nn|aν 6= 0}. If µ is the minimum element inM under the order<W, then for
any sufficiently large integerλ the number〈λn,Wµ〉 is smaller than all other numbers in
the setM ′ = {〈λn,Wν〉|ν ∈ M}. Butµ is the minimum element inM under<W means
thatµ′ = Wµ is the lexicographically minimum element in{ν ′ = Wν|ν ∈ M}. And
sinceµ′ <` ν ′ implies〈λn, µ′〉 < 〈λn, ν ′〉 for integerλ bigger than the largest coordinate
of µ′, we get that〈λn, µ′〉 is indeed the smallest in the setM ′.

The Nature and Meaning of Perturbations in Geometric Computing 15

Note that using the proof just offered one can arrive naturally and automatically at
the SoS scheme of Edelsbrunner and M¨ucke: They consider determinant functions of
the input points, which means they are dealing with multivariate polynomials where the
maximum degree of any variable is 1. In other words, the exponent vectorsµ in the “power
series” representations only consist of 0’s and 1’s. Now use forW the identity matrix.
Then the largest coordinate of anyµ′ = Wµ in the proof above is 1. The proof now tells

us thatλ “sufficiently large” is achieved byλ = 2. Thusq(ε) = q + εWT 2n = q + ε2n

is a valid perturbation curve, and one obtains the SoS scheme exactly. The proof also
suggests that if one intends to use an SoS-type scheme that is also to work for in-sphere

predicates, one really ought to use a perturbation curve of the formq(ε) = q + ε3n
.

Yap’s scheme is very general and powerful. It has the apparent drawback that we need
to be able to evaluate potentially arbitrarily high derivatives of the test functions. This is
quite unpalatable if each and every one of these derivatives has to be hand-coded. Canny
[3] has suggested the interesting idea of computing and evaluating these derivatives on
the fly, only when actually needed. There is actually a sizable literature on automatic
program differentiation [10]. The idea is that if a program keeps a trace of its arithmetic
operations and builds up a (large) acyclic computation graph encoding the expressions
the program has formed so far, then at any point the derivative of any expression with
respect to any input variable can be computed using simple chain rules. It turns out that
such a system would have only modest time overhead. The space overhead incurred
through the computation graph, however, would be rather large.

5. Discussion

Is it really advisable to employ perturbations in geometric computing? In the late 1980s
convential wisdom would have said yes. Recently, several objections have been voiced
and the answer is now not so clear any more.

I have tried to make clear in this paper, that employing the perturbation method means
that instead of computing some functionF we are now computing a (possibly) different
function F . This fact creates a number of difficulties.

Since we typically really wantF and notF , we need to recoverF from F somehow
via some sort of postprocessing step. This postprocessing step may actually be more
difficult or complicated than evaluatingF in the first place. This has been exemplified
recently by Burnikelet al. [2] with the problem of line segment intersection, and also
seems implicit in [6].

ComputingF may take substantially more time that computingF would require.
Here are two typical examples, also given in [2]: (1)n segments in the plane intersecting
in one point; a reasonable intersection detection algorithm should be able to deal with
such a set inO(n logn) time; if, however, the segments are perturbed, then there will be(n

2

)
intersections and any algorithm will needÄ(n2) on this perturbed set. (2) One wishes

to compute the convex hull ofn copies of the same point inRd; a reasonable algorithm
should be able to do this inO(n) time; if linear perturbation is applied to those points
with the directions chosen from the moment curve as in Section 3, then the convex hull
of the perturbed set will be a cyclic polytope withO(nbd/2c) facets, and any algorithm

16 R. Seidel

will needÄ(nbd/2c) time to compute that. This may be just a trivial example. However,
recently, Aviset al. [1] have reported large classes of point setsSwith the property that
if F(S) is the number of facets of the convex hull ofS, thenF(S) is much larger than
F(S), no matter what perturbation scheme is employed.

We may be content with computingF instead ofF . However, this may lead to
problems whenF (or F) is part of a larger system. Even if for all the functions that
appear in this system we use a perturbed version it will be rather difficult to make the
perturbations interact in a graceful manner.

But the severest shortcoming of the perturbation method may actually be something
that, so far, we have swept under the rug completely. The perturbation method relies on
and assumes the availability of exact arithmetic. Whether such an assumption is viable
in real-world computing remains to be seen.

Acknowledgments

I would like to acknowledge lengthy discussions with John Canny, Herbert Edelsbrunner,
Ioannis Emiris, Jeff Erickson, Kurt Mehlhorn, Chee Yap, and G¨unter Rote. Finally, my
apologies to Richard Dedekind for stealing the title.

References

1. D. Avis, D. Bremner, and R. Seidel. How good are convex hull algorithms?Comput. Geom. Theory Appl.
To appear.

2. C. Burnikel, K. Mehlhorn, and S. Schirra. On degeneracy in geometric computations.Proc. 5th Annual
ACM–SIAM Symp. on Discrete Algorithms, 1994.

3. J. Canny. Private communication.
4. J. Canny, I. Emiris, and R. Seidel. Efficient perturbations for handling geometric degeneracies.Algorith-

mica. To appear.
5. G. B. Dantzig.Linear Programming and Extensions. Princeton University Press, Princeton, NJ, 1963.
6. K. Dobrindt. Algorithmen f¨ur Polyeder. Diplomarbeit, FB 14, Informatik, Universitat des Saarlandes,

Saarbr¨ucken, 1990.
7. H. Edelsbrunner and E. P. M¨ucke. Simulation of simplicity: A technique to cope with degenerate cases in

geometric algorithms.ACM Trans. Graphics9(1) (1990), 67–104.
8. I. Emiris and J. Canny. An efficient approach to removing geometric degeneracies.Proc. 8th Annual ACM

Symp. on Comput. Geom., 1991, pp. 74–82.
9. I. Emiris and J. Canny. A general approach to removing degeneracies.SIAM J. Compt. 24(3) (1995),

650–664.
10. A. Griewank and G. F. Corliss.Automatic Differentiation of Algorithms: Theory, Implementation, and

Applications. SIAM, Philadelphia, PA, 1991.
11. L. J. Guibas and J. Stolfi. Primitives for manipulation of general subdivisions and computation of Voronoi

diagrams.ACM Trans. Graphics4(2) (1985), 74–123.
12. S. G. Krantz and H. R. Parks.A Primer of Real Analytic Functions. Birkhäuser-Verlag, Boston, 1992.
13. D. Michelucci. Anε-arithmetic for removing degeneracies.Proc. IEEE Symp. on Comput. Arithmetic,

1995.
14. C. Monma, M. Paterson, S. Suri, and F. Yao. Computing Euclidean maximum spanning trees.Proc. 4th

Annual ACM Symp. on Comput. Geom., 1988, pp. 241–251.
15. F. P. Preparata and M. I. Shamos.Computational Geometry, An Introduction. Springer-Verlag, New York,

1985.

The Nature and Meaning of Perturbations in Geometric Computing 17

16. G. Rote. Private communication.
17. J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.J. Assoc. Comput.

Mach. 27(4) (1980), 701–717.
18. R. Seidel. Output-size sensitive algorithms for constructive problems in computational geometry. Ph.D.

thesis, Computer Science Department, Cornell University, 1986.
19. T. Thiele. Private communication.
20. C.-K. Yap. Symbolic treatment of geometric degeneracies,J. Symbolic Comput. 10 (1990), 349–370.
21. C.-K. Yap. A geometric consistency theorem for a symbolic perturbation scheme.J. Comput. Systems Sci.

40 (1990), 2–18.

Received October9, 1995,and in revised form April4, 1996.

