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Abstract

Background: Single-cell RNA-Seq can be a valuable and unbiased tool to dissect cellular heterogeneity, despite the

transcriptome’s limitations in describing higher functional phenotypes and protein events. Perhaps the most important

shortfall with transcriptomic ‘snapshots’ of cell populations is that they risk being descriptive, only cataloging heterogeneity

at one point in time, and without microenvironmental context. Studying the genetic (‘nature’) and environmental (‘nurture’)

modifiers of heterogeneity, and how cell population dynamics unfold over time in response to these modifiers is key when

studying highly plastic cells such as macrophages.

Results: We introduce the programmable Polaris™ microfluidic lab-on-chip for single-cell sequencing, which performs

live-cell imaging while controlling for the culture microenvironment of each cell. Using gene-edited macrophages we

demonstrate how previously unappreciated knockout effects of SAMHD1, such as an altered oxidative stress response,

have a large paracrine signaling component. Furthermore, we demonstrate single-cell pathway enrichments for cell

cycle arrest and APOBEC3G degradation, both associated with the oxidative stress response and altered proteostasis.

Interestingly, SAMHD1 and APOBEC3G are both HIV-1 inhibitors (‘restriction factors’), with no known co-regulation.

Conclusion: As single-cell methods continue to mature, so will the ability to move beyond simple ‘snapshots’ of cell

populations towards studying the determinants of population dynamics. By combining single-cell culture, live-cell imaging,

and single-cell sequencing, we have demonstrated the ability to study cell phenotypes and microenvironmental influences.

It’s these microenvironmental components - ignored by standard single-cell workflows - that likely determine how

macrophages, for example, react to inflammation and form treatment resistant HIV reservoirs.

Keywords: Single-cell sequencing, Single-cell culture, Single-cell imaging, Macrophage heterogeneity, Signaling

microenvironment

* Correspondence: qilin@well.ox.ac.uk; kenny.moore@path.ox.ac.uk;

rbowden@well.ox.ac.uk
†Equal contributors
1Wellcome Trust Centre for Human Genetics (WTCHG), University of Oxford,

Oxford OX3 7BN, UK
4Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE,

UK

Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Wills et al. BMC Genomics  (2017) 18:53 

DOI 10.1186/s12864-016-3445-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-016-3445-0&domain=pdf
mailto:qilin@well.ox.ac.uk
mailto:kenny.moore@path.ox.ac.uk
mailto:rbowden@well.ox.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Macrophages - cells that phagocytose microbes, unhealthy

and cancerous cells - are at the heart of human aging and

pathology from infectious and noninfectious aetiologies.

As immune sentinels, macrophages exhibit a variety of

pro- and anti-inflammatory phenotypes. At the cellular

level these phenotypes are determined not only by

(epi-)genetic lineage but are also highly plastic to

changing tissue environments [1]. The interplay be-

tween these phenotypic drivers underlies many

macrophage-mediated pathologies. For example, the

complex infectious dynamics between HIV-1 and

macrophages within particular tissue niches not only

prevents virus eradication in patients on antiretrovir-

als [2], but is a likely source of low grade neuroin-

flammation leading to neurocognitive decline [3].

Gene-edited macrophages can be used to study genes

with known host-pathogen interactions, but in the ab-

sence of genetically tractable blood derived macrophages,

macrophages derived from genetically modified pluripo-

tent stem cells (PSCs) provide a suitable alternative model

system. These stem cell models have the advantage of

reproducibly producing large numbers of edited cells

under controlled conditions [4, 5]. However, one chal-

lenge with stem cell models is the intersection of

biological and technical (stem cell differentiation) het-

erogeneity that needs to be accounted for, making the

case for single-cell sequencing. In addition, with such

highly plastic cells it is important to be able to study

the context of genetic modifiers, by controlling signal-

ing microenvironments and cell interactions. It’s this

context that is crucially lost with many single-cell se-

quencing approaches, and so a technical goal would

be to be able to include the effects of multiple envir-

onmental, signaling and intervention variables on cell

population phenotypes and dynamics.

To allow for a genotype-by-environment investigation

we cultured over 500 CRISPR-edited macrophages using a

novel microfluidic platform that allows time and dose

control over each individual cell’s microenvironment [6]

(Fig. 1a). A mixture of wild-type and SAMHD1 knockout

monocytes, were generated from HUES-2 human embry-

onic stem cells [4]. These were differentiated into

macrophages that resemble blood monocyte derived

macrophages, both phenotypically (high phagocytic ability,

expression of CD14, HIV-1 infectability) and transcripto-

mically [7], while sharing ontogeny with specific tissue-

resident macrophages such as microglia of the central ner-

vous system [8, 9]. The need for and importance of such

tissue-resident models has recently been reviewed by

Sattentau and Stevenson [10]. As the protein of interest in

these cells, SAMHD1 is a poorly understood dNTPase

that has emerged as a potent HIV-1 restriction factor in

non-cycling cells [11]. Its primary physiological role is

believed to be the maintenance of genome integrity by

limiting the dNTP pool when DNA replication is not re-

quired, which is in keeping with observed SAMHD1

downregulation in several cancers [12, 13]. Of direct rele-

vance to innate immunity is its congenital loss of function

associated with Aicardi-Goutieres syndrome, a neurode-

generative disease linked to dysregulated inflammation

[14]. In order to gain better insights into SAMHD1 biol-

ogy within macrophages, we set out to study the knockout

of this gene in our model. RNA sequencing at a single-cell

resolution was necessary to, at a minimum, rule out tech-

nical contributions from unwanted cell populations that

can occur with imperfect stem cell model differentiation.

Furthermore, as SAMHD1 has a direct association with

inflammation signaling, we sought to do this in a way that

would not only study aspects of inflammatory activation

but also cell autonomous effects separate from the influ-

ences of macrophage paracrine signaling.

Per microfluidic chip, up to 48 individual macrophages

were isolated at random from a mixture of differentially

stained wild-type and knockout cells, and cultured in

isolation under different inflammatory signaling environ-

ments. These culture environments comprised four pos-

sible combinations of exposure or non-exposure to

lipopolysaccharide (LPS, to stimulate inflammatory activa-

tion), and standard or conditioned media. Conditioned

medium was derived from bulk macrophage cultures, to

simulate the intercellular signaling component that is im-

portant in the control of macrophage inflammatory activa-

tion. In total this provided eight cell populations per chip

(each cell having one of two genetic conditions, and one

of four culture environment conditions), with each chip

cultured for either one or eight hours in order to account

for early temporal changes in response. Details of the ex-

perimental work flow are provided in Additional file 1:

Figure S2. Cellular phenotypes such as motility and

morphology were tracked by live-cell imaging, before the

cDNA from cells was harvested for single-cell RNA se-

quencing. All of the aggregate 16-fold combinations of

genotype, environment and time were repeated in at least

nine replicate runs to ensure robustness of conclusions.

Details of the experimental and imaging methods, includ-

ing the sequencing quality control are provided in the

Methods and Additional file 1.

Results
Identifying different macrophage states (phenotypes)

Exploratory RNA-seq data analysis (Fig. 1b) revealed a

clear differentiation between one- and eight-hour cul-

tured cells. It also highlighted a subgroup of cells present

at both time points that enriched for a gene set previ-

ously demonstrated to be differentially expressed in

macrophages treated with the (anti-)inflammatory TGFB

cytokine (Additional file 1). This provided initial
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Fig. 1 (See legend on next page.)
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evidence for the potential biological relevance of the ob-

served heterogeneity among the macrophages. To more

formally study this latent/emergent (i.e. previously un-

known) heterogeneity and the gene expression differences

underlying it, we developed a novel hybrid model-driven

and non-parametric clustering method constrained to re-

port only cell clusters that were well represented across

replicates. We provide further details in the Methods, with

all analysis code and results provided in the Additional

files 1 and 2 respectively. Our more formal clustering ana-

lysis confirmed the existence of the lower-abundance cell

state at both time points (called ‘cluster one’ in Fig. 1c&d)

but also a reproducible third state (called ‘cluster three’)

emerging after eight hours. A search for associations be-

tween proportions of the cell states and culture conditions

revealed a lower abundance of cluster three when in

standard media with LPS (Fisher’s Exact -log10P =5.14,

Fig. 1e&f), suggesting another inflammatory sub-

phenotype in the cells. With these results demonstrating

heterogeneity that would otherwise be missed with trad-

itional sequencing, we then asked if any of these cell types

resembled the tissue-resident phenotype of interest.

Identifying the macrophage phenotype of interest

To better understand these latent cell states, we used

our modification on the Heskes Rank Product method

[15] to estimate upper and lower p-value bounds on dif-

ferential and heterogeneous gene expression. As detailed

in the Methods, we defined differential expression as a

global/overall shift in gene expression, while heteroge-

neous/context-specific expression was defined as highly

variable expression across cell states or culture microen-

vironments. We selected this non-parametric gene rank-

ing approach not only for its focus on result

reproducibility, but for its speed and ease of data fusion

that make it well suited to single-cell analysis.

Compared against one-hour cultures, most cells in

eight-hour cultures (cluster two cells) progressed towards

an anti-inflammatory transcriptional signature consistent

with the tissue-resident macrophage phenotype of interest.

This is evidenced, for example, by the expression of

IL1RN, encoding IL-1 receptor antagonist, which in-

creased 18-fold over time in cluster two (Fig. 2a). Recom-

binant IL1RN is used to treat severe inflammatory

conditions mediated by its ligand, the archetypal pro-

inflammatory cytokine IL-1 [16]. In contrast to other cells,

cluster one cells did not move towards a transcriptional

profile consistent with a tissue-resident phenotype, and

tended to maintain up- or down-regulation of cluster-

specific genes. This pattern included lower expression of

GAPDH and TPI1, genes involved in glycolysis, a pathway

known to vary across macrophage activation phenotypes

[17]. Compared with the other clusters, cluster one

expressed higher levels of FOXP1 across all culture condi-

tions (Fig. 2d, −log10P of 6.03 and 4.85 at one and eight

hours, both globally significant at a 5% FDR). FOXP1 is a

transcription factor involved in maintaining embryonic

stem cell pluripotency that must be turned off for

complete monocyte differentiation into macrophages [18].

Concerned that selective expression of FOXP1 might rep-

resent technical differentiation heterogeneity, we used the

imaging data to search for other contributing factors.

While we did not find evidence for cell motility or morph-

ology associations, we noted that cluster one cells were

more likely to have come into contact with the culture

chamber retention beads used to prevent cells from

escaping (Fig. 1a, Fisher’s Exact -log10P = 4.10). We also

noted that cells cultured towards the edges of the chips

were more likely to touch retention beads (Fisher’s

Exact -log10P = 1.79), but that the chip edge positions were

enriched for in cluster one, seemingly independent of the

bead association (Fisher’s Exact -log10P = 3.19, Additional

file 1: Figure S6). As cell imaging was performed hourly,

this may in part reflect false negatives for detecting bead

contact of cells in a less mature and adherent state. Not-

withstanding the evidence for both differentiation and en-

vironmental factors underlying cluster one, the low

correlation between cluster one and off-chip bulk tissue

samples (Additional file 1: Figure S7) led us to conclude

that it may represent a potentially interesting but low-

abundance phenotype that is unrelated to our main ques-

tion of SAMHD1 biology in tissue-resident macrophages.

A comparison of gene expression in cluster three versus

other cells (Fig. 2b) was consistent with a shift towards

macrophages with a tissue remodelling phenotype. This

was evidenced, for example, by greater expression of

TIMP3, an inhibitor of extracellular matrix degradation,

and CHI3L1, a secreted glycoprotein also thought to drive

tissue remodelling and a known genetic risk factor for

asthma severity [19]. Since cluster three’s transcriptional

(See figure on previous page.)

Fig. 1 Macrophage culture and subtypes. a A single micro-volume culture chamber from the Polaris™ microfluidics chip, containing a macrophage.

The media conditions per chamber can be modified to study microenvironmental perturbations. b Visualization of the major cell differences — such

as with this multi-dimensional scaling of the transcriptomic rank correlations — demonstrated the separation of cells cultured for one hour (light),

eight hours (dark), and a reproducible subcluster present across both time points (arrow). c&d Formal clustering confirmed this subcluster (cluster one)

in addition to a third subcluster emerging after eight hours. The inner 50% of cells in each cluster are shown in colour for dimensions one and three

to better convey relative cluster positions and densities. e&f Cluster three significantly reduced its proportion in the context of LPS and standard media.

95% confidence intervals for change in proportions are shown
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Fig. 2 (See legend on next page.)
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phenotype most closely resembles that of cluster two

(Additional file 1: Figure S18), it seems plausible that this

represents an emerging secondary phenotype that requires

macrophage signaling when cells are exposed to LPS

(Fig. 1e&f). Future studies over longer culture periods will

help clarify the microenvironmental dependence and per-

sistence of this cluster.

We focus the remainder of our observations on the main

body of cells (cluster two), resembling the desired tissue-

resident phenotype. While no cluster two enrichment for

particular motility or morphology imaging features were

found over these short culture periods, we briefly note an

imaging subtype of cells observed to be phagocytosing the

retention beads. Phagocytosing macrophages did not as-

sume a distinct transcriptomic cluster 一 likely due to

short culture times 一 nevertheless they did enrich for oxi-

dative stress and mitochondrial genes, examples being

PRDX1 and MT-CO3 (−log10P of 4.60 and 4.43 respect-

ively, both globally significant at 5% FDR). This unexpected

result suggests an avenue for single-cell studies to explore

the temporal dynamics of phagocytosis [20].

Changes in macrophage behavior (cluster two) with

SAMHD1 knockout

After filtering our data to focus on the cell subtype of

interest (cluster two), we tested for varying knockout

and wild-type differential and heterogeneous expression

over time. The most striking feature of the globally sig-

nificant knockout effects was that they were predomin-

antly microenvironment specific (Fig. 3a). Not only does

this stress the importance of studying gene-environment

interactions in cellular genetics models with known

phenotypic plasticity, but in this work allows us to com-

ment on macrophage signaling contributions. Specific-

ally, we note a highly significant association with SOD1

expression, a gene that encodes the cytosolic isozyme of

superoxide dismutase. SOD1 is a superoxide radical

scavenger that may confer some protection against HIV-

1 neuropathy as part of the oxidative stress response

[21], but which has no described associations with HIV-

1 restriction factors. As with SAMHD1 loss of function,

gain-of-function mutations in SOD1 are associated with

neuroinflammation and degeneration, clinically mani-

festing as amyotrophic lateral sclerosis, which is likely a

result of toxic protein aggregates [22]. Overall, SOD1

transcript levels in this study were similar in wild-type

and SAMHD1 knockout cells. However, whereas SOD1

expression in wild-type cells stimulated with LPS in-

creased over time as expected, expression in knockout

cells increased over time in the absence of LPS activa-

tion. Not only does this point to a qualitative difference

in expression but 一 as can be seen from the barely

detectable expression changes in standard media

(Fig. 3a) 一 the magnitude of the difference is much

greater in conditioned media. This SOD1 oxidative stress

response thus has both a notable genetic and signaling

component, which may be dampened by identifying and

blocking the augmenting signaling factor(s).

Further exploring this oxidative stress response, we

noticed a change in SOD1’s coexpression (i.e. genes cor-

relating with it) in knockouts versus wild-types (Fig. 3c).

Analysing which genes tend to coexpress with SOD1 al-

lows for biological contextualisation of this effect, as

genes are only expressed when required, and so expres-

sion correlation implies coregulation. A key difference

here being the increased coexpression resolution offered

by single-cell analysis to generate gene networks in both

perturbed and unperturbed cells, compared with con-

ventional sequencing that is limited to only studying

average gene correlations with perturbation. We asked

whether there are genes with which SOD1 alters its rank

(Spearman) correlation across cells when SAMHD1 is

knocked out. Fig. 3b lists the globally significant signa-

tures from MSigDB v5.1 [23], consisting of gene sets

more correlated with SOD1 in knockout versus wild-

type cells. In other words, these highlight genes and

pathways coregulating with the altered oxidative stress

response in the knockout macrophages. In addition to

the expected enrichment for reactive oxygen species

(ROS) modulators in this list, we note a striking enrich-

ment for proteasome genes. The proteosome is known

to be activated and dysregulated with SOD1 mutation,

leading to aberrant cellular proteostasis [24]. However, it

is plausible in these cells that the altered proteostasis is

simply a result of the macrophages’ stress response. In

particular we note an enrichment for proteasome genes

involved with the activation of NF-kappaB (NF-kB), a

pro-inflammatory transcription factor on which multiple

(See figure on previous page.)

Fig. 2 Cell cluster gene expression. In each plot, yellow indicates increased and magenta indicates reduced gene expression. a-b Heatmaps of the top 50

gene expression results, ranked by statistical significance, are shown for clusters one and two over time (a) and cluster three versus other cells, broken down

by culture condition (b). The numbers provided in parentheses in this and other heatmaps are -log10 p-values for differential and heterogeneous (context

specific) expression respectively. Results that are globally significant after 5% false discovery rate (FDR) correction are marked with an asterisk. c The differential

expression results for cluster one versus other cells at one and eight hours. d A cumulative proportion plot for FOXP1 expression broken down by cell clusters.

As in other plots, clusters one, two and three are plotted in red, blue and green respectively. Each line plots the cumulative proportion of cells

at or below a certain expression level. Cluster one demonstrates greater expression, with approximately half of cluster two and three cells

having no detectable expression
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macrophage signaling pathways converge [25]. A similar

proteostasis theme is observed for the regulation of orni-

thine decarboxylase, a macrophage anti-inflammatory

enzyme [26] that metabolises a well described marker of

macrophage pro- versus anti-inflammatory phenotype

polarisation. With these pathway associations validating

this approach by supporting known biology of increased

inflammation with SAMHD1 knockout - albeit within

the context of oxidative stress and altered proteostasis -

we asked if other pathways in Fig. 3b point to unex-

pected biological themes.

A striking pathway result was the repeated enrichment

for proteasome genes involved in the degradation of cell

cycle proteins. While the direct causal relationship be-

tween cell cycle and SAMHD1 is considered to be via

its cyclin-dependent kinase phosphorylation and inhib-

ition [27], these results point to an additional reverse

relationship. A tumor suppressor role for SAMHD1 has

been proposed based on its maintenance of genome integ-

rity and cancer associations with downregulation [12, 13].

However, the pathways in Fig. 3b counter-intuitively point

to p53 dependent and independent G1 arrest as part of

the DNA damage response. These results highlight a ne-

cessary fine balance in SAMHD1 activity in terms of cell

cycle control, with too little SAMHD1 arresting cell cycle

progression via other tumour suppressors in response to

DNA damage. This relationship between SAMHD1 and

G1 arrest has been demonstrated in dividing fibroblasts

that turn senescent [28], though an important difference

here is that it suggests the wild-type G0 (post-mitotic)

macrophages shift to a G1 block with SAMHD1 knockout.

Finally, and perhaps most interesting in terms of the HIV-

1 host-pathogen relationship, is the highly significant

pathway enrichment for the degradation of APOBEC3G

Fig. 3 SAMHD1 knockout gene expression (a) Heatmap of the difference between knockout and wild-type expression over time, broken down

by culture condition. Block colours and numbers in parentheses share the same meaning as in the Fig. 2 heatmaps. b Globally significant MSigDB

signatures correlating with knockout SOD1 expression. c The expression of SOD1 and its top co-expressors after eight hours across all cell clusters.

Red, blue and green lines correspond to clusters one, two and three respectively. Widths indicate expression level
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as part of the altered stress response in SAMHD1 knock-

outs. This HIV-1 restriction factor causes proviral DNA

hypermutation via cytidine deamination, and so shares no

known overlap in antiviral activity with SAMHD1 [29].

Discussion and conclusions

As single-cell methods continue to mature, so will the

ability to move beyond simple ‘snapshots’ of cell popula-

tions towards studying the determinants of population

dynamics. We expect that one area of demand for this

type of single-cell functional genomics will be cellular

genetics models, with large-scale efforts already under-

way to generate stem cell banks to support tissue-

specific insights into genetic variants [30, 31]. Even with

the simplest such models, single-cell sequencing will

prove useful to rule out heterogeneity unrelated to the

cell phenotypes of interest. In our macrophage model,

for example, we have seen that while the majority of

cells adopted a tissue-resident phenotype, cells that be-

have quite differently can be present. As the co-culture

and genetic complexity of cellular genetic models in-

creases, so will the demand for methods to confidently

map heterogeneity with high replicability across multiple

culture or laboratory conditions. Automated and stan-

dardized microfluidics present a decided advantage in

this regard. In this proof-of-principle work we have been

able to generate complex experimental designs within

chips over multiple iterations. As all the conditions stud-

ied were replicated at least nine times, we have been able

to develop and implement statistical models that focus

on highly replicated cell behaviors that could easily be

integrated with results from other laboratories.

Perhaps the most distinct advantage of such lab-on-chip

microfluidics is the ability to perform imaging, temporal

and microenvironmental analyses of cell population dy-

namics. In this study these variables allowed us, for ex-

ample, to comment on the altered oxidative stress

response (SOD1 expression) with SAMHD1 knockout and

macrophage signaling. By blocking the signaling compo-

nent we observed a significant reduction in this knockout

effect. Interestingly, SOD1 and SAMHD1 have known

respective gain and loss of function associations with neu-

roinflammation that are in keeping with effects noticed in

this model. We speculate that targeting the observed sig-

naling component may provide an avenue for the treat-

ment of these and other neurodegenerative diseases

influenced by innate immunity. Microglia (central nervous

system macrophages), for example, are not only implicated

in HIV associated neurocognitive disease (HAND), but

also in Alzheimer’s disease via aberrant inflammatory sig-

nalling [32]. Future work with the Polaris™, assaying

single-cell macrophage supernatants, may prove useful in

narrowing down this as yet unidentified signaling factor.

In this study, single-cell SOD1 coexpression pathway

analysis enriched for altered proteostasis. The most widely

observed biological association with this altered proteosta-

sis was a cell cycle (G1) block as part of the DNA damage

response. While an increased dNTP pool with SAMHD1

loss of function is known to reduce genome integrity, the

SOD1 association with these pathways point to an oxida-

tive stress contribution to DNA breaks triggering G1

checkpoint genes. SOD1 may also directly contribute to

this arrest via its anti-apoptotic signaling [33]. Perhaps

most intriguing is how these associations could provide in-

sights into activating latent viruses within therapeutically

intractable reservoirs such as macrophages and resting

CD4+ T cells, where SAMHD1 is highly expressed [34].

Triggering apoptosis signaling has been proposed as one

therapeutic strategy for HIV-1 activation [35], which

would require SOD1 apoptosis inhibition to be minimised.

Our knockout cells strongly suppressed SOD1 expression

when activated in conditioned media, suggesting that pro-

moting macrophage activation in combination with

SAMHD1 inhibition would, at least in vitro, be the most

effective strategy to purge latent viruses. Infection of the

macrophages with HIV-1 in these microfluidic chips to

directly study these effects is one promising approach to

study this. Such HIV-1 infection studies with other macro-

phage knockouts such as the HIV-1 restriction factor

APOBEC3G, may prove particularly enlightening, as re-

sults from this study suggest a previously unappreciated

connection between SAMHD1 loss of function and

APOBEC3G degradation. Understanding the conditions

under which SAMHD1 inhibition also results in reduced

APOBEC3G levels would be of direct relevance to therap-

ies aimed at viral activation. Under these situations,

SAMHD1 inhibition might have the desired activation re-

sponse, but reduced APOBEC3G would enhance the abil-

ity of the activated viruses to reinfect other cells.

Methods
Stem cells, generation of macrophages and experimental

media

The human embryonic stem cell line HUES-2 was ob-

tained from the HUES Facility, University of Harvard [36].

Feeder-free PSC cells were cultured in mTeSRTM-1

medium (Stem Cell Technologies) on Matrigel (Corning)-

coated tissue culture dishes, passaged with TrypLE

(Invitrogen) with the addition of 10 μmol/L Rho-kinase

inhibitor Y-27632 (Abcam). A double-nicking CRISPR-

Cas9 approach was used to generate SAMHD1-knockout

stem cell lines [37]. Plasmid pX462 (gift from Feng Zhang;

Addgene plasmids cat. 48141, [38]), expressing the guide

RNA, D10A-mutated Cas9 and a puromycin-selection

cassette was adapted to target SAMHD1 at exon 4

(GTGTATCAATGATTCGGACGAGG and CGATACAT

CAAACAGCTGGGAGG; PAM underlined) or exon 5

target sites (CGTTCACTTATCTGCAGCTCTGG and

Wills et al. BMC Genomics  (2017) 18:53 Page 8 of 13



GGATGTCTAGTTCACGCACTGGG; PAM underlined)

using protocols previously described [38, 39]. PSCs were

transfected with all four plasmids targeting SAMHD1

using the Neon® Transfection system (Invitrogen) accord-

ing to manufacturer’s guidelines (2 × 106 cells electropo-

rated with 15 μg DNA using a 100 μL tip at 1000 V, 40 ms

pulse width, one pulse), cultured without antibiotics for

48 h and then for 48 h with selection in 0.4 μg/mL puro-

mycin (Sigma). Single-cell clones were generated by plating

transfected PSCs at low density onto mitotically-inactivated

mouse embryonic feeder (MEF) cells [40, 41] on gelatin-

coated tissue culture plates in stem cell medium (KO-

DMEM, 2 mmol/L L-Glutamine, 100 mmol/L nonessential

amino acids, 20% serum replacement, and 8 ng/mL FGF2;

Invitrogen). Clones with modifications at the SAMHD1

locus were identified by high resolution melt analysis. Se-

quencing confirmed that clone E2 had an out-of-frame in-

sertion (29 and 49 bp) into each allele of SAMHD1 exon 4

and G9 had an out-of-frame deletion (43 bp) in one allele

and an in-frame deletion (39 bp) that deleted the essential

allosteric GTP binding site (amino acids 135 to 147) and

would alter the catalytic site. Macrophages derived from

these clones were screened for SAMHD1 expression by

western blotting using a mouse anti-SAMHD1 antibody

(clone 2D7, Insight Biotechnology Ltd) and a rabbit anti-

GAPDH antibody (Sigma) (Additional file 1: Figure S1).

Feeder-free PSC cells were cultured in mTeSRTM-1

medium (Stem Cell Technologies) on Matrigel (Corning)-

coated tissue culture dishes, passaged with TrypLE

(Invitrogen) with the addition of 10 μmol/L Rho-kinase

inhibitor Y-27632 (Abcam). A protocol devised in our la-

boratory was used to generate macrophages from PSC

cultures. Briefly, embryoid bodies were formed using the

spin method in AggreWells™800 (Stemcell Technologies)

plates, each of which was split into two monocyte factories

in T175 tissue culture flasks containing ~150 embryoid

bodies. The monocytes released into the supernatant were

harvested regularly and plated into 96-well plates at

5 × 104 cells per well in macrophage differentiation

medium consisting of XVIVO™15 (Lonza) supple-

mented with 100 ng/mL M-CSF (Invitrogen), 2 mM gluta-

max (Invitrogen), 100 U/mL penicillin and 100 μg/mL

streptomycin (Invitrogen). Four days after plating the

media was replaced with fresh macrophage differentiation

media with additional 10% fetal bovine serum (FBS;

Invitrogen) and the cells were used on day 7 of differenti-

ation. We used three batches (A, B, G, each corresponding

to one AggreWells™800 plate) of wild-type cells and two

batches (G9: C, D and E2: E, F) each of the two

SAMHD1-knockout clones for the Polaris macrophage

stimulation experiments.

Four kinds of media (‘conditioned’ and ‘standard’, with

or without LPS) were used in the microfluidic chips. To

generate conditioned media, stem cell-derived monocytes

were plated at 5 × 105 cells/well in a 12-well tissue culture

plate and differentiated for 4 days in macrophage differen-

tiation medium followed by 3 days in the presence of 10%

FBS. The medium was then replaced with fresh macro-

phage medium plus 10% FBS with or without 100 ng/mL

LPS (Sigma). “Standard media” were generated by incuba-

tion of macrophage differentiation medium plus 10% FBS

either with or without 100 ng/ml LPS at 37 °C to simulate

incubation of conditioned media with cells. For each kind

of medium, after 24 h with LPS/mock stimulation, super-

natants were recovered by centrifugation, 0.45 μm-filtered

and stored at −80 °C then thawed and clarified by centri-

fugation at 14,100 rcf for 10 min before use.

Polaris™ protocols

Polaris runs followed the protocol ‘Using Polaris to

Generate Single-Cell cDNA Libraries for mRNA

Sequencing’ (PN 101–0082 A1, Fluidigm). Set-up parame-

ters are shown in Table S1. Polaris integrated fluidic cir-

cuits (IFCs) were prepared for cell capture by a priming

step, during which the capture chambers were also coated

with the extracellular matrix compound fibronectin

(25 ng/μl, cat. F4759, Sigma-Aldrich) for handling adher-

ent cells, and capture beads (prepared to Fluidigm specifi-

cations) were loaded to prevent the release of captured

single cells (Fig. 1). Priming was arranged to finish as

the cell mix became ready for loading (Additional file 1:

Figure S2A).

For each experimental run, one well of cells from a

single batch each of wild-type and knockout cells was

used. One sample was stained with CellTracker™ Orange

CMRA Dye and the other with both CellTracker™

Orange CMRA and CellTracker™ Green CMFDA Dye

(cat. C34551 and C7025, Thermo Fisher Scientific) in

Wash Buffer (Fluidigm). Dye concentrations were ad-

justed upwards between runs during the experiment to

improve sensitivity and resolution: 1 μM for runs 1 and

2; 2 μM for runs 3 to 12; and 3 μM for runs 13 to 20.

Wild-type and knockout cells were dual- or single-

stained in approximately equal numbers of experiments

(Additional file 1: Figure SB). The culture medium was

removed and the cells were washed twice with 250 μl

Wash Buffer (Fluidigm) then stained with 100 μl of

staining solution at 37 °C for 15 min before a further

wash with 150 μl of Wash Buffer. The Wash Buffer was

removed, 100 μl of 0.5 mM EDTA (cat. 15575, Gibco) in

PBS was added and the cells were incubated at 37 °C

for 15 min before the EDTA was removed and the

cells were resuspended gently in 50 μl of Feed Media

(X-VIVO™ 15 cat. BE02-061Q (Lonza), 1% Penicillin-

Streptomycin (10,000 U/mL), cat. 15140–122, (Gibco)).

Cells were counted on a TC-20TM Automated Cell

Counter (Bio-Rad) and samples were adjusted to a final

concentration of 350–400 cells/μl.
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Fluidigm guidelines (Fluidigm Single-Cell Preparation

Guide, PN 100–7697) were used to establish optimal

buoyancy at an 4:1 (cells:cell suspension reagent) ratio for

the Polaris experiment. For each run, 15 μl each of differ-

entially stained wild type and knockout cells were mixed

with 7.5 μl of Cell Suspension Reagent (Fluidigm, PN

101–0434) 25 μl of the resulting suspension, containing

an estimated 7000–8000 cells, was loaded on the Polaris

IFC. On-board imaging settings to control automatic cell

selection were set for each run, with a threshold that var-

ied between 4000 and 6000 for a constant 1.0 s exposure.

After completion of the cell selection step, the IFC was re-

moved from the Polaris system and placed in an incubator

at 37 °C and 5% CO2 for 2 h to allow the cells to settle

prior to dosing. Dosing culture media were centrifuged in

small volumes (500 μl) at 14,100 rcf for 10 min before

27 μl of medium and 200 μl of Feed Media were loaded

into the appropriate wells of the IFC (Additional file 1:

Figure S2C). For 1-h dosing runs, the dosing step was

stopped manually and for 8-h dosing runs, cells were also

dosed at 4 h. Successive runs were scheduled to alternate

between one and eight hour dosing.

The Polaris acquired images of all 48 chambers in all

available fluorescence channels during cell capture, at the

start of dosing and every 1 h thereafter until the end of

the run. IFCs were removed from the Polaris for add-

itional, high-resolution imaging on a Leica TCS SP8 con-

focal microscope (Leica Microsystems) at 3 stages of each

run: after cell capture, after the 2-h incubation and at the

end of the dosing step, just before lysis. (Additional file 1:

Figure S3A). The imaging protocol was designed to ac-

quire bright-field and fluorescence images, for CellTracker

Orange and CellTracker Green: 488 nm and 561 nm exci-

tation and hybrid detectors for emission at 500–550 nm

and 571–630 nm respectively, were used with a 20× ob-

jective and a template to automatically locate the 48 IFC

cell isolation chambers, in an image acquisition process

lasting ~5 min during which the microscope chamber

temperature was maintained at 37 °C. The black vinyl film

on the lower surface of the Polaris chip was removed tem-

porarily for each imaging stage. For each time-point and

channel, the Polaris stored a single image of the IFC’s 48

cell chambers, 5200 × 1000 pixels in size, in which each

pixel had dimensions of approximately 5.5 × 5.5 μm. On

the Leica, one image of 512 × 512 pixels, each 1.39 ×

1.39 pixels, was captured per cell chamber in bright field,

orange and green channels. The initial aims of the image

analysis were to differentiate double- and single-stained

cells (wild-type and knockout or vice-versa, depending on

the run) and to assess cell shape, motility and phagocyt-

osis behaviour. The R package EBImage [42] was used

with a set of bespoke R functions to automatically identify

individual cell chambers and the cells they carried. For-

mally, within the large Polaris image(s), cells were

detected as clusters of 4 or more of the brightest 30 pixels

in the trimmed image corresponding to each cell chamber,

for each fluorescent channel. Motility was assessed by

measuring changes in the cluster positions between im-

aging time-points. To assess cell morphology (circularity,

the proportion of pixels within the smallest circle encom-

passing the cluster that belong to the cluster), the higher-

resolution Leica images were analysed using a re-scaled

version of the same algorithm, requiring clusters of 60 or

more of the brightest 411 pixels. Automated imaging as-

sessments were checked extensively by eye, leading to the

identification of irregularly shaped or unevenly stained

cells. Macrophage phagocytosis of capture beads was

assessed manually.

For each Polaris run, a bulk control sample of the wild-

type and of the knockout cells used in the run was pre-

pared for sequencing. Aliquots containing 2000–4000 of

the stained cells loaded on the Polaris were kept at room

temperature, incubated along with the loaded IFC for the

2-h incubation step, and kept at 37 °C during dosing.

Within 30 min of starting the Polaris lysis step, bulk-cell

samples were lysed and processed using the RNA extrac-

tion kit RNeasy Micro Kit (cat# 74004, Qiagen) and eluted

in 14 μl of RNAse-free water. At the end of the dosing

protocol and after any additional imaging, cells were lysed

for reverse transcription and amplification for cDNA gen-

eration in the Polaris. Master mixes for this procedure

were prepared using the SMARTer Ultra Low RNA Kit

(Clontech), according to the Fluidigm Polaris protocol

with minor modifications. The cell lysis mix (28 μl) con-

tained 8.0 μl Polaris Lysis Reagent, 9.6 μl of a 1/200 dilu-

tion of Polaris Lysis Plus Reagent (in PCR-grade water,

prepared immediately before use), 9.0 μl SMARTer kit 3′

SMART CDS Primer IIA and (for runs 1–11) 1.4 μl of di-

luted ERCC spike-in RNA, prepared by adding 1.0 μl of a

1/10 dilution of ERCC ExFold RNA Spike-In Mixes (cat.

4456739, Ambion) to 96.5 μl Polaris Loading Reagent and

2.5 μl SMARTer Kit RNase Inhibitor (40 U/μl). The re-

verse transcription reaction mix (48 μl) contained 15.5 μl

5× First-Strand Buffer (RNase-free), 1.9 μl DTT, 7.7 μl

dNTP mix, 7.7 μl IIA Oligonucleotide, 1.9 μl RNAse

Inhibitor, 7.7 μl SMARTscribe Reverse Transcriptase (all

SMARTer Kit, Clontech), 2.4 μl Polaris Loading Reagent

and 3.2 μl Polaris RT Plus Reagent. The PCR mix (90 μl)

contained 63.5 μl PCR-grade water, 10.0 μl 10× Advantage

2 PCR Buffer (not SA – Short Amplicon), 4.0 μl 50×

dNTP Mix, 4.0 μl 50× Advantage 2 Polymerase Mix (all

Advantage 2 Kit, Clontech) and 4.0 μl SMARTer IS PCR

primer. The cDNA products were harvested into a 96-

well plate in the arrangement shown in Additional file 1:

Figure S2D. Harvest wells with atypical volumes (some

with no material, others with an excess) were excluded

from further analysis. Bulk control samples comprising

1 μl of RNA extracted from the bulk samples above were
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each mixed with 4.5 μl of cell lysis mix and processed

using the following temperature sequence: 37 °C for

5 min, 72 °C for 3 min, 25 °C for 1 min, then 4 °C (hold),

then reverse transcribed using 9.0 μl of the reaction mix,

at 42 °C for 90 min followed by enzyme inactivation at

70 °C for 10 min, then 4 °C (hold). Bulk-sample PCRs con-

tained 1 μl of cDNA generated in the previous step and

9.3 μl PCR mix. PCR conditions were as follows: 95 °C for

1 min then 5 cycles of {95 °C/20 s, 58 °C/4 min, 68 °C/

6 min}, 9 cycles of {95 °C/20 s, 64 °C/30 s, 68 °C/6 min},

7 cycles of {95 °C/30 s, 64 °C/30 s, 68 °C/7 min},

then 72 °C for 10 min and 4 °C (hold). After Quant-iT™

PicoGreen (Thermo Fisher) normalization of cDNAs to

0.22 ng/μl, Illumina sequencing libraries were prepared to-

gether using Nextera XT DNA Library Preparation Kit

(Illumina), according to the manufacturer’s specifications,

at quarter-scale on a Beckman-Coulter FXp automated li-

quid handling instrument, and pooled as up to 192 multi-

plexed libraries using in-house dual-indexing library tags.

Some samples that had failed because of empty cell cham-

bers or the presence of more than one cell in a chamber

were included, and two bulk-cell samples per run were

included in each pool, which was sequenced as a single

lane of 75 b paired-end reads on an Illumina HiSeq 4000

instrument in 4 different runs.

RNA-Seq data generation and initial quality control

Samples were prepared and paired-end sequenced using

the Illumina HiSeq™4000 Sequencing platform, as de-

scribed above. RNA-seq reads were trimmed for Nextera/

Illumina adapter sequences using skewer-v0.1.125 [43].

Trimmed reads were mapped to a modified reference gen-

ome comprising the human genome, Homo sapiens

GRCh37, and fasta sequences for ERCC spike-ins

(ThermoFisher). Reads in gzipped fastq format were

aligned using Hisat2 version-2.0.0-beta [44] with de-

fault parameters. Duplicate reads were marked using

MarkDuplicates.jar implemented in Picard tools v1.92.

BAM alignments were name sorted with Samtools

version 1.1. Alignment metrics were calculated using

CollectRnaSeqMetrics.jar implemented in Picard tools

v1.92 for full BAM files and with potential PCR duplicates

marked. RNA-SeQC [45] was used to calculate sequencing

bias, as the median estimators in Picard can result in zero

estimates. Reads mapping uniquely to genes annotated in

ENSEMBL release 76 were counted using featureCounts

[46] implemented in subread-v1.5.0 [47]. Read distribution

between various features - assigned reads (mapped

uniquely to exons), multiple mapping, ambiguous map-

ping, No features (mapped uniquely to intronic and inter-

genic regions) – was obtained from featureCounts results.

Read counts were normalized to Transcripts per million

(TPM), and number of detected genes per sample were

calculated by counting genes with at least 1 TPM. Details

of the supplied data and meta-data provided are provided

in Additional file 1, including further QC using the R sca-

ter package [48]. In brief, we excluded culture chambers

with visually confirmed doublets (two cells), numbers of

detected genes more similar to bulk controls, and cells

with very low starting cDNA. FASTQ files for the data

have been uploaded to the Gene Expression Omnibus

(GSE87849).

Clustering the macrophages and gene expression modeling

All modeling and analyses were performed in the R en-

vironment (version 3.2.1, x86_64-pc-linux-gnu 64-bit,

Ubuntu 14.04.2 LTS). Multidimensional scaling (MDS)

on the cell rank correlations - without gene weighting -

was used to reduce one hour and eight hour cells to five

dimensions, as detailed in the provided Additional file 1

code wrapped in the cellStates() function. Inclusion of a

greater number of dimensions did not influence the

clustering. Additional file 1: Figure S16 & S17 demon-

strate the cell densities and individual cells for the five

dimensions in the eight hour cells, where some clusters

of cells can be seen to be unique to individual chips. To

ensure reproducibility, the constraint was added that a

cluster with fewer than three cells in more than half of

the replicates not be considered in the downstream

modelling. While such groups of cells may represent il-

luminating features in the macrophage model’s behav-

iour, these are not reproducible effects.

Extracting major cell states was performed using a hy-

brid of model-driven clustering (Gaussian mixtures) and

non-parametric clustering (partitioning around medoids),

as detailed in the Additional file 1 code wrapped in

the consensusCluster() function. Repeated fitting of

mixtures to the data - with one chip replicate omitted per

iteration - was used to produce a consensus matrix of the

proportion of iterations cells share clusters. This was non-

parametrically re-clustered, selecting the maximum

number of clusters for which experimental replication was

strongly represented in each cluster. We note that al-

though this combination of methods was employed, other

tested approaches such as hierarchically clustering the

consensus matrix produced similar results due to the con-

sensus and reproducibility constraints. The defined clus-

ters are recorded in the cell meta-data (Additional file 2).

The major latent cell states identified with exploratory

data analysis remain the only two identified major states

in the one hour cells, with a third reproducible cluster

emerging at eight hours that shares properties with the

main group of cells (Additional file 1: Figure S18).

Altered gene expression was modelled as the change in

mean conditioned on (i.e. tested per) cell subtype of inter-

est. Overall mean across cell subtypes (μ) was used as a

measure of global shift in gene expression, while mean ab-

solute deviation (MAD) of the subtypes was used as a
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measure of variability and so context/subtype specificity.

For example, for di = change in mean expression over time

for cell subtype i, μ = (d1 + d2 + .. + dn)/n and MAD= (|d1-

μ| + |d2-μ| + .. + |dn-μ|)/n. More robust estimators, such

as the use of quantiles, provided similar top hits, so here

we present μ and MAD estimates, focusing rather on a

rank product framework to determine statistical signifi-

cance of rank reproducibility per sequencing library [15].

A focus on gene ranks has several advantages well suited

to single-cell work: it is non-parametric, robust, com-

ments directly on reproducibility, and allows data fusion

or meta-analysis without the need for complex data nor-

malisations. For computational speed, the Heskes rank

product algorithm was used to assess bounds on the stat-

istical significance. Reported p-values are the geometric

means of the upper and lower bounds provided by the

rankprodbounds() function, with the qvalue package used

to estimate global significance at 5% false discovery

rate [49]. Rank (Spearman) correlations were used to

estimate gene co-expression, followed by testing for

co-expression signature enrichment with Preranked

Gene Set Enrichment Analysis (default settings) [23].

Additional files
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