The nature of monomer inversion in the ammonia dimer

E. H. T. Olthof, A. van der Avoird, and P. E. S. Wormer
Institute of Theoretical Chemistry, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands
J. G. Loeser and R. J. Saykally
Department of Chemistry, University of California, Berkeley, California 94720

(Received 13 June 1994; accepted 9 August 1994)
A model is presented for calculating the splittings due to umbrella inversion of the monomers in $\left(\mathrm{NH}_{3}\right)_{2}$. Input to the model are the six-dimensional dimer bound state wave functions for rigid monomers, calculated previously [E. H. T. Olthof, A. van der Avoird, and P. E. S. Wormer, J. Chem. Phys. 101, 8430 (1994)]. This model is based on first-order (quasi) degenerate perturbation theory and adaptation of the wave functions to the group chain $G_{36} \subset G_{72} \subset G_{144}$. The umbrella inversion splittings depend sensitively on the intermolecular potential from which the bound state wave functions are obtained. A complete interpretation of the observed splitting pattern [J. G. Loeser, C. A. Schmuttenmaer, R. C. Cohen, M. J. Elrod, D. W. Steyert, R. J. Saykally, R. E. Bumgarner, and G. A. Blake, J. Chem. Phys. 97, 4727 (1992)] and quantitative agreement with the measured splittings, which range over three orders of magnitude, are obtained from the potential that reproduces the far-infrared spectrum of $\left(\mathrm{NH}_{3}\right)_{2}$ and the dipole moment and nuclear quadrupole splittings of $\left(\mathrm{NH}_{3}\right)_{2}$ and $\left(\mathrm{ND}_{3}\right)_{2}$. The umbrella inversion splittings. of $\left(\mathrm{ND}_{3}\right)_{2}$ are predicted.

I. INTRODUCTION

The umbrella inversion of the free NH_{3} molecule is a well-studied ${ }^{1}$ phenomenon. Quantum mechanically, the inversion is described by a tunneling through the barrier of the NH_{3} double well potential. This tunneling gives rise to an energy splitting of states that, without the tunneling, would be degenerate and would be localized on either side of the potential barrier. Through the interaction with another monomer the tunneling may or may not be quenched. For example, in the case of the $\mathrm{NH}_{3}-\mathrm{Ar}$ van der Waals molecule the tunneling splitting is hardly affected in most of the rovibrational states, but in some states it is nearly quenched. ${ }^{2,3}$

The spectrum of the $\left(\mathrm{NH}_{3}\right)_{2}$ dimer was first observed by Nelson, Fraser, and Klemperer ${ }^{4}$ in the microwave region. These workers interpreted their spectrum by assuming that the monomers constituting the dimer are rigid and noninverting. However, later far-infrared measurements by Loeser et al. ${ }^{5}$ and infrared-far-infrared double resonance experiments by Havenith et al. ${ }^{6}$ showed energy splittings that were ascribed to incompletely quenched umbrella inversions of the monomers. These measurements demonstrate that, although monomer inversion in the dimer is about 10 times slower than in free ammonia, it is still observable.

In this paper we will address the question whether computations can account for the observed splittings and, in particular, whether the interpretation of the measurements in Refs. 5 and 6 can be supported theoretically. Furthermore, we will see that the splittings depend very sensitively on the intermolecular potential, so that they offer an accurate check on its validity. In the accompanying paper, ${ }^{7}$ we report vibration-rotation-tunneling (VRT) calculations on the ammonia dimer, in which we freeze all internal monomer coordinates. This requires the solution of a Schrödinger equation depending on six degrees of freedom: the intermolecular distance R and the five internal Euler angles of the dimer.

Ideally, we would now introduce the monomer umbrella angles as two extra degrees of freedom and solve the ensuing eight-dimensional Schrödinger equation. However, such a calculation is beyond present-day computer capabilities, which is why we resort to the simplified model that we used and tested earlier ${ }^{3}$ on $\mathrm{NH}_{3}-$ Ar. Briefly, the model can be described as degenerate first order perturbation theory. The degenerate set of zeroth-order states consists of a van der Waals state, obtained from the solution of the sixdimensional (in $\mathrm{NH}_{3}-\mathrm{Ar}$ a three-dimensional) Schrödinger equation, multiplied by the lowest two inversion ("umbrella") states of each free ammonia. The perturbation is the part of the Hamiltonian that describes the tunneling through the ammonia double well potentials. The van der Waals states are separated typically by about $20 \mathrm{~cm}^{-1}$, whereas the unquenched umbrella splitting is $0.8 \mathrm{~cm}^{-1}$. One can expect, therefore, that a first-order approximation is reasonable. Indeed, by comparison with results of four-dimensional VRT calculations on $\mathrm{NH}_{3}-\mathrm{Ar}$ we found the model to be quite accurate. ${ }^{8}$ In this work we extend the model to the $\left(\mathrm{NH}_{3}\right)_{2}$ dimer by multiplying each van der Waals state by four umbrella functions, two on each center. Furthermore, we will see that in a few cases the van der Waals states are very close in energy. In those cases we apply quasidegenerate first-order perturbation energy.

Instead of numerically diagonalizing the first-order perturbation matrices, we will apply group theory to diagonalize the matrices. We not only do this because it is a compact and elegant approach, but mainly because Loeser et al. provide group theoretical labels for their observed levels and we wish to connect the present theoretical work with the earlier experimental work.

II. SYMMETRY ADAPTATION

We label the protons on monomer A by $1,2,3$, and the protons on monomer B by $4,5,6$. The nitrogen atoms of the

TABLE I. The groups $C_{3 v}^{a g}$ and $C_{\xi v}^{g}$. Note that $C_{3 v}^{a g}=C_{3}^{a g}\left(S\left\{E, I_{a g}\right\}\right.$ and $C_{3_{v}}=C_{3}(S)\left\{E, I_{k}^{*}\right\}$.

$C_{30}^{4 g}$	$C_{3}{ }_{0}$
$C_{3}^{4}\left\{\begin{array}{c}(1) \\ (123)(465) \\ (132)(456)\end{array}\right.$	$C_{3}\left\{\begin{array}{c}(1) \\ (123)(456) \\ (132)(465)\end{array}\right.$
$K^{\text {ag }}\left\{\begin{array}{r}I_{\text {as }}=(14)(25)(36)(78) \\ (16)(24)(35)(78) \\ (15)(26)(34)(78)\end{array}\right.$	$K^{3}\left\{\begin{aligned} I_{g}^{*}= & (14)(26)(35)(78)^{*} \\ & (15)(24)(36)(78)^{*} \\ & (16)(25)(34)(78)^{*}\end{aligned}\right.$

monomers A and B have labels 7 and 8 , respectively. The group of feasible permutations inversions (PI's) of two noninverting monomers is generated by (123)(456), equivalent to a "geared" rotation of both monomers A and B over 120° around their C_{3} axes, (132)(456) an 'antigeared' rotation of monomers A and B, the permutation $I_{\mathrm{ag}}=(14)(25)(36)(78)$ interchanging monomer A and B, and the interchange operator $I_{g}^{*}=(14)(26)(35)(78)^{*}$ that is a product of a permutation and space inversion E^{*}. This group of order 36 is designated ${ }^{9}$ by G_{36} and can be written as the outer direct product $C_{3 v}^{\mathrm{as}} \otimes C_{3 v}^{g}$ (see Table I). The generators $I_{\text {ag }}$ and I_{g}^{*} are labeled in correspondence with the subgroups to which they belong. When umbrella inversion is considered to be feasible, two more permutations must be added to the list of generators. We could, e.g., choose (23), which inverts A and (56), which inverts B, but other choices of coset generators are possible. The total PI group is then G_{144}, which is of order 144. In this section we will discuss how we can adapt products of van der Waals states and umbrella functions to the group G_{144}, while knowing that the van der Waals states span irreducible representations (irreps) of its subgroup G_{36}. We will achieve this by the group theoretical process of induction along a canonical chain ${ }^{10}$ of subgroups of G_{144}. Recall that in a canonical chain all inductions and subductions are multiplicity free and that the chain starts with an Abelian subgroup. This implies that the basis functions of G_{144} can uniquely (up to phase and normalization) be defined by "sequence adapting" ${ }^{10}$ the functions to the chain, or in other words, by specifying according to which irreps of the subgroups in the chain the functions transform.

First we introduce $G_{72}=G_{36} \otimes\left\{E, E^{*}\right\}$ and then note that G_{144} is a semidirect product,

$$
G_{144}=G_{72}(S)\{E,(56)\} .
$$

The group G_{36} equals $C_{3 v}^{\mathrm{ag}} \otimes C_{3 v}^{g}$, and the "antigeared" and "geared" groups are given in Table I. Both groups are isomorphic to $C_{3 v}$ and are themselves also semidirect products. Introducing $P_{18} \equiv C_{3 v}^{a g} \otimes C_{3}^{\text {a }}$, we find the canonical chain

$$
G_{144} \supset G_{72} \supset G_{36} \supset P_{18} \supset C_{3}^{\mathrm{ag}} \otimes C_{3}^{g}
$$

which will aid us in the adaptation of the basis.
The Hamiltonian $H_{v d w}$, which does not contain any terms depending on internal monomer coordinates, is taken as the zeroth-order Hamiltonian in the present work; see Refs. 7 and 11 for its explicit definition. The van der Waals states, adapted to G_{36}, are obtained by diagonalizing this Hamiltonian in the following basis of coupled rotor functions,

$$
\left|j_{A}, k_{A}, j_{B}, k_{B}, j, K, J, M\right\rangle
$$

where the indices are running as

$$
\begin{aligned}
& j_{A}, j_{B}=0, \ldots, j_{\max }, \quad j=\left|j_{A}-j_{B}\right|, \ldots, j_{A}+j_{B} \\
& |K|=0, \ldots, \min (j, J) \\
& k_{A}=-j_{A}, \ldots, j_{A}, \quad k_{B}=-j_{B}, \ldots, j_{B}
\end{aligned}
$$

The quantum numbers J and M are strictly conserved and K is an approximate constant of the motion only broken by the weak Coriolis coupling. Although we have included the Coriolis coupling in the final stage of our calculations in Ref. 7, it gives only little mixing of the functions with different K and one can still use K to label the van der Waals states. See Refs. 7 and 11 for the explicit definition of the basis. In this work we are only concerned with its transformation properties under G_{144}. In Ref. 12 it is described how these transformations may be determined and they are listed in Table II. The eigenfunctions of H_{vdw} of energy $\varnothing_{\gamma}^{\gamma}$ have the form

$$
\begin{aligned}
\psi_{a, i}^{\gamma}= & \sum_{\{\Lambda, n} C_{\{\Lambda, n ; i}^{\gamma} P_{a}^{\gamma}|\{\Lambda\}, J, M, n\rangle \\
& \text { with } a=1, \ldots, f_{\gamma}
\end{aligned}
$$

where γ indicates an f_{y} dimensional irrep of G_{36}, $\{\Lambda\}=\left\{j_{A}, k_{A}, j_{B}, k_{B}, j, K\right\}$, and n runs over the radial functions. The projectors P_{a}^{γ} are given in Ref. 11, and will be rederived below. The prime on the summation indicates that the indices are restricted, so that the sum is over a linearly independent set. By introducing a new set of coefficients

$$
c_{\{\Lambda\}, n ; i}^{\gamma}=\sum_{\left\{\Lambda^{\prime}\right\}}{ }^{\prime} C_{\left\{\Lambda^{\prime}\right\}, n ; i}^{\gamma}\langle\{\Lambda\}, J, M, n| P_{a}^{\gamma}\left|\left\{\Lambda^{\prime}\right\}, J, M, n\right\rangle
$$

TABLE II. Transformation properties of the basis functions under several permutation inversions.

PI	Effect on basis	
(123)	$\exp \left(2 \pi i k_{A} / 3\right)$	$\left\|j_{A} k_{A} \hat{j}_{B} k_{B} j K J M n \sigma_{A} \sigma_{B}\right\rangle$
(456)	$\exp \left(2 \pi i k_{B} / 3\right)$	$\left\langle j_{A} k_{A} j_{B} k_{B} j K J M n \sigma_{A} \sigma_{B}\right\rangle$
$I_{\mathrm{ag}}=(14)(25)(36)(78)$	$(-1)^{J+j_{A}+j_{B}}$	$\left\|\dot{j}_{B} k_{B} j_{A} k_{A} j-K J M n \sigma_{B} \sigma_{A}\right\rangle$
$I_{8}^{*}=(14)(26)(35)(78)^{*}$	$(-1)^{j+k_{A}+k_{B}}$	$\left\|j_{B}-k_{B} j_{A}-k_{A} j K J M n \sigma_{B} \sigma_{A}\right\rangle$
(23)	$(-1)^{j_{A}}$	$\left\|j_{A}-\kappa_{A} j_{B} k_{B} j K J M n-\sigma_{A} \sigma_{B}\right\rangle$
(56)	$(-1)^{j_{B}}$	$\mid j_{A} k_{A} j_{B}-k_{B} j$ KJM $\left.n \sigma_{A}-\sigma_{B}\right\rangle$
E^{*}	$(-1)^{j+j+k_{A}+k_{B}}$	$\left\|j_{A} k_{A} j_{B} k_{B} j-K J M n-\sigma_{A}-\sigma_{B}\right\rangle$

we can write the VRT state as an unrestricted summation over primitive basis functions

$$
\psi_{a, i}^{\gamma}=\sum_{\{\Lambda\}, n} c_{\{\Lambda\}, n ; i}^{\gamma}|\{\Lambda\}, J, M, n\rangle .
$$

Because the matrix element of P_{a}^{γ} contains many Kronecker deltas the new coefficients $c_{\{\Lambda\}, n ; i}^{\gamma}$ are simple linear combinations of the coefficients $C_{\{\Lambda\}, n ; i}^{\gamma}$. As long as we neglect Coriolis coupling, the sum over $\{\Lambda\}$ is restricted to a single value of K. The ammonia monomer inversion is treated as a perturbation. This motion, depending on the angle ρ_{X} between the $\mathrm{N}-\mathrm{H}$ bonds of monomer X and its three-fold symmetry axis, is described by Papoušek et al. ${ }^{1}$ who give a Hamiltonian $H_{\text {inv }}\left(\rho_{X}\right)$. In terms of their Hamiltonian the perturbation is

$$
\begin{equation*}
V=H_{\mathrm{inv}}\left(\rho_{A}\right)+H_{\mathrm{ipv}}\left(\rho_{B}\right) . \tag{1}
\end{equation*}
$$

The lowest two eigenfunctions of $H_{\text {inv }}(\rho)$, written as $\psi^{ \pm}(\rho)$, are separated by the small energy difference $\Delta=0.793$ $\mathrm{cm}^{-1}=23.8 \mathrm{GHz} .^{13}$ The next levels are about $950 \mathrm{~cm}^{-1}$ higher, and so we consider only the lowest two on each monomer. Rather than using these functions directly, we take the following linear combinations

$$
\begin{equation*}
f_{ \pm}(\rho) \equiv| \pm\rangle=\left[\psi^{+}(\rho) \pm \psi^{-}(\rho)\right] / \sqrt{2} . \tag{2}
\end{equation*}
$$

The function $|+\rangle \equiv f_{+}$describes a vibrational state of the monomer localized in the right-hand potential well with umbrella up, and $|-\rangle \equiv f_{-}$is localized in the left-hand well, umbrella down; note that $f_{+}(\pi-\rho)=f_{-}(\rho)$. When we performed the six-dimensional (zeroth-order) calculations, each NH_{3} molecule was locked in one of the two umbrella wells, which is why we must localize our zeroth-order umbrella functions. The total unperturbed wave functions can be written as $\left|\psi_{a, i}^{\gamma}, \sigma_{A}, \sigma_{B}\right\rangle$, where $\sigma_{A}= \pm$ and $\sigma_{B}= \pm$ refer to a given (up or down) structure of the two umbrellas and $\psi_{a, i}^{\gamma}$ is the corresponding six-dimensional van der Waals wave function calculated for the fixed umbrellas. Since the umbrellas are inverted by the permutations (23) and (56), the degenerate set of unperturbed functions is
$g\left|\psi_{a, i}^{\gamma}, \sigma_{A}, \sigma_{B}\right\rangle, \quad$ with $g \in\{E,(23),(56),(23)(56)\}$,

$$
a=1, \ldots, f_{\gamma} .
$$

Our first order perturbation model implies that $V=H_{\text {inv }}\left(\rho_{A}\right)+H_{\text {inv }}\left(\rho_{B}\right)$ is diagonalized in the space of these degenerate functions. Or, equivalently, that the total Hamiltonian $H=H_{\mathrm{vdw}}+V$ is diagonalized in the same space. We prefer the latter formulation because it is possible then to generalize the model to quasidegenerate van der Waals states by simply extending the space of unperturbed functions in which H is diagonalized. There is a formal problem, however, which is similar to the problem met in symmetry adapted perturbation theory. ${ }^{14}$ The symmetry group G_{144} of the total (perturbed) Hamiltonian is larger than the symmetry group G_{36} of the unperturbed Hamiltonian $H_{\text {vdw }}$. This is because in the total Hamiltonian the umbrella coordinates ρ_{A} and ρ_{B} are considered as variables, whereas in H_{vdw} they are clamped at their equilibrium values. In fact, the perturbation is not simply the operator $H_{\text {inv }}\left(\rho_{A}\right)+H_{\text {inv }}\left(\rho_{B}\right)$, but also the

FIG. 1. The restriction of the symmetry adapted basis. Each "lattice" point depicts $\left|k_{A}, k_{B}\right\rangle \equiv\left|j_{A} k_{A} j_{B} k_{B} j K J M\right\rangle\left|\sigma_{A}, \sigma_{B}\right\rangle$, for certain fixed j_{A}, j_{B}, j, K, J, and M. The effect of the G_{144} generators is indicated: (23) gives a reflection in the y axis and (56) in the x axis, so that only the first quadrant with $\left|\sigma_{A}, \sigma_{B}\right\rangle=|+,+\rangle$ has to be considered. Restriction of k_{A} and k_{B} to values identical mod 3 gives the "unit cell" shown in the first quadrant. Within the unit cell the generators I_{ag} and I_{g}^{*} act as mirror planes, thus giving a further reduction of the range of k_{A} and k_{B}.
difference between $H_{\mathrm{vdw}}\left(\mathbf{x}, \rho_{\mathrm{A}}, \rho_{\mathrm{B}}\right)$ for variable ρ_{A}, ρ_{B} and $H_{\mathrm{vdw}}\left(\mathbf{x}, \rho_{\mathrm{A}}^{\mathrm{e}}, \rho_{\mathrm{B}}^{\mathrm{e}}\right)$ for the equilibrium configurations of the umbrellas. Here \mathbf{x} stands for the other six internal coordinates. Our model assumes, however, that the functions $f_{ \pm}(\rho)$ are well localized and that in the region of localization $H_{\mathrm{vdw}}\left(\mathbf{x}, \rho_{\mathrm{A}}^{\mathrm{e}}, \rho_{\mathrm{B}}^{e}\right) \approx \mathrm{H}_{\mathrm{vdw}}\left(\mathbf{x}, \rho_{\mathrm{A}}, \rho_{\mathrm{B}}\right)$. Hence, the matrix elements of these functions over the difference operator will be neglected.

In principle $j_{A}, k_{A}, j_{B}, k_{B}, j$, and K run independently over their respective ranges. However, when we adapt the basis functions to G_{144} by projecting with linear combinations of the generators, we must ascertain that we do not generate linear dependencies and, conversely, we must be careful not to omit any functions. To this end we depict in Fig. 1 the basis as a lattice of points. Each point is labeled by a pair (k_{A}, k_{B}) with $-j_{X} \leqslant k_{X} \leqslant j_{X}, X=A, B$ and certain fixed j_{A}, j_{B}, j, and K (in Fig. $1, j_{A}=3$ and $j_{B}=4$). The first quadrant contains all $|+,+\rangle$, the second all $|-,+\rangle$, the third all
 follows from the action of (23) on the basis functions given in Table II, a point in the first and fourth quadrant is reflected in the y axis by this G_{144} generator. Likewise, (56) maps points in the first/second quadrant onto the fourth/third quadrant. So when acting with (23) and (56) on all basis functions, we must restrict the basis to one quadrant, say the first, i.e., to kets $|+,+\rangle$.

All functions with the same value for $\left(k_{A}, k_{B}\right)(\bmod 3)$ belong to the same irrep of the Abclian group $C_{3}^{a 8} \otimes C_{3}^{8}$, since this group is isomorphic to $C_{3}^{A} \otimes C_{3}^{B}$, generated by (123) and (456), and k_{A} and k_{B} are symmetry labels of the latter direct

TABLE III. Basis functions adapted to $C_{3}^{\mathrm{Cy}} \otimes C_{3}$.

$\|0,0\rangle$	$A_{1} \otimes A_{1}$
$\|-1,1\rangle$	$A_{2} \otimes A_{1}$
$\|1,-1\rangle$	$A_{3} \otimes A_{1}$
$\|1,0\rangle$	$A_{2} \otimes A_{2}$
$\|-1,-1\rangle$	$A_{1} \otimes A_{2}$
$\|1,1\rangle$	$A_{1} \otimes A_{3}$
$\|0,-1\rangle$	$A_{2} \otimes A_{3}$
$\|0,1\rangle$	$A_{3} \otimes A_{2}$
$\|-1,0\rangle$	$A_{3} \otimes A_{3}$

product group. Therefore, instead of looking at the entire sublattice of $\left(2 j_{A}+1\right) \times\left(2 j_{B}+1\right)$ functions, it suffices to consider only the "unit cell" spanned by $-1 \leqslant k_{A} \leqslant 1$ and $-1 \leqslant k_{B} \leqslant 1$. Suppressing J and M in the notation, we see that the generator I_{ag} maps $\left|j_{A}, k_{A}, j_{B}, k_{B}, j, K,+,+\right\rangle$ onto $\left|j_{B}, k_{B}, j_{A}, k_{A}, j,-K,+,+\right\rangle$, which, in general, is in a "unit cell" in the first quadrant of a lattice with different j_{A}, j_{B}, and K. Since j_{A}, j_{B}, j, and K are running independently, this lattice is also included in our basis and we do not distinguish between these two lattices in Fig. 1. We then see that $I_{\text {ay }}$ reflects points within the unit cell in the $k_{A}=k_{B}$ line, so that the basis can be restricted to $k_{B} \leqslant k_{A}$. Similarly, since I_{g}^{*} maps $\left|j_{A}, k_{A}, j_{B}, k_{B}, j, K,+,+\right\rangle$ onto $\left|j_{B},-k_{B}, j_{A},-k_{A}, j, K,+,+\right\rangle$, we can apply the restriction $k_{B} \geqslant-k_{A}$. Combining the latter two restrictions, we find that $-k_{A} \leqslant k_{B} \leqslant k_{A}$. Note that this implies that $k_{A} \geqslant 0$ and that it is sufficient to consider kets with pairs $\left(k_{A}, k_{B}\right)=(0,0),(1,0)$, $(1,1)$, and $(1,-1)$ in the symmetry adaptation of the basis. In the notation used in the remainder of this section we will suppress all other quantum numbers. The interchange operator I_{ag} also changes K into $-K$. Hence, if $k_{A}=k_{B}$ we may further impose the restriction $K \geqslant 0$. In the following, it will be shown that this holds for the $A_{1}, A_{2}, A_{3}, A_{4}$ irreps of G_{36} with $\left(k_{A}, k_{B}\right)=(0,0)$ and for the E_{3}, E_{4} irreps with $\left(k_{A}, k_{B}\right)=(1,1)$.

For readers not familiar with the construction of irreps for semidirect product groups, we summarize in the Appendix this construction for the present simple case where the second factor is of order 2. For the general formalism we refer to Ref. 15. As a first example of the use of a semidirect product, we consider the construction of irreps of $C_{3 v}^{\mathrm{ag}}$ and $C_{3 v}^{g}$ from those of C_{3}^{ag} and C_{3}^{g}. In Table III we find the basis functions adapted to $C_{3}^{a g} C_{3}^{g}$. From Table III we derive Table IV, the functions adapted to G_{36}. Let us first consider the induction $C_{3}^{\text {ag }} \otimes C_{3}^{g} \uparrow P_{18} \equiv C_{3 v}^{\mathrm{ag}} \otimes C_{3}^{\mathrm{g}}$ by adding the coset generator $I_{a \underline{y}}$. From the structure of the irreps of a cyclic group follows that A_{3} of $C_{3}^{a j}$ is obtained by inverting the elements in the irrep A_{2}. Furthermore, it follows from Table I that $I_{\text {ag }} \pi l_{\text {ag }}=\pi^{-1}$, with $\pi \in C_{3}^{\text {ag }}$. Therefore, π acting on $|1,-1\rangle$ gives the 1×1 matrices in the $A_{3} \otimes A_{1}$ irrep and $I_{\mathrm{ag}} \pi I_{\mathrm{ag}}$ acting on the same function gives matrices from $A_{2} \otimes A_{1}$. Therefore, the functions $|1,-1\rangle$ and $I_{\mathrm{ag}}|1,-1\rangle$ span a two-dimensional irrep. If we next induce to G_{36} by adding I_{g}^{*}, we find that $\tau \in C_{3}^{g}$ and $I_{g}^{*} \tau I_{g}^{*}$ yield the same matrices $\left(A_{1}\right)$. As we show in the Appendix, we must then act with $E \pm I_{g}^{*}$ and thus obtain the irreps of G_{36}, designated by E_{1} and E_{2} in Table IV. By inspection we find that the plus

TABLE IV. Basis functions adapted to $G_{36}=C_{3 b}^{\mathrm{ag}} \& C_{3 v}^{\ell}$, Partner functions are obtained by the generators given between square brackets acting on the same ket. The shorthand notation $\left|k_{A}, k_{B}\right\rangle=\left|j_{A} k_{A} j_{B} k_{B} j K J M n\right\rangle|+,+\rangle$ is used, where the k values are unique modulo 3 . The action of I_{dg} and I_{8}^{*} is given in Table II. The irreps of G_{36} are labeled according to Ref. 9 .

$[E]\left(E+I_{\text {aqg }}\right)\left(E+I_{g}^{*}\right)$	$\|0,0\rangle$	$A_{1}=A_{1} \otimes A_{1}$
$[E]\left(E, I_{\text {az }}\right)\left(E+I_{g}^{*}\right)$	$\|0,0\rangle$	$A_{2}=A_{2} \otimes A_{1}$
$[E]\left(E+I_{\text {ay }}\right)\left(E-I_{8}^{*}\right)$	$\|0,0\rangle$	$A_{3}=A_{1} \otimes A_{2}$
$[E]\left(E-I_{\text {ax }}\right)\left(E-I_{s}^{*}\right)$	\|0,0)	$A_{4}=A_{2} \varphi A_{2}$
$\left[E, I_{\text {a }}\right]\left(E+T_{s}^{*}\right)$	$\|1 .-1\rangle$	$E_{1}=E \otimes A_{1}$
$\left[E, I_{\text {axg }}\right]\left(E-I_{g}^{*}\right)$	$\|1,-1\rangle$	$E_{2}=E Q_{2}$
$\left[E, I_{8}^{*}\right]\left(E+I_{\text {ag }}\right)$	\|1,1)	$E_{3}=A_{1} \otimes E$
$\left[E, I_{2}^{*}\right]\left(E-I_{\mathrm{ag}}\right)$	$\|1,1\rangle$	$E_{4}=A_{2} 9 E$
[$\left.E, I_{\text {ag }}, I_{*}^{*}, I_{\text {ag }} I_{3}^{*}\right]$	\|1,0)	$G=E \otimes E$

combination belongs to A_{1} of $C_{3 v}^{9}$ and the minus combination to A_{2}. The functions transforming as $A_{2} \otimes A_{2}$ and $A_{3} \otimes A_{2}$ of $C_{3}^{\text {ag }} \otimes C_{3}$ give rise to $E \otimes A_{2}$ of P_{18}, i.e., $|1,0\rangle$ and $I_{\mathrm{ag}}|1,0\rangle$ span this irrep. Likewise $I_{g}^{*}|1,0\rangle$ and $I_{\mathrm{ag}} I_{g}^{*}|1,0\rangle$ span the irrep $E \otimes A_{3}$. Together these four functions span $E \otimes E=G$ of G_{36}. The rest of Table IV follows from equivalent arguments. We observe, since the $A_{1}, A_{2}, A_{3}, A_{4}$ and E_{3}, E_{4} bases are projected by $E \pm I_{\text {ag }}$, that these basis functions are combinations of functions with K and functions with $-K$. Hence, the states that belong to these irreps may be labeled with $|K|$. For the E_{1}, E_{2}, and G irreps, the states with K should be distinguished from those with $-K$.

The step to G_{72} is simple: We project all kets in Table IV by $E \pm E^{*}$ and give the corresponding superscripts \pm to the G_{36} irrep labels. From Table IV we derive Table V by adding the coset generator (56). In order to explain how to proceed, we label the elements in the rows of Table I by $h_{i}^{\text {ag }}$ and $h_{i}^{g}, i=1, \ldots, 6$. By their very construction, the irreps of these $C_{3 v}$ groups are identical: $\mathbb{D}\left(h_{i}^{\mathrm{ag}}\right)^{\gamma}=\mathbb{D}\left(h_{i}^{g}\right)^{\gamma}$. We have here the case discussed in general terms at the end of the Appendix, but with one modification, which is due to the fact that G_{72} is not invariant under (56). By inspection of Table I, we see that (56) $h_{i}^{\mathrm{ag}} h_{j}^{g}(56)=h_{j}^{\mathrm{ag}} h_{i}^{g}$, provided $h_{i}^{\mathrm{ag}} \in C_{3}^{\mathrm{ag}}$ and $h_{i}^{g} \in C{ }_{3}^{g}$. However, when either $h_{i}^{\text {ay }} \in K^{\text {ag }}$ or $h_{i}^{g} \in K^{g}$, then (56) $h_{i}^{\mathrm{ag}} h_{j}^{\delta}(56)=h_{j}^{\mathrm{ag}} h_{i}^{\delta} E^{*}$, an element outside G_{36}. When $h_{i}^{\mathrm{ag}} \in K^{\text {ag }}$ and simultaneously $h_{i}^{g} \in K^{g}$, then (56) $h_{i}^{\mathrm{ag}} h_{j}^{g}(56)=h_{j}^{\mathrm{ag}} h_{i}^{g}$. The same classification can be made for the coset of G_{36} in G_{72} generated by E^{*}. The appearance of the inversion E^{*}, in the products transformed by (56), is of no importance for the positive parity irreps of G_{72} designated by $\left(\gamma \otimes \gamma^{\prime}\right)^{+}$, where γ and γ^{\prime} label the irreps of $C_{3 y}^{a g}$ and $C_{3 v}^{g}$, respectively. The theory at the end of the Appendix applies without change and so

$$
(56):\left(\gamma \otimes \gamma^{\prime}\right)^{+} \mapsto\left(\gamma^{\prime} \otimes \gamma\right)^{+}
$$

The negative parity irreps $\left(\gamma \otimes \gamma^{\prime}\right)^{-}$, however, are multiplied by -1 when cither $h^{\text {as }} \in K^{\text {ag }}$ or $h^{g} \in K^{g}$. Remembering that the A_{2} representation of $C_{3 v}^{\text {ag }}$ has a character +1 for $h^{\mathrm{ag}} \in C_{3}^{\text {ag }}$ and -1 for $h^{\text {ag }} \in K^{\text {ag }}$, and likewise for $C_{3 v}^{g}$, we see that
$(56):\left(\gamma \otimes \gamma^{\prime}\right)^{-} \mapsto\left[\left(A_{2} \otimes \gamma^{\prime}\right) \otimes\left(A_{2} \otimes \gamma\right)\right]^{-}$.
We must project with $E \pm(56)$, when (56) maps onto an equivalent irrep (in the case that both γ and γ^{\prime} are more-

TABLE V. The sequence adapted basis for G_{144}. The G_{144} irreps are, apart from parity, labeled according to Odutola et al. (Ref. 16). The partners of the irreps that occur twice span identical matrix representations. See Table IV for the definition of the shorthand notation used.

$G_{144} \supset G_{36}$		Partners	Sequence adapted ket
A_{1}^{+}	A_{1}	[E]	$\left(E+E^{*}\right)[E+(56)]\left(E+I_{\text {ag }}\right)\left(E+I_{g}^{*}\right)\|0,0\rangle$
A_{1}^{-}	A_{3}	[E]	$\left(E-E^{*}\right)[E+(56)]\left(E+I_{\text {ag }}\right)\left(E-I_{g}^{*}\right)\|0,0\rangle$
A_{2}^{+}	A_{4}	[E]	$\left(E+E^{*}\right)[E-(56)]\left(E-I_{\text {ag }}\right)\left(E-I_{8}^{*}\right)\|0,0\rangle$
A_{2}	A_{2}	[E]	$\left(E-E^{*}\right)[E-(56)]\left(E-I_{\text {ag }}\right)\left(E+I_{8}^{*}\right)\|0,0\rangle$
B_{1}^{+}	A_{4}	[E]	$\left(E+E^{*}\right)[E+(56)]\left(E-I_{\text {ag }}\right)\left(E-I_{g}^{*}\right)\|0,0\rangle$
B_{1}^{-}	A_{2}	[E]	$\left(E-E^{*}\right)[E+(56)]\left(E-I_{\text {ag }}\right)\left(E+I_{g}^{*}\right)\|0,0\rangle$
B_{2}^{+}	A_{1}	[E]	$\left(E+E^{*}\right)[E-(56)]\left(E+I_{\text {ag }}\right)\left(E+I_{8}^{*}\right)\|0,0\rangle$
B_{2}^{-}	A_{3}	[E]	$\left(E-E^{*}\right)[E-(56)]\left(E+I_{\text {ag }}\right)\left(E-I_{8}^{*}\right)\|0,0\rangle$
E^{+}	$\mathrm{A}_{2} \oplus \mathrm{~A}_{3}$	[E,(56)]	$\left(E+E^{*}\right)\left(E-I_{\mathrm{ng}}\right)\left(E+I_{g}^{*}\right)\|0,0\rangle$
E^{+}	$\mathrm{A}_{2} \oplus \mathrm{~A}_{3}$	$[(56), E]$	$\left(E+E^{*}\right)\left(E+I_{\text {ag }}\right)\left(E-I_{g}^{*}\right)\|0,0\rangle$
E^{-}	$A_{1} \oplus A_{4}$	[$E,(56)$]	$\left(E-E^{*}\right)\left(E+I_{\text {ug }}\right)\left(E+I_{g}^{*}\right)\|0,0\rangle$
E^{-}	$A_{1} \oplus A_{4}$	[(56),E]	$\left(E-E^{*}\right)\left(E-I_{\mathrm{ag}}\right)\left(E-I_{g}^{*}\right)\|0,0\rangle$
G_{3}^{+}	$E_{2} \oplus E_{4}$	[$E,-(23)(56),(56),-(23)]$	$\left(E+E^{*}\right)\left(E-I_{8}^{*}\right)\|1,-1\rangle \ldots$
G_{3}^{+}	$E_{2} \oplus E_{4}$	$[(56),(23), E,-(23)(56)]$	$\left(E+E^{*}\right)\left(E-I_{\text {ag }}\right)[1,1\rangle$
G_{3}^{-}	$E_{1} \oplus E_{4}$	[$E,-(23)(56),(56),-(23)]$	$\left(E-E^{*}\right)\left(E+I_{g}^{*}\right)\|1,-1\rangle$
G_{3}^{-}	$E_{1} \oplus E_{4}$	[(56),-(23),E,(23)(56)]	$\left(E-E^{*}\right)\left(E-I_{\text {as }}\right)\|1,1\rangle$
G_{4}^{+}	$E_{1} \oplus E_{3}$	[E,(23)(56),(56),(23)]	$\left(E+E^{*}\right)\left(E+I_{8}^{*}\right)\|1,-1\rangle$
G_{4}^{+}	$E_{1} \oplus E_{3}$	[(56),(23),E,(23)(56)]	$\left(E+E^{*}\right)\left(E+I_{\text {as }}\right)\|1,1\rangle$
G_{4}^{-}	$E_{2} \oplus E_{3}$	[$E,(23)(56),(56),(23)]$	$\left(E-E^{*}\right)\left(E-I_{g}^{*}\right)\|1,-1\rangle$
G_{4}^{-}	$E_{2} \oplus E_{3}$	[(56), -(23), E, -(23)(56)]	$\left(E-E^{*}\right)\left(E+I_{\text {ng }}\right)\|1,1\rangle$
G_{1}^{+}	G	[$\left.E, I_{\text {ag }}, I_{\text {ag }}(23),(23)\right]$	$\left(E+E^{*}\right)[E+(56)]\|1,0\rangle$
G_{1}^{-}	G	$\left[E, I_{\mathrm{ag}},-I_{\mathrm{ag}}(23),-(23)\right]$	- $\left(E-E^{*}\right)[E+(56)]\|1,0\rangle$
G_{2}^{+}	G	$\left[E, I_{\mathrm{ag}},-I_{\mathrm{ag}}(23),-(23)\right]$	$\left(E+E^{*}\right)[E-(56)][1,0\rangle$
G_{2}^{-}	G	[$E, I_{\text {as }}, I_{\text {ag }}$ (23), (23) $]$	$\left(E-E^{*}\right)[E-(56)]\|1,0\rangle$

dimensional we must not forget the reordering by \mathbb{T}, see the Appendix) and if (56) maps onto a nonequivalent irrep we obtain a G_{144} irrep of double dimension. Thus, for instance, from $\left(A_{1} \otimes A_{1}\right)^{+}$we obtain the A_{1}^{+}and B_{2}^{+}functions of Table V . The first set of E^{-}functions of Table V are spanned by $\left(A_{1} \otimes A_{1}\right)^{-} G_{72}$ functions and their images under (56), which transform as $\left(A_{2} \otimes A_{2}\right)^{-}$. The second set of E^{-}functions is spanned by $\left(A_{2} \otimes A_{2}\right)^{-}$functions and their images under (56).

The functions derived from $E \otimes E=G$ require special attention because the matrices $\mathrm{D}^{G}\left(h_{i}^{\mathrm{ag}} h_{j}^{\delta}\right)$ and $\mathbb{D}^{G}\left(h_{j}^{\mathrm{ag}} h_{i}^{8}\right)$ are equivalent, but not identical. This is due to the ordering of the basis which carries this four-dimensional outer product irrep. In this four-dimensional case a permutation of the second and third basis function is required. Hence, absorbing the E^{*} of I_{g}^{*} into $E+E^{*}$, we find that the second function carrying G_{1}^{+}is

$$
\begin{aligned}
(E+ & \left.E^{*}\right)\left[I_{\mathrm{ag}}+(56) I_{g}^{*}\right]|1,0\rangle \\
& =\left(E+E^{*}\right)\left(I_{\mathrm{ag}}+(56) I_{g}\right)|1,0\rangle \\
& =\left(E+E^{*}\right)\left[I_{\mathrm{ag}}+I_{\mathrm{ag}}(56)\right]|1,0\rangle \\
& =I_{\mathrm{ag}}\left(E+E^{*}\right)[E+(56)]|1,0\rangle .
\end{aligned}
$$

The third function of G_{1}^{+}is obtained by using,

$$
\begin{aligned}
(E+ & \left.E^{*}\right)\left[I_{8}^{*}+(56) I_{\mathrm{ag}}\right] \\
& =\left(E+E^{*}\right)\left[(56) I_{\mathrm{ag}}(56)+(56) I_{\mathrm{ag}}\right] \\
& =\left(E+E^{*}\right)(56) I_{\mathrm{ag}}[(56)+E] \\
& =\left(E+E^{*}\right) I_{\mathrm{ag}}(23)[E+(56)] .
\end{aligned}
$$

The first and fourth are simply obtained by projecting with $E+(56)$, where we notice that $I_{\mathrm{ag}} I_{g}=(23)(56)$ and (56) $[E+(56)]=[E+(56)]$.

When we need to consider $A_{2} \otimes E$ in the case of odd parity functions, we must realize that this irrep is equivalent to E, but not identical to it. By our construction it follows that

$$
A_{2} \otimes \mathbb{D}^{E}=\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right) \mathfrak{D}^{E}\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right)
$$

When constructing bases for the G_{1}^{-}and G_{2}^{-}irreps, we must combine this transformation with the required reordering of the tensor product basis. Thus, $\pm(56)$ must act on $|1,0\rangle$, $-I_{g}^{*}|1,0\rangle,-I_{\mathrm{ag}}|1,0\rangle$, and $I_{\mathrm{ag}} I_{g}^{*}|1,0\rangle$, respectively. The remainder of Table V follows by similar reasoning.

We have shown that we only have to inspect four combinations of (k_{A}, k_{B}). These combinations can be operated on with the four generators $I_{\mathrm{ag}}, I_{g}^{*},(56), E^{*}$, and their products, yielding maximally sixteen linear independent functions per combination. For ortho-ortho dimers, $\left(k_{A}, k_{B}\right)=(0,0)$, this gives rise to all $A^{ \pm}, B^{ \pm}$, and $E^{ \pm}$functions of G_{144}. The para-ortho combination $\left(k_{A}, k_{B}\right)=(1,0)$ induces to $G_{1}^{ \pm}$or $G_{2}^{ \pm}$functions. Operation on para-para functions with $\left(k_{A}, k_{B}\right)=(1,1)$ yields one set of $G_{3}^{ \pm}$and $G_{4}^{ \pm}$ functions and on functions with $\left(k_{A}, k_{B}\right)=(1,-1)$ yields the other. The total of 64 functions matches exactly the sixteendimensional space spanning all irreps of G_{36} times the four quadrants in Fig. 1.

By the construction outlined in this section the basis functions of G_{144} symmetry Γ, listed in Table V, are obtained by the action of operators $W_{a}^{\Gamma, \gamma}$ on functions adapted to γ of
G_{36}. These latter functions are listed in Table IV. The projectors adapt not only the basis, but also the van der Waals states which are obtained from this basis. That is, $W_{a}^{\Gamma, \gamma}\left|\psi_{a, i}^{\gamma}, \sigma_{A}, \sigma_{B}\right\rangle$ is adapted to G_{144}. The operator $W_{a}^{\mathrm{C}}, \gamma$ commutes with H, a fact that will give a drastic simplification in the calculation of matrix elements of H as will be shown in the next section. (A derivation of the results in Tables IV and V, which is conceptually simpler but more laborious, is through the use of the character projectors of G_{36} and G_{144}. This method gives less insight in the simultaneous adaptation of the wave functions to the group G_{144} and to its subgroup G_{36}, which is an essential element of this paper.)

III. ENERGY SPLITTINGS

In this section we will calculate the splittings by diagonalizing $H=H_{\mathrm{vdw}}+V$ on the zeroth-order functions described in Sec. II. Since several unperturbed levels are less than $1 \mathrm{~cm}^{-1}$ apart, one would expect that all of these have to be treated in a quasidegenerate manner. However, only two of these pairs interact in quasidegenerate first order. These are the $K=0$ pairs with symmetry E_{1} / E_{3} and E_{2} / E_{4}. In these cases a problem of double dimension must be solved. Other nearly degenerate pairs are $|K|=1 E_{3} / E_{4}, A_{1} / A_{2}$, and A_{3} / A_{4} states. Since it follows from Table V that E_{3} of G_{36} induces to $G_{4}^{ \pm}$of G_{144} and E_{4} to $G_{3}^{ \pm}$, these states are noninteracting under the Hamiltonian H, which by definition transforms as A_{1}^{+}. Likewise, the nearly degenerate A_{1} / A_{2} pair is noninteracting, because A_{1} induces to $A_{1}^{+} \oplus B_{2}^{+} \oplus E^{-}$and A_{2} to $A_{2}^{-} \oplus B_{1}^{-} \oplus E^{+}$. Morcover, the nearly degenerate A_{3} / A_{4} van der Waals states cannot mix for similar reasons.

By using the orthogonality $\left\langle\psi^{+}(\rho)\right| H_{\mathrm{inv}}\left|\psi^{-}(\rho)\right\rangle=0$ we can relate $\langle+| H_{\mathrm{inv}}|-\rangle$, needed in the calculations, to the monomer inversion splitting $\Delta=0.793 \mathrm{~cm}^{-1}$ as

$$
\begin{aligned}
\langle+| H_{\mathrm{inv}}|-\rangle & \equiv\left\langle f_{+}(\rho)\right| H_{\mathrm{inv}}\left|f_{-}(\rho)\right\rangle \\
& =\frac{1}{2}\left(\left\langle\psi^{+}\right| H_{\mathrm{inv}}\left|\psi^{+}\right\rangle-\left\langle\psi^{-}\right| H_{\mathrm{inv}}\left|\psi^{-}\right\rangle\right) \\
& =\frac{1}{2}\left(\left[E_{0}-\frac{1}{2} \Delta\right]-\left[E_{0}+\frac{1}{2} \Delta\right]\right) \\
& =-\frac{1}{2} \Delta
\end{aligned}
$$

where $E_{0}=\langle+| H_{\mathrm{inv}}|+\rangle=\langle-| H_{\mathrm{inv}}|-\rangle$ is the energy of the lowest ν_{2} mode.

We will exemplify the calculation of the matrix elements by first considering the G_{144} states that correlate with A_{1} of G_{36}, i.e., the states of A_{1}^{+}, B_{2}^{+}, and E^{-}symmetry. From comparison of Tables IV and V we find that the first state, $W^{A_{1}^{+}} A_{1}\left|\psi_{i}^{A_{1}},+,+\right\rangle$, is obtained by the projector $W^{A_{1}^{\dagger}, A_{1}}=\left(E+E^{*}\right)[E+(56)]$. We find from Table IV that the VRT state $\left|\psi_{i}^{A_{I}}\right\rangle$ of energy $\psi_{i}^{A_{1}}$ is

$$
\left|\psi_{i}^{A}\right\rangle=\sum_{\{\Lambda\}, n}^{\prime} C_{\{A\}, n ; i}^{A_{1}}\left(E+I_{\mathrm{ag}}\right)\left(E+I_{g}^{*}\right)|\{\Lambda\}, J, M, n\rangle .
$$

Here $\{\Lambda\}=\left\{j_{A}, k_{A}, j_{B}, k_{B}, j, K\right\}$ and $k_{A}, k_{B}=0(\bmod 3)$. Using

$$
\begin{equation*}
\left(W^{A_{1}^{+}, A_{1}}\right)^{2}=4 W_{1}^{A_{1}^{+}, A_{1}} \tag{3}
\end{equation*}
$$

and

$$
\begin{aligned}
\left\langle\psi_{i}^{A_{1}}+,+\right| E^{*}\left|\psi_{i}^{A_{1}}+,+\right\rangle & =\left\langle\psi_{i}^{A_{1}}+,+\right|(56)\left|\psi_{i}^{A_{1}}+,+\right\rangle \\
& =\left\langle\psi_{i}^{A_{1}}+,+\right|(56)^{*}\left|\psi_{i}^{A_{1}}+,+\right\rangle \\
& =0
\end{aligned}
$$

which follows from the symmetry operations in 'Table II, we obtain that the norm of the A_{1}^{+}states is 2 .

Using the Hermiticity of $W^{A_{1}^{+}} A_{1}$, the fact that it commutes with the Hamiltonian, and Eq. (3), we get

$$
\begin{aligned}
E_{i}^{A_{1}^{+}}= & \left\langle\psi_{i}^{A_{1}},+,+\right| H_{\mathrm{vdw}}+H_{\mathrm{inv}}\left(\rho_{A}\right) \\
& +H_{\mathrm{inv}}\left(\rho_{B}\right)\left|W^{A_{1}^{+}, A_{1}} \psi_{i}^{A_{1}},+,+\right\rangle
\end{aligned}
$$

As we can see in Table II, E^{*} and (56) transform $|+,+\rangle$ into a ket orthogonal to it, so that only one term arises from H_{vdw}, which is $\mathcal{g}_{i}^{A_{1}}$. The inversion $H_{\text {inv }}\left(\rho_{A}\right)$ gives rise to two terms, one from the identity operator E, which gives the energy E_{0} and one from $(56)^{*}$, giving $-\frac{1}{2} \Delta$. Similarly, $H_{\text {inv }}\left(\rho_{B}\right)$ gives only nonzero contributions when multiplied by E and (56). The zero-point energy $2 E_{0}$ of the ν_{2} vibrations of the two umbrellas will be taken as our reference energy and, thus, we find that

$$
E_{i}^{A_{i}^{+}}=\mathscr{E}_{i}^{A_{1}}-\frac{1}{2}\left\langle\psi_{i}^{A_{1}}\right|(56)^{*}\left|\psi_{i}^{A_{1}}\right\rangle \Delta-\frac{1}{2}\left\langle\psi_{i}^{A_{1}}\right|(56)\left|\psi_{i}^{A_{1}}\right\rangle \Delta
$$

This can be simplified further by virtue of the A_{1} symmetry of the zeroth-order state, namely,

$$
\begin{aligned}
(56)^{*}\left[E+I_{\mathrm{ag}}\right]\left[E+I_{g}^{*}\right] & =(56)^{*} I_{g}^{*}\left[E+I_{\mathrm{ag}}\right]\left[E+I_{g}^{*}\right] \\
& =I_{\mathrm{ag}}(56)\left[E+I_{\mathrm{ag}}\right]\left[E+I_{g}^{*}\right]
\end{aligned}
$$

Using the turnover rule on I_{ag}, absorbing it into the bra, and using the orthonormality of the basis, we arrive at

$$
\begin{align*}
E_{i}^{A_{1}^{+}}= & \mathscr{g}_{i}^{A_{1}}-\Delta\left\langle\psi_{i}^{A_{1}}\right|(56)\left|\psi_{i}^{A_{1}}\right\rangle \\
= & \mathscr{E}_{i}^{A_{1}}-\Delta \sum_{\left\{A_{\{ }^{\prime}\right\}, n} c_{\{A\}, n ; i^{\prime}}^{A_{1}} c_{\left\{\Lambda^{\prime}\right\}, n^{\prime} ; i}^{A_{1}} \\
& \times\langle\{\Lambda\}, J, M, n|(56)\left|\left\{\Lambda^{\prime}\right\}, J, M, n^{\prime}\right\rangle \\
= & \delta_{i}^{A_{1}}-\Delta \sum_{\{\Lambda\}, n}(-1)^{j_{B}} c_{\{\Lambda\}, n ; i}^{A_{1}} c_{\{\Lambda, A, n ; i}^{A_{1}} \tag{4}
\end{align*}
$$

with $\{\tilde{\Lambda}\}=\left\{j_{A}, k_{A}, j_{B},-k_{B}, j, K\right\}$. The coefficients $c_{\{\Lambda, n ; n ; i}^{A_{1}}$ are obtained from the six-dimensional VRT calculations described in the accompanying paper. In the very same way we compute

$$
\begin{equation*}
E_{i}^{B_{2}^{\ddagger}}=\delta_{i}^{A_{1}}+\Delta \sum_{\{A\}, n}(-1)^{B_{B}} c_{\{A\}, n ; i}^{A_{1}} c_{\{A\}, n ; i}^{A_{1}} \tag{5}
\end{equation*}
$$

The E^{-}irrep also correlates with A_{1} of G_{36}. Looking into Table V, we find two E^{-}pairs. Since they carry identical matrix irreps, the first basis function of the one pair mixes only with the first of the other pair and not with the second of the other pair. These first basis functions are $\left(E-E^{*}\right)\left|\psi_{i}^{A_{1}},+,+\right\rangle$ and $(56)\left(E-E^{*}\right)\left|\psi_{i}^{A_{4}},+,+\right\rangle$, respectively. In principle, we would have to solve now a 2×2 secular problem on basis of these two functions. The
diagonal elements in this secular problem are $\mathscr{E}_{i}^{A_{1}}$ and $\mathscr{E}_{i}^{A_{4}}$, respectively, which differ by about $16 \mathrm{~cm}^{-1}$. Since the offdiagonal element is $\Delta\left\langle\psi^{A_{1}}\right|(56)\left|\psi^{A_{4}}\right\rangle$, it is smaller than Δ and can be neglected with respect to the difference in diagonal elements. Therefore, we write

$$
\begin{equation*}
E_{i}^{E^{-}}=\mathcal{E}_{i}^{A_{1}} \tag{6}
\end{equation*}
$$

From Eqs. (4)-(6) we conclude that the zeroth-order A_{1} state splits into four states: one higher in energy and one lower by the same amount, and two states (the degenerate E^{-}pair) unmoved.

We have shown how to compute the splittings due to monomer inversion by choosing the unperturbed A_{1} state as an example. From the physical point of view this choice is not the most relevant, because both the A_{1}^{+}and the E^{-}state have spin statistical weight zero for the protonated dimer. ${ }^{5}$ Hence the splitting of the A_{1} state is not observable for this isotopomer. The same remark applies to the other VRT states of A symmetry. This situation is comparable with the $k=0$ states in the free NH_{3} monomer, where also one of the two components of each inversion doublet has weight zero and the splittings are not directly observable. Dimer states arising from G, however, do give rise to observable splittings, since G induces to $G_{1}^{+} \oplus G_{1}^{-} \oplus G_{2}^{+} \oplus G_{2}^{-}$, and the latter two irreps have nonzero spin statistical weight, whereas the former are Pauli forbidden in the protonated dimer. By the same kind of manipulations as for the A_{1} states, we derive from the first $G_{2}^{ \pm}$functions of Table V

$$
\begin{aligned}
& E_{i}^{G_{2}^{+}}=\mathscr{B}_{i}^{G}+\frac{1}{2} \Delta\left\langle\psi_{i}^{G}\right|(56)\left|\psi_{i}^{G}\right\rangle+\frac{1}{2} \Delta\left\langle\psi_{i}^{G}\right|(56)^{*}\left|\psi_{i}^{G}\right\rangle \\
& E_{i}^{G_{2}^{-}}=\mathcal{E}_{i}^{G}+\frac{1}{2} \Delta\left\langle\psi_{i}^{G}\right|(56)\left|\psi_{i}^{G}\right\rangle-\frac{1}{2} \Delta\left\langle\psi_{i}^{G}\right|(56)^{*}\left|\psi_{i}^{G}\right\rangle
\end{aligned}
$$

We cannot eliminate (56)* here, because in this case we are describing different monomers: ortho $[k=0(\bmod 3)]$ and para $[k=1(\bmod 3)]$. From Table II we deduce that (56)* flips the para umbrella. We also observe in Table II that (56)* inverts the sign of K, and since states with different K are orthogonal, it follows that our model predicts an observable splitting of the G states only in the case of $K=0$ (as long as one neglects the Coriolis interactions). The matrix elements of (56) and (56)* are again simply related to the coefficient vectors obtained from the VRT calculations. In the fully deuterated dimer the $G_{1}^{ \pm}$states are Pauli allowed as well. The splitting between these states and the $G_{2}^{ \pm}$states are due to inversion of the ortho umbrella. Since this inversion is caused by the permutation (56) and since this permutation leaves K invariant, the corresponding splitting should be significant also in the states with $K \neq 0$.

We next turn to the quasidegenerate E_{1} / E_{3} pairs for $K=0$ and even J. We can read off from Table V that $E_{1} \uparrow G_{144}=G_{3}^{-} \oplus G_{4}^{+}$and $E_{3} \uparrow G_{144}=G_{4}^{-} \oplus G_{4}^{+}$. The states G_{3}^{-}and G_{4}^{-}are unaffected in first order and accordingly will have the energies of E_{1} and E_{3}, respectively. The G_{4}^{+}contents of both states will mix in quasi first order, however, and this gives rise to a splitting. We solve a secular problem on basis of

$$
\left(E+E^{*}\right)\left|\psi^{E_{1}},+,+\right\rangle \quad \text { and }(56)\left(E+E^{*}\right)\left|\psi^{E_{3}},+,+\right\rangle
$$

where, in the symbolic shorthand notation of Table IV, $\left|\psi^{E_{1}},+,+\right\rangle$ is expanded in terms of $\left(E+I_{g}^{*}\right)$ $|1,-1\rangle$ and $\left|\psi^{E_{3}},+,+\right\rangle$ in terms of $\left(E+I_{\mathrm{ag}}\right)|1,1\rangle$. We obtain the following H matrix

$$
\left(\begin{array}{ll}
\mathscr{E}^{E_{1}} & -\left\langle\psi^{E_{1}}\right|(56)\left|\psi^{E_{3}}\right\rangle \Delta \\
-\left\langle\psi^{E_{3}}\right|(56)\left|\psi^{E_{1}}\right\rangle \Delta & \mathscr{E}^{E_{3}}
\end{array}\right)
$$

with eigenvalues

$$
\begin{aligned}
E_{ \pm}^{G_{4}^{+}}= & \frac{1}{2}\left(\mathscr{E}^{E_{1}}+\mathscr{E}^{E_{3}}\right) \pm\left[\left\langle\psi^{E_{3}}\right|(56)\left|\psi^{E_{1}}\right\rangle^{2} \Delta^{2}\right. \\
& \left.+\frac{1}{4}\left(\mathscr{E}^{E_{1}}-\mathscr{E}^{E_{3}}\right)^{2}\right]^{1 / 2}
\end{aligned}
$$

which again are easily computed, since the VRT states $\psi^{E_{1}}$ and $\psi^{E_{3}}$ and their energies $\mathscr{E}^{E_{1}}$ and $\mathscr{E}^{E_{3}}$ are known. In summary, we find that the E_{1} / E_{3} pairs give rise to $G_{4}^{+}, G_{4}^{-}, G_{3}^{-}, G_{4}^{+}$. In our quasi-first-order model only the G_{4}^{+}states are split. The G_{3}^{--}and G_{4}^{-}states are unaffected and have the energies of the original E_{3} and E_{1} levels, respectively. In the discussion of the numerical results, we will see that these levels correspond to the measured levels labeled (1) to (4) in Fig. 3(a) of Ref. 5 and in Table VI of our accompanying paper. ${ }^{7}$

The development for the quasidegenerate E_{2} / E_{4} pairs runs completely analogous: since $E_{2} \uparrow G_{144}=G_{3}^{+} \oplus G_{4}^{-}$and $E_{4} \uparrow G_{144}=G_{3}^{+} \oplus G_{3}^{-}$, the G_{4}^{-}and G_{3}^{-}states are not shifted, and two G_{3}^{+}states arise, with energies

$$
\begin{aligned}
E_{ \pm}^{G_{3}^{+}}= & \frac{1}{2}\left(\mathscr{E}^{E_{2}}+\mathscr{E}^{E_{4}}\right) \pm\left[\left\langle\psi^{E_{2}}\right|(56)\left|\psi^{E_{4}}\right\rangle^{2} \Delta^{2}\right. \\
& \left.+\frac{1}{4}\left(\mathscr{E}^{E_{2}}-\mathscr{E}^{E_{4}}\right)^{2}\right]^{1 / 2}
\end{aligned}
$$

In Table VI all the splittings are summarized, together with the spin statistical weights of the levels. The latter can be found by application of the $G_{36} \subset G_{144}$ induction procedure outlined in Sec. II to the nuclear spin functions in Table VII of Ref. 11. For odd J the states E_{3} and E_{4} change roles. The pairs E_{1} / E_{4} and E_{2} / E_{3} are nearly degenerate for $K=0$ and the mixing occurs in G_{3}^{-}and G_{4}^{-}. The energies belonging to these irreps are

$$
\begin{aligned}
E_{ \pm}^{G_{3}^{-}}= & \frac{1}{2}\left(\mathscr{E}^{E_{1}}+\mathscr{E}^{E_{4}}\right) \pm\left[\left\langle\psi^{E_{1}}\right|(56)\left|\psi^{E_{4}}\right\rangle^{2} \Delta^{2}\right. \\
& \left.+\frac{1}{4}\left(\mathscr{E}^{E_{1}}-\mathscr{E}^{E_{4}}\right)^{2}\right]^{1 / 2}
\end{aligned}
$$

and

$$
\begin{aligned}
E_{ \pm}^{G_{4}^{-}}= & \frac{1}{2}\left(\mathscr{E}^{E_{2}}+\mathscr{C}^{E_{3}}\right) \pm\left[\left(\psi^{E_{2}}|(56)| \psi^{E_{3}}\right\rangle^{2} \Delta^{2}\right. \\
& \left.+\frac{1}{4}\left(\mathscr{S}^{E_{2}}-\mathscr{E}^{E_{3}}\right)^{2}\right]^{1 / 2}
\end{aligned}
$$

respectively.

IV. RESULTS: COMPARISON WITH EXPERIMENT

With the use of the model and the formulas derived in Secs. II and III, we have calculated the umbrella inversion splittings in both $\left(\mathrm{NH}_{3}\right)_{2}$ and $\left(\mathrm{ND}_{3}\right)_{2}$. The six-dimensional bound state wave functions $\psi_{a, i}^{\gamma}$ were obtained from several different potentials, which have different barriers for the interchange of the proton donor and the acceptor in the hydrogen bond and for the rotations of the monomers about their C_{3} axes. In the potential of Sagarik et al., ${ }^{17}$ which was used

TABLE VI. Energies of G_{144} states affected by inversion splitting. The spin statistical weights are w_{H} in $\left(\mathrm{NH}_{3}\right)_{2}$ and w_{0} in $\left(\mathrm{ND}_{3}\right)_{2}$. This table applies to even J; for odd J one has to swap the irrep labels $E_{3} \leftrightarrow E_{4}$ and $G_{4}^{+} \leftrightarrow G_{3}^{\mp}$ and the corresponding weights.

$w_{\text {H }}$	w_{0}	: Energy expression
0	465	$E^{A_{1}^{+}}=\mathcal{S c}^{A_{1}}-\Delta\left\langle\psi^{A_{1}}\right\|(56)\left\|\psi^{A_{1}}\right\rangle$
66	6	$E^{B_{2}^{+}}=\psi^{A}+\Delta\left\langle\psi^{A}\right\|(56)\left\|\psi^{A_{1}}\right\rangle$
0	90	$E^{E^{-}}=\mathcal{E}^{A_{1}}$
78	3	$E^{A_{2}}=8^{A_{2}}+\Delta\left\langle\psi^{A_{2}}\right\|(56)\left\|\psi^{A_{2}}\right\rangle$
0	435	$E^{B_{1}^{-}}=\mathcal{S}^{A} 2-\Delta\left\langle\psi^{A_{2}}\right\|(56)\left\|\psi^{A_{2}}\right\rangle$
0	90	$E^{E^{+}}=\mathcal{A}^{+}$
0	465	$E^{A_{1}}=S^{\prime}{ }^{3}-\Delta\left\langle\psi^{A_{3}}(56) \mid \psi^{A_{3}}\right\rangle$
66	6	$E^{B_{2}^{-}}=g^{A}+\Delta\left\langle\psi^{A}\right\|(56)\left\|\psi^{A}\right\rangle$
0	90	$\cdots E^{E^{+}}=\mathscr{C}^{A_{3}}$
78	3	$E^{A_{2}^{+}}=\mathcal{E}^{A}++\Delta\left\langle\psi^{A} 4\right\|(56)\left\|\psi^{A_{4}}\right\rangle$
0	435	$E^{B_{1}^{+}}=E^{A_{4}}-\Delta\left\langle\psi^{A_{4}}\right\|(56)\left\|\psi^{A_{4}}\right\rangle$
0	90	$\therefore E^{E^{-}}=8^{A_{4}}$
21	276	$E^{C_{3}^{+}}=\frac{1}{2}\left(\Psi^{E_{2}}+\mathscr{S}^{E_{4}}\right) \pm\left[\Delta^{2}\left\langle\psi^{E_{2}}\right\|(56)\left\|\psi \psi^{E_{4}}\right\rangle^{2}\right.$
		$+\left.\frac{1}{4}\left(\varepsilon_{2}-g^{E_{4}}\right)^{2}\right\|^{1 / 2}$
21	276	$E^{G_{3}^{-}}-\gamma^{E_{1}}$
21	276	$E^{G_{3}}=E^{E_{4}}$
15	300	$E^{G_{4}^{+}}=\frac{1}{2}\left(\mathbb{E}^{E_{1}}+\mathbb{R}^{E_{3}}\right) \pm\left[\Delta^{2}\left\langle\psi^{E_{1}}(\mathbf{5 6})\left(\psi^{E_{3}}\right)^{2}\right.\right.$
		$\left.+\frac{1}{4}\left(\delta^{E_{1}}-\gamma^{E_{3}}\right)^{2}\right]^{1 / 2}$
15	300	$E^{G_{4}^{-}}=\alpha_{3}^{E_{2}}$
15	300	$E^{G}{ }^{C}=E^{E_{3}}$
0	720	$E^{G_{\xi}^{+}}=8^{C}-\frac{1}{2} \Delta\left\langle\psi^{C}\right\|(56)\left\|\psi^{G}\right\rangle-\frac{1}{2} \Delta\left\langle\psi^{G}\right\|(56)^{*}\left\|\psi^{G}\right\rangle$
0	720	$E^{G}-1=\nu^{C}-\frac{1}{2} \Delta\left\langle\psi^{G}\right\|(56)\left\|\psi^{G}\right\rangle+\frac{1}{2} \Delta\left\langle\psi^{G}\right\|(56)^{*}\left\|\psi^{G}\right\rangle$
72	72	$E^{G+}=E^{C}+\frac{1}{2} \Delta\left\langle\psi^{G}\right\|(56)\left\|\psi^{G}\right\rangle+\frac{1}{2} \Delta\left\langle\psi^{G}\right\|(56)^{*}\left\|\psi^{G}\right\rangle$
72	72	$E^{C_{2}^{-}}=\delta^{C}+\frac{1}{2} \Delta\left\langle\psi^{G}\right\|(56)\left\|\psi^{C}\right\rangle-\frac{1}{2} \Delta\left\langle\psi^{C}\right\|(56)^{*}\left\|\psi^{C}\right\rangle$

in Ref. 11, the interchange barrier is about $80 \mathrm{~cm}^{-1}$, in the model potentials I,II,III,IV introduced in Refs. 18 and 19 this barrier varies between 0 and $30 \mathrm{~cm}^{-1}$, and in the potential found in the preceding paper ${ }^{7}$ it is $7 \mathrm{~cm}^{-1}$. The latter potential yields van der Waals energy levels in perfect agreement with the far-infrared spectrum of $\left(\mathrm{NH}_{3}\right)_{2} .{ }^{5}$ The dipole moment and the nuclear quadrupole splittings of $\left(\mathrm{NH}_{3}\right)_{2}$ and $\left(\mathrm{ND}_{3}\right)_{2}$ calculated from the corresponding wave functions agree well with the values obtained by microwave spectroscopy. ${ }^{4,20,21}$ In the detailed far-infrared and microwave study of Loeser et al. ${ }^{5}$ the inversion splittings in $\left(\mathrm{NH}_{3}\right)_{2}$ were explicitly measured. Obviously (see Sec. III), no splittings could be observed in the ortho-ortho states $\left(A_{1}, A_{2}, A_{3}, A_{4}\right.$ in $\left.G_{36}\right)$. Inversion splittings of the order of a few GHz were found for the ortho-para states (the G states in G_{36}) and for the para-para states ($E_{1}, E_{2}, E_{3}, E_{4}$), but only for $K=0$. The splittings in the corresponding states with $K \neq 0$ are smaller by a few orders of magnitude.

Let us first discuss the G-state splittings for $K=0$, since these arise directly from the simple first-order model (see Sec. III). For all the potentials used to calculate the bound van der Waals states, it appears that in the lowest G state with $K=0$ the para- NH_{3} monomer is the proton donor and the ortho monomer is the proton acceptor. This holds even when the equilibrium structure has the cyclic geometry with two equivalent monomers, and the inequivalence of the monomers is imposed only by the ortho-para difference. In
the first excited G state the situation is reversed: The para monomer is the proton acceptor. It follows from Sec. III that it is only the inversion of the para monomer which leads to an observable splitting in the protonated dimer. Every G level splits into a G_{2}^{+}doublet. If we look at the experimental data in Table VII we observe that, for both monomers, the umbrella inversion in $\left(\mathrm{NH}_{3}\right)_{2}$ is about 10 times slower than in the free monomer. Combining calculations and experiment we conclude, since the excited G state splits less than the ground state, that the inversion of the proton acceptor is more strongly hindered than that of the donor. This might have been expected from geometric considerations, which are most evident when we look at a structure with a linear hydrogen bond. The calculations with the potential from the preceding paper ${ }^{7}$ give nearly correct splittings, see Table VII. With the potential of Sagarik et al. ${ }^{17}$ used in the earlier calculations ${ }^{11}$ this is not the case: The ground state splitting is then 1.67 GHz , which is reasonable, but the excited G-state splitting is 0.09 GHz , which is too small by a factor of 25 . This reflects the fact that with this potential even the average structure has a nearly linear hydrogen bond and the proton acceptor, with its lone pair almost parallel to the bond axis, is difficult to invert. With the different model potentials I-IV introduced in Refs. 18 and 19, the calculated inversion splittings vary by more than a factor of 2 see, e.g., Table IV of Ref. 18. The fact that we now obtain inversion splittings which are nearly correct, both absolutely and relatively, in-

TABLE VII. Inversion splittings in $\left(\mathrm{NH}_{3}\right)_{2}$, with the free monomer value $\Delta=23.79 \mathrm{GHz}$ (Ref. 13) and with the optimized value $\Delta=41.52 \mathrm{GHz}$.

	State labels ${ }^{\text {a }}$	Calculation		Experiment (Ref. 5)
		$\Delta=23.79$	41.52 Ghz	
		$J=K=0$		
$G_{2}^{+}-G_{2}^{-}$	(2)-(1)	$\cdot 2.052$	3.581 GHz	-3.309 GHz
$G_{2}^{+}-G_{2}^{-}$	(12)-(11)	1.235	2.155 GHz	2.392 GHz
$\Delta\left\langle\psi^{E_{\mathrm{I}}}\right\|(56)\left\|\psi^{E_{3}}\right\rangle^{\text {b }}$	(4)/(1)	0.769	1.342 GHz	1.182 GHz
$\left.\Delta\left\langle\psi^{E_{2}}\right\|(56) \mid \psi^{E_{4}}\right)^{\text {c }}$	$(16) /(13)$	1.621	2.829 GHz	2.871 GHz
$J=1, K= \pm 1$				
$G_{4}^{+}-G_{4}^{-d}$	(9)-(7)	12.3	37.7 MHz	48.3 MHz
$G_{3}^{-}-G_{3}^{+d}$	(1,0)-(8)	12.3	37.7 MHz	47.7 MHz
$G_{2}^{-}-G_{2}^{+}$	(4)-(3)	1.15	2.0 MHz	2.0 MHz
$G_{2}^{-}-G_{2}^{+}$	(5)-(6)	-0.82	$-1.4 \mathrm{MHz}$	$-0.6 \mathrm{MHz}$
$G_{2}^{-}-G_{2}^{+c}$	(10)-(9)	11.85	20.7 MHz	32.7 MHz
$G_{2}^{-}-G_{2}^{+}$	(14)-(13)	0.35	0.6 MHz	0.1 MHz

[^0]dicates that the potential found in the preceding paper 7 is indeed realistic.

The far-infrared spectrum determines only the relative parity of the levels, not the absolute overall parity. In Ref. 5 it was arbitrarily assumed that the lowest of the $G_{2}^{ \pm}$levels with $K=0$ has G_{2}^{+}symmetry. It follows from our results that this parity assignment must be reversed. The remaining discrepancy with the experimental values may be caused by the changes in the intramonomer barrier for inversion, induced by the interaction with the other monomer. This is not taken into account by the present model, as long as we take the splitting parameter Δ from the free monomer. Remember that the interactions in $\left(\mathrm{NH}_{3}\right)_{2}$ are much stronger than in $\mathrm{Ar}-\mathrm{NH}_{3}$, for which the model proved to work very precisely. ${ }^{8}$ We can include (in a rather crude manner) the effect of these interactions on the monomer inversion barriers by introducing an effective value of Δ into our model. A best fit (in the least-squares sense) of the splittings in the G states with $K=0$ yields a value of Δ which is larger than the monomer value by a factor of 1.75 (see Table VII). We performed a few simple calculations on the free NH_{3} monomer and found that this factor of 1.75 in Δ corresponds to a 9% decrease of the height of the inversion barrier.

Next we consider the G states with $K= \pm 1$ and $K= \pm 2$. If we neglect the off-diagonal Coriolis coupling and assume that K is a good quantum number for the bound van der Waals states, then it follows from Secs. II and III that in the protonated dimer no splitting of these states should be observed. Experimentally, these G_{2}^{\ddagger} splittings are indeed very small, see Table VII. The splittings observed in the $K= \pm 1$ states can be understood if we realize that they are caused by the Coriolis mixing with the $K=0$ states: they "steal" the inversion splittings from the latter states. The amount of Coriolis mixing depends on the energy differences between the unperturbed states with $K= \pm 1$ and those with $K=0$. Especially the excited state with $K=1$ which corresponds to
the labels (9,10) in Table VI of our accompanying paper, ${ }^{7}$ mixes with the first excited $K=0$ state, i.e., the state labeled $(11,12)$, since these states are nearly degenerate. We observe in Table VII that, indeed, the splitting of this state (32.7 MHz) is considerably larger than that of the other $K= \pm 1$ states.

In the final stage of our calculations in the preceding paper ${ }^{7}$ the Coriolis mixing was explicitly included. It was calculated by diagonalizing the matrix of the Hamiltonian including the Coriolis coupling, in a basis of eigenstates which were obtained without Coriolis coupling (for which K is a good quantum number). In this basis we included the lowest ten eigenstates for each value of $K:-1,0$, and 1 . The resulting eigenfunctions were then substituted into the formulas of Table VI. The effect of the Coriolis mixing on the inversion splittings is mostly very small, both absolutely and relatively. For the G states with $K= \pm 1$, which would not be split without this Coriolis mixing, the calculated inversion splittings are listed in Table VII. We observe that even these small splittings agree well with the measured values, especially when we use the optimized value of Δ. Indeed, the (10)-(9) splitting is by far the largest.

In general, the order of the (calculated and measured) $G_{2}^{ \pm}$doublets, i.e., the sign of the splitting parameter, for $K= \pm 1$ and $J=1$ is reversed with respect to that of the $J=K=0$ levels. The explanation that the G states with $K= \pm 1$ obtain their inversion splitting only by "stealing" it from the G states with $K=0$ (via Coriolis mixing) leads to the same sign of the "internal" splitting parameter. The reversed order is caused by the rotational phase factor $(-1)^{J}$ which occurs when the umbrella inversion operator (56)* acts on the basis functions, see Table II. It is the action of this operator which splits the G levels into the G_{2}^{+}and G_{2}^{-}components, see Table VI, by inversion of the para monomer. Thus, the G_{2}^{--}levels are lower for $J=K=0$ and the G_{2}^{+}levels are lower for $J=1$, both for $K=0$ and for $K= \pm 1$. Only the

FIG. 2. Splitting by monomer umbrella inversion of the $K-0$ VRT parapara states. The splittings (in MHz) indicated are from experiment (Ref. 5). The states on the left-hand side have the labels (1)-(4) in Fig. 3(a) of Ref, 5 and in Table VI of Ref. 7, the states on the right-hand side are labeled (13)-(16). Our model predicts that the E_{1} / E_{3} and E_{2} / E_{4} levels split symmetrically. Observe that this holds experimentally to a very good approximation.
$K=-1$ levels $(5,6)$ deviate from this rule, see Table VII. It turns out that the splitting between these levels is dominated by matrix elements of the operator $(56)^{*}$ between the $K=-1$ and the $K=1$ components (which interact through the $K=0$ states), rather than by the admixed $K=0$ components themselves. The latter contribute +0.2 MHz to the splitting between the levels (5) and (6), while the contribution from the $K=-1$ and $K=1$ mixing is -1.6 MHz (for the optimized value of Δ). Note that the G levels $(5,6)$ with $K=-1$ are relatively close to the levels $(3,4)$ with $K=1$. It is remarkable that the negative sign of this minute splitting between the levels (5) and (6) is given correctly by our calculations.

This explanation of the inversion splitting of the G states is confirmed by the observed J dependence of these splittings. For the G states with $K=0$ they are almost independent of J. The splittings of the $K= \pm 1$ states, which we interpret as being introduced via the Coriolis mixing, are proportional to $J(J+1)$. The splittings of the G states with $K= \pm 2$ are unobservably small. ${ }^{5}$ This also is consistent with our explanation, since one needs indirect Coriolis mixing, via the states with $K= \pm 1$ to the $K=0$ states, in order to obtain any inversion splitting of the $K= \pm 2$ states.

Let us now discuss the splittings of the E_{i} states (i $=1,2,3,4$), first for $K=0$. The theory tells us that no pure first order splittings occur in these states. This follows from the adaptation of the E_{i} states to the G_{144} symmetry of the inverting dimer. The resulting $G_{3}^{ \pm}$and $G_{4}^{ \pm}$states are generated by the projector $\left(E \pm E^{*}\right)$, see Table V, and E^{*} inverts both monomers simultaneously, see Table II. In our model, with the perturbation $H_{\text {inv }}\left(\rho_{A}\right)+H_{\text {inv }}\left(\rho_{B}\right)$, this simultaneous inversion does not lead to an observable splitting. Still, the splittings observed ${ }^{5}$ for the E_{i} states with $K=0$ are of the same order of magnitude as those of the G states. This is shown in Fig. 2, where it is also clarified how these splittings can be interpreted. It is important to realize that for $K=0$ the E_{1} state is nearly degenerate with the E_{3} state, and the E_{2} state with the E_{4} state. This is a rather surprising phenomenon, since the $E_{1}-E_{3}$ and $E_{2}-E_{4}$ splittings are caused by the anisotropy of the intermolecular potential, which is considerable. The calculations in the preceding paper ${ }^{7}$ give nearly correct small splittings, however, and it is explained why
these near degeneracies occur. However, given these small energy gaps, it is easy to mix the E_{1} and E_{3} states, as well as the F_{2} and E_{4} states. We include such mixing in our quasidegenerate first-order model. The symmetry aspects are relevant: only the G_{4}^{+}component that arises from the E_{1} state will mix with the corresponding component of the E_{3} state (for even J). Similarly, the G_{3}^{+}component of the E_{2} state mixes with the corresponding component of the E_{4} state. The other components remain unaffected, since they have different symmetries, see Table V and Fig. 2. As the amount of mixing (and splitting) depends very sensitively on the energy gaps between the unperturbed E_{1} / E_{3} and E_{2} / E_{4} states, and it is practically impossible to reproduce these (very small) gaps quantitatively by the bound state calculations, we have chosen to compare the off-diagonal umbrella-tunneling matrix elements, rather than the final splittings. These can be extracted from the experimental data ${ }^{5}$ if one assumes that the perturbed E_{i} levels are given by the expressions in Table V. It follows from the measured values that this is indeed realistic: the $G_{4}^{-}-G_{4}^{+}$splitting of the E_{3} state nearly equals the $G_{4}^{+}-G_{3}^{-}$splitting of the E_{1} state and the $G_{3}^{-}-G_{3}^{+}$splitting of the E_{4} state nearly equals the $G_{3}^{+}-G_{4}^{-}$splitting of the E_{2} state, see Fig. 2. In Table VII we observe that the tunneling matrix elements calculated with the bound state wave functions and the potential from the preceding paper ${ }^{7}$ agree well with the values extracted from experiment, ${ }^{5}$ also for the E_{i} states.

Finally, we consider the E_{i} states $(i=1,2,3,4)$ with $K=$ ± 1. The inversion splittings observed for these states are somewhat larger than the splittings of the G states with $K=$ ± 1, but much smaller than the splittings of the E_{i} states with $K=0$. We will now show that the mechanism which splits the E_{i} states with $K= \pm 1$ is essentially the same as for the E_{i} states with $K=0$. The resulting splittings are considerably smaller, however, because the near degeneracies of the latter states do not occur for $K= \pm 1$. It follows from our calculations that the off-diagonal umbrella-tunneling matrix elements are of similar size, but the energy gaps between the unperturbed states are much larger. Instead of the first-order approach for quasidegenerate states, one may now apply a second order perturbation formula to calculate the splittings. Another relevant observation is that the E_{1} states with $K= \pm 1$ do not split because the coupling of their G_{3}^{-}component with the corresponding component of the E_{3} states is practically equal to the coupling of their G_{4}^{+}component with the corresponding component of the E_{4} states (see Fig. 3). This follows from the fact that the E_{3} and E_{4} levels with $|K|=1$ are degenerate (apart from a small Coriolis splitting), and that also their eigenvectors are (practically) the same. (One of the components in their symmetry projectors has a different sign, of course (see Table IV), but this does not affect the size of the coupling matrix elements). Thus, the observed ${ }^{5}$ splitting pattern can be completely understood, see Fig. 3. The same reasoning holds for the G_{3}^{+}and G_{4}^{-}components of the E_{2} states with $K= \pm 1$, which are not split either, but which contribute to the splitting of the nearby E_{3} and E_{4} states. Even the calculated size of the inversion splitting (37.7 MHz with the optimized value of Δ) of the lowest E_{3} and E_{4} states agrees well with the observed splittings,

FIG. 3. Splitting of the $K= \pm 1$ VRT para-para states, first by Coriolis interaction and then by monomer inversions. Splittings indicated (in MHz) are from Ref. 5. The levels in this figure correspond to the states (5)-(10) in Fig. 3(a) of Ref. 5 and in Table VI of Ref. 7. The E_{1} state does not split under inversion, since the interactions of its G_{4}^{+}and G_{3}^{-}components with the E_{3} and E_{4} states, respectively, are as good as equal. We predict its shift to be of the same magnitude as the observed splittings, ca. 48 MHz .
which are indeed nearly equal (48.3 and 47.7 MHz). These splittings, by contrast with the Coriolis splitting between the E_{3} and E_{4} states with $|K|=1$ (384 MHz for the lowest pair, for $J=1$), are (almost) J independent. This is in accord with our interpretation.

v. CONCLUSION

The theory and the calculations presented in this paper lead to a detailed understanding of the observed umbrella inversion splittings in $\left(\mathrm{NH}_{3}\right)_{2}$. We recall that these splittings, for the states with different symmetry and different K, range over 3 orders of magnitude. The calculated splittings are in quantitative agreement with the measured data. ${ }^{5}$ The largest splittings occur for the mixed ortho-para states (the G states) with $K=0$, because these splittings originate from the inversion tunneling of the para monomer by a true first-order mechanism. Although this mechanism is absent for the para-para states (i.e., the states of E_{1}, E_{2}, E_{3}, and E_{4} symmetry), the E_{i} levels with $K=0$ are split by almost equally large amounts. This is shown to be related to the near degeneracies in these levels, which lead to a quasi-first-order tunneling mechanism. It is essential in this mechanism that the different E_{i} states have components with the same G_{144} symmetry. For $K \neq 0$ the energy gaps between the unperturbed states of E_{i} symmetry are much larger, and the quasi-firstorder mechanism becomes a second order effect. This explains why the splittings of the E_{i} states with $K \neq 0$ are considerably smaller. The very small splittings of the G states with $K= \pm 1$ are induced by an indirect mechanism, through Coriolis coupling. The "effective" value of Δ, which was optimized for the G states with $K=0$, considerably improves the results for all the other states too (see Table VII).

TABLE VIII. Inversion splittings in $\left(\mathrm{ND}_{3}\right)_{2}, \Delta=1.600 \mathrm{GHz}$ (Ref. 13).

		Calculation
	$J=K=0$	
$B_{2}^{+}-A_{1}^{+\mathrm{a}}$	36.99 MHz	
$B_{2}^{+}-A_{1}^{+\mathrm{b}}$	56.76 MHz	
$A_{2}^{+}-B_{1}^{+\mathrm{c}}$	70.56 MHz	
$A_{2}^{+}-B_{1}^{+\mathrm{d}}$	-6.50 MHz	
$G_{2}^{+}-G_{2}^{-0}$	50.29 MHz	
$G_{2}^{+}-G_{1}^{-\mathrm{e}}$	13.59 MHz	
$G_{2}^{+}-G_{2}^{-\mathrm{f}}$	58.93 MHz	
$G_{2}^{+}-G_{1}^{-\mathrm{f}}$	61.86 MHz	
$\Delta\left\langle\psi^{E_{1}}\right\|(56)\left\|\psi^{E_{3}}\right\rangle^{8}$	21.13 MHz	
$\Delta\left\langle\psi^{E_{2}}\right\|(56)\left\|\psi^{E_{4}}\right\rangle^{\mathrm{h}}$	56.31 MHz	

${ }^{\text {a }}$ Ground A_{1} state.
${ }^{6}$ First excited A_{1} state.
${ }^{\mathrm{c}}$ Ground A_{4} state.
${ }^{\mathrm{d}}$ First excited A_{4} state.
${ }^{e}$ Ground G state.
${ }^{f}$ First excited G state.
${ }^{\text {g }}$ Off-diagonal matrix element between states of G_{4}^{+}symmetry.
${ }^{\text {h }}$ Off-diagonal matrix element between states of G_{3}^{+}symmetry.

Since the inversion splittings appear to depend sensitively on the intermolecular potential used to generate the bound state wave functions, it is confirmed that the potential found in the preceding paper ${ }^{7}$ is realistic. The umbrella inversion splittings calculated for $\left(\mathrm{ND}_{3}\right)_{2}$ with the same potential are given in Table VIII. For Δ we have taken the value of 1.600 GHz for the free ND_{3} monomer, ${ }^{14}$ but, if the monomer inversion barriers are lowered by 9% [as we assumed when scaling Δ by a factor of 1.75 for $\left(\mathrm{NH}_{3}\right)_{2}$], the splittings in $\left(\mathrm{ND}_{3}\right)_{2}$ should be scaled by a factor of 2.1. The inversion splittings of the $A_{1}, A_{2}, A_{3}, A_{4}$ states and the splittings between the $G_{1}^{ \pm}$and $G_{2}^{ \pm}$components arising from the G states are also observable in this case. The theory predicts that these splittings will be relatively large and J independent, even for $K \neq 0$. In an absolute sense, however, the umbrella inversion splitting in ND_{3} is considerably smaller than in NH_{3}, and the reduction of this splitting in the dimer is greater (see Table VIII). The predicted splittings are nevertheless sufficiently large to be measurable; we expect that they will soon be observed.

ACKNOWLEDGMENTS

This study was initiated while A. van der Avoird was a visiting Miller Research Professor at the University of California in Berkeley. He thanks the Miller Institute for Basic Research in Science for supporting this Professorship. J.L. and R.J.S. are supported by the National Science Foundation (Grant No. CHE-9123335).

APPENDIX

It is well known that the irreducible representations (irreps) of an outer direct product group are Kronecker products of the irreps of the factors. Since the corresponding result for semidirect products is more involved ${ }^{16}$ and less well known, we review bricfly how to construct an irrep Γ of an arbitrary group $G \equiv H\left(\mathbb{S}\{e, s\}\right.$, from the irrep $\mathbb{D}(h)^{\gamma}$ of H. Let $\psi^{\gamma}=\left(\psi_{1}^{\gamma}, \ldots, \psi_{f_{\gamma}}^{\gamma}\right)$ carry the f_{γ}-dimensional irrep $\mathbb{D}(h)^{\gamma}$,

$$
h \psi^{\gamma}=\psi^{\gamma} \mathbb{D}(h)^{\gamma}, \quad h \in H .
$$

Since by the definition of a semidirect product the subgroup H is invariant in G, we have $h s=s h^{\prime}$ with $h^{\prime} \in H$. Acting with the element $h(e \pm s)$, we find

$$
h(e \pm s) \psi^{\gamma}=\psi^{\gamma} \mathrm{D}(h)^{\gamma} \pm s \psi^{\gamma} \mathbb{D}\left(h^{\prime}\right)^{\gamma}, \quad h, h^{\prime} \in H .
$$

If $\mathrm{D}(h)^{\gamma}=\mathrm{D}\left(s^{-1} h s\right)^{\gamma}=\mathrm{D}\left(h^{\prime}\right)^{\gamma}$ for all $h \in H$, then it is clear that $(e \pm s) \psi^{\gamma}$ carries an irrep of G, where the elements of the coset $H s$ are represented by $\pm \mathbb{D}^{\gamma}$, because $h s(e \pm s)$ $= \pm h(e \pm s)$. If $\mathbb{D}(h)^{\gamma}$ and $D\left(s^{-1} h s\right)^{\gamma}$ are equivalent, but not identical, we find by an easy extension of the argument that also an f_{γ}-dimensional irrep of G is generated, but carried by the basis ($\psi^{\gamma} \pm s \psi^{\gamma} T$), where ${ }^{\text {耳 }}$ gives the equivalence transformation.

If, on the other hand, we assume that $\mathrm{D}(h)^{\gamma}$ and $D\left(h^{\prime}\right)^{\gamma}=\mathrm{D}\left(s^{-1} h s\right)^{\gamma}=\mathrm{D}(h)^{\gamma^{\prime}}$, while γ and γ^{\prime} are nonequivalent irreps, then

$$
h\left(\psi^{\gamma}, s \psi^{\gamma}\right)=\left(\psi^{\gamma}, s \psi^{\gamma}\right)\left(\begin{array}{ll}
\mathrm{D}(h)^{\gamma} & \mathrm{O} \\
\mathrm{O} & \mathrm{D}(h)^{\gamma}
\end{array}\right)
$$

and

$$
h s\left(\psi^{\gamma}, s \psi^{\gamma}\right)=\left(\psi^{\gamma}, s \psi^{\gamma}\right)\left(\begin{array}{cc}
0 & \mathbb{D}(h)^{\gamma} \\
D(h)^{\gamma^{\prime}} & 0
\end{array}\right) .
$$

By Schur's lemma it is possible to reduce such a set of matrices if and only if γ and γ^{\prime} are equivalent, which by assumption is not the case. Hence, a $2 f_{\gamma}$-dimensional irrep of G is obtained, which is carried by $\left(\psi^{\gamma}, s \psi^{\gamma}\right)$. It is evident that this construction yields a sequence adapted basis, i.e., restriction of the irrep of G to H gives a decomposed irrep. It is of interest to relate this group structure to the Wigner operators, defined by

$$
P_{a b}^{\Gamma}=\sum_{g \in C} D\left(g^{-1}\right)_{b a}^{\Gamma} g .
$$

In the first case, when the restriction of Γ to H is γ, it is easily shown that

$$
P_{a b}^{\Gamma}=(e \pm s) Q_{a b}^{\gamma},
$$

where $Q_{a b}^{\gamma}$ is a Wigner operator for H. In the second case, where $\Gamma \downarrow H=\gamma \oplus \gamma^{\prime}$, the subscripts are compound indices: $\quad a \mapsto\left(\lambda, a^{\prime}\right)$ and $b \mapsto\left(\mu, b^{\prime}\right)$, and

$$
P_{\lambda, a^{\prime} ; \mu, b^{\prime}}^{\Gamma}=\left\{\begin{array}{ll}
Q_{a^{\prime} b^{\prime}}^{\gamma} & \text { for } \lambda=\mu \\
s Q_{a^{\prime} b^{\prime}}^{\gamma} & \text { otherwise }
\end{array} .\right.
$$

It follows that $P_{a b}^{\Gamma}=W^{\Gamma}, \gamma Q_{a^{\prime} b^{\prime}}^{\gamma}$ with $W^{\Gamma}, \gamma=(e \pm s), e$, or s. We have to repeat this procedure several times, when going along the group chain, and it is clear that $W^{\Gamma, \gamma}$ will be a simple product of coset generators and factors of the $e \pm s$ kind. Another group theoretical fact needed in the development of the main text is the following. Consider two commuting isomorphic groups H and H^{\prime} with $h_{i} \leftrightarrows h_{i}^{\prime}, h_{i} \in H$, $h_{i}^{\prime} \in H^{\prime}$, and $i=1, \ldots,|H|=\left|H^{\prime}\right|$. Let $H \otimes H^{\prime} \subset G$ and let $s \in G$ be such that $h_{i} h_{j}^{\prime} s=s h_{j} h_{i}^{\prime}$, i.e., $\left(H \otimes H^{\prime}\right)(S)\{e, s\}$ is a wreath product. ${ }^{22,23}$ Suppose further that the groups have identical-not just equivalent-irreps, i.e., $\Pi\left(h_{i}\right)^{\gamma}$ $=\mathrm{D}\left(h_{i}^{\prime}\right)^{\gamma}$ for all γ and i. If

$$
h_{i} h_{j}^{\prime} \psi^{\gamma_{\otimes}} \phi^{\gamma^{\prime}}=\psi^{\gamma} \otimes \phi^{\gamma^{\prime}} \mathrm{D}\left(h_{i}\right)^{\gamma} \otimes \mathrm{D}\left(h_{j}^{\prime}\right)^{\gamma^{\prime}},
$$

then, using that the irreps are identical, we find

$$
\begin{aligned}
h_{i} h_{j}^{\prime} s \psi^{\gamma} \otimes \phi^{\gamma^{\prime}} & =s h_{j} h_{i}^{\prime} \psi^{\gamma} \otimes \phi^{\gamma^{\prime}} \\
& =s \psi^{\gamma} \otimes \phi^{\gamma^{\prime}} \mathrm{D}\left(h_{j}\right)^{\gamma} \otimes \mathrm{D}\left(h_{i}^{\prime}\right)^{\gamma^{\prime}} \\
& =s \psi^{\gamma} \otimes \phi^{\gamma^{\prime}} \mathrm{D}\left(h_{j}^{\prime}\right)^{\gamma_{\otimes}} \mathbb{D}\left(h_{i}\right)^{\gamma^{\prime}} \\
& =s \psi^{\gamma} \otimes \phi^{\gamma^{\prime}} \mathrm{TD}\left(h_{i}\right)^{\gamma^{\prime}} \otimes \mathbb{D}\left(h_{j}^{\prime}\right)^{\gamma^{\prime} \mathbb{T}^{-1}}
\end{aligned}
$$

In the last step we used the fact that the commutation of the factors in a Kronecker product matrix implies a simple reordering of the basis, effected by the permutation matrix TT. Hence, the basis $s \psi^{\gamma} \otimes \phi^{\gamma^{\prime}}$ carries the irrep of $H \otimes H^{\prime}$ (equivalent to) $\gamma^{\prime} \otimes \gamma$.

[^1]
[^0]: ${ }^{\text {a }}$ State labels as in Fig. 3 and Table IV of Ref. 5; the $G_{3}^{ \pm}$and $G_{4}^{ \pm}$states as in Table IV(a) and the $G_{2}^{ \pm}$states as in Table IV(b). Note that the (arbitrary) parity assignment of the G_{2}^{t} levels in Ref. 5 is reversed here.
 ${ }^{b}$ Off-diagonal matrix element between states of G_{4}^{+}symmetry.
 ${ }^{c}$ Off-diagonal matrix element between states of G_{3}^{+}symmetry.
 ${ }^{\text {d }}$ From mixing with lower G_{4}^{+} / G_{3}^{-}levels (see Fig. 3).
 ${ }^{e}$ Note the strong Coriolis coupling with the $J=1, K=0$ states labeled $(11,12)$.

[^1]: ${ }^{1}$ D. Papoušek, J. M. R. Stone, and V. Špirko, J. Mol. Spectr. 48, 17 (1973); D. Papoušek and M. R. Aliev, Molecular Vibrational-Rotational Spectra (Elsevier, Amsterdam, 1982),
 ${ }^{2}$ E. Zwart, H. Limnartz, W. L. Meerts, G. T. Eraser, D. D. Nelson, and W. Klemperer, J, Chem. Phys. 96, 793 (1991).
 ${ }^{3}$ J. W. I. van Bladel, A. van der Avoird, and P, It. S. Wormer, J. Phys, Chem. 95. 5414 (1991).
 ${ }^{4}$ D. D. Nelson, G. T. Fraser, and W. Klemperer, J. Chem. Phys. 83, 6201 (1985).
 ${ }^{5}$ J. G. Loeser, C. A. Schmuttenmaer, R. C. Cohen, M. J. Elrod, D. W. Steyert, R. J. Saykally, R. E. Bumgarner, and G. A. Blake, J. Chem. Phys. 97, 4727 (1992).
 ${ }^{6}$ M. Havenith, H. Linnartz, E. Zwart, A. Kips, J, J. ter Meulen, and W. L. Meerts, Chem. Phys. Lett. 193, 261 (1992).
 ${ }^{7}$ E. H. T. Olthof, A. van der Avoird, and P. E. S. Wormer, J. Chem. Phys. 101, 8430 (1994).
 ${ }^{8}$ J. W. I. van Bladel, A. van der Avoird, and P. E. S. Wormer, Chem. Phys. 165. 47 (1992).
 ${ }^{9}$ P. R. Bunker, Molecular Symmetry and Spectroscopy (Academic, New York, 1979).
 ${ }^{10}$ D. J. Klein, C. H. Carlisle, and F. A. Matsen, Adv. Quantum Chem. 5, 219 (1970).
 " J. W. I. van Bladel, A. van der Avoird, P. E. S. Wormer, and R. J. Saykally, J. Chem. Phys. 97, 4750 (1992).
 ${ }^{12}$ A. van der Avoird, P. E. S. Wormer, and R. Moszynski, Chem. Rev. (in press).
 ${ }^{13}$ C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (McGrawHill, New York, 1955), Chap. 12.
 ${ }^{14}$ B. Jeziorski, W. Kolos, in Molecular Interactions, edited by H. Ratajezak and W. J. Orville-Thomas (Wiley, New York, 1982), Vol. 3, p. 1: B. Jeziorski, R. Moszynski, and K. Szalewicz (unpublished).
 ${ }^{15}$ L., Jansen and M. Boon, Theory of Finite Groups. Applications in Physics (North-Holland, Amsterdam, 1967), Chap, II.6.10.
 16 J. A. Odutola, T. R. Dyke, B. J. Howard, and J. S. Muenter, J. Chem. Phys. 70, 4884 (1979).
 ${ }^{17}$ K. P. Sagarik, R. Ahlrichs, and S. Brode, Mol. Phys. 57, 1247 (1986).
 ${ }^{18}$ E. H. T. Olthof, A. van der Avoird, and P. E. S. Wormer, J. Mol. Struct. (Theochem) 307, 201 (1994).
 ${ }^{19}$ A. van der Avoird, E. H. T. Olthof, and P. E. S. Wormer, Faraday Discuss. Chem. Soc. 97 (1994).
 ${ }^{20}$ D. D. Nelson, W. Klemperer, G. T. Fraser, F. J. Lovas, and R. D. Suenram, J. Chem. Phys. 87, 6364 (1987).
 ${ }^{2!}$ H. Linnartz, A. Kins, W, L. Meerts, and M. Havenith, J. Chem. Phys. 99, 2449 (1993).
 ${ }^{22}$ K. Balasubramanian, J. Chem. Phys. 72, 665 (1980).
 ${ }^{23}$ J. A. Odutola, D. L. Alvis, C. W. Curtiss, and T. R. Dyke, Mol. Phys. 42, 267 (1981).

