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A model is presented for calculating the splittings due to umbrella inversion of the monomers in 
(NH&. Input to the model are the six-dimensional dimer bound state wave functions for rigid 
monomers, calculated previously [E. H. T. Olthof, A. van der Avoird, and P. E. S. Wormer, J. Chem. 
Phys. 101, 8430 (1994)]. This ‘model is based on first-order (quasi) degenerate perturbation theory 
and adaptation of the wave functions to the group chain Gs6CG72CG144. The umbrella inversion 
splittings depend sensitively on the intermolecular potential from which the bound state wave 
functions are obtained. A complete interpretation of the observed splitting pattern [J. G. Loeser, C. 
A. Schmuttemnaer, R. C. Cohen, M. J. Elrod, D. W. Steyert, R. J. Saykally, R. E. Bumgarner, and 
G. A. Blake, J. Chem. Phys. 97, 4727 (1992)] and quantitative agreement with the measured 
splittings, which range over three orders of magnitude, are obtained from the potential that 
reproduces the far-infrared spectrum of (NH&z and the dipole moment and nuclear quadrupole 
splittings of (NH& and (ND&. The umbrella inversion splittings, of (ND3)2 are predicted. 

1. INTRODUCTION 

The umbrella inversion of the free NH, molecule is a 
well-studied’ phenomenon. Quantum mechanically, the in- 
version is described by a tunneling through the barrier of the 
NH, double well potential. This tunneling gives rise to an 
energy splitting of states that, without the tunneling, would 
be degenerate and would be localized on either side of the 
potential barrier. Through the interaction with another mono- 
mer the tunneling may or may not be quenched. For ex- 
ample, in the case of the NHs-Ar van der Waals ‘molecule 
the tunneling splitting is hardly affected in most of the rovi- 
brational states, but in some states it is nearly quenched.2’3 

The spectrum of the (NH3)2 dimer was first observed by 
Nelson, Fraser, and Klemperer4 in the microwave region. 
These workers interpreted their spectrum by assuming that 
the monomers constituting the dimer are rigid and noninvert- 
ing. However, later far-infrared measurements by Loeser 
et aL5 and infrared-far-infrared double resonance experi- 
ments by Havenith et al6 showed energy splittings that were 
ascribed to incompletely quenched umbrella inversions of 
the monomers. These measurements demonstrate that, al- 
though monomer inversion in the dimer is about 10 times 
slower than in free ammonia, it is still observable. 

In this paper we will address the question whether com- 
putations can account for the observed splittings and, in par- 
ticular, whether the interpretation of the measurements in 
Refs. 5 and 6 can be supported theoretically. Furthermore, 
we will see that the splittings depend very sensitively on the 
intermolecular potential, so that they offer an accurate check 
on its validity. In the accompanying paper,7 we report 
vibration-rotation-tunneling (VRT) calculations on the am- 
monia dimer, in which we freeze all internal monomer coor- 
dinates. This requires the solution of a Schrijdinger equation 
depending on six degrees of freedom: the intermolecular 
distance R and the five internal Euler angles of the dimer. 

Ideally, we would now introduce the monomer umbrella 
angles as two extra degrees of freedom and solve the ensuing 
eight-dimensional S&r&linger equation. However, such a 
calculation is beyond present-day computer capabilities, 
which is why we resort to the simplified model that we used 
and tested earliers on NH,-Ar. Briefly, the model can be 
described as degenerate first order perturbation theory. The 
degenerate set of zeroth-order states consists of a van der 
Waals state, obtained from the solution of the six- 
dimensional (in NH3-Ar a three-dimensional) Schriidinger 
equation, multiplied by the lowest two inversion (“um- 
brella”) states of each free ammonia. The perturbation is the 
part of the Hamiltonian that describes the tunneling through 
the ammonia double well potentials. The van der Waals 
states are separated typically by about 20 cm-‘, whereas the 
unquenched umbrella splitting is 0.8 cm-‘. One can expect, 
therefore, that a first-order approximation is reasonable. In- 
deed, by comparison with results of four-dimensional VRT 
calculations on NH,-Ar we found the model to be quite 
accurate.8 In this work we extend the model to the (NH3)2 

dimer by multiplying each van der Waals state by four um- 
brella functions, two on each center. Furthermore, we will 
see that in a few cases the van der Waals states are very close 
in energy. In those cases we apply quasidegenerate first-order 
perturbation energy. 

Instead of numerically diagonalizing the first-order per- 
turbation matrices, we will apply group theory to diagonalize 
the matrices. We not only do this because it is a compact and 
elegant approach, but mainly because Loeser et al. provide 
group theoretical labels for their observed levels and we wish 
to connect the present theoretical work with the earlier ex- 
perimental work. 

II. SYMMETRY ADAPTATION 

We label the protons on monomer A by 1,2,3, and the 

protons on monomer B by 4,5,6. The nitrogen atoms of the 
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TABLE I. The groups C;t and C$,. Note that Ctt = Cie{E,r,} and 

CZl, = Crgi3{ E.1,“). 

c:if, Cf” 
II 

1 

il) 

I 

(1) 
fqr (123’)!465j c$ (123)(456) 

(132jt.456) (132)(465) 

i 

i 
I,,~f,14j(25ji36)(78) r,*=(14)(26)(35)(78)* 

I 
p (16)(?4)(3S)i78) K” ~15,(24)(36)i78)* 

( 15)(26)(34)(78) (16)(25)(34)(78)* 
I 

I 

monomers A and i? have labels ‘7 and 3, respectively. The 
group of feasible permutations inversions (PI’s) of two non- 
inverting monomers is gene.rated by (123)(456), equivalent 
to a “geared” rotation of both monomers A and B over 120” 
around their C3 axes, (132)(456) an ‘antigeared’ rotation of 
monomers A and B, the permutation 1,,=(14)(253(36)(78) 
interchanging monomer A and B, and the interchange opera- 
tor 1; = (14)(26)(35)(78)* that is aproduct ofapermuta- 
tion and space inversion E*. This group of order 36 is 
designated’ by Gjrj and can be written as the outer direct 
product C$ @ C& (see Table I). The generators las and I,* 
are labeled in correspondence with the subgroups to which 
they belong. When umbrella inversion is considered to be 
feasible, two more permutations must be added to the list of 
generators. We could, e.g., choose (23j, which inverts A and 
(56’1, which inverts B, but other choices of coset generators 
are possible. The total PI group is then Glw, which is of 
order 144. In this section we will discuss how we can adapt 
products of van der Waals states and umbrella functions to 
the group GiM, while knowing that the van der Waals states 
span irreducible representations (irrepsj of its subgroup G3h. 
We will achieve this by the group theoretical process of in- 
duction along a canonical chain” of subgroups of G,J4. Re- 
call that in a canonical chain all inductions and subductions 
are multiplicity free and that the chain starts with an Abelian 
subgroup. This implies that the basis functions of G,& can 
uniquely (up to phase and normalization) be defined by “se- 
quence adapting” “I the functions to the chain, or in other 
words, by specifying according to which irreps of the sub- 
groups in the chain the functions transform. 

First we introduce GT2= Gx6@{E,E*} and then note 
that G ,44 is a semidirect product, 

G144=G72@{E,(S6j}. 

The group G,, equals C$ @I C$, , and the “antigeared” and 
“geared” groups are given in Table I. Both groups are iso- 
morphic to C,, and are themselves also semidirect products. 

Introducing P, 8 5 C;t @ Cg , we find the canonical chain 

Glj,Z,G,,>G3A>P,8>C~~~CC:$, 

which will aid us in the adaptation of the basis. 
The Hamiltonian HvJw , which does not contain any 

terms depending on internal monomer coordinates, is taken 
as the zeroth-order Hamiltonian in the present work; see 
Refs. 7 and 11 for its explicit definition. The van der Waals 
states, adapted to Gs6, are obtained by diagonalizing this 
Hamiltonian in the following basis of coupled rotor func- 
tions, 

where the indices are running as 

j, rjpO,...,jmilx, j=lj,-j,l,...,j,~+j,, 

IKJ=O,...,min(j,J), 

kA=-jA ,.-., j,, k,=--jBy . . . . j,. 

The quantum numbers J and M are strictly conserved and K 
is an approximate constant of the motion only broken by the 
weak Coriolis coupling. Although we have included the Co- 
riolis coupling in the final stage of our calculations in Ref. 7, 
it gives only little mixing of the functions with different K 
and one can still use K to label the van der Waals states. See 
Refs. 7 and 11 for the explicit definition of the basis. In this 
work we are only concerned with its transformation proper- 
ties under G143. In Ref. 12 it is described how these trans- 
formations may be determined and they are listed in Table II. 
The eigenfunctions of Hvdw of energy ZT have the form 

I/l”i={g “~~~,~;;P,YICh},J,I,~z~, 
‘ .n 

with LI= l,...f,, 

where y indicates an f, dimensional irrep of G36, 

IN={jA 4-4 ,j, ,k, ,j,K), and IL runs over the radial func- 
tions. The projectors P,Y are given in Ref. 11, and will be 
rederived below. The prime on the summation indicates that 
the indices are restricted, so that the sum is over a linearly 
independent set. By introducing a new set of coefftcients 

,Y .=c ICY 
L (h),rr;r 

(A’} 
:,,~,ll;i({A),J,nr,~zlP~l{~~‘~,~,~~,~~~, 

TABLE II. Transformation properties of the basis functions under several permutation inversions. 

PI Effect on h&s 

( 123) 
(456) 
I,=(14)(25)(36)(78) 

JB=ri4.)(26)(35)(78)* 
mj 
06) 
E* 

exp(2Trik~l3) 
expi2nikBJ3) 
( - l)‘+iA+ia 
i _ Ijj+b+b 

( - 1 )j, 
( - ljjfl 

( - 1) I+j+ta+L~ 

lj,k.~j,kBjKJUAcT.~czgf 
IjAkilj*.k~jKJMtlq,osj 
Ij8k,j,k,j-KJMllu,cr,) 
IjR-kaiA-kAjKJ~n~~~u,~) 
Ij~-kAjak$KJMiI-CT~u~) 
IjnkAjB- k,jK.IMna, - CT& 
IjAk,jBkBj- KJMn-crA-crs) 
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we can write the VRT state as an unrestricted summation 
over primitive basis functions 

Because the matrix element of PX contains many Kronecker 

deltas the new coefficients ~61,~;~ are simple linear combi- 

nations of the coefficients Ci,),,.i. As long as we neglect 
Coriolis coupling, the sum over [A} is restricted to a single 
value of K. The ammonia monomer inversion is treated as a 
perturbation. This motion, depending on the angle px be- 
tween the N-H bonds of monomer X and its three-fold sym- 
metry axis, is described by Papougek et al.’ who give a 
Hamiltonian Hi”,(px). In terms of their Hamiltonian the per- 
turbation is 

V=H~PA) +Hj~sp(P~)* (1) 

The lowest two eigenmnctions of H&o), written as p(p), 
are separated by the small energy difference A=0.793 
cm-‘=23.8 GHz.13 The next levels are about 950 cm-’ 
higher, and so we consider only the lowest two on each 
monomer. Rather than using these functions directly, we take 
the following linear ,:ombinations 

f+(p)sl+)=[~+(p)rfr~-(p)l/~. (2) 

The function I+)=$+ describes a vibrational state of the 
monomer localized in the right-hand potential well with um- 
brella up, and I-)=f- is localized in the left-hand well, 
umbrella down; ,pote that f+ ( r-p> =f- (p) . When we per- 
formed the six-dimensional (zeroth-order) calculations, each 
NH3 molecule was locked in one of the two umbrella wells, 
which is why we must localize our zeroth-order umbrella 
functions. The total unperturbed wave functions can be writ- 

ten as I#&, CA , as), where oA = +- and oB= + refer to a 
given (up or down) structure of the two umbrellas and *~,i is 
the corresponding six-dimensional van der Waals wave func- 
tion calculated for the fixed umbrellas. Since the umbrellas 
are inverted by the permutations (23) and (56), the degener- 
ate set of unperturbed functions is 

gl*,Y,i, CA ,uB), with g ~{E,(23),(56r,(23)(56)}, 

lZ=l,...,f,. 

Our first order perturbation model implies that 
V=H&IJ -I- Hi,,(pB) is diagonalized in the space of these 
degenerate functions. Or, equivalently, that the total Hamil- 
tonian H=H vdw+V is diagonalized in the same space. We 
prefer the latter formulation because it is possible then to 
generalize the model to quasidegenerate van der Waals states 
by simply extending the space of unperturbed functions in 
which H is diagonalized. There is a formal problem, how- 
ever, which is similar to the problem met in symmetry 
adapted perturbation theory.14 The symmetry group GiM of 
the total (perturbed) Hamiltonian is larger than the symmetry 
group G,, of the unperturbed Hamiltonian Hvdw . This is be- 
cause in the total Hamiltonian the umbrella coordinates pA 
and PB are considered as variables, whereas in Hvdw they are 
clamped at their equilibrium values. In fact, the perturbation 
is not simply the operator Hh,(pA) + HhJpB), but also the 

(23) 
I 
I 

I 

............... 

. . 
I--.,+> .... 

t 
.... I+, +> ..I, 

...... +ka. 
,’ 

.... .,,,’ . 
.......... . . 
...... 0. .. ‘\\ I’ 

,, . . 
’ ..... .+- .. a .. 

El ‘\ ....... 

I 

...... ., . 
‘. .............. .I 

............... 

-T1lll,l ,,,,I,, 
:-k, 0 +k,---y--k, o +kAy 

.......... 

. . I-:-> ... I- '1+:-j 1 . 

+k, ’ ’ ’ ’ . . ’ ............... 
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a ....... 

I 
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-----___ (56) 

FIG. 1. The restriction of the svmmetrv adauted basis. Each “lattice” uoint . _ 
depicts IkA ,k,)%Ij,k,j,k~jiYJM)Io;, ,us), for certain fixed j, , js , j, K, 
J, and M. The effect of the CT44 generators is indicated: (23) gives a .- 
reflection in the y axis and (56) in th e x axis, so that only the first quadrant 
with IuA ,crs) =I+,+) has to be considered. Restriction of k,, and kB to 
values identical mod 3 gives the “unit cell” shown in the first quadrant. 

Within the unit cell the generators I, and I,* act as mirror planes, thus 
giving a further reduction of the range of k, and k, . 

difference between H vdw(wA ,pd for vafiable PA, pB and 
Hvdw(x,& ,&) for the equilibrium configurations of the um- 
brellas. Here x stands for the other six internal coordinates. 
Our model assumes, however, that the functions f*(p) are 
well localized and that in the region of localization 
Hvdw( x,pi ,&)=Hvdw( x,pA ,p,J. Hence, the matrix elements 
of these functions over the difference operator will be ne- 
glected. 

In principle j, , k, , jB, k, , j, and K run independently 
over their respective ranges. However, when we adapt the 
basis functions to G,,, by projecting with linear combina- 
tions of the generators, we must ascertain that we do not 
generate linear dependencies and, conversely, we must be 
careful not to omit any functions. To this end we depict in 
Fig. 1 the basis as a lattice of points. Each point is labeled by 
apair(k,,k,) with -jxGk+jx,X=A,B andcertain fixed 

jA ? jB ) jy and K (in Fig. 1, j,=3 and jB=4). The first quad- 
rant contains all I+,+>, the second all I -,+>, the third all 
I-,-), and the fourth quadrant contains all I +, -) kets. As 
follows from the action of (23) on the basis functions given 
in Table II, a point in the first and fourth quadrant is reflected 
in the y axis by this GrU generator. Likewise, (56) maps 
points in the first/second quadrant onto the fourth/third quad- 
rant. So when acting with (23) and (56) on all basis func- 
tions, we must restrict the basis to one quadrant, say the first, 
i.e., to kets I+,+). 

All functions with the same value for (kA ,kB) (mod 3) 
belong to the same irrep of the Abelian group C;g@ Cg, since 
this group is isomorphic to C$@ Cf, generated by (123) and 
(456), and k, and kB are symmetry labels of the latter direct 
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TABLE XII. Basis functions adapted to C$%2C~. 

lO,Oi A,@A, 

p; A,@A, 

l!h 
&‘@A I 
A,@A, 

l-L-1) A,@A, 
ILI) .,+,@A.? 

A@A, 
‘4;@‘42 

A3@A3 

product group. Therefore, instead of looking at the entire 

I sublattice of (2j, + 1) X (2j, + 1 j functions, it suffices to 
I consider only the “unit cell” spanned by -lsk,Sl and 

- lck,s 1. Suppressing J and M in the notation, we see that 
I 
I 

the ge.nerator I, maps Ij, ,k,4 ,jB,kH,j,K,+,+) onto 

I (j, ,k, ?j, ,kA .j, - K. +, + ), which, in general, is in a “unit 
cell” in the first quadrant of a lattice with different j, f j, , 
and K. Since j,J, j, ~ j, and K are running independently, this 
lattice is also included in our basis and we do not distinguish 
between these two lattices in Fig. I. We then see that 
I,, reflects points within the unit cell in the k,=k, line, 
so that the basis can be restricted to k,GkA. Similarly, 
since I” ’ . IJ’A ,kAJB,kBJ,K+,+) 
1 j, , - kH ?;A , - L~~~~K, + , + >, we can apply the restrii:: 
k,> -k, . Combining the latter two restrictions, we find that 
- k14 6 k,G k,4 . Note that this implies that k, 20 and that it is 
sufficient to consider kets with pairs (kA ,ksj =(O,O), (I ,O), 
( 1, l), and (I, - 1 j in the symmetry adaptation of the basis. In 
the notation used in the remainder of this section we will 
suppress all other quantum numbers. The interchange opera- 
tor I, also changes K into -K. Hence, if k,= k, we may 
further impose the restriction KzO. In the following, it will 
be shown that this holds for the A I ,A2 ,A3 ,A4 irreps of G3, 
with ik,l ,kB)=(O,Oj and for the E,,E4 irreps wirh 

(kA ,k,)=!l,l). 
For readers not familiar with the construction of irreps 

for semidirect product groups, we summarize in the Appen- 
dix this construction for the present simple case where the 
second factor is of order 2. For the general formalism we 
refer to Ref. 15. As a first example of the use of a semidirect 
product, we consider the construction of irreps of Cit and 
C:$, from those of Cg and Cg. In Table III we find the basis 
functions adapted to C:%C$. From Table III we derive 
Table lV, the functions adapted to G36. Let us first consider 
the induction Cajg 8 Cs T P ,g = Cz @3 Cg by adding the coset 
generator I,, . From the structure of the irreps of a cyclic 
group folloWs that A, of (2;” is obtained by inverting the 
elements in the irrep A?. Furthermore, it follows from Table 
I that ianli-IleO=%--~~ with ~EC;~. Therefore, rr acting on 
)l,- 1) &es the 1X 1 matrices in the A,@A, irrep and 
r;ig~Z;ly acting on the same function gives matrices from 
A2@il,. Therefore, the functions II,- I) and ~,ll,-1) span 
a two-dimensional irrep. If we next induce to G3B by adding 
I,$, we find that 7~ Cj and Zz$ yield the same matrices 
(A J. As we show in the Appendix, we must then act with 
E t 1: and thus obtain the h-reps of Gj6? designated by E, 
and E2 in Table IV. By inspection we find that the plus 

TABLE IV. Basis functions adapted to G3, = C;t ‘8 Cg, Partner functions 
are obtained by the generators given between square brackets acting on the 
same ket. The shorthand notation Ik, .kR)= Ij,k,j,k,jKJMn)l+, + j is 

used, where the k values are unique modulo 3. The action of I, and fi is 
given in Table II. The irreps of G,, are labeled according to Ref. 9. 

[El(E + L,)CE + 1,;) IOJV A,=A,@A, 
[E](E -“. zasj(E t- If) lOs9 ‘4,=A2e9‘4, 
[EIIE f ~,,KE - $1 IW A,=A,WAL 
[El(E - Z,,j(E - r:, 10.0) A,=A,@A2 

[E,I$W + I.;1 11,-l) E,=E@A, 

[E&W - I,*, IL-0 E2=Ec+A2 

CfL~:lW i- I,,i ILU E,=A,F2E 
rEJ;J!E - I,,) ILO E,-A&E 
IEJag.ly* J&l 11.0) G=E~BIE 

combination belongs to A 1 of C’s, and the minus combina- 
tion to A?. The functions transforming as A2f3A2 and 
A3@A2 of C~@.K$ give rise to E@A, of P,,, i.e., Il,O> and 
1,Al,O) span this irrep. Likewise lzl 1 ,O) and lapZTI 1.0) 
span the irrep E@A,. Together these four functions span 
EBE= G of Gj6. The rest of Table IV follows from equiva- 
lent arguments. We observe, since the Al, AZ, A3, A4 and 
Es, E4 bases are projected by E4 I,, that these basis funa- 
tions are combinations of functions with K and functions 
with -K. Hence, the states that belong to these irreps may be 
labeled with 1~1. For the E, , E,, and G irreps, the states 
with K should be distinguished from those with -K. 

The step to GT2 is simple: We project all kets in Table 
IV by E + E* and give the corresponding superscripts t to 
the G, imp labels. From Table IV we derive Table V by 
adding the coset generator (56). In order to explain how to 
proceed, we label the elements in the rows of Table I by 
hag and @ i = 1 ,...,6. By their very construction, the h-reps of 
these C3”‘iroups are identical: LS(hF) 7 = ilB(h:) ?. We have 
here the. case discussed in general terms at the end of the 
Appendix, but with one modification, which is due to the fact 
that GT2 is not invariant under (56). By inspection of Table T, 
we see that (56)hFhf(56) = h;%f, provided hfg E Ci;” and 
@ECU. However, when either lz? E IP or /$E K”, then 
(56)hTg1$‘(56) = h~%.~E*, an element outside G36. When 
h?g p and simultaneously !+EK~~ then 
jiS)hFh!(S6j = ha%! The same classification can be 
made for’ the coset (sf &,6 in GT2 generated by E”. The 
appearance of the inversion E”, in the products transformed 
by (56), is of no importance for the positive parity irreps of 
GT2 designated by (y@ y’j+, where y and yI label the it-reps 
of Ctt and Cg,, respectively. The theory at the end of the 
Appendix applies without change and so 

The negative parity irreps (y@y’)-, however, are multiplied 
by - 1 when either hag E K”s or hS E K”. Remembering that 

. , 
the A2 representation ot Cit, has a character f 1 for h3” E C’ig 
and -1 for hag~Kw , and likewise for CT,;, we see that 

(56j:(y~,‘j-H[(AZIS,y1j03(A2~y)]-. 

We must project with Ek(56). when (56) maps onto an 
equivalent irrep (in the case that both y and y’ are more- 

J. Chem. Phys., Vol. TOl, No. lo,15 November 1994 

Downloaded 13 Jun 2006 to 128.32.220.140. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Olthof et a/.: Monomer inversion in the ammonia dimer a447 

TABLE V. The sequence adapted basis for GIM. The GIW irreps am, apart from parity, labeled according to 
Odutola et al. (Ref. 16). The partners of the irreps that occur twice span identical matrix representations. See 
Table N for the definition of the shorthand notation used. 

GM.+>% Partners Sequence adapted ket 

‘4: Al [El (E + E*)[E + (56)](E + I&E + z;)lo,o) 

A; A3 [El 
‘4: 

(E - E*)[E + (56)1&E + I&E - I;)lO,O) 

4 [El (E + E*)[E - (56)](E - I&E - I,*)lO,O) 

-4; A2 [El 
B: 

(E - E*)[E - (56)](E - I,)(E t I,*)lO,O) 

A4 [El (E + E*)[E + (56)](E - I%)(E - I;)fO,O) 

B; Al [El (E - E*)[E + (56)](E - I&E + I,*)jO,O) 

B: AI [El (E + E*)[E - (56)1(E + ZJ(E + Z,*)lu,O) 
B; A3 [El 
E+ 

(E - E*)[B - (56)](E + Z&E - I,*)lO,O) 

&@A, [EmI 
E+ 

(E + E*)(E - I,)(E + I,*)lO,O) 

&@A, u56m (E + E*)(E + I,)(E - Z,*)jO,O) 
E- AI@& [EM)1 (E - E*W + &)(E + I,*,lO,O) 
E- A,@4 [(56).EI (E - E*)(E - I&E - $)lO,O) 

G E,@& [E,-(23)(56),(56).-(23)1 
G 

(E + E*)(E - I,*)ll, - 1) 

Ez@Eci [(56),(23),E,-(23)(56)1 @+E*)@-~,)lLl) 

G; EI 84 [E,-(23)(56),(56),-(23)1 -(E - E*)(E + 1;)11, - 1) 

G, EI e4 [(56),-(23),E,(23)(56)1 (E-E*)(E'~,)ll,l) 

G E,@E, [E,(23)(56),(56),(23)1 
G 

(E + E*)(E + I:)ll, - 1) 

EI@& [(56),(23),E,(23)(56)1 (E+E*)(E+&#J) 
G.T E,@E, [E.(23)(56),(56),(23)1 (E - E*)(E - I;)1 1, - 1) 

Gi ~E,@E, [(56).-(23),E.-(23)(56)1 @-ET)(E+~,)IL1) 

G G wq ~,03).(23)1 (E+E*)lE+(56NlLu) 
6 G [-U,,-~,@3),-(23)1 (E-E*)[E+(56)]11,0) 

G G [EJ~ d,w),-03)1 (E+E*)IE-(56)llLo) 
G; -G [W, J,C%(‘=)l (E-E*)lE-(56)1lLu) 

dimensional we must not forget the reordering by ‘I’, see the 
Appendix) and if (56) maps onto a nonequivalent irrep we 
obtain a Gi+, irrep of double dimension. Thus, for instance, 
from (A r @A r)+ we obtain the A : and Bz functions of Table 
V. The first set of E- functions of Table V are spanned by 
(A r @A ,)-GT2 functions and their images under (56), which 
transform as (A,@A,)-. The second set of E- functions is 
spanned by (A,@A,) - functions and their images under 

(56). 
The functions derived from E@ E = G require special at- 

tention because the matrices DG(Zz~%~) and DG(Zzi”ph~) are 
equivalent, but not identical. This is due to the ordering of 
the basis which carries this four-dimensional outer product 
irrep. In this four-dimensional case a permutation of the sec- 
ond and third basis function is required. Hence, absorbing 
the E* of $ into E+E*, we find that the second function 
carrying G, is 

(E+E*&+ WW,*li 1.0) 

=(E+E*)(Z,+(56)1,)/1,0) 

=(E+E*)[I,+Z,(56)111,0) 

=Z,,(E+ E*)[E+ (56)-j 1,O). 

The third function of G: is obtained by using, 

(E+E*)[Z;+(56)1,] 

=(E+E*)[(56)1,(56)+(56)1,] 

=(E+E*)(56)1&56)+E] 

=(E+E*)Z,&23)[E+(56)]. 

The first and fourth are simply obtained by projecting 
with E+(56), where we notice that Z,Z,=(23)(56) and 
(56)[E+(56)]=[E+(56)]. 

When we need to consider A,@E in the case of odd 
parity functions, we must realize that this irrep is equivalent 
to E, but not identical to it. By our construction it follows 
that 

A,@@=(:, “$0 ol). 
When constructing bases for the Gr and G, irreps, we must 
combine this transformation with the required reordering of 
the tensor product basis. Thus, k(56) must act on 1 l,O), 
- ZzI l,O), -Z,/l,O), and Z,Z:l 1 ,O), respectively. The re- 
mainder of Table V follows by similar reasoning. 

We have shown that we only have to inspect four com- 
binations of (kA ,k,) . These combinations can be operated 
on with the four generators I,, I,* , (56), E*, and their prod- 
ucts, yielding maximally sixteen linear independent func- 
tions per combination. For ortho-ortho dimers, 
(kA ,ks) =(O,O), this gives rise to all A ‘, B ‘, and E’ func- 
tions of GiM. The pm-u-ortho combination (kA ,kB) =(l,O) 
induces to GF or G$ functions. Operation on para-para 
functions with (kA J&=(1,1) yields one set of G: and G$ 
functions and on functions with (kA ,k,) =(1,-l) yields the 
other. The total of 64 functions matches exactly the sixteen- 
dimensional space spanning all irreps of Gs6 times the four 
quadrants in Fig. 1. 

By the construction outlined in this section the basis 
functions of GtM symmetry l?, listed in Table V, are obtained 

by the action of operators Wivr on functions adapted to y of 
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Gs6. These latter functions are listed in Table IV. The pro- 
jectors adapt not only the basis, but also the van der Waals 
states which are obtained from this basis. That is, 
W,‘P’l *~,i, gA ) (TV) is adapted to G LG. The operator U72(ry 
commutes with H, a fact that will give a drastic simplifica- 
tion in the calculation of matrix elements of H as will be 
shown in the next section. (A derivation of the results in 
Tables IV and V, which is conceptually simpler but more 
laborious, is through the use of the character projectors of 
G36 and G,,,. This method gives less insight in the simulta- 
neous adaptation of the wave functions to the group G I& and 
to its subgroup G,,, which is an essential element of this 
paper. j 

III. ENERGY SPLITTINGS 

In this section we will calculate the splittings by diago- 
nalizing H = Hvdw +V on the zerotb-order functions de- 
scribed in Sec. II. Since several unperturbed le.vels are less 
than 1 cm-’ apart, one would expect that all of these have to 
be treated in a quasidegenerate manner. However, only two 
of these pairs interact in quasidegenerate first order. These 
are the K=O pairs with symmetry E,IE, and E,IE, . In these 
cases a problem of double dimension must be solved. Other 
nearly degenerate pairs are 1 KI = 1 E,IE,, A {/AZ, and ASIA4 
states. Since it follows from Table V that E, of G,, induces 
to Gi of cl44 and E, to G-f, these states are noninteracting 
under the Hamiltonian H, which by definition transforms as 
A:. Likewise, the nearly degenerate A ,/A2 pair is noninter- 
acting, because A E induces to A: @ Bi @ E- and A2 to 
A2 @B r FB Et. Moreover, the nearly degenerate A JA4 van 
der Waals states cannot mix for similar reasons. 

By using the orthogonality (~~(p)lHi”,l~-(p))=O we can 
relate (+IH,,[-), needed in the calculations, to the mono- 
mer inversion splitting A=O.793 cm-’ as 

(+ IHi”yI-)E(~+(p)IH~yIf-(p)) 

=~{~‘IHinvI~‘)-(~-IHj,,vIICI-)) 
=+J[E,-$ bJ-[E()+ f A]) 

=-I ‘A 3 
where E,,=(+~Hin,l+)=(--IHitl~~-) is the energy of the low- 
est v, mode. 

We will exemplify the calculation of the matrix elements 
by first considering the GIjj states that correlate with A, of 
G?,, i.e., the states of A:, Bi, and E- symmetry. From 
comparison of Tables IV and V we find that the first 

state 2 KC4: *AII$ti, + , +) , is obtained by the projector 

W’: YAl = (E + E*)[E + 156)]. We find from Table IV 

that the VRT state 1 +t’) of energy $* is 

Here. {A}={j, ,X-, ,j, ,I%, ,j,K} and li, ,k,=O (mod 3). Us- 
ing 

(&rA: ,A,j2,4\& 41, (3) 

and 

Z 0, 

which follows from the symmetry operations in Table II, we 
obtain that the norm of the A: states is 2. 

Using the Herrniticity of l&“: *ill, the fact that it com- 
mutes with the Hamiltonian, and Eq. (3j, we get 

E:'={~~',+,+[H~,~w+Hinv(Pa) 

+Hi~~(po)I~A"‘~'(lr;4i,+,+). 

As we can see in Table II, E* and (56) transform I +,+) into 
a ket orthogonal to it, so that only one term arises from 

H vdw * which is ?$I. The inversion Hi,,,(pAj gives rise to two 
terms, one from the identity operator E, which gives the 
energy E,, and one from (56)*, giving -4 A. Similarly, 
Hi",(pH) gives only nonzero contributions when multiplied 
by E and (56). The zero-point energy 2E,, of the v2 vibra- 
tions of the two umbrellas will be taken as our reference 
energy and, thus, we find that 

E‘~t=~'-~{~~'j~56)*I~~')~-~{~~'l(s6jl~~')~. 

This can be simplified further by virtue of the AL symmetry 
of the zeroth-order state, namely, 

~56j”[E+Z,][E+Z,~]=(56j*Z,~[E+Z,][E+Z~] 

=r,c56)[E+i,l[E+I,*l. 

Using the turnover rule on I,, absorbing it into the bra, and 
using the orthonormality of the basis, we arrive at 

E;“;=~l-~~~:“1(56)l~~1) 

= a;’ - h c (4) 
(A},?1 

( - 1 )j+&c;;) 
,rr;i 

with (&}={j,l ,k, ,j,, - li, ,j, K}. The coefficients c.$l,n.; 

are obtained from the six-dimensional VRT calculations d;- 
scribed in the accompanying paper. In the very same way we 
compute 

Eff = 6; I f A{& ( - 1 )q;),,t.ic;~;~ 
,n;i’ (3 

The E- irrep also correlates with A I of G3h. Looking into 
Table V, we find two E- pairs. Since they carry identical 
matrix irreps, the first basis function of the one pair mixes 
only with the first of the other pair and not with the second 
of the other pair. These first basis functions are 

(.-“)l$;L, + r +> and (56)(E-E*)l&, + ?4-> , 

respectively. In principle, we would have to solve now a 2X2 
secular problem on basis of these two functions. The 
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diagonal elements in this secular problem are @’ and q4, 

respectively, which differ by about 16 cm-‘. Since the off- 
diagonal element is A(ly’l/(56)j(y94), it is smaller than A 
and can be neglected with respect to the difference in diag- 
onal elements. Therefore, we write 

EE- , =@. (6) 

From Bqs. (4)-(6) we conclude that the zeroth-order A t state 

splits into four states: one higher in energy and one lower 
by the same amount, and two states (the degenerate E- pair) 
unmoved. 

We have shown how to compute the splittings due to 
monomer inversion by choosing the unperturbed A t state as 
an example. From the physical point of view this choice is 
not the most relevant, because both the A: and the E- state 
have spin statistical weight zero for the protonated dimer.5 
Hence the splitting of the At state is not observable for this 
isotopomer. The same remark applies to the other VRT states 
of A symmetry. This situation is comparable with the k=O 
states in the free NH, monomer, where also one of the two 
components of each inversion doublet has weight zero and 
the splittings are not directly observable. Dimer states arising 
from G, however, do give rise to observable splittings, since 
G induces to GT @G; gt Gl@ G,, and the latter two irreps 
have nonzero spin statistical weight, whereas the former are 
Pauli forbidden in the protonated dimer. By the same kind of 
manipulations as for the Al states, we derive from the first 
Gc functions of Table V 

We cannot eliminate (56)” here, because in this case we are 
describing different monomers: ortho [k=O (mod 3)] and 
para [k= 1 (mod 3)]. From Table II we deduce that (56)” 
flips the para umbrella. We also observe in Table II that 
(56)* inverts the sign of K, and since states with different K 
are orthogonal, it follows that our model predicts an observ- 
able splitting of the G states only in the case of K=O (as 
long as one neglects the Coriolis interactions). The matrix 
elements of (56) and (56)” are again simply related to the 
coefficient vectors obtained from the VRT calculations. In 
the fully deuterated dimer the GF states are Pauli allowed as 
well. The splitting between these states and the Gg states are 
due to inversion of the ortho umbrella. Since this inversion is 
caused by the permutation (56) and since this permutation 
leaves K invariant, the corresponding splitting should be sig- 
nificant also in the states with KfO. 

We next turn to the quasidegenerate E,IE, pairs for 
K=O and even J. We can read off from Table V that 
E,~G,44=G3@G~ and E3PGlh4=Gz@Gl. The states 
G3 and Gb are unaffected in first order and accordingly will 
have the energies of E, and Es, respectively. The G: con- 
tents of both states will mix in quasi first order, however, and 
this gives rise to a splitting. We solve a secular problem on 
basis of 

(E+E*)(~‘,+,+) and (56)(E-l- E*)I@, t, t), 

where, in the symbolic shorthand notation of Table IV, 

I@, + 9 +> is expanded in terms of (E t I,*) 

II,- 1) and If13, + , +> in terms of (E-l-I,s)ll,l). We 
obtain the following H matrix 

i 

@’ -ww6w3P 

-(~31(56>ltm~ 1 @3 ’ 

with eigenvalues 

which again are easily computed, since the VRT states i,@l 
and @ and their energies p1 and @3 are known. In sum- 
mary, we find that the El/E3 pairs give rise to 
G;,G;,GF,G& In our quasi-first-order model only the 
Gz states are split. The G; and G4 states are unaffected and 
have the energies of the original E, and E, levels, respec- 
tively. In the discussion of the numerical results, we will see 
that these levels correspond to the measured levels labeled 
(1) to (4) in Fig. 3(a) of Ref. 5 and in Table VI of our 
accompanying paper.7 

The development for the quasidegenerate E21E, pairs 
runs completely analogous: since E2TGlh4=G:fBG; and 
E4T G144= G: @ G3, the G4 and G; states are not shifted, 
and two Gt states arise, with energies 

E$=~@‘+@~)t[(~~(56)~1,@+~A~ 

+ gF2- rF4)pp2. 

In Table VI all the splittings are summarized, together with 
the spin statistical weights of the levels. The latter can be 
found by application of the G36CG144 induction procedure 
outlined in Sec. II to the nuclear spin functions in Table VII 
of Ref. 11. For odd J the states E, and E, change roles. The 
pairs El/E4 and E21E3 are nearly degenerate for K=O and 
the mixing occurs in G3 and G4. The energies belonging to 
these irreps are 

E~=$(@+@4)1iz[(@~(56)l@‘)~A~ 

+gE’Ew94j2]*12. 

and 

E~=~~2+~3)t[(~1(56)1~)2A2 

+ $(8+- @3)y, 

respectively. 

IV. RESULTS: COMPARISON WITH EXPERIMENT 

With the use of the model and the formulas derived in 
Sets. II and III, we have calculated the umbrella inversion 
splittings in both (NH& and (NDJ2. The six-dimensional 
bound state wave functions ~~,i were obtained from several 
different potentials, which have different barriers for the in- 
terchange of the proton donor and the acceptor in the hydro- 
gen bond and for the rotations of the monomers about their 

C3 axes. In the potential of Sagarik et &.,I7 which was used 
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TABLE VI. Energies of G ,Jj states affected by inversion splitting. The spin statistical weights are wH in !NHsj2 
and MS,, in (ND3j2. This table applies to even J; for odd J one has to swap the irrep labels E,nE, and 
C,‘-G: and the corresponding weights. 

wH Energy expression 

0 465 

66 6 

0 90 

78 3 

0 435 

0 90 

0 465 

66 6 

0 90 

78 3 

0 435 

0 90 

21 276 

21 276 

21 276 

15 300 

1s 
15 
0 
0 

72 
72 

300 
300 

720 

720 

72 

72 

in Ref. 11, the interchange barrier is about 80 cm-‘, in the 
model potentials I,II,III,IV introduced in Refs. 18 and 19 this 
barrier varies between 0 and 30 cm-‘, and in the potential 
found in the preceding paper’ it is 7 cm-‘. The latter poten- 
tial yields van der Wads energy levels in perfect agreement 
with the far-infrared spectrum of (NH&.s The dipole mo- 
ment and the nuclear quadrupole splittings of (NH& and 
(NI& calculated from the corresponding wave functions 
agree well with the values obtained by microwave 
spectroscopy.4,‘0,21 In the detailed far-infrared and micro- 
wave study of Loeser et ~1.~ the inversion splittings in 
(NH,), were explicitly measured. Obviously (see Sec. In), 
no splittings could be observed in the ortho-ortho states 
(A, ,A2 ,A s ,A, in G,,). Inversion splittings of the order of a 
few GHz were found for the ortho-para states (the G states 
in G3& and for the para-paru states (Et ,E2,E3,E4j, but 
only for K=O. The splittings in the corresponding states with 
KZO are smaller by a few orders of magnitude. 

Let us first discuss the G-state splittings for K=O, since 
these arise directly from the simple first-order model (see 
Sec. III). For all the potentials used to calculate the bound 
van der Waals states, it appears that in the lowest G state 
with K =0 the pnm-NH3 monomer is the proton donor and 
the ortho monomer is the proton acceptor. This holds even 
when the rquilibrium structure has the cyclic geometry with 
two equivalent monomers, and the inequivalence of the 
monomers is imposed only by the ortho-paru difference. In 

the tirst rxcited G state the situation is reversed: The pura 
monomer is the proton acceptor. It follows from Sec. III that 
it is only the inversion of the puru monomer which leads to 
an observable splitting in the protonated dimer. Every G 
level splits into a GZ doublet. If we look at the experimental 
data in TabIe VII we observe that, for both monomers, the 
umbrella inversion in (NH& is about 10 times slower than in 
the free monomer. Combining calculations and experiment 
we conclude. since the excited G state splits less than the 
ground state, that &he inversion of the proton acceptor is 
more strongly hindered than that of the donor. This might 
have been expected from geometric considemtions, which 
are most evident when we look at a structure with a linear 
hydrogen bond. The calculations with the potential from the 
preceding paper? give nearly correct splittings, see Table VII. 
With the pote.ntial of Sagarik et &.I7 used in the earlier 
calculations” this is not the case: The ground state splitting 
is then 1.67 GHz, which is reasonable, but the excited 
G-state splitting is 0.09 GHz, which is too small by a factor 
of 25. This reflects the fact the,t with this potential even the 
average structure has. a nearly linear hydrogen bond and the 
proton acce.ptor, with its lone pair almost parallel to the bond 
axis, is difficult to inve.rt. With the different model potentials 
I-IV introduced in Refs. 18 and 19, the calculated inversion 
splittings vary by more than a factor of 2 see, e.g., Table IV 
of Ref. 18. The fact that we now obtain inversion splittings 
which are nearly correct, both absolutely and relatively, in- 
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TABLE VII. Inversion splittings in (NH&, with the free monomer value A=23.79 GHz (Ref. 13) and with the 

optimized value A=41.52 GHz. 

Calculation 

State labelsa A=23.79 41.52 Ghz Experiment (Ref. 5) 

G;-G; (i)-(i) 
G;-G; (12)~(11) 

A(@k56,h@9b (4)/(l) 

~(4mC56,lW (16)/W 

G4’ - GTd (9)-O) 
G;-GTd W-(8) 
G;-G,’ 14)-P? 
G;-G; (5)~(6)” ’ 

G;-G,c’ (IO)-@) 
G;-G; (14)-(13) 

J=K=O 

2.052 
1.235 

0.769 

1.621 

J=l, K=+l 
12.3 

12.3 

1.15 
L-0.82 -’ 

il.85 

0.35 

3.581 GE& -3.309 GJ3.z 
2.155 GHz 2.392 GHz 
1.342 GHz 1.182 GHz 

2.829 GHi 2.871 GHz 

37.7 MHz 48.3 MHz 

37.7 MHz 47.7 MHz 
2.0 MHZ 2.0 MHz 

‘1.4 MHz -0.6 MHz 

20.7 MHz 32.7 MHz 

0.6 IifHz 0.1 MHz 

State labels as in Fig. 3 and Table IV of Ref. 5; the G$ and G$ states as in Table IV(a) and the Gz states as 
in Table IV(b). Note that the (arbitrary) parity assignment of the Gi levels in Ref. 5 is reversed here. 

bOff-diagonal matrix element between states of G: symmetry. 
‘Off-diagonal matrix element between states of G: symmetry. 
dFrom mixing with lower Ga/G; levels (see Fig. 3). 
‘Note the strong Coriolis coupling with the J=l, K=O states labgled (11,12). 

dicates that the potential found in the preceding paper7 is 
indeed realistic. 

The far-infrared spectrum determines only the relative 
parity of the levels, not the absolute overall parity. In Ref. 5 
it was arbitrarily assumed that the lowest of the Gc levels 
with K=O has G: symmetry. It folldtis from our results that 
this parity assignment must be reversed. The remaining dis- 
crepancy with the experimental values may be caused by the 
changes in the intramonomer barrier for inversion, induced 
by the interaction with the other monomer. This is not taken 
into account by the present model, as long as we take the 
splitting parameter A from the free monomer. Remember that 
the interactions in (NH& are much stronger than in 
Ar-NH3, for which the model proved to work very 
precisely.* We can inciude (in a rather crude manner) the 
effect of these interactions on the monomer inversion barri- 
ers by introducing an effective value of A into our model. A 
best fit (in the least-squares sense) of the splittings in the G 
states with K=O yields a value of A which is larger than the 
monomer value by a factor of 1.75 (see Table VII). We per- 
formed a few simple calculations on the free NH3 monomer 
and found that this factor of 1.75 in A corresponds to a 9% 
decrease of the height of the inversion barrier. 

Next we consider the G states with K=+ 1 and K=k2. 
If we neglect the off-diagonal Coriolis coupling and assume 
that K is a good quantum number for the bound van der 
Waals states, then it follows from Sets. II and III that in the 
protonated dimer no splitting of these states should be ob- 
served. Experimentally, these G; splittings are indeed very 
small, see Table VII. The splittings observed in the K=+l 
states can be understood if we realize that they are caused by 
the Coriolis mixing with the K=O states: they “steal” the 
inversion splittings from the latter states. The amount of 
Coriolis mixing depends on the energy differences between 
the unperturbed states with K= + 1 and those with K=O. 
Especially the excited state with K= 1 which corresponds to 

the labels (9,lO) in Table VI of our accompanying paper,7 
mixes with the first excited K=O state, i.e., the state labeled 
(11,12), since these states are nearly degenerate. We observe 
in Table VII that, indeed, the splitting of this state (32.7 
MHz) is considerably larger than that of the other K = k 1 
s&es. 

In the fitial stage ‘of our calculations in the preceding 
paper7 the Coriolis mixing was explicitly included. It was 
calculated by diagonalizing the matrix of the Hamiltonian 
including the Coriolis coupling, in a basis of eigenstates 
which were obtained without Coriolis coupling (for which K 
is a good quantum number). In this basis we included the 
lowest ten eigenstates for each value of K: - 1, 0, and 1. 
The resulting eigenfunctions were then substituted into the 
formulas of Table VI. The effect of the Coriolis mixing on 
the inversion splittings is mostly very small, both absolutely 
and relatively. For the G states with K = + 1, which would 
not be split without this Coriolis mixing, the calculated in- 
version splittings are listed in Table VII. We observe that 
even these small splittings agree well with the measured val- 
ues, especially when we use the optimized value of A. In- 
deed, the (lo)-(9) splitting is by far the largest. 

In general, the order of the (calculated and measured) 
Gg doublets, i.e., the sign of the splitting parameter, for 
K= +- 1 and J= 1 is reversed with respect to that of the 
J= K=O levels. The explanation that the G states with 
K= 5 1 obtain their inversion splitting only by “stealing” it 
from the G states with K=O (via Coriolis mixing) leads to 
the same sign of the “internal” splitting parameter. The re- 
versed order is caused by the rotational phase factor (- l)J 
which occurs when the umbrella inversion operator (56)* 
acts o-n the basis functions, see Table II. It is the action of this 
operator which splits the G levels into the Cl and GT com- 
ponents, see Table VI, by inversion of the para monomtr. 
Thus, the G, levels are lower for J= K=O and the G: levels 

are lower for J&l, both for K=O and for K=_+l. Only the 
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FIG, 2. Splitting by monomer umbrella inversion of the K=O VRT pura- 
para states. The splittings (in MHz) indicated are from experiment (Ref. 5). 
The states on the left-hand side have the labels [l)-(4) in fig. 3(a) of Ref. 
5 and in Table VI of Ref. 7, the states on the right-hand side are labeled 
(13)-(16). Our model predicts that the EI/E, and E,/E4 levels split sym- 
metrically. Observe that this holds experimentully to a very good approxi- 
mation. 

K=-I levels ($6) deviate from this rule, see Table VII. It 
turns out that the splitting between these levels is dominated 
by matrix elements of the operator (56)” between the K = - I 
and the K = 1 components (which interact through the K =O 
states), rather than by the admixed K =O components them- 
selves. The latter contribute f0.2 MHz to the splitting be- 
tween the levels (5) and (6), while the contribution from the 
K = - I and K= 1 mixing is - 1.6 MHz (for the optimized 
value of a). Note that the G levels (5,6) with K=-1 are 
relatively close to the levels (3,4) with K = 1. It is remarkable 
that the negative sign of this minute splitting between the 
levels (5) and (6) is given correctly by our calculations. 

This explanation of the inversion splitting of the G states 
is confirmed by the observed J dependence of these split- 
tings. For the G states with K=O they are almost indepen- 
dent of S. The splittings of the K=tl states, which we in- 
terpret as being introduced via the Coriolis mixing, are 
proportional to J(J+ 1). The splittings of the G states with 
K= +2 are unobservably small.’ This also is consistent with 
our explanation, since one needs indirect Coriolis mixing, 
via the states with K= fl to the K=O states, in order to 
obtain any inversion splitting of the K=+2 states. 

Let us now discuss the splittings of the Ei states (i 
= 1,2,3,4), first for K=O. The theory tells us that no pure first 
order splittings occur in these states. This follows from the 
adaptation of the E, states to the GLti symmetry of the in- 

verting dimer. The resulting Gt and C$ states are generated 
by the projector (E+E*), see Table V, and E* inverts both 
monomers simultaneously, see Table II. In our model, with 
the perturbation Hi,,(pA j+H~,,,(pBj, this simultaneous inver- 
sion does not lead to an observable splitting. Still, the split- 
tings observed-5 for the Ei states with K=O are of the same 
order of magnitude as those of the G states. This is shown in 
Fig. 2, where it is also clarified how these splittings can be 
interpreted. It is important to realize that for K =0 the E, 

state is nearly degenerate with the E3 state, and the Ez state 
with the E4 state. This is a rather surprising phenomenon, 
since the E 1 - E, and E2-- E4 splittings are caused by the 
anisotropy of the intermolecular potential, which is consid- 
erable. The calculations in the preceding paper7 give nearly 
correct small splittings, however, and it is explained why 

these near degeneracies occur. However, given these small 
energy gaps, it is easy to mix the E, and E, states, as well as 
the E2 and E4 states. We include such mixing in our yuaside- 
generate first-order model. The symmetry aspects are rel- 
evant: only the G4f component that arises from the E, state 
will mix with the corresponding component of the E, state 
(for even J). Similarly, the G: component of the E2 state 
mixes with the corresponding component of the E, state. The 
other components remain unaffected, since they have differ- 
ent symmetries, see Table V and Fig. 2. As the amount of 
mixing (and splitting) depends very sensitively on the energy 
gaps between the unperturbed E, lEg and E2/E4 states, and it 
is practically impossible to reproduce these (very small) gaps 
quantitatively by the bound state calculations, we have cho- 
sen to compare the off-diagonal umbrella-tunneling matrix 
elements, rather than the final splittings. These can be ex- 
tracted from the experimental data’ if one assumes that the 
perturbed Ei levels are given by the expressions in Table V. 
It follows from the measured values that this is indeed real- 
istic: the G; -Gl splitting of the E, state nearly equals 
the Cl- GP splitting of the El state and the G; - G: split- 
ting of the E, state nearly equals the Gi -Gz splitting of 
the E2 state, see Fig. 2. In Table VII we observe that the 
tunneling matrix elements calculated with the bound state 
wave functions and the potential from the preceding paper7 
agree well with the values extracted from experiment,” also 
for the Ei states. 

Finally, we consider the Ei states (i = 1,2,3,4) with K= 
2 1. The inversion splittings observed for these states are 
somewhat larger than the splittings of the G states with K = 
k 1, but much smaller than the splittings of the Ei states with 
K=O. We will now show that the mechanism which splits the 
Ei states with K=IT 1 is essentially the same as for the Ei 
states with K=O. The resulting splittings are considerably 
smaller, however, because the near degeneracies of the latter 
states do not occur for K= + 1. It follows from our calcula- 
tions that the off-diagonal umbrella-tunneling matrix ele- 
ments are of similar size, but the energy gaps between the 
unperturbed states are much larger. Instead of the first-order 
approach for quasidegenerate states, one may now apply a 
second order perturbation formula to calculate the splittings. 
Another relevant observation is that the El states with 
K= Ifi 1 do not split because the coupling of their G3 com- 
pone.nt with the corresponding component of the E3 states is 
practically equal to the coupling of their G: component with 
the corresponding component of the E3 states (see Fig. 3). 
This follows from the fact that the E3 and E, levels with 
1 K/ = 1 are degenerate (apart from a small Coriolis splitting), 
and that also their eigenvectors are (practically) the same. 
(One of the components in their symmetry projectors has a 
different sign, of course (see Table IV), but this does not 
affect the size of the coupling matrix elements). Thus, the 
observed” splitting pattern can be completely understood, see 
Fig. 3. The same reasoning holds for the Gf and CT com- 
ponents of the E, states with K= F 1, which are not split 
either, but which contribute to the splitting of the nearby E, 

and E4 states. Even the calculated size of the inversion split- 
ting (37.7 MHz with the optimized value of 4) of the lowest 
E3 and Ed states agrees well with the observed splittings, 
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FIG. 3. Splitting of the K=i-1 VRT para-para states, first by Coriolis 
interaction and then by monomer inversions. Splittings indicated (in MHz) 
are from Ref. 5. The levels in this figure correspond to the states (5)-(10) in 
Fig. 3(a) of Ref. 5 and in Table VI of Ref. 7. The Et state does not split 
under inversion, since the interactions of its G: and G; components with 
the Es and Ed states, respectively, are as good as equal. We predict its shift 
to be of the same magnitude as the observed splittings, ca. 48 MHz. 

which are indeed nearly equal (48.3 and 47.7 MHz). These 
splittings, by contrast with the Coriolis splitting between the 
Es and E4 states with IK] = 1 (384 MHz for the lowest pair, 
for J= l), are (almost) J independent. This is in accord with 
our interpretation. 

V. CONCLUSION 

The theory and the calculations presented in this paper 
lead to a detailed understanding of the observed umbrella 
inversion splittings in (NH&. We recall that these splittings, 
for the states with different symmetry and different K, range 
over 3 orders of magnitude. The calculated splittings are in 
quantitative agreement with the measured data.5 The largest 
splittings occur for the mixed or&--para states (the G 
states) with K=O, because these splittings originate from the 
inversion tunneling of the paru monomer by a true first-order 
mechanism. Although this mechanism is absent for the 
par-a-para states (i.e., the states of E,, E,, E,, and E4 sym- 
metry), the Ei levels with K=O are split by almost equally 
large amounts. This is shown to be related to the near degen- 
eracies in these levels, which lead to a quasi-first-order tun- 
neling mechanism. It is essential in this mechanism that the 
different Ei states have components with the same G1& sym- 
metry. For K#O the energy gaps between the unperturbed 
states of Ei symmetry are much larger, and the quasi-first- 
order mechanism becomes a second order effect. This ex- 
plains why the splittings of the Ei states with KfO are con- 
siderably smaller. The very small splittings of the G states 
with K = + 1 are induced by an indirect mechanism, through 
Coriolis coupling. The “effective” value of A, which was 
optimized for the G states with K=O, considerably improves 

the results for all the other states too (see Table VII). 

Since the inversion splittings appear to depend sensi- 
tively on the intermolecular potential used to generate the 
bound state wave functions, it is confirmed that the potential 
found in the preceding paper7 is realistic. The umbrella in- 
version splittings calculated for (ND,), with the same poten- 
tial are given in Table VIII. For A we have taken the value of 
1.600 GHz for the free ND3 monomer,14 but, if the monomer 
inversion barriers are lowered by 9% [as we assumed when 
scaling A by a factor of 1.75 for (NH,)d, the splittings in 
(ND& should be scaled by a factor of 2.1. The inversion 
splittings of the A t ,A 2 ,A s ,A4 states and the splittings be- 
tween the Gf and G; components arising from the G states 
are also observable in this case. The theory predicts that 
these splittings will be relatively large and J independent, 
even for KfO. In an absolute sense, however, the umbrella 
inversion splitting in ND3 is considerably smaller than in 
NH,, and the reduction of this splitting in the dimer is 
greater (see Table VIII). The predicted splittings are never- 
theless sufficiently large to be measurable; we expect that 
they will soon be observed. 
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APPENDIX 

It is well known that the irreducible representations (ir- 
reps) of an outer direct product group are Kronecker prod- 
ucts of the irreps of the factors. Since the corresponding 
result for semidirect products is more involved16 and less 
well known, we review briefly how to construct an irrep I’ of 
an arbitrary group G-ZYg(e,s}, from the irrep Do of H. 

Let ey = ($[,..., +r,’ carry the f,-dimensional irrep D(h) Y, 
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TABLE VIII. Inversion splittings in (ND&, A=1.600 GHz (Ref. 13). 

Calculation 

Olthof et al.: Monomer inversion in the ammonia dimer 8453 
! 

J=K=O 
B; -A;” 36.99 MHz 

B;-A:b 56.76 MHz 

A;--B;= 70.56 MHz 
h;-B:d -6.50 MHz 

G;-G;= 50.29 MHZ 

G;--G;’ 13.59 MHZ 

G; - GTf 58.93 MHz 

G;-GFf 61.86 MHz 

A(~tl(56)1@3)9 21.13 MHz 

A(Pl(56)l@4Y 56.31 MHz 

%round A, state. 
bFirst excited At state. 
‘Ground A, state. 
dFirst excited A4 state. 
eGround G state. 
‘kist excited G state. 
sOff-diagonal matrix element between states of G: symmetry. 
hOff-diagonal matrix element between states of G: symmetry. 

Downloaded 13 Jun 2006 to 128.32.220.140. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



8454 Olthof et al.: Monomer inversion in the ammonia dimer 

h1Q’= ~W(h)“, h E H. 

Since by the definition of a semidirect product the subgroup 
H is invariant in G, we have hs=sh’ with h’ EH. Acting 
with the element Izie+s), we find 

then, using that the irreps are identical, we tind 

il(eCs)Jly=~-rl’D(A)r-+sIdrrll.)(h’)r, h,h’ E H. 

If L)(hjY=l[d(.s-‘ks)Y=B)(h’)Y for all h E H, then it is clear 
that (e 2s j rl/y carries an irrep of G, where the elements of 
the coset Hs are represented by t!lY’, because Izs(r+,sj 
=ilz(e+.s). If UB(h)Y and D(.~-‘ks)~ are equivalent, but 
not identical. we find by an easy extension of the argument 
that also an f,-dimensional irrep of G is generated, but car- 

hihJisIjiY@ ~“=skjhI rcr’~ MY’ 

= s @Y0 (by’ ED( hj) 70 U,(h ; ) y’ 

=s*Y0+y’D(h; jYOD(hijy’ 

~S~Y??,~Y’TID(k~)Y’O~~(h~j~~l. 

i 

ried by the basis i@‘?s+r~), where 3’ gives the equivalence 
transformation. 

if, on the other hand, we assume that D(k)” and 

I jt9(h’)Y=s:D(s-‘hsj’=13(h)Y’, while yand f are nonequiva- 

I lent irreps, then 

In the last step we used the fact that the commutation of the 
factors in a Kronecker product matrix implies a simple reor- 
dering of the basis, effect+ by the permutation matrix T. 
Hence, the basis s@‘@#? carries the irrep of H@ H’ 
(equivalent to) y’ @ y. 

i D(hjy 10 
hi GYJ VI = ! clrYd VI ( (1 Ijih) y) 

and 

ks( $v,s$YY)= ($Y,s,~j( ;(ll)y!h)lj. 

By Schur’s lemma it is possible to reduce such a set of ma- 
trices if and only if y and y’ are equivalent, which by as- 
sumption is not the case. Hence, a 2f,-dimensional irrep of 
G is obtained, which is carried by (tiY,s$y). It is evident that 
this construction yields a sequence adapted basis, i.e., restric- 
tion of the irrep of G to H gives a decomposed irrep. It is of 
interest to relate this group structure to the Wigner operators, 
defined by 

In the first case, when the restriction of I? to H is 7, it is 
easily shown that 

P~z~=(t+s)Q,Y,, 

where Q,:, is a Wigner operator for H. In the second case, 
where IylH=y@f, the subscripts are compound 
indices: a++(X,a’j and E++(,u,b’). and 

PfoLfib’= 
i 

Q&f for X==p 

. ,> sQ;th, otherwise’ 

It follows that Px = IV“*YQz,h, with W”‘7Y=(e+s), e, or s. 
We have to repeat this procedure several times, when going 
along the group chain, and it is clear that tVr3r will be a 
simple product of coset generators and factors of the e+s 
kind. Another group theoretical fact needed in the develop- 
ment of the main text is the following. Consider two com- 
muting isomorphic groups H and H’ with hicthj, hiE H, 
hl E H’, and i=l,..., /H[=/H’1. Let H@H’CG and let 

LEG be such that h;hlS = .sh,hi , i.e., (H@H’)@{e,s} is 
a wreath product.“‘“’ Suppose further that the groups have 
identical-not just equivalent-irreps, i.e.., !Jl(:hi)’ 
= iD(kj)Y for all yand i. If 
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