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THE NATURE OF SINGULARITIES IN MEAN CURVATURE
FLOW OF MEAN-CONVEX SETS

BRIAN WHITE

Introduction

Let K be a compact subset of Rn+1, or, more generally, of an (n+1)-dimensional
riemannian manifold. We suppose that K is mean-convex. If the boundary of K
is smooth and connected, this means that the mean curvature of ∂K is everywhere
nonnegative (with respect to the inward unit normal) and is not identically 0. More
generally, it means that Ft(K) is contained in the interior of K for t > 0, where
Ft(K) is the set obtained by letting K evolve for time t under the level set mean
curvature flow. As K evolves, it traces out a closed set K of spacetime:

K = {(x, t) ∈ Rn+1 ×R : x ∈ Ft(K)}.
Also, there is associated to K a Brakke flow

M : t 7→Mt

of rectifiable varifolds. We call the pair (M,K) a mean-convex flow.
Let X = (x, t) be a point in spacetime with t > 0. Suppose (xi, ti) is a sequence

of points converging to X and λi is a sequence of positive numbers tending to
infinity. Translate the pair M and K in spacetime by

(y, τ) 7→ (y − xi, τ − ti)
and then dilate parabolically by

(y, τ) 7→ (λiy, λ2
i τ)

to get new flows Mi and Ki. The sequence (Mi,Ki) is called a blow-up sequence
at X . General compactness theorems guarantee that this sequence will have sub-
sequential limits. A subsequential limit (M′,K′) is called a limit flow. Here

M′ : t ∈ (−∞,∞) 7→M ′t

is a Brakke flow and
K′ : t ∈ (−∞,∞) 7→ K ′t

is a “weak set flow” [W4, §2.2], [W2] (or “set-theoretic subsolution” in the termi-
nology of [I1] and [I2]).
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Let T ∗ be the first time that singularities occur in the flow (M,K). For analyzing
the singularities that occur at time T ∗, it is useful to consider the special case when
each ti is ≤ T ∗. A limit flow obtained in this way is called a special limit flow.

If (xi, ti) ≡ (x, t), then the limit flow (M′,K′) is called a tangent flow to (M,K)
at X . Every tangent flow is “backwardly self-similar” in that

K ′−r2 ≡ (r)#K
′
−1

and
M ′−r2 ≡ (r)#M

′
−1

for r ≥ 0. (See [W3, §7] or [I3].) Here (r)# : z 7→ rz denotes dilation by r.
In this paper we prove

Theorem 1. Let (M,K) be a mean-convex flow in Rn+1 or in an (n+ 1)-dimen-
sional riemannian manifold. Let (M′,K′) be any limit flow if n < 7, or a special
limit flow if n ≥ 7. Then K ′t is convex for every t, and there is a T ≤ ∞ such that

(1) K ′t has interior points if and only if t < T .
(2) ∂K ′t is smooth for t < T .
(3) K ′t = ∅ for t > T .

Furthermore, if (M′,K′) is backwardly self-similar, then it is either (i) a static
multiplicity 1 plane or (ii) a shrinking sphere or cylinder.

(We say that (M′,K′) is a shrinking sphere (cylinder) if ∂K ′t is a sphere (cylinder)
for all t < 0.)

Corollary. Let (xi, ti) be a sequence of regular points of (M,K) converging to a
singular point (x, t). If n ≥ 7, assume that ti ≤ T ∗, where T ∗ is the first time that
singularities occur. Let hi be the scalar mean curvature of Mti at xi. Translate
Mti by −xi and then dilate by hi to get a surface M̃(i). Then a subsequence of the
M̃(i) converges smoothly on compact sets to a smooth convex surface M̃ .

The proofs of Theorem 1 and its corollary are completed in the penultimate
section (“Conclusion”) of this paper.

Theorem 1 does not completely characterize the class of limit flows to mean-
convex flows. For example the grim reaper flow in R2 (or its cartesian product
with Rn−1 in Rn+1) satisfies all the conclusions of Theorem 1, but does not arise
as a limit flow (or special limit flow if n ≥ 7) to any mean-convex flow (see Corollary
4 to Theorem 5). (The higher-dimensional analogs of the grim reaper that have
more rotational symmetry do occur as limit flows to mean-convex flows.) Some
conjectures that go beyond Theorem 1 are listed at the end of the paper.

Gerhard Huisken and Carlo Sinestrari [HS1], [HS2] recently proved a result very
similar to the corollary above by a different method. However, even in low dimen-
sions their proof requires that ti < T ∗. Also, their result requires that the sequence
(xi, ti) be chosen in a particular way.

Preliminaries

This paper relies very heavily on [W4]. For basic properties of mean-convex flows,
limit flows, and tangent flows, the reader is referred to the first few sections of that
paper. We will also need the following two results, which are local consequences of
the strict maximum principle.
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Theorem 2 (strict maximum principle for h). Let M be a Brakke flow of hyper-
surfaces in Rn+1. Suppose the mean curvature is ≥ 0 at every regular point, and is
0 at some regular point X = (x, τ). Then there is a neighborhood W of x, a smooth
connected minimal hypersurface S properly embedded in W , and an ε > 0 such that

Mt ∩W = S

for τ − ε ≤ t ≤ τ .

Proof. Since X is a regular point, we can parametrizeM near X by a mapping

(u, t) ∈ U × (τ − δ, τ + δ)→ (F (u, t), t)

where U is an open set in Rn and
∂

∂t
F = ∆F.

(Here ∆ denotes the laplacian with respect to the metric induced by F ; that is,
the pull-back by F of the euclidean metric on Rn+1.) Huisken [H1] shows that the
scalar mean curvature h(x, t) satisfies

∂

∂t
h = ∆h+ |A|2h

where A is the second fundamental form at F (u, t).
Then by the strict maximum principle, h ≡ 0 on U × (τ − δ, τ ]. Thus ∂

∂tF ≡ 0
on (τ − ε, τ ] so F is independent of t in this set:

F (u, t) ≡ φ(u).

But this immediately implies the desired result. �

Remark (not needed in this paper). The reader may wonder why the conclusion
of Theorem 1 is only asserted for t ≤ τ . The reason is that the theorem and its
proof are essentially local, and to conclude that Mt ∩ W = S for t > τ would
require a very different global argument. Indeed, that conclusion would be false in
some settings. Consider for example motion by mean curvature of a manifold with
boundary, the motion of the boundary being prescribed. If the boundary is still for
t ≤ τ and then starts moving, the conclusion of Theorem 2 will typically not hold
for t > τ .

For the next result, we need some notation. If M is an n-dimensional hypersur-
face and x is a regular point of M , we let

G(M,x) =
κ1(x)
h(x)

provided h(x) > 0, where

κ1(x) ≤ κ2(x) ≤ . . . ≤ κn(x)

are the principal curvatures of M at x and

h(x) =
n∑
i=1

κi(x)

is the mean curvature.
If h(x) = 0, then κ1(x) ≤ 0; in this case, we let G(M,x) be −∞ or undefined

according to whether κ1(x) is negative or 0. Note that if a sequence of surfaces
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Mi converges smoothly to M and xi ∈ Mi converges to x ∈ M , then G(Mi, xi)
converges to G(M,x) unless G(M,x) is undefined.

If X = (x, t) is a regular point of a flow M of hypersurfaces, then we let

G(M, X) = G(Mt, x).

Theorem 3 (strict maximum principle for G). Let M be a mean curvature flow
of hypersurfaces in Rn+1. Suppose there is an open subset U of spacetime such
that M is smooth in U and such that the mean curvature is strictly positive in U .
Suppose also that there is an X0 = (x0, t0) in U such that

G(M, X0) = min{G(M, X) : X = (x, t) ∈ U and t ≤ t0}.

Then G is a nonnegative constant for t ≤ t0 in a spacetime neighborhood of X0.

Proof. Let γ = G(M, X0). The result follows from Hamilton’s strict maximum
principle [Ha, §8] for tensors, applied to the tensor

T (u, v) = A(u, v)− γ h u · v

where h is the mean curvature, γ = G(M, X0), and

A : TanM × TanM → R

is the second fundamental form. �

Readers who are not quite conversant both with Hamilton’s paper and with the
equations in Huisken’s paper [H1] may find it troublesome to verify that the tensor
T in fact satisfies the hypotheses of Hamilton’s theorem. For the benefit of those
readers, a more self-contained proof (along the same lines) of Theorem 3 is given
in the appendix to this paper.

First results

Throughout this paper, we will let (M,K) be a mean-convex flow in an (n+ 1)-
manifold. Fix some spacetime point Z with positive time coordinate and let

F =

{
{all limit flows at Z} if n < 7,
{all special limit flows at Z} if n ≥ 7.

Note that the class F is compact and closed under parabolic dilations. If n < 7, F
is also closed under all spacetime translations:

(*) (x, t) ∈ Rn+1 ×R 7→ (x+ u, t+ v).

If n ≥ 7, it is closed under those spacetime translations (∗) with v ≥ 0.

Theorem 4. The class F does not contain any static singular cones.

Proof for n < 7. Any such cone corresponds to a stable one-sided area minimizing
hypercone in Rn+1. But there are no such cones if n < 7. (See [W4, §8.7].) �

Proof for n ≥ 7. For the case n ≥ 7, we observe that by the strong maximum
principle for h (Theorem 2), the mean curvature of Mt is strictly positive for 0 <
t < T ∗. This implies (by compactness of Mt) that the quantity

G(t) := inf{G(Mt, x) : x ∈Mt}
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is > −∞ for each t ∈ (0, T ∗). The maximum principle for G (Theorem 3) then
implies that G(t) is increasing on (0, T ∗). In particular, there is a Γ ∈ R such that

(1) G(Mt, x) ≥ Γ

for all x ∈Mt and t < T ∗.
Now suppose, contrary to the theorem, that F contains a nonplanar static min-

imal cone (M′,K′), so that
M ′t ≡M ′ (∀t)

where M ′ is a minimal cone. Let (Mi,Ki) be a special blow-up sequence converging
to (M′,K′). The mean-convexity implies that M ′ is stable and one-sided area
minimizing, which implies that its singular set has dimension ≤ n − 7 [W4, §8.7].
This in turn implies that there is a regular point x of M ′ at which the second
fundamental form is nonzero. Thus h(x) = 0 and κ1(x) < 0, so

(2) G(M ′, x) = −∞
where G is as in Theorem 3.

Now M′ is smooth in a spacetime neigborhood U of X = (x, 0). Then the Mi

converge smoothly toM in a neighborhood of X . (This is by the Brakke regularity
theorem ([B] or [W5]) if the multiplicity ofM′ near X is 1, and is by the “sheeting
theorem” [W4, §8.1] if the multiplicity is 2. In the latter case, the convergence is
two-sheeted. No other multiplicities are possible [W4, §3.9].)

Now let Xi be a sequence of points in the support of Mi that converges to X .
By the smooth convergence, Xi will be a regular point of Mi for all sufficiently
large i, and

G(Mi, Xi)→ G(M′, X).
But G(Mi, Xi) ≥ Γ > −∞ by (1), whereas G(M′, X) = −∞ by (2). The contra-
diction proves the theorem. �

Theorem 5. Let (M′,K′) be in F . Suppose a tangent flow to (M′,K′) at some
point X is a static or quasistatic plane. Then the tangent flow must be a static
multiplicity 1 plane, and hence X must be a regular point of (M′,K′).

Proof. If there were a spacetime point of multiplicity > 1, there would be such a
point (x, t) with t < 0 [W4, §12.2]. But then by [W4, §12.3], the class F would
contain a static singular minimal cone. (Theorem 12.3 of [W4] is stated only for
limit flows, but the proof also works for special limit flows.) But by Theorem 4, F
does not contain any such cones.

Thus the tangent flow must be a static or quasistatic multiplicity 1 plane. But
quasistatic multiplicity 1 planes cannot occur as limit flows of mean-convex flows
[W4, §5.4]. Hence the tangent flow is a static multiplicity 1 plane. Thus by Brakke’s
regularity theorem, X is a regular point of (M′,K′). �

Corollary 1. Let (M′,K′) be a flow in F . Then there is a T ≤ ∞ such that K ′t
has nonempty interior for t < T , and K ′t = ∅ for t > T .

Proof. Suppose M ′t 6= 0. Then there is a point (x, t) at which one of the tangent
flows is a static or quasistatic plane. By the theorem, it must be a multiplicity
1 plane, which means (by Brakke regularity) that (x, t) is a regular point. Thus
Mt is (near x) a smooth hypersurface with the interior of K ′t on one side and the
complement of K ′t on the other. Thus K ′t has interior points. �
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Corollary 2. Suppose (M′,K′) is a backwardly self-similar flow in F and X =
(x, t) is a point in the support of M′ with t < 0. Then X is a regular multiplicity
1 point of (M′,K′). Thus the t < 0 portion of (M′,K′) is everywhere regular.

Proof. Let (M′′,K′′) be a tangent flow to (M′,K′) at X . Then (M′′,K′′) is also
in F . By the self-similarity of (M′,K′), this tangent flow must be a static minimal
cone. Thus by Theorem 4, it is a static plane. Hence by Theorem 5, X is a regular
point of (M′,K′). �

Corollary 3. Suppose (M′,K′) is in F . Then the singular set of (M′,K′) has
parabolic Hausdorff dimension ≤ n − 1, and for almost every t, (singM′)t has
dimension ≤ n− 3.

Proof. No static or quasistatic singular polyhedral cones occur as tangent flows to
(M′,K′) by [W4, §8.7]. And by Theorem 5, no static or quasistatic planes occur as
tangent flows at any singular point. Then the general stratification (or dimension
reducing) theory [W3, §9] gives the asserted bounds on dimension. �

Corollary 4. Let (M′,K′) be the “grim reaper” flow:

K′ = {(x, t) : x2 ≤ ln(cosx1)− t, −1 < x1 < 1}.

Then (M′,K′) is not in F .

Proof. Let (M′′,K′′) be the tangent flow at infinity to (M′,K′). (In other words, di-
late (M′,K′) parabolically by 1/r and let r →∞: the resulting limit is (M′′,K′′).)
Then (M′′,K′′) is a quasistatic multiplicity two plane. If (M′,K′) were in F , then
(M′′,K′′) would be also. But by Theorem 5, (M′′,K′′) is not in F . �

Theorem 6. Let (M′,K′) be a flow in F such that the mean curvature of M ′t
vanishes at x for some regular point (x, t). Then (M′,K′) is a a static multiplicity
1 plane. That is, there is a half-space H of Rn+1 such that

K′ = H ×R

and such that for every t, M ′t is the multiplicity 1 varifold associated with ∂H.

Proof. By the strict maximum principle for h (Theorem 2), (x, τ) is a regular point
with mean curvature 0 for τ in some interval (t− ε, t]. By Corollary 3 to Theorem
5, we can choose τ so that

(*) (singM′)τ
has dimension ≤ n− 3.

By Theorem 1, there is an entire connected component C of the regular set of
M ′τ on which the mean curvature vanishes.

Let singM′ be the set of spacetime singularities of M′. Let Y be a point in
C × (−∞, τ ]. Since singM′ has parabolic dimension ≤ n − 1 (and (singM′)t has
dimension ≤ n − 3) and since C is pathwise connected, it follows that there is a
spacetime curve:

γ : [0, 1]→ Rn+1 ×R

such that γ(0) = Y , γ(1) = (x, t), and such that the time component of γ(·) is
monotonic.
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It follows from the strict maximum principle (Theorem 2) that each point in the
image of γ is inM′ and that the mean curvature is 0 there. Since Y ∈ C \(singM′)
was arbitrary, this means that

C × (−∞, t] ⊂ sptM′.

Now let (M′′,K′′) be a tangent flow at infinity to (M′,K′) (in other words,
a subsequential limit as r → 0 of Dr(M′,K′)). Then (M′′,K′′) is a backward
self-similar flow F and

C′′ × (−∞, 0] ⊂ sptM′′

where C′′ is a tangent cone at infinity to the minimal variety C.
By Corollary 2 to Theorem 5, M′′ is completely smooth until time 0. Thus one

connected component must be C′′ × (−∞, 0). Since C′′ is a smooth cone, it must
be a hyperplane.

Now suppose the portion of the flow M′′ with t < 0 had another connected
component

N : t ∈ (−∞, 0) 7→ Nt.

Then Nt would lie (strictly) to one side of C′′ for t < 0, but (by self-similarity)
would come arbitrarily close to the origin in C as t → 0. But this would violate
the strong half-space theorem below.

Hence M ′′t is C′′ (with multiplicity 1) for t < 0. It follows [W4, §5.4] that
(M′′,K′′) is a static multiplicity 1 plane. But that implies (by monotonicity) that
(M′,K′) is also a static multiplicity 1 plane. �

We end this section by proving the strong half-space theorem, which was used
above.

Theorem 7 (strong half-space theorem). Let M : t ∈ [a, b] 7→Mt be a brakke flow
(or more generally a weak set flow) of hypersurfaces in Rn+1. Suppose there is a
closed half-space H such that H contains Ma but Ma does not contain all of ∂H.
Then for every t > a, Mt is contained in the interior of H.

Proof. We may assume that a = 0 and H = {x : xn+1 ≥ 0}. Shrinking spheres used
as barriers show that Mt is contained in H for all t [B, §3.8]. Let f : Rn → R be a
smooth compactly supported function that is everywhere ≥ 0 but not everywhere
= 0 and whose graph lies below Ma. Fix a large ball B in Rn containing the
support of f .

Now let
u : B× [0,∞)→ R

be the solution of the nonparametric mean curvature flow equation with initial
values u(·, 0) = φ and with boundary values u(x, t) ≡ 0 for x ∈ ∂B. By the strict
maximum principle, u > 0 on the interior of B× [0,∞).

For every ε > 0, it follows that the graph of

x 7→ u(x, t)− ε

is disjoint from Mt for all t. Since this is true for every ε > 0, we see that (for every
t) the portion of Mt in B×R lies in the closed region above the graph of u(·, t).

In particular, (for t > 0) no point of Mt in the interior of B×R can touch ∂H .
Since B can be arbitrarily large, this establishes the theorem. �
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Convexity theorems

Theorem 8. Let (M′,K′) be a flow in F and X = (x, t) be a regular point with
t ≤ 0 and with nonzero mean curvature. Then the principal curvatures of M ′t at x
are all ≥ 0.

Proof. Let γ be the infimum of G(X) over all such regular points X of all such
flows (M′,K′). Let (Mi,Ki) be a sequence of flows in F and Xi a corresponding
sequence of such regular points such that

G(Mi, Xi)→ γ.

By translating, we may assume Xi ≡ 0. By dilating, we may assume

(*) sup
|Y |<1

B(Mi, Y ) ≤ 1 ≤ sup
|Y |≤1

B(Mi, Y ).

(The notation is as follows: If Y = (y, t) is a regular point of M, then B(M, Y )
is the norm of the second fundamental form of Mt at y. If Y is a singular point,
B(M, Y ) is infinite.)

By passing to a subsequence, we may assume that the (Mi,Ki) converge to a
limit flow (M′,K′). Note that the convergence will be smooth on compact subsets
of {Y : |Y | < 1}.

Note that (M′,K′) cannot be a static multiplicity 1 plane. For if it were, then
the convergence (Mi,Ki) → (M′,K′) would be uniform and smooth on compact
subsets of spacetime, contradicting (∗).

By Theorem 6, it follows that the mean curvature is strictly positive at every
regular point of (M′,K′) (up to and including time 0). In particular, the mean
curvature must be strictly positive in Bn+1,1(0, 1). Now

G(M′, 0) = limG(Mi, 0) = γ ≤ G(M′, Y )

for every regular Y = (y, t) with t ≤ 0. Thus the strict maximum principle for G
(Theorem 3) implies that γ ≥ 0. �

Theorem 9. For each t ≤ 0, the interior of K ′t is convex. (If n < 7, then this
holds for all t.)

Proof. First note that the result is true for static flows, since the only static flow
in F is a multiplicity 1 plane (by Theorem 6).

Now let x and y be in the interior of K ′T . Then there is an R > 0 such that

(*) B(x,R) ∪B(y,R) ⊂ interior(K ′T ).

Let (K′′,M′′) be the limit flow obtained by applying the translation

(x, t) ∈ Rn+1 ×R 7→ (x, t+ j)

to (M′,K′) and then letting j →∞. Of course (M′′,K′′) is a static flow with

K ′′t ≡
⋃
τ

K ′τ (∀t).

Since K ′′t is independent of t, we omit the subscript. Now since x and y are in
the interior of K ′′, so is every point in the segment joining x to y (since we know
the theorem holds for static flows). Thus for some τ < T ,

xy ⊂ interiorK ′τ .
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Without loss of generality we may assume that

x = (−1, 0) ∈ R×Rn ∼= Rn+1,

y = (1, 0) ∈ R×Rn ∼= Rn+1.

Now let
V = {z ∈ Rn+1 : −1 ≤ z1 ≤ 1, |zn| ≤ ε|z1|2}

where ε ⊂ (0, R) is small enough that V is contained in the interior of K ′τ .
Now we claim that V ⊂ K ′T . For if not, there would be a first time t < T at

which M ′t touches V . By (∗), the contact would occur at a point z with |z1| < 1.
Note that (z, t) must be a regular point of (M′,K′). (The proof that it is regular

is as follows. Let (M∗,K∗) be a tangent flow to (M′,K′) at (z, t). Then

H ⊂ K∗τ
for τ ≤ 0, where H is a closed half-space bounded by TanzM ′t. Note that 0 ∈
sptM∗0 . But now, just as in the last two paragraphs of the proof of Theorem 6, the
strong half-space theorem implies (M∗,K∗) is a static multiplicity 1 plane. Hence
(z, t) is a regular point of (M′,K′).)

But since V ⊂ K ′t, one of the principal curvatures of M ′t at z would have to be
negative, contradicting Theorem 8. �

Corollary. Let (M′,K′) be a flow in F . Then K ′t is convex for all t.

Proof. By Theorem 5, the regular points form a dense subset of sptM′. Each
regular point is in the closure of the interior of K′. Thus sptM′ is contained in the
closure of the interior of K′. But sptM′ = ∂K′ [W4, §5.3]. Thus ∂K′ is contained
in the closure of the interior of K′.

Theorem 9 then implies that K ′t is convex for every t ≤ 0. But now [W6] implies
that K ′t is convex for all t. �

Theorem 10. Let (M′,K′) be a backwardly self-similar flow of convex sets with
multiplicity 1 almost everywhere. Then (M′,K′) is either a static multiplicity 1
plane or a shrinking cylinder. That is, either

K ′t ≡ K ′−1 = a half-space H

or else K ′−1 is after a rotation of the form

Rk ×Bn+1−k(0, r)

for some r > 0 and k ∈ {0, 1, . . . , n− 1}.

Proof. First, if the flow is static or quasistatic, then K ′−1 is a convex set whose
boundary is a minimal cone. This implies that the cone is in fact a plane.

Thus suppose (M′,K′) is not static or quasistatic. Then every point (x, t) with
t < 0 is a regular point. (Otherwise the tangent flow at (x, t) would be a static
counterexample to the theorem.)

Thus S = M ′−1 is a smooth surface that satisfies the equation for self-similarly
shrinking surfaces, namely

(1) h(x) = x · ν
where h(x) is the mean curvature at x. (Remark: this equation is equivalent to
minimality of S with respect to the riemannian metric gij(x) = e−|x|

2/2δij .)
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This equation together with convexity implies

(2) |A(x)| ≤ h(x) ≤ |x|

(where |A(x)|2 is the sum of the squares of the principal curvatures at x). Thus if we
represent the surface near x as a graph over its tangent plane, the second derivatives
are bounded by a constant times |x|. The equation (1) becomes a second-order
quasielliptic equation, and standard regularity gives estimates on higher derivatives.
In particular

|∇A(x)| ≤ C|x|2.

Now the proof in [H2, §5] shows that S must be a cylinder, provided we check
one step: in that proof, there is an integration by parts that must be justified.
That is, we must show that the boundary term can be neglected. (In [H2], the
second fundamental form of S is known to be bounded, whereas we do not know
that here.)

The boundary term is

(3)
∫
∂(S∩B(0,R))

|A|2∇
(
|A|2
h2

)
·Nρ

where N is the exterior unit normal to the domain of integration and

ρ(x) = exp
(
−|x|2/2

)
.

We need to show that this tends to 0 as r →∞. Now

|A|2∇
(
|A|2
h2

)
=
(
|A|2
h2
∇(|A|2)− |A|

4

H4
∇(h2)

)
·N.

By (2), this is bounded in norm by

|∇(|A|2)|+ |∇(h2)| ≤ C|x|4.

Thus the integral (3) is bounded by

Cr4e−r
2/2 area(∂(S ∩B(0, r))

which is bounded by Cr3+ne−r
2/2 by convexity of S. Since this tends to 0 as

r→∞, we are done. �

Theorem 11. Let (M′,K′) be a flow in F . If K ′t has nonempty interior, then
every point (x, t) in the support of M′ is a regular point.

Proof. By hypothesis, there is a ball B in K ′t. By convexity, the convex hull of B
and x is contained in K ′t. This implies that

(4) lim inf
r→0

Ln+1(K ′t ∩B(x, r))
Ln+1B(x, r)

> 0.

Now if (x, t) were a singular point of (M′,K′), then by the theorem its tangent
flows would be shrinking spheres or cylinders, which would force the limit in (4) to
be 0. �
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Conclusion

Let (M′,K′) be a flow in the class F . By Theorem 9 and its corollary, K ′t is
convex for every t. By Corollary 1 to Theorem 5, there is a T ≤ ∞ such that K ′t
has nonempty interior for t < T , and such that K ′t is empty for t > T . By Theorem
11, there are no singular points of (M′,K′) until time T . By Theorem 10, if the
flow is backwardly self-similar, then it is a shrinking sphere or cylinder (or a static
multiplicity one plane). This completes the proof of Theorem 1.

To prove the corollary to Theorem 1, we translate (M,K) in spacetime by
(−xi,−ti) and then dilate parabolically to get (Mi,Ki) such that

(*) sup
|Y |<1

B(Mi, Y ) ≤ 1 ≤ sup
|Y |≤1

B(Mi, Y )

just as was done in the proof of Theorem 8. As in that proof, a subsequence of
(Mi,Ki) (which we may assume to be the original sequence) converges to a limit
flow (M′,K′) in F in which the origin (of spacetime) is a regular point with strictly
positive mean curvature h.

Since the origin is a regular point, Theorem 1 implies that M ′t is smooth and
convex until some time T > 0 (possibly infinite). Brakke’s regularity theorem then
implies that the convergence

(Mi)0 →M ′0
is smooth on compact sets. In particular, the mean curvature of (Mi)0 at 0 con-
verges to the mean curvature of M ′0 at 0.

It follows immediately that that the surfaces M̃(i) (in the statement of the
corollary) converge smoothly on compact sets to M̃ , where M̃ is obtained from M ′0
by a dilating by h. (This normalizes the mean curvature of M̃ at the origin to be
1.) This completes the proof of the corollary.

Conjectures

Let F be as in Theorem 1. Let us call a Brakke flow M′ eternal if M ′t 6= 0 for
all t. Let us call a flow trivial if it is a static multiplicity 1 plane.

Conjecture 1. Any nontrivial eternal flow M′ of smooth convex surfaces is a
translating solution. That is, there is a vector v such that M ′t+s is obtained from
M ′t by translating it by sv.

Conjecture 2. IfM′ is an eternal convex translating flow, then (after a rotation)
M ′0 has the form

(*) {(x, y, z) ∈ Rj ×Rn−j ×R : z = f(|x|)}
where j ≥ 1.

It is not hard to prove that for each j ≥ 1, there is an f (unique up to scaling)
such that the surface (∗) moves by translation. (If j = 1, f is the “grim reaper”
curve f(r) = ln(cos r) for −1 < r < 1. For j > 1, the domain of f is all of Rj .)
The conjecture is that these are the only translating flows.

(As proved in Corollary 4 to Theorem 5, the j = 1 example does not actually
arise as a limit flow to any mean-convex flow.)

Remark. Even if Conjecture 1 and/or Conjecture 2 are false, they may be true for
eternal limit flows to a mean-convex flow.
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Conjecture 3. Suppose (M′,K′) ∈ F is not eternal. Then (after a spacetime
translation) it is backwards self-similar (and therefore a shrinking sphere or cylin-
der).

The assertion is false if we simply assume that M′ is a flow of convex surfaces
with M ′t 6= 0 for t < 0 and M ′t = 0 for t > 0. A counterexample is as follows. If
K is a compact convex region that is symmetric with respect to x 7→ −x, say that
the eccentricity e(K) of K is the ratio of the circumradius to the inradius:

e(K) =
max{|x| : x ∈ K}
min{|x| : x ∈ ∂K} .

For j = 2, 3, . . . , consider the mean curvature (M(j),K(j)) flow generated by such
a convex set of eccentricity j. By [H1], the eccentricity tends to 1 in finite time.
Thus by translating in spacetime and scaling, we may assume that the initial time
t(j) < 0 and that at time t = 0, the convex set has inradius 1 and circumradius
2. It is then not hard to show that t(j) → −∞ as j → ∞. Let (M′,K′) be a
subsequential limit of the flows. Then e(K ′0) = 2, so K ′0 is neither a sphere nor a
cylinder.

Appendix: Proof of the strict maximum principle for G

Throughout this section, g = gij(x, t)dxi⊗dxj will be a time-dependent riemann-
ian metric on Ω× (a, b], where Ω is a connected open subset of Rn. Let v = vi ∂

∂xi

be a vectorfield defined on Ω× (a, b]. We will say that v is time-parallel provided

(1) ∂
∂tv

i = −1
2
gij( ∂∂tgjk)vk.

Note that any vectorfield v(·, t) defined at one time t uniquely determines a time-
parallel vectorfield by solving the ODE system (1).

(The equations (1) may seem arbitrary, but in fact they are quite natural. Indeed,
they state that δ ∂

∂t
v = 0, where δ is the Levi-Civita connnection for the riemannian

metric dt⊗dt+ gijdx
i⊗dxj on Ω× (a, t0]. We will not, however, explicitly use this

connection in what follows.)

Lemma A1. The length of a time-parallel vectorfield v(x, ·) is constant in time.

Note. Here and throughout this appendix, all metric concepts (Laplacian, unit
vector, parallel, geodesic) are with respect to the metric g.

Proof. Using (1), one readily computes that ∂
∂t (gijv

ivj) = 0. (This also follows
immediately from the parenthetical remark above about the Levi-Civita connec-
tion.) �

The following two propositions are slight variants of [Ha, §8.2].

Proposition A2. Suppose M = Mij(x, t)dxi ⊗ dxj is a smooth time-dependent
symmetric 2-tensorfield such that

∂

∂t
(M(v,v)) ≥ (∆M)(v,v)

for all time-parallel vectorfields v. Let λ(x, t) be the smallest eigenvalue of M(x, t),
i.e., the smallest value of M(x, t)(u,u) among all unit vectors u. If the minimum
value of λ on Ω×(a, b] occurs at (x, b), then λ is constant on Ω×(a, b]. Furthermore,
if v is an eigenvector of M(x, t) with eigenvalue λ, then (∆M)(v,v) = 0.
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Proof. Given a spacetime point p = (x, t), let v = vp be a unit vector such that
M(v,v) = λ. Extend v to a unit vectorfield v(·, t) at time t by parallel translation
along geodesics emanating from x. This way of extending v guarantees that

(2) (∆M)(v,v) = ∆(M(v,v)) at (x, t).

Now extend v as a time-parallel vectorfield on Ω×(a, b]. Then v is a unit vectorfield
(Lemma A1), so

(3) λ ≤M(v,v), with equality at (x, t).

Suppose for the moment that λ is a smooth function on Ω× (a, b]. Then by (3) and
(2),

(4)
∂

∂t
λ =

∂

∂t
(M(v,v)) ≥ (∆M)(v,v) = ∆(M(v,v)) ≥ ∆λ

at the point (x, t). (The first equality and last inequality are by (3).) Thus if λ is
smooth, then

(5)
∂

∂t
λ ≥ ∆λ.

Even if λ is not smooth, the derivation just given shows that (5) holds in a viscosity
sense.

(Remark: in the nonsmooth case, one should think of ∂
∂tλ as

lim inf
h→0,h>0

λ(x, t)− λ(x, t − h)
h

.

Then by (3), we will still have ∂
∂tλ ≥

∂
∂t (M(v,v)) at (x, t).)

The strict maximum principle (cf. Theorem 3, Chapter 5 of [PW]) then implies
that λ is constant.

Now consider the point (x, t) and the special vectorfield v defined above. Since
λ is constant, the first and last terms in (4) vanish. This forces all the terms, in
particular (∆M)(v,v), to vanish at (x, t).

(Readers unfamiliar with viscosity solutions may wonder how the proof of the
strict maximum principle for smooth functions applies to a nonsmooth function such
as λ. The maximum principle for smooth λ is proved using smooth functions u such
that ut < ∆u and then observing that it is impossible for λ−u to attain a minimum
(on certain domains). In the nonsmooth case, note that if λ−u attained a minimum
at a spacetime point p, then for v = vp, the function f = M(v,v) − u would also
have a minimum at the spacetime point p, which readily gives a contradiction since
f is a smooth function with ft > ∆f .) �

Proposition A3. Assume the hypotheses of Proposition A1, so that λ is constant.
Then at each time t, Ω is locally isometric to a product

P ×Q
of two riemannian manifolds P and Q, where a vector v is “horizontal” (i.e., its
projection to Q vanishes) if and only it is an eigenvector of M with eigenvalue λ.

Proof. Without loss of generality, we may assume that λ ≡ 0; otherwise replace
M by M − λg. Fix a time t. It suffices to prove the conclusion on an open dense
subset of Ω. Since the nullity (dimension of the nullspace) of M is locally constant
on a dense open subset of Ω, we may assume it is constant throughout Ω.
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Now fix some point (x, t). Let ei be a g-orthonormal basis at (x, t), and extend
(spatially) by parallel translation along geodesics emanating from x; this guarantees
that ∆T = ∇ei (∇eiT ) for any tensorfield T . Now M(v, ·) ≡ 0, so

0 = ∆(M(v,v))

= ∇ei(∇ei (M(v,v)))

= ∇ei ((∇eiM)(v,v) + 2M(∇eiv,v))

= ∇ei(∇eiM)(v,v) (since M(·,v) ≡ 0)

= (∆M)(v,v) + 2(∇eiM)(∇eiv,v)

= 2(∇eiM)(∇eiv,v) (by Proposition A2)

= 2∇ei(M(∇eiv,v)) − 2M(∇eiv,∇eiv)

= −2M(∇eiv,∇eiv).

Since M is positive semidefinite, this means ∇eiv is in the nullspace of M at (x, t)
for each i. Thus for any vector X , the vector ∇Xv is in the nullspace at (x, t).
Since (x, t) is arbitrary, in fact this holds everywhere.

In other words,

(6)
If v is a null vectorfield and X is an arbitrary vectorfield,

then ∇Xv is also a null vectorfield.

By the Frobenius theorem, the nullspaces of M form an integrable distribution.
Note by (6) that the leaves of the foliation are totally geodesic.

Now suppose X is an arbitrary vectorfield, v is a nullvectorfield, and that u is a
vectorfield everywhere perpendicular to the nullvectors. Then

0 = ∇X(u · v) = (∇Xu) · v + u · ∇Xv = (∇Xu) · v.
Thus (again by Frobenius) the orthogonal complements of the nullspaces of M form
an integrable distribution, and the leaves are totally geodesic.

Thus we can find a coordinate system (y1, . . . , yn) such that

g = gijdy
i ⊗ dyj + gαβdy

α ⊗ dyβ

where the Latin indices range from 1 to m (the nullity of M) and the Greek indices
range from m + 1 to n. Since giα ≡ 0, the usual formula [GHL, 2.54] for the
Christoffel symbol simplifies to

Γαij = −1
2
gαβ∂βgij .

Since the horizontal leaves are totally geodesic, Γαij vanishes for all α, which implies
that ∂βgij = 0, so gij does not depend on yβ . Notice this holds for all i, j, and β.
Likewise gαβ does not depend on any of the yk’s. Thus g is a product metric. �

Proposition A4. Let F : Ω × (a, b] → Rn+1 be a classical solution of the mean
curvature flow equations, and suppose the mean curvature h is everywhere positive.
If the function G = κ1/h attains a minimum value of γ at (x, b), then G is a
nonnegative constant in a spacetime neighborhood of (x, b).

Proof. Let v = vi ∂
∂xi be a time-parallel vectorfield. The induced riemannian metric

g evolves according to
∂
∂tgij = −2hAij
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(see [H1]), where A is the second fundamental form, so
∂
∂tv

i = hgijAjkv
k.

The second fundamental form evolves according to
∂

∂t
Aij = ∆Aij + |A|2Aij − 2hAipgpqAqj

(by [H1]), so
∂

∂t
A(v,v) =

∂

∂t
(Aijvivj)

= (
∂

∂t
Aij)vivj + 2Aij(

∂

∂t
vi)vj

= (∆Aij + |A|2Aij − 2hAipgpqAqj)vivj − 2AijhgikAk`v`vj

= (∆Aij + |A|2Aij)vivj .

(7)

Similarly,
∂

∂t
h = ∆h+ |A|2h

(by [H1]), so
∂

∂t
hg(v,v) = (

∂

∂t
h)g(v,v) (by Lemma A1)

= (∆h+ |A|2h)g(v,v)

= ((∆ + |A|2)(hg))(v,v)(8)

where the last line is by parallelism of g (so that ∆(hg) = (∆h)g). Combining (7)
and (8) shows that the tensorfield M = A− γhg satisfies

∂

∂t
(M(v,v)) = (∆M)(v,v) + |A|2M(v,v) ≥ (∆M)(v,v).

This last inequality holds since M is positive semidefinite (by choice of γ). Note
that the first eigenvalue λ = κ1 − γh of M is everywhere nonnegative and is 0 at
(x, b). Thus by Proposition A2, λ is identically 0.

Fix a time t. Then Ω is locally a metric product P × Q (by Proposition A3).
Let X and Y be unit eigenvectors of A (at some given point) with eigenvalues κ1

and κn, respectively, and assume that κ1 ≤ 0. Then κn > 0 since h > 0. Thus
X and Y will be horizontal and vertical, respectively, with respect to the product
structure P ×Q (by Proposition A3).

The sectional curvature determined by X and Y is given by Gauss’s theorem
[GHL, 5.5]:

A(X,X)A(Y, Y )−A(X,Y )2 = κ1κn.

On the other hand, this sectional curvature must vanish because the metric is a
product metric (see [GHL, 3.15]). Since κn is positive, κ1 must vanish. �
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