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The nature of solutions to linear passive complementarity systems 

M.K. Camlibel , W.P.M.H. Heemels2 and J.M. Schumacher3 

Abstract 

Linear passive systems with complementarity conditions 
(as an application, one may consider linear passive networks 
with ideal diodes) are studied. For these systems contained 
in the linear complementarity class of hybrid systems, exis- 
tence and uniqueness of solutions are established. Moreover, 
the nature of the solutions is characterized. In particular, it 
is shown that derivatives of Dirac impulses cannot occur and 
Dirac impulses and jumps in the state variable can only occur 
at t = 0. These facts reduce the 'complexity' of the solution 
in a sense. Finally, we give an explicit characterization of 
the set of initial states from which no Dirac impulses or dis- 
continuities in the state variable occur. This set of 'regular 
states' turns out to be invariant under the dynamics. 

1 Introduction 

Nowadays switches like thyristors and diodes are used in 
electrical networks for a great variety of applications in both 
power engineering and signal processing. For the analysis 
and simulation of the transient behaviour of such networks 
the switches are often modelled ideally [ 14,7,9]. It is well- 
known that ideal modelling causes the network model to be of 
mixed discrete and continuous nature. In particular, the cir- 
cuit evolves through multiple topologies (modes) depending 
on the (discrete) states of the diodes. The mode transitions 
are triggered by inequalities and may result in discontinu- 
ities and Dirac impulses in the network's variables, see e.g. 
[ 11,9,7,  141. From this point of view these switched elec- 
trical circuits can be seen as hybridsystems [8]. 

In this paper we consider linear passive networks with 
ideal diodes, which are studied in the framework of linear 
complementarity systems LCS [13, 6, 12, 3, 51. LCS can 
be seen as dynamical extensions of the linear complemen- 
tarity problem of mathematical programming [ 11. Starting 
from this background, the main objectives of the paper are 
the following. 
(i) Define a mathematically precise solution concept for lin- 
ear passive networks with diodes. 
(ii) Prove (global) existence and uniqueness of solutions 
(well-posedness). 
(iii) Establish regularity properties of the solutions. In par- 
ticular, it will be rigorously proven that derivatives of Dirac 
impulses do not occur (even for inconsistent initial states) 
and Dirac impulses occur only at the initial time. Moreover, 
it will turn out that the set of switching times is a right- 
isolated set, meaning that for all time instants there exists 
a positive length time interval in which the diodes do not 
change their state. This excludes a certain type of accumu- 
lation of event times (Zenoness). 
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Besides the motivation of well-posedness as a fundamen- 
tal issue in the theory of dynamical systems, it plays also an 
important role in simulation methods. Indeed, to answer the 
question if and in what sense the approximations converge 
to the true solution(s) of the network model (i.e. consistency 
of the numerical method), one has to establish what is meant 
by a transient "true solution," one needs insight in the nature 
of solutions and the number of solutions. 

Throughout the paper, R denotes the real numbers, W+ the 
nonnegative real numbers, C the complex numbers, W(s) the 
set of all rational functions with real coefficients, djz( t0 .  t l )  
the square integrable functions on (to, t i ) ,  and 8 the Bohl 
functions (i.e. functions having rational Laplace transforms) 
defined on ( 0 , ~ ) .  The function U E %2(to,  t l )  is called 
nonnegative, denoted by U 2 0, if u(t )  2 0 for almost 
all t E (to, 11). For vector valued functions, inequalities are 
understood to hold componentwise. The inner product of the 
Hilbertspace djz(0, T) is denoted by (., .). The distribution 
8;) stands for the i-th distributional derivative of the Dirac 
impulse supported at t. 

The dual cone of a set 8 C_ W" is defined by &* = {x E 
W"lxTy 2 0 for all y E a}. For a positive integer k, the 
set k is defined as { 1,2 ,  . . . , k}. Given a matrix A E Wnx" 
and index sets J i i ,  the submatrix A J K  of 
A is defined as the matrix whose entries lie in the rows of 
A indexed by J and the columns indexed by K. If J = i i ,  
we denote the submatrix A J K  also by A.K.  Similarly, if 
K = It, we write A J .  for the submatrix A J K .  1 denotes the 
identity matrix of any dimension. As usual, we say that a 
triple (A, B, C) is minimal, when (A,  B) is controllable and 
(C, A) is observable. 

For any proposition P(a) depending on the parameter a, 
we say that '€'(a) holds for all sufficiently large (T,' if there 
exists a (TO E R such that P(a) holds for all a =- (TO. 

ii and K 

2 Preliminaries 

In this section, we recall some definitions and results that 
are needed in the sequel. 

2.1 Linear complementarity problem 
First, we define the linear complementarity problem. 

Problem 2.1 (Linear Complementarity Problem) 
L C P ( q , M ) :  Given q E R" and M E WnX" find 
z E W" such that 

(a) z 2 0 and q + M z  2 0 

(b) zT(q + Mz) = 0 

For an extensive survey on LCP, we refer to [ 11. The solution 
set of L C P ( q ,  M) will be denoted by S O L ( q ,  M). 

Remark 2.2 We shall employ the following standard result 
of LCP theory several times. If z ;  E SOL(q; ,  M;) with 
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i E {I,  2 )  then wherex(t) E W", u(t)  E Wk, y ( t )  E W k  and A,  B,  C, and D 
are matrices of appropriate dimensions. 

Note that (3) is a nonlinear system in which U and y are 
not input and output variables due to the complementarity 
conditions imposed by (3c). 

Linear electrical networks consisting of (linear) resistors, 
inductors, capacitors, gyrators, transformers (RLCGT) and 
ideal diodes are obvious examples of linear complementarity 
systems. For an overview of the applications of complemen- 
tarity systems, see [4]. 

The comulete suecification of the solution conceDt for lin- 

(21 - Z 2 ) T ( ( s l  + MI211 - (q2 - M2z2)) 

= 4 q 2  + M222) - 2 ; h  + M l Z l )  5 0  

2.2 Passive systems 

passivity in order to be self-contained. 
Next, we recall the definition and the characterization of 

Definition 2.3 [15] Consider a system ( A ,  B, C ,  D )  de- 
scribed by the equations 

i ( t )  = Ax( t )  + Bu(t)  
y ( t )  = C x ( t )  + Du(t)  

wherex(t) E W", u( t )  E Rk, y ( t )  E Rk and A, B,  C ,  and 
D are matrices of appropriate dimensions. The quadruple 
( A ,  B, C ,  D )  is called passive, or dissipative with respect to 
the supply rate u T y ,  if there exists a nonnegative function 
V : R" +. W+, called a storage function, such that for all 
to 5 tl and all time functions ( U ,  x ,  y )  E L'k2+"+k(t0, t l )  
satisfying (1)-(2) the following inequality holds: 

V(x(to))  + If' uT(t>y(t)dt  I. V(x( t i ) ) .  

( 1 )  
(2)  

to 

The above inequality is called the dissipation inequality. 
Next, we state a well-known theorem on passive systems 

which is sometimes called the positive real lemma. 

Theorem 2.4 [I51 Assume that ( A ,  B ,  C )  is minimal. Let 
G(s) = C(sl - A)- 'B + D be the transferfunction of 
( A ,  B ,  C ,  0). Then the following statements are equivalent: 

(a) ( A ,  B .  C ,  D )  is passive. 

(b) The matrix inequalities 

A ~ K + K A  K B - C ~  
K = KT > 0 and [ B T K  - C  - ( D + D T ) ]  

have a solution. 

(c) G(s) is positive real, i.e., G ( I )  + GT(X) 2 0 for all 

Moreovel; V ( x )  = $xT K x  definesa quadraticstoragefunc- 
tion i f  and only if K satisfies the linear matrix inequalities 
above. 

I E C with nonnegative real parts. 

ear complementar-ity systems can be found in [3]. ?o define 
such a general concept, it is natural to employ the distribu- 
tional theory, since the abrupt changes in the trajectories can 
be adequately modelled by impulses. We illustrate this by the 
following 'standard' example of complementarity systems. 

Example 3.1 [12, 31 Consider the mechanical system de- 
picted in figure l. For simplicity, we assume that the stop is 
placed at the equilibrium position of the left cart and purely 
inelastic, and that the masses of the carts and constants of the 
linear springs are equal to one. The equations of the motion 
are given as follows 

.il =x3 
i 2  = x4 
i 3  = -2x1 + x2 + U 
i 4  = X I  -x2 

0 4 U I y 2 0. 
Y = X I  

where U is the reaction force exerted by the stop. The devia- 
tions of the left and right cart from their equilibrium positions 
are denoted by X I  and x2, respectively. For the initial state 

xo = (0 -1  - 1  O)T S (00.260.62 - 1.24)T, 

the triple ( U ,  x ,  y )  

i f O 5 t  < 5 
( t  - 5) if 5 < t 5 n 

(0 - cos(t - %) o sin(t - f ) > T  

i f 0 5 t  < 5 
if f < t 5 n 

U(t) = 8% + 

x ( t )  = 

is a solution on [0, n ]  in the sense of [3] with an impulsive 
force at time t = 5. Note that the Dirac pulse corresponds to 
the collision of the left cart to the stop with nonzero velocity. 

3 Linear complementarity systems 
In this section, we shall briefly review linear complemen- 

tarity systems. For a detailed treatment, see [ 12, 13,3,5]. 
The linear complementarity system LCS(A,  B ,  C, D )  is 

given by the system of differentiallalgebraic equations and 
inequalities 

Figure 1: Two-carts system. 
i ( t )  = A x ( t )  + Bu(t)  
y ( t )  = C x ( t )  + Du(t)  

(3a) 
(3b) In this example, we saw that Dirac impulses can occur 

at a time instant r > 0. However, as we shall see below, 0 5 U I y 2 0, (3c) 
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the passivity assumption limits the occurrence of impulses. 
Motivated by this fact, we shall give another solution concept 
for (3) instead of using the one described in [3]. To do so, 
we need to recall the definition of a Bohl distribution and an 
initial solution. 

Definition 3.2 We call U a Bohl distribution, if U = Uimp + 
ureg with uimp = u - ' S f )  for u - ~  E R and ure E 8 .  
We call uimp the impulsive part of u and U,, the regufar part 
of U. The space of all Bohl distributions is &noted by S i m p .  

For any Bohl distribution U ,  the leading coefficient of its 
impulsive part is defined as lead(u) = 0, if uimp = 0, and 
definedas lead(u) = U-', if U i m p  = u - ' C T ~ ) + U - ' + ~ S ( ' - ' ) +  0 

Given U E S i m p ,  we say that U + 0 (initially nonnega- 
. . ~ + uo6f) with U-' # 0. 

tive), if either 

(a) lead(u) =- 0. or 

(b) lead(u) = 0 and there exists an 6 > 0 such that 

Inequalities are understood componentwise for distributions 
in sBikmP. 

ureR(t)  2 0 for all t E (0, E ) .  

Definition 3.3 The distribution (U, x ,  y )  E Bik,+,"+k is said 
to be an initial solution to (3)  with initial state xo if 

(a) .i = Ax + Bu + XOCT and y = Cx + Du as equalities 

(b) U + 0 and y b 0 

(c) for all i E k, either ui = 0 or yi = 0 as equalities of 

of distributions 

distributions. 

Definition 3.4 The distribution space L2,jmp(0, T )  is de- 
fined as the set of all U = uimp + ureg with U i m p  = 

U-'#) for u-i E R and Ureg E L2(0, T )  

Now, we can give the following solution concept for (3). 

Definition 3.5 (U, x ,  y )  E . L ~ ~ ~ ~ k ( O ,  T )  is said to be a so- 
lution on (0, T )  to (3) with initial state x~ if 

(a) .i = Ax + Bu + xoCT and y = Cx + Du as equalities 
of distributions 

(b) ( U i m p ,  X i s ,  yi.mi) is the impulsive part of an initial SO- 
lution to ( ) wit initial state xo 

(C) U Z 0, Y Z 0, and ( u r e g ,  Y r e g )  = 0 .  

The solution concept of definition 3.5 is more restrictive (in 
the sense that it does only allow Dirac impulses (and its 
derivatives) supported at t = 0) than the one defined in 
[3]. To illustrate this, the mechanical system considered in 
example 3.1 has no solution on (0, n) for the given initial 
state in the sense of definition 3.5, but does have a solution 
in the sense of (31, which is based on concatenation of initial 
solutions. 

Initial solutions play an important role for LCS and can 
be characterized by the solutions of a generalization of the 
linear complementarity problem called the Rational Com- 
plementarity Problem [ 5 ] .  

Problem 3.6 R C P ( q ( s ) ,  M ( s ) )  : Given q ( s )  E Rk(s)  and 
M ( s )  E Rkxk(s) ,  find u(s) E Rk(s) such that 

(a) u ( a )  2 Oandq(a )+M(a)u (a )  2 Oforallsufficiently 

(b) uT(s)(q(s) + M ( s ) u ( s ) )  = 0 
Existence and uniqueness of the solutions of the R C P  are 
studied in [5] and necessary and sufficient conditions are 
presented in terms of a series of L C P s .  To be complete, we 
recall the relation between R C P  and initial solutions. 

large U E R. 

Theorem 3.7 [5] The following statements are equivalent. 

( a )  The linear complementarity system (3)  has an initial 

( b )  R C P ( C ( s 1 -  A)- lxo.  C(sl - A)-'B + D )  has a so- 

Moreovel; there is a one-to-one correspondence (given by 
the Laplace transform and its inverse) between solutions to 
the RCP and the U-part of initial solutions to LCS for  initial 
state xo. 

We use the notation R C P ( x 0 )  rather than R C P ( C ( s l  - 
A)-'xo, C(s1-A)- 'B+D)  whenever ( A ,  B .  C ,  D )  isclear 
from the context. 

solution for  initial state xo 

lution. 

Example 3.8 Consider the system described in example 3.1. 
(a) The triple(u, x ,  y )  given by 

u( t )  =COS t 

x ( t )  = (0 -cos t o sin t )  I 

y ( t )  = 0. 

is an initial solution of the system with initial state xo = - 
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(0 -1  0 0) I . According to theorem 3.7, we can 
compute this initial solution by solving the corresponding 
RCP(x0)  given by 

s 2 +  u(s) 
-S 

s 4  + 3s2 + 1 + s4 + 3s2 + 1 
y ( s )  := 

uT(s)y(s)  = 0 

for all s E C and u(a) 2 0, y(o)  2 0 for all sufficiently 
large a. From the complementarity conditions and ratio- 
nality of u(s) and y ( s ) ,  it can be concluded that y ( s )  = 0 
or u(s) = 0. Together with nonnegativity conditions, 
this implies that the solution of R C P ( x 0 )  is equal to 
u(s) = -& (and y ( s )  = 0). By taking the inverse Laplace 
transform of this pair, we have u ( t )  = cos t (and y ( t )  = 0), 
as expected. 

s +1 

(b )  Consider R C P ( ( 0  -1 -1  0) ' ). It can be verified 
that the solution of this problem is given by u(s )  = 1 + &( 
and y ( s )  = 0). Note that u(s) is not strictly proper, which 
indicates that the corresponding initial solution (with u ( t )  = 
& ( t )  + cos t and y ( t )  = 0) has a nontrivial impulsive part. 

In contrast with example 3.8 (a), the solution of the R C P  
is not strictly proper in (6). Strict properness of the solution 
means that there exists a smooth continuation with the given 
initial condition. Indeed, smooth continuation is possible for 
the initial state given in (a), but not for the initial state given in 



(6). Explicit characterization of the initial states from which 
smooth continuation is of particular interest. In the most 
general case, it seems difficult to achieve this. However, 
by utilizing the passivity of the system, we shall be able to 
establish such a characterization in the next section. 

The following lemma justifies the use of Bohl functions 
for linear passive complementarity systems. For an index 
set I C k, IC denotes the set {i E k I i 
Lemma 3.9 Assume that ( A ,  B ,  C ,  D )  ispassive, ( A ,  B ,  C )  
is minimal and B has full column rank. Then, for  each 
I 1 there exists an F' E R"'" such that i = F'x for  any 
(U. x ,  y )  E J?+"+~(O, 00) satisfring (1)-(2) with y l ( t )  = 0 
and u / c ( t )  = ;b for  all t E [O,oo) .  

Proof 
According to [2, Theorem 3.101 and [3, Lemma 3.31, it suffices to 
show that the transfer matrix GI' := Cl,(sl - !)- 'Bo/  + D I I  
is invertible as a rational matrix for any I k. Suppose that 
det GI' (s) = 0. Then there exists a rational vector function u(s) f 
0 such that G / / ( s ) u ( s )  = 0. Take a > 0 such that u(a) # 0 and 
al - A is invertible. Define U as 

E ) .  

The triple 

i ( t )  = kea' 

X(t )  = (ol - A)-'Bkeu' 

f ( t )  = G(a)ke'' 

satisfies the system equations (1)-(2). Since ( A ,  B ,  C, D )  is pas- 
sive, there exists K =- 0 such that the dissipation inequality 

iT( to)Ki( to)  + iT(t) jqr)dt L fT(rl)Kx(tl)  (4) lot1 
holds for all to and tl with tl 2 to. By construction, it holds that 
U T ( t ) j ( t )  = 0 for all t. Applying this and X(t0) = 0 
(note that a > 0), to (4) yields (by letting to tend to -m) 

for all t i .  Hence, due to K =- 0, X(t )  = 0 for all t and thus 
BU = B.lu(a)  = 0. Since B has full column rank, u(a) = 0. 
This is a contradiction. 0 

4 MainResults 
In this section, we shall present existence and uniqueness 

(in the sense of definition 3.5) results for linear passive com- 
plementarity systems. First, we state the following theorem 
which guarantees existence and uniqueness of the solutions 
of RCP (and consequently, of initial solutions to the LCS 
given an initial state). 

Theorem 4.1 [5] Zf ( A ,  B ,  C ,  D )  is passive, ( A ,  B ,  C )  is 
minimal and B hasfu l l  column rank, then RCP(x0) has a 
unique solution for  each xo E R". 

Now, we can state the following theorem which plays a cru- 
cial role in the sequel. 

Theorem 4.2 Assume that ( A ,  B ,  C ,  D )  is passive, 
( A ,  B ,  C )  is minimal and B has full  column rank. DeJne 
Q := S O L ( 0 , D ) .  G ( s )  := C ( s l  - A ) - ' B  + D and 
let ux?(s) be the solution to RCP(x0). The following 
assertions hold: 

For each xo E R", u,[s) is propex 

For all xo E R", C(x0 + Buo) E 8* where uo == 
lims-,oc uxo ts). 

uxo(s) is strictly proper ifand only i f  CXO E 8*. 

lims-+oc u,(s) E Q. 

Proof 
(a) The triple 

( 5  1 
(6) 

i ( t )  = uxo(a)eu' 

i ( t )  = (01 - A)-'Buxo(a)ea' 

j ( t )  = G(o)uxo(o)ea' (7 ) 
satisfies the system equations for all a E P with al - A nonsin- 
gular. It follows from passivity that there exists a K > 0 such that 
for all r I  and to with tl to 

XT(tl)KX(tl) - XT(ro)K2(ro) 5 UT(t) j( t)dr (8) 

By substituting (5)-(7) into the dissipation inequality (S), one ob- 
tains 

lof1 
u&(a)BT(al - A)-TK(al  - A)-'Bu,(a) 

5 g ~ & ( a ) G ( o ) u x o ( a )  1 (9) 

Since K > 0, B has full column rank and (a1 - A)-]  is strictly 
proper, there exists an (r > 0 such that 

U2 
(10) 

for all sufficiently large a. Since uxo(s) is a solution of R C P ( x o ) ,  
we have 

- 1 1 u ~ ( ~ ) 1 1 2  (r 5 u & ( ~ ) B ~ ( o J  - A ) - ~ K ( ~ . c  - A ) - ~ B U , , ( ~ )  

- ~ & ( a ) G ( ~ ) u ~ ~ ( a )  1 = --u;(a)C(al- 1 A ) - ' q  
2a 20 

1 
5 g I l C ( ~ l  - A)-'x~IIIluxo(a)ll (11) 

It is not difficult to see that there exists B =- 0 such that IIC(ol -- 
A)-'II 5 L! for all sufficiently large a. Thus, (9), (IO) and (1 1 )  
yield now &at 

(12) B 
l l ~ x o ( ~ ) l l  5 j-&llxoll 

for all sufficiently large a. Hence, u,,(s) is proper. 

(b) Note that the solution u,,(s) to RCP(x0)  forms a solution to 
L C P ( C ( O I  - A ) - ' x ~ ,  ~ ( o ) )  for sufficiently large u.  In view of 
remark 2.2, we have for each U E Q that 

(uxO(a )  - ~ ) ~ ( C ( a l -  A)-'no + G(o)ux(,(u) - Du) 5 0 

for all sufficiently large u.  Since D 2 0 (according to theorem 2.4 
statement (b)) and G(o)  = C(ul  - A)- 'B + D ,  we obtain 

( u x 0 ( a )  - ~ ) ~ ( C ( u l -  A)-'xo + C ( a l -  A)- 'BuxO(u) )  5 0 
(13) 

for all sufficiently largea. Multiplying this relation by a and letting 
u tend to infinity give 

(U0 - U ) T ( C X O  + CBUO) 5 0 
3046 



Since Q i s  a cone., we Rave for all A 2 0 and all 1) E Q 

( U 0  - AvjT(Cxg -+ C B ~ ' )  5 0 

and hence. 

A u T ( C x ~  + CBu'i L uX(Cx0  + CBu'I. 

It follows that vT(Cxg + CBuO) 2 0 for all 71 E 8 and thus 
C(xg + Bido) E Q*  

( c )  'only i f '  Suppose that the solution U,,($) of R C P ( x 0 )  is 
strictly proper. According to statement (b), Cxo E Q', because 
U 0  = 0. 

' i f '  Suppose that Cxo E Q*.  We know that uxo(s)  is proper. Take 
the power series expansion of uxo (s) around infinity as 

U . * , ( S )  = U0 + U ' s - '  + u2s-2 +.  . . 

u;,(s)(c(sl - A)-',' + G ( S ) U x 0 ( S ) )  = 0. 

(14) 

By substituting ( I  4 )  into 

we obtain by considering the coefficients corresponding to so and 

(1 5) 

(16) 

Since u,,,(s) is the solution of RCP(xo) ,  uo 2 0 and Duo 2 0. 
Together with (15). these give uo = lims-,oo u,,(s) E Q (this 
proves statement d). The relation (15) also implies 

(17) 

s - '  

uOT D U O  = 0 

uoTCxo + uoTDul + ulTDu0  + uoTCBu0 = 0 

( D  + DT)u0 = 0 

Now, (1 6) and (1 7) give 

uOTCx0 + uOTCBuO = 0. (18) 

According to theorem 2.4, passivity of ( A ,  E, C ,  D )  implies the 
existence of a symmetric K > 0 such that 

Premultiplying (19) by (yzT uoT) and postmultiplying by 
( y z T  uOT)T for arbitrary z E R" and y E R, yields (use (17)) 

y 2 z T ( A T  K + K A ) z  + 2 y z T ( K B  - CT)uo 5 0 

Considering this expression as an inequality for a quadratic form in 
y .  yields that z T ( K B  - CT)uo 5 0. Taking z = (KB - C T O  )U 

results in 

( K B  - CT)uO = 0 (20) 

From (20), we obtain uoTCBuo = uoTBT KBuO. Since uo E Q 
and CXO E Q*, (18) gives 

o 2 -uoTcx0 = u o T c ~ u o  = u o T ~ T ~ ~ u O  2 o 
Finally, positive definiteness of K and the full column rank of B 
imply uo = 0, i.e., uxo(s) is strictly proper. 

( d )  This has already been shown in the proof of (c). U 

Due to the one-to-one relation between initial solutions 
and solutions to RC P via the Laplace transform, the proper- 
ness of solutions to the R C P  implies that initial solutions 

can only have an impulsive part consisting of the Dirac dis- 
tribution (and not its derivatives, i.e. u , , ~  = uoS). Hence, in 
linear passive electrical networks with ideal diodes deriva- 
tives of Dirac impulses do not occur. This fact is widely 
believed true, but the authors are not aware of any rigorous 
proof. The framework proposed here makes it possible to 
prove this intuition. 

Definition 4.3 A state xo is called regular for 
LCS(A, B ,  C. D ) ,  if the corresponding initial solu- 
tion is smooth (i.e. has a zero impulsive part). The 
collection of regular states is denoted by 3. 

Since strictly proper RC P-solutions correspond to 
smooth initial solutions of LCS, statement c in Theorem 4.2 
gives a characterization of the regular states: xo E R if and 
only if Cxo E Q* with Q = SOL(0, 0) .  As we shall see, 
this characterization plays a key role in the proof of global 
existence of solutions as the set of such initial states will be 
proven to be invariant under the dynamics. 

According to [ I ,  Cor. 3.8.10 and Thm 3.1.7 (c)] and be- 
cause D 2 0 one has CXO E &* if and only if LCP(Cx0, D) 
is solvable. Hence, a test for deciding the regularity of an 
initial state consist of determining whether or not a certain 
LC P has a solution. 

To give an idea about the structure of the set of regular 
states R and the cone Q*. a few examples are in order. 

Example 4.4 (a) If D = 0, then B = W: and Q* = R t .  
Hence, R = (xo E B" I Cxo L 01. 

0 -1  (b) If D = (1 o ) ,  then Q = {($ I U I  1 
. ,  

0 and u2 = 0). Consequently. Q* = { I yl L O } .  

(c) If D is positive definite, it follows that Q = { O } ,  which 

A direct implication of the statements b and c in Theo- 
rem 4.2 is that, if smooth continuation is not possible for XO. 
it is possible after one re-initialization (jump) of the state 
variable. Indeed, if the impulsive part of the (unique) ini- 
tial solution is equal to uoS, the state after re-initialization 
is equal to xo + Buo [2, 31. Since C(x0 + Buo) E Q*. it 
follows from statement (c) that xo + Buo E R. Hence, from 
xo + Buo there exists a smooth initial solution. This means 
that we have proven local existence of a solution in the sense 
of definition 3.5 on [0, E )  with E =- 0 by concatenating initial 
solutions. 

(::) 
implies that Q* = !IUk and thus R = R". 

Now, we can state the main result of the paper. 

Theorem 4.5 Suppose that ( A ,  B, C ,  D )  is passive, 
( A ,  B ,  C) is minimal and B is of full column rank Then, 
for all xo and T > 0, (3) has a unique solution in the sense 
of dejnition 3.5 on (0, T )  with initial state xo. 

Proof 
Exisfence: The construction of a solution will be based on con- 
catenation of initial solutions. Since after at most one jump of the 
state variable the state x(O+) = xo + Buo is contained in R, a 
solution (U. x. y) exists on (0, r l )  for some TI > 0 as argued be- 
fore. Note that x(O+) E R and that (U, x,  y) is part of a smooth 
initial solution with initial statex(O+). Since t -P (U, x ,  y ) ( t  + p )  
forms a smooth initial solution for any p E (0, E ) ,  we have that 
x ( p )  E d for all p E (0, E ) .  Since ( U ,  x,  y )  is a Bohl function, 
the limit lim,?, x ( t )  = X ( E )  exists. The closedness of R (due to 
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the closedness of Q*) implies that X ( E )  E 3. Hence, there exists 
a smooth continuation (a smooth initial solution) from X ( E )  that 
defines a solution on (0, z2) with r2 > TI. This construction can 
be repeated as long as the limit lim/t, x ( t )  exists, where (0, t) is 
the time-interval on which a solution has been generated so far. 
A reason that a global solution (on (0, T ) )  does not exist can be 
that the intervals of continuation [ti, q + l )  are getting smaller and 
smaller such that limi+oo t i  = T* c T and limttrt x(r) does not 
exist. To complete the proof we will show the existence of the latter 
limit in all circumstances. 

Suppose the maximal interval on which a solution (U, n, y )  can 
be defined is [0, r*) ,  t* < T .  According to Lemma 3.9 there 
is at most exponential growth (f = FIX) between mode changes. 
Since x is continuous on (0, r*),  this implies that x is bounded (say 
Ilx(t)ll 5 M for all t E (0, r*)) .  On an interval (s, t) E (0, t*) 
where (U. x. y )  is governed by the dynamics f = FIX of mode I ,  
the following estimate holds 

I lx(t)  - x(s)l l  = lleF’(’+)n(s) - x(s)ll 
I C I  I t - s I Ilx(s)ll I C I M  I t - s I (21) 

Note that the matrix function t --* is bounded (by c ~ )  
on (0, r*). Hence, for (s, t) C (0, r*) with x possibly evolving 
through several modes we get from (21) that 

This implies that x is Lipschitz continuous on (0, t*) and thus also 
uniformly continuous. A standard result in mathematical analysis 
[lo, ex. 4.131 states that x* := limtts* x ( t )  exists. From the 
constructionaboveitcan bederivedthatx(t) E .!Rforallt E (0, r*) 
and hence, x* E R (due to closedness of R),  which implies that 
smooth continuation is possible (local existence) from x* beyond 
t*. This contradicts the definition of r*. Hence, existence of a 
solution on (0, T )  is guaranteed. 
Uniqueness: Suppose that two solutions (U, x, y )  and (U’, x’, y’) 
exist in the sense of Definition 3.5 for initial state xo. Since there 
exists exactly one initial solution from the initial state xo, the re- 
initialization from x~ must be unique and thus x(O+) = x’(O+). 
Clearly, (U - U‘, x - x’ ,  y - y’) satisfies (1)-(2) with initial state 
0. The dissipation inequality yields 

[ x ( t )  - x’(t)lTK[x(t) - ~ ’ ( t ) ]  

for all t E (0, T ) .  From the fact that U ,  U’, y ,  y’ are nonne5ative 
almost everywhere and the complementarity of ( U ,  y )  and (U , y’), 
weobtain $[u( r ) -u ’ ( t ) ]T[y ( r ) - y ’ ( r ) ]dr  5 0. Hence, [ x ( t ) -  

x’(t)lT~[x(t)  - x’ ( t ) l  I o for a11 t E (0, T ) .  Since K > 0, we 
obtain x ( t )  = x’(t) for all t. Since B is of full column rank, this 
gives U = U’ and y = y’ almost everywhere. 0 

Note that it follows that the set of regular states R is in- 
variant under the dynamics. Indeed, the constructed solution 
in the proof is the only solution and lies in R for all t > 0. 

5 Conclusions 

In this paper we studied linear passive complementarity 
systems, which describe linear electrical networks with ideal 
diodes. The main results of the paper show global existence 
and uniqueness of solutions. Moreover, it is proven that 
in linear electrical networks with ideal diodes only Dirac 
impulses occur (and not its derivatives) and that impulses 
can occur only at time t = 0. These properties are widely 
believed true in the circuit theory community, but as far as 
the authors are aware this paper gives the first rigorous proof 

of these facts. Finally, we explicitly characterized the set 
of initial states from which no Dirac impulses and/or state 
jumps occur (so-called regular states) in terms of the dual 
cone of the solution set of a particular linear complementarity 
problem. The set of regular states turned out to be invariant 
under the dynamics. 

Current work is concerned with the analysis of a 
time-stepping method used for the transient simulation of 
switched electrical networks. Based on the rigorous founda- 
tion given here, the goal is to prove that the approximations 
obtained by the time-stepping method converge to the actual 
solution of the network model. 

Needless to say, generalization to nonlinear systems is an 
interesting open problem. The main difficulty is the absence 
of a similar tool to RC P in the nonlinear context. 

Acknowledgements 
We thank The Scientific and Technical Research Council 

of Turkey (?ijBiTAK) for awarding NATO Science Fellow- 
ship to Kanat Camlibel which made his participation in this 
study possible. 

References 

[ I ]  R.W. Cottle, J.-S. Pang, and R.E. Stone. The Linear Com- 
plementarity Problem. Academic Press, Inc., Boston, 1992. 
[2] M. L. J. Hautus and L. M. Silverman. System structure and 
singular control. Linear Algebra and its Applications, 50:369-402, 
1983. 
[3] W. P. M. H. Heemels, J. M. Schumacher, and S. Weiland. 
Linear complementarity systems. To appear in SIAM J. on Appf. 
Math. 
[4] W. I? M. H. Heemels, J. M. Schumacher, and S. Weiland. 
Applications of complementarity systems. In European Control 
Conference, Kalsruhe, Germany, 1999. 
[5] W. P. M. H. Heemels, J. M. Schumacher, and S .  Weiland. 
The rational complementarity problem. Linear Algebra and its 
Applications, 29493-135, 1999. 
[6] Y.J. hotsma, A.J. Van der Schaft, and M.K. Camlibel. 
Uniqueness of solutions of relay systems. Automatica, 35(3):467- 
478,1999. 
[7] A. Massarini, U. Reggiani, and K. Kazimierczuk. Analysis 
of networks with ideal switches by state equations. IEEE Trans. 
Circuits and Systems-I, 44(8):692-697, 1997. 
[8] A.S. Morse, S.S. Pantelides, S. Sastry, and J.M. Schu- 
macher (guest eds.). A special issue on hybrid systems. Automatica, 
35(3), 1999. 
[9] A. Opal and J. Vlach. Consistent initial conditions of non- 
linear networks with switches. IEEE Trans. Circuits and Systems, 

[ 101 W. Rudin. Principles of Mathematical Analysis. McGraw- 
Hill, 1976. 
[ 1 11 S.S. Sastry and C.A. Desoer. Jump behaviour of circuits and 
systems. IEEE Trans. Circuits and Systems, 28(12): 1109-1 124, 
1981. 
[12] A. J. van der Schaft and J. M. Schumacher. The 
complementary-slackness class of hybrid systems. Math. Conn 
Signals Syst., 9:266-301, 1996. 
[13] A. J. vanderschaftand J. M. Schumacher. Complementarity 
modeling of hybrid systems. IEEE Trans. on Automatic Cont,:, 
43:483-490, 1998. 
[14] J. Vlach, J.M. Wojciechowski, andA. Opal. Analysis ofnon- 
linear networks with inconsistent initial conditions. IEEE Trans- 
actions on Circuits and Systems-I, 42(4): 195-200, 1995. 
[15] J. C. Willems. Dissipative dynamical systems. Arch. Ratio- 
nal Mech. Anal., 45:321-393, 1972. 

38(7):698-7 10, 199 1 .  

3048 


