
Physica D 152–153 (2001) 505–519

The Navier–Stokes-alpha model of fluid turbulence

Ciprian Foias a,∗, Darryl D. Holm b, Edriss S. Titi c

a Department of Mathematics, Indiana University, Bloomington, IN 47405, USA
b T-Division and CNLS, MS-B284, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

c Departments of Mathematics, Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA

Dedicated to V.E. Zakharov on the occasion of his 60th birthday

Abstract

We review the properties of the nonlinearly dispersive Navier–Stokes-alpha (NS-α) model of incompressible fluid turbu-
lence — also called the viscous Camassa–Holm equations in the literature. We first re-derive the NS-α model by filtering the
velocity of the fluid loop in Kelvin’s circulation theorem for the Navier–Stokes equations. Then we show that this filtering
causes the wavenumber spectrum of the translational kinetic energy for the NS-α model to roll off as k−3 for kα > 1 in three
dimensions, instead of continuing along the slower Kolmogorov scaling law, k−5/3, that it follows for kα < 1. This roll off at
higher wavenumbers shortens the inertial range for the NS-α model and thereby makes it more computable. We also explain
how the NS-α model is related to large eddy simulation (LES) turbulence modeling and to the stress tensor for second-grade
fluids. We close by surveying recent results in the literature for the NS-α model and its inviscid limit (the Euler-α model).
© 2001 Published by Elsevier Science B.V.
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1. Introduction

The energy in a turbulent fluid flow cascades toward ever smaller scales until it reaches the dissipation scale, where
it can be transformed into heat. This cascade — creating fluid motions at ever smaller scales — is a characteristic
feature of turbulence. This feature is also the main difficulty in simulating turbulence numerically, because all
numerical simulations will have finite resolution and will eventually be unable to keep up with the cascade all the
way to the dissipation scale, especially for complex flows, e.g., near walls and interfaces.

The effects of subgrid-scale fluid motions occurring below the available resolution of numerical simulations must
be modeled. One way of modeling these effects is simply to discard the energy that reaches such subgrid scales.
This is clearly unacceptable, though, and many creative alternatives have been offered. A prominent example is
the large eddy simulation (LES) approach, see, e.g., [1,2]. The LES approach is based on applying a spatial filter
to the Navier–Stokes equations. The reduction of flow complexity and information content achieved in the LES
approach depends on the characteristics of the filter that one uses, its type and width. In particular, the LES approach
introduces a length scale into the description of fluid dynamics, namely, the width of the filter used. Note that the
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LES approach is conceptually different from the Reynolds averaged Navier–Stokes (or, RANS) approach, which
is based on statistical arguments and exact ensemble averages, rather than spatial and temporal filtering. After
filtering, however, just as in the RANS approach, one faces the classic turbulence closure problem: how to model
the filtered-out subgrid scales in terms of the remaining resolved fields? In practice, this problem is compounded
by the requirement that the solution be simulated numerically, thereby introducing further approximations.

This paper begins by reviewing a modeling scheme — called here the Navier–Stokes-alpha model, or NS-αmodel
(also called the viscous Camassa–Holm equations in [3–6]) — that introduces an energy “penalty” inhibiting the
creation of smaller and smaller excitations below a certain length scale (denoted alpha). This energy penalty results
in a nonlinearly dispersive modification of the Navier–Stokes equations. The alpha-modification appears in the
nonlinearity, it depends on length scale and we emphasize that it is dispersive, not dissipative. We shall re-derive the
modified equations in Section 2 from the viewpoint of Kelvin’s circulation theorem. As we shall show in Section 3,
this modification causes the translational kinetic energy wavenumber spectrum of the NS-α model to roll off rapidly
below the length scale alpha as k−3 in three dimensions, instead of continuing to follow the slower Kolmogorov
scaling law, k−5/3. This roll off shortens the inertial range of the NS-α model and thus makes it more computable.
This is the main new result of the paper, so we shall comment now on its main implications.

Since the energy spectrum rolls off faster, the wavenumber k = κα at which viscous dissipation takes over in
the NS-α model must be lower than for the original Navier–Stokes equations. Hence, for a given driving force and
viscosity, the number of active degrees of freedomNdof for the NS-αmodel must be smaller than for Navier–Stokes.
In Section 3, we give a heuristic estimate of the number Ndof and compare it with the rigorous estimate derived in
[6] for the fractal dimension Dfrac of the global attractor for the NS-α model. Namely,

Dfrac ≤ (Ndof)
3/2, Ndof ≡ (Lκα)3 � L

α
Re3/2, (1.1)

where L is the integral scale (or domain size), κα the end of the NS-α inertial range and Re = L4/3ε
1/3
α /ν the

Reynolds number (with NS-α energy dissipation rate εα and viscosity ν). The corresponding number of degrees of
freedom for a Navier–Stokes flow with the same parameters is

NNS
dof ≡

(
L

�Ko

)3

� Re9/4, (1.2)

where �Ko denotes the Kolmogorov dissipation length scale. The implication of these estimates of degrees of freedom
for numerical simulations that access a significant number of them using the NS-α model would be an increase in
computational speed relative to Navier–Stokes of(

NNS
dof

Ndof

)4/3

=
(α
L

)4/3
Re. (1.3)

Thus, if α tends to a constant value, say L/100, when the Reynolds number increases — as found in [3–5] by com-
paring steady NS-α solutions with experimental data for turbulent flows in pipes and channels — then one could
expect to obtain a substantial increase in computability by using the NS-αmodel at high Reynolds numbers. An early
indication of the reliability of using these estimates to gain a relative increase in computational speed in direct nu-
merical simulations (DNSs) of homogeneous turbulence in a periodic domain is given in [7]. There, a computational
speed up was achieved by using the NS-α model in DNS of turbulence in a periodic domain by a factor about equal
to the fluctuation Reynolds number (≈ 250). In the case considered in [7], this factor happens to be about Re/100.

In Section 4, we discuss the relation of the NS-α model to similar equations which are derived in a different
physical context, namely in the context of non-Newtonian fluids. The main difference between the NS-α model and
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the non-Newtonian second-grade fluids which it resembles lies in the choice of dissipation. The NS-α model uses
the standard Navier–Stokes viscosity, while the second-grade fluid uses a weaker form of dissipation — namely,
wavenumber independent damping of the fluid velocity. Discussions of the relative advantages of the two forms of
dissipation (e.g., in terms of boundary data requirements and well-posedness) are beyond the scope of this review.
However, we remark that the steady solutions of the NS-α model with the standard Navier–Stokes viscosity were
found in [3–5] to agree with experimental mean velocity profile data for turbulent flows in pipes and channels. The
corresponding steady solutions of the second-grade fluid with its weaker form of dissipation were not found to so
agree with this experimental data. Finally, in Section 5, we provide a brief guide to the recent literature for those
who might be interested in the mathematical context in which the alpha model was originally derived, as well as in
its potential applications in turbulence modeling. With regard to the latter, the NS-α model was recently shown to
be transformable to a generalized similarity model for LES turbulence modeling [8].

2. Kelvin-filtered turbulence models

Although it was first derived from energetic considerations using the Euler–Poincaré variational framework in
[9,10], the Navier–Stokes-alpha model may be motivated by an equivalent argument based on Kelvin’s circulation
theorem. The original Navier–Stokes (NS) equations are

∂v
∂t

+ v · ∇v + ∇p = ν�v + f, with ∇ · v = 0 (2.1)

for a forcing f and constant kinematic viscosity ν. These equations satisfy Kelvin’s circulation theorem,

d

dt

∮
γ (v)

v · dx =
∮
γ (v)
(ν�v + f) · dx (2.2)

for a fluid loop γ (v) that moves with velocity v(x, t), the Eulerian fluid velocity.

2.1. Kelvin-filtering the Navier–Stokes equations

The equations for the NS-αmodel emerge from a modification of the Kelvin circulation theorem (2.2) to integrate
around a loop γ (u) that moves with a spatially filtered Eulerian fluid velocity given by u = g ∗ v, where ∗ denotes
the convolution,

u = g ∗ v =
∫
g(x − y)v d3y. (2.3)

The “inverse” is denoted as

v = Ou, (2.4)

thereby defining an operator O whose Green’s function is the filter g and which we shall assume is positive,
symmetric, isotropic and time-independent. Under these assumptions the quantity (kinetic energy)

E = 1

2

∫
u · v d3x = 1

2

∫
v · g ∗ v d3x = 1

2

∫
u ·Ou d3x (2.5)

defines a norm.
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We obtain a modification to the Navier–Stokes equations (2.1) by replacing in their Kelvin’s circulation theorem
(2.2) the loop γ (v) with another loop γ (u) moving with the spatially filtered velocity, u. Then we have

d

dt

∮
γ (v)

v · dx =
∮
γ (u)
(ν�v + f) · dx. (2.6)

After taking the time derivative inside the Kelvin loop integral moving with filtered velocity u and reconstructing
the gradient of pressure, we find the Kelvin-filtered Navier–Stokes equation

∂v
∂t

+ u · ∇v + ∇uT · v + ∇p = ν�v + f (2.7)

with

∇ · u = 0, and v = Ou. (2.8)

The velocity u(x, t) is the spatially filtered Eulerian fluid velocity in Eq. (2.3). Note that continuity equation is now
imposed as ∇ · u = ∇ · (g ∗ v) = 0. The energy balance relation derived from the Navier–Stokes-alpha equations
(2.7) is

d

dt

∫
1

2
u · v d3x =

∫
u · f d3x −

∫
ν|∇O1/2u|2 d3x, (2.9)

where for the moment we have dropped the boundary terms that appear upon integrating by parts, i.e., for the
moment we ignore the boundary effects and consider either the case of the whole space with solutions vanishing
sufficiently rapidly at infinity, or the case of periodic boundary conditions.

2.2. Similarities with previous work

1. Except for the term (∇u)·v, the Kelvin-filtered Navier–Stokes equation (2.7) is otherwise quite similar to Leray’s
regularization of the Navier–Stokes equations proposed in 1934 [11]. Extension of the Leray regularization to
satisfy the Kelvin circulation theorem was cited as an outstanding problem in Gallavotti’s review . 1 Looking at
the equation of motion for the vorticity q = ∇ × v reveals even more similarity with Leray’s regularization of
the Navier–Stokes equations. (See the section about the vorticity below.)

2. At first glance, the Kelvin-filtered equations (2.7) in the absence of dissipation and forcing may seem reminiscent
of a form of the Euler equations that was discussed in [13,14] (see also [15]), namely,

∂γi

∂t
+ uj ∂γi

∂xj
= −γj ∂u

j

∂xi
, γi = ui + ∂φ

∂xi
,

∂ui

∂xi
= 0. (2.10)

In light of the third equation in this set, the second one is essentially the Hodge decomposition of the vector γ
with Euclidean components γi . Comparing these equations with Euler’s equations for the incompressible motion
of an ideal fluid,

∂ui

∂t
+ uj ∂ui

∂xj
+ ∇p = 0,

∂ui

∂xi
= 0, (2.11)

gives a relation between the pressure gradient and the “gauge function” φ that is reminiscent of (but different
from) Bernoulli’s law,

∇p = ∇
(

1

2
|u|2 − ∂φ

∂t
− uj ∂φ

∂xj

)
. (2.12)

1 We are grateful to G. Eyink for pointing out [12] to us.
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This type of relationship also arises in Hamilton’s principle when one uses Clebsch variables [16], in which case
φ is a Lagrange multiplier that enforces the continuity equation. In contrast, Eqs. (2.7) in the ideal unforced case
give the Kelvin-filtered Euler model,

∂vi

∂t
+ uj ∂vi

∂xj
= −vj ∂u

j

∂xi
− ∂p

∂xi
, vi = Oui, ∂ui

∂xi
= 0. (2.13)

2.3. Conservation laws

References to the interesting geometrical properties of the Euler-α model equations — namely Eqs. (2.13) when
O is the Helmholtz operator — are cited in the last section. At this point, we only comment that in the case of
periodic boundary conditions, or the case of the whole space with solutions vanishing sufficiently rapidly at infinity,
these non-dissipative equations preserve the following two quadratic invariants, the kinetic energy,

E = 1

2

∫
u · v d3x, (2.14)

and the v-helicity,

Λ =
∫

v · curl v d3x. (2.15)

The kinetic energy, Eα , and the v-helicity, Λ, defined above, are also preserved in bounded domains provided
appropriate boundary conditions are imposed. Boundary conditions sufficient for energy conservation when O is
the Helmholtz operator 1 − α2∆ are

n̂ × (n̂ · (∇u + ∇uT)) = 0, (2.16)

where the vector n̂ is normal to the boundary and superscript (·)T denotes matrix transpose. Boundary conditions
sufficient for v-helicity conservation in general are λ n̂ ·u = 0 andp n̂ ·curl v = 0, as seen from the helicity equation,

∂λ

∂t
= −div(λu + p curl v), where λ ≡ v · curl v. (2.17)

This equation is obtained by using only the motion equation in (2.13) and its curl. Therefore, conservation of helicity
holds with these boundary conditions simply because of the formof the Kelvin-filtered motion equation in (2.13),
independent of the relation between v and u, and regardless of whether u is incompressible.

2.4. Vortex transport and stretching

Let q = ∇ × v be the vorticity of the unfiltered Eulerian velocity. The curl of the Kelvin-filtered Navier–Stokes
equation (2.7) gives the vortex transport and stretching equation

∂q
∂t

+ u · ∇q − q · ∇u = ν�q + ∇ × f . (2.18)

We note that the coefficient ∇u in the vortex stretching term is the gradient of the spatially filtered Eulerian velocity u.
Thus, Kelvin-filtering tempers the vortex stretching in the modified Navier–Stokes equations (2.7), while preserving
the original form of the vortex dynamics. This tempered vorticity stretching is also reminiscent of Leray’s approach
[11] for regularizing the Navier–Stokes equations.

Indeed, whenO is the Helmholtz operator we take full advantage of this regularized vorticity stretching effect to
prove in [6] the global existence and uniqueness of strong solutions for the three-dimensional NS-α model. In fact,
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when the forcing is in a certain Gevrey class of regularity (real analytic), then the NS-α solutions are also Gevrey
regular, so that the Fourier coefficients of the solution decay exponentially fast, with respect to the wavenumbers,
at a rate that increases as α2 increases. See [17,18] for the corresponding analysis of the Gevrey properties of the
Navier–Stokes equations. This result suggests that the filtering or smoothing of the velocity u due to the presence of
alpha in the NS-α model could enhance the decay of its wavenumber spectrum and produce an earlier observation
of this exponentially falling tail when the forcing is sufficiently smooth, even when the viscosity is small.

2.5. Specializing to the Navier–Stokes-alpha model

The special case of the NS-α model emerges from the Kelvin-filtered Navier–Stokes equation (2.7) when we
choose the operatorO to be the Helmholtz operator, thereby introducing a constant α that has dimensions of length,

O = 1 − α2∆ with α = const. (2.19)

In this case, the filtered and unfiltered fluid velocities in Eq. (2.4) are related by

v = (1 − α2∆)u. (2.20)

The Navier–Stokes-alpha model is given by the Kelvin-filtered Navier–Stokes equation (2.7) with definition (2.20).
The original derivation of the ideal Euler-alpha model (the ν = 0 case of the NS-α model) obtained by using the
Euler–Poincaré approach is given in [9,10]. The physical interpretations of u and v as the Eulerian and Lagrangian
mean velocities are given in [19].

The corresponding kinetic energy norm (2.5) for the NS-α model is given by

Eα =
∫ [

1

2
|u|2 + α2

2
|∇u|2

]
d3x, (2.21)

and we repeat that u is the spatially filtered Eulerian fluid velocity. This kinetic energy is the sum of a translational ki-
netic energy based on the filtered velocity u, and a gradient-velocity kinetic energy, multiplied by α2. Thus, by show-
ing the global boundedness, in time, of the kinetic energy (2.21) one concludes that the coefficient ∇u in the vortex
stretching relation (2.18) is bounded inL2 for the NS-αmodel. The second term in the kinetic energy (2.21) imposes
an energy penalty for creating small scales. The spatial integral of |∇u|2 in the second term has the same dimensions
as filtered enstrophy (the spatial integral of |∇ ×u|2, the squared filtered vorticity). For a domain with boundary, the
spatial integral of |∇u|2 in the second term in the kinetic energy norm (2.21) is replaced by the integral of trace(4D·D),
where D is the strain rate tensor, D = 1

2 (∇u + ∇uT) in Euclidean coordinates [20]. For the case we treat here, in
Euclidean coordinates and in the absence of boundaries, all of these norms are equivalent for an incompressible flow.

3. Spectral scaling for the NS-ααα model

3.1. A preliminary scaling argument

Scaling ideas originally due to Kraichnan [21] for the case of two-dimensional turbulence may be applied to
estimate the effect of the second term in the NS-α model energy (2.21) on the energy spectrum in the present case.
For sufficiently small wavenumbers (kα � 1, but kL � 1) the first term in the energy Eα in (2.21) dominates
and the second term may be neglected. In this wavenumber region, the standard Kolmogorov scaling argument for
turbulence gives a k−5/3 spectrum by the usual dimensional argument for the inertial range,

k = [L]−1, εα = [L]2[T]−3, Eα(k) = [L]3[T]−2 = εaαkb if kα � 1, (3.1)
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Fig. 1. The DNS energy spectrum, E(k) = Eα(k), versus the wavenumber k for three cases with the same viscosities, same forcings and mesh
sizes of 2563 for α = 0 (solid line), 1

32 (dotted line) and 1
8 (dotted-dash line). In the inertial range (k < 20), a power spectrum with k−5/3 can

be identified. For finite α, this behavior is seen to roll off to a steeper spectrum for k ≥ 1/α.

so that a = 2
3 and b = − 5

3 . Conversely, for sufficiently large wavenumbers (kα � 1), the second term dominates
in Eα . A preliminary scaling argument would then indicate a k−3 spectrum for Eα in the large wavenumber region,
according to

k = [L]−1, ηα = [T]−3, Eα(k) = [L]3[T]−2 = ηaαkb if kα � 1, (3.2)

so that a = 2
3 and b = −3 in this case. Here ηα is the rate of dissipation of the

∫ |∇u|2 part of the kinetic energy
(with the same dimensions as enstrophy). Therefore, in the wavenumber region near kα ∼ 1, the kinetic energy
spectrum may be expected to have a break in slope and roll off from k−5/3 to k−3 scaling. 2

The expectation from this preliminary scaling argument seems to be confirmed in DNSs of the NS-α model, as
shown in Fig. 1 taken from [7]. Fig. 1 shows the energy spectra resulting from three DNSs of the NS-α model with
mesh sizes of 2563 for three cases: with α/L = 0 (the Navier–Stokes equations), 1

32 and 1
8 for the same viscosity ν =

0.001. The corresponding Taylor microscale Reynolds numbers Rλ are reported as 147, 182 and 279, respectively.
The higher α (higher Reynolds number) flows are found numerically to have more compact energy spectra.

3.2. A more refined argument

A more refined argument for the spectral scaling of the NS-α model shall now be given that depends explicitly
upon properties of the nonlinearity. Following [22], let uκ denote the component of u formed by the Fourier modes
of fluid velocity u with wavenumbers in [κ, 2κ) and similarly let vκ denote the corresponding component of v, where
κ is well beyond the active wavenumbers of the driving force. The NS-α energy balance for this component is then

1

2

d

dt
(uκ , vκ)+ ν(−�uκ, vκ) = Tκ − T2κ , (3.3)

2 A version of this scaling argument was suggested to one of the authors (DDH) by G. Eyink and D. Thomson.
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where Tκ and T2κ denote, respectively, the energy transfer rate at κ from the low wavenumber modes u< to the high
wavenumber modes uκ + u>, and at 2κ from u< + u2κ to u>, where u< and u> are defined as

u< ≡
∑
j<κ

uj , u> ≡
∑
j≥2κ

uj . (3.4)

In particular,

Tκ = −(B̃(u<, v<), uκ)+ (B̃(uκ + u>, vκ + v>), u<), (3.5)

where the bilinear operator B̃(u, v) is given by

B̃(u, v) = −Pσ (u× (∇ × v)), (3.6)

and Pσ is the L2 orthogonal projection (Leray projection), see, e.g., [6] for more mathematical details. For Eq. (3.3)
to hold, it is essential that B̃(u, v) has the property

(B̃(u, v), u) = 0. (3.7)

Note that the property (3.7) does not hold for the enstrophy transfer rate of the NS-α model, so the NS-α model
does not possess a Kraichnan type inertial range due to an enstrophy cascade. Time-averaging equation (3.3) gives

ν〈(−∆uκ, vκ)〉 = 〈Tκ 〉 − 〈T2κ 〉. (3.8)

Consequently, upon introducing the energy spectrum Eα(κ), this time-averaged energy transfer equation implies

νκ3Eα(κ) ∼ ν
∫ 2κ

κ

κ2Eα(κ) dκ ∼ 〈Tκ 〉 − 〈T2κ 〉. (3.9)

Hence, as long as the energy dissipation rate is small compared to the energy transfer rate, i.e., provided

νκ3Eα(κ)� 〈Tκ 〉, (3.10)

we have the inertial range condition

〈Tκ 〉 ∼ 〈T2κ 〉. (3.11)

The total energy dissipation rate is estimated as

εα =
〈
ν

L3

∫
[0,L]3

u · (−�v) d3x

〉
. (3.12)

Kraichnan [21] posits the following mechanism for the turbulent cascade. In the inertial range, the eddies uκ transfer
their energy to the eddies u2κ in the time τκ it takes to travel their length ∼ 1/κ . Their average velocity being

Uκ ≡
〈

1

L3

∫
[0,L]3

uκ · uκ d3x

〉1/2

=
(∫ 2κ

κ

Eα(κ) dκ

(1 + α2κ2)

)1/2

∼
(
κEα(κ)

(1 + α2κ2)

)1/2

, (3.13)

the eddy energy exchange, or turnover time τκ will be

τκ ∼ 1

(κUκ)
. (3.14)
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Consequently, the total energy dissipation rate is related to the κ spectral energy density by using (3.13) as

εα ∼ τ−1
κ

∫ 2κ

κ

Eα(k) dk ∼ κUκ
∫ 2κ

κ

Eα(k) dk ∼ κ5/2

(1 + α2κ2)1/2
Eα(κ)

3/2, (3.15)

which yields the following spectral scaling law for the NS-α inertial range,

Eα(κ) ∼ ε
2/3
α (1 + α2κ2)1/3

κ5/3
. (3.16)

Thus, the total energy present in the NS-α inertial range is actually enhanced by the presence of alpha. Notice,
however, that in terms of the filtered velocity u alone, the translational kinetic energy spectrum is given by

Eα(κ)

(1 + α2κ2)
∼ ε

2/3
α

κ5/3

1

(1 + α2κ2)2/3
=



ε

2/3
α

κ5/3
if κα � 1,

ε
2/3
α

α4/3κ3
if κα � 1.

(3.17)

Hence, the anticipated κ−3 behavior appears in the spectrum for theα-filtered velocity as a consequence of Eq. (3.17)
arising from Kraichnan’s argument [21] associating energy transfer rates and eddy turnover times for the filtered
velocity. According to this argument, the presence of alpha reduces the energy associated with the higher wavenum-
bers in the L2 norm of the filtered velocity u. This conclusion from (3.17) agrees with the trends shown in Fig. 1
obtained from high resolution DNS studies of the NS-α equation in [7]. However, these numerical studies do not
have sufficient dynamic range to confirm this conclusion entirely. Thus, uncertainty remains in claiming a numer-
ical confirmation because the quantity Eα(κ)/(1 + α2κ2) in Eq. (3.17) is unaffected by the alpha-modification for
κα � 1 and may already be out of the inertial range and into the dissipation range for κα � 1. Studies in progress
using DNS of the limit α → ∞ NS-α equation hope to clarify this point [23]. Next we shall discuss the extent of
the inertial range for the NS-α model.

Eq. (3.17) holds only in the inertial range, i.e., provided, cf. (3.10),

νκ3Eα(κ)� εα. (3.18)

This inertial-range inequality may be expressed equivalently as κ � κα , where κα (the end of the NS-α inertial
range) is given in terms of the NS-α Kolmogorov wavenumber κα,Ko by using (3.15) and (3.17) to find

κ4
α(1 + α2κ2

α) ∼ εα

ν3
= κ4

α,Ko. (3.19)

Thus, as expected from the numerical simulations of [7], the inertial range is shortened to κ < κα for the NS-α
model by its nonlinear dispersive filtering with lengthscale α. For sufficiently large NS-α Kolmogorov wavenumber
κα,Ko and with α fixed, the wavenumber κα at the end of the NS-α inertial range is determined from (3.19) to be

κα ∼
(

1

α

)1/3

κ
2/3
α,Ko. (3.20)

This is a relationship among the three progressively larger wavenumbers,

1

α
< κα < κα,Ko.

Shortening the inertial range for the NS-α model to κ < κα rather than κ < κα,Ko implies fewer active degrees of
freedom in the solution.
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3.3. Counting degrees of freedom

If one expects turbulence to be “extensive” in the thermodynamic sense, then one may expect that the number of
“active degrees of freedom” Ndof for alpha-model turbulence should scale as

Ndof ∼ (Lκα)3 ∼
(
L

α

)
(Lκα,Ko)

2 ∼ L

α
Re3/2, (3.21)

where L is the integral scale (or domain size), κα is the end of the NS-α inertial range and Re = L4/3ε
1/3
α /ν is the

Reynolds number (with dissipation rate εα and viscosity ν). The corresponding number of degrees of freedom for
Navier–Stokes with the same parameters is

NNS
dof ≡ (L κα,Ko)

3 ∼ Re9/4, (3.22)

and one sees a possible trade-off in the relative Reynolds number scaling of the two models. Should these estimates of
the number of degrees of freedom needed for numerical simulations using the NS-αmodel relative to Navier–Stokes
not be overly optimistic, the implication would be one factor of (NNS

dof/Ndof)
1/3 in relative increased computational

speed gained by the NS-α model for each spatial dimension and yet another factor for the accompanying lessened
CFL time step restriction. Altogether, this would be a gain in speed of

(
NNS

dof

Ndof

)4/3

=
(α
L

)4/3
Re. (3.23)

Since α/L � 1 and Re � 1, the two factors in the last expression compete, but the Reynolds number should
eventually win out, because Re can keep increasing while the number α/L is expected to tend to a constant value,
say α/L = 1/100, at high (but experimentally attainable) Reynolds numbers, at least for simple flow geometries.
Empirical indications for this tendency were found in [3–5] by comparing steady NS-α solutions with experimental
mean-velocity-profile data for turbulent flows in pipes and channels.

Thus, according to this scaling argument, a factor of 104 in increased computational speed for resolved scales
greater than α could occur by using the NS-α model at the Reynolds number for which the ratio κα,Ko/κα = 10.
An early indication of the feasibility of obtaining such factors in increased computational speed was realized in
the DNSs of homogeneous turbulence reported in [7], in which κα,Ko/κα � 4 and the full factor of 44 = 256 in
computational speed was obtained using spectral methods in a periodic domain at little or no cost of accuracy in
the statistics of the resolved scales.

3.4. Related mathematical results

The paper [6] shows that strong solutions of the NS-α model exist globally, they are unique, and they lie on a
global attractor whose fractal (Lyapunov) dimension is bounded above by

Dfrac ≤ N3/2
dof , (3.24)

withNdof defined as in Eq. (3.21). This rigorous mathematical bound exceeds the expected value obtained above by
heuristically counting degrees of freedom assuming “extensive” turbulence. Thus, it would imply a smaller increase
in computational speed than that of (3.23). However, this rigorous bound may have room for improvement.
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3.5. Oboukov cascade rate

We have established in Eq. (3.14) that the eddy turnover rate based on the translational velocity for the NS-α
model is

τ−1
κ ∼ κUκ ∼

√
κ3Eα(κ)

1 + α2κ2
∼
(

εακ
2

1 + α2κ2

)1/3

. (3.25)

Therefore,

• for low wavenumbers (κα � 1), information (or error) propagates between scales κ and 2κ at a rate proportional
to κ2/3, in agreement with the classical accelerated cascade of Oboukov [24] as cited, e.g., in [25]; while

• for high wavenumbers (κα � 1), information propagates at a constant rate, independently of wavenumber for
the NS-α model (as occurs also in the case of 2D turbulence discussed by Leith and Kraichnan [26]).

Without an accelerated cascade at high wavenumber, the NS-α model should tend to be more predictable than the
original Navier–Stokes model. Of course, it makes sense that an averaged or filtered description of fluid flow would
propagate high wavenumber information and errors at a slower rate than an instantaneous, unfiltered description
does (e.g., think of climate versus weather). The κ−3 spectrum of the translational kinetic energy in the alpha models
for ακ � 1 is consistent with this interpretation of reduced error propagation rate as measured in the L2 norm of
the filtered velocity.

4. Rheology of NS-ααα turbulence: second-grade fluids

We rewrite the NS-alpha equations (2.7) with v = (1 − α2∆)u and α constant in their equivalent constitutive
form,

du
dt

= ∇ · T, where T = −pI + 2ν(1 − α2∆)D + 2α2 ◦
D, (4.1)

with ∇ · u = 0, strain rate D = 1
2 (∇u + ∇uT), vorticity tensor Ω = 1

2 (∇u − ∇uT), and co-rotational (Jaumann)

derivative given by
◦
D = dD/dt + DΩ −ΩD.

In Eq. (4.1), one recognizes the constitutive relation for the NS-α model as a variant of the rate-dependent
incompressible homogeneous fluid of second grade [27,28], in which the dissipation, however, is modified by
composition with the Helmholtz operator (1 − α2∆). Thus, the NS-α model has nearly the same stress tensor as
the second-grade fluid. However, it is not quite the same. The stress tensor for the NS-α model uses Navier–Stokes
viscous dissipation instead of the weaker form of dissipation used for second-grade fluids that is independent of
wavenumber. Note that despite first appearances, there is no hyperviscosity in the NS-α model, only the standard
Navier–Stokes viscosity.

Equations for the second-grade fluid were treated recently in the mathematical literature [29–31]. Also, in [20]
local well-posedness results for some initial value problems for differential type fluids arising in non-Newtonian
fluids (second- and third-grade fluid) were obtained by transferring the problem from the Eulerian to the Lagrangian
setting, thereby extending the Arnold [32] and Ebin–Marsden program [33] to the case of second-grade fluids. For
the case of second-grade fluids, for kα > 1 the wavenumber spectrum should still roll over to k−3, provided the
Kolmogorov/Oboukov argument still holds for the weaker dissipation.

The association of turbulence closure models with non-Newtonian fluids is natural. There is a tradition at least
since Rivlin [34] of modeling turbulence by using continuum mechanics principles such as objectivity and material
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frame indifference (see also [35]). For example, this sort of approach is taken in deriving Reynolds stress algebraic
equation models [36]. Rate-dependent closure models of mean turbulence have also been obtained by the two-scale
DIA approach [37] and by the renormalization group method [38].

Despite its similarity to the rheology of second-grade fluids, the alpha parameter in the NS-α model is actually
not a material parameter. Rather, it is a flow regime parameter. Since the NS-α model describes mean quantities,
it was proposed as a turbulence closure model and this ansatz was tested by comparing its steady solutions (using
the standard Navier–Stokes viscosity) to mean velocity measurements in turbulent channel and pipe flows in [3–5].
These experimental tests show that alpha depends slightly on Reynolds number and varies slightly with distance
from the wall for the low to moderate Reynolds numbers available in channel flow. However, at the high to very
high Reynolds numbers available in pipe flows, alpha becomes independent of Reynolds number and takes a small
value — about 1% of the pipe diameter.

5. Guide to recent NS-ααα model literature

In [3–5], the authors introduce random fluctuations into the description of the fluid parcel trajectories in the
Lagrangian in Hamilton’s principle for ideal incompressible fluid dynamics. They then take its statistical average
and use the Euler–Poincaré theory of Holm et al. [9,10,39] to derive Eulerian closure equations for the correspond-
ing averaged ideal fluid motions. The Euler–Poincaré equation that is used in deriving the ideal dynamics of the
NS-α model is equivalent in the Eulerian picture to the corresponding Euler–Lagrange equation for fluid parcel
trajectories for Lagrangians that are invariant under the right-action of the diffeomorphism group. See [9,10,39],
and references therein for more discussions of Euler–Poincaré equations. The Euler–Poincaré theory is applied for
modeling fluctuation effects on 3D Lagrangian mean and Eulerian mean fluid motion in [19].

The NS-α model equations (also sometimes called in the literature the viscous Camassa–Holm equations) are
proposed in [3–5] as a turbulence closure approximation for the Navier–Stokes equations. The analytic form of
the velocity profiles based on the steady NS-α equations away from the viscous sublayer, but covering at least
95% of the channel, depends on two free parameters: the flux Reynolds number R, and the wall-stress Reynolds
number R0. (Due to measurement limitations, most experimental data are contained in this region.) The authors
further reduce the parameter dependence to a single free parameter by assuming a certain drag law for the wall
friction D ∼ R2

0/R
2. For most of the channel the steady NS-α solution is shown to be compatible with empirical

and numerical velocity profiles in this subregion. The NS-α steady velocity profiles agree well outside the viscous
sublayer with data obtained from mean velocity measurements and simulations of turbulent channel and pipe flow
over a wide range of Reynolds numbers [3–5].

5.1. DNS and comparisons with LES

In [7], DNSs of the NS-α equations are compared with Navier–Stokes DNS and interpreted as behaving like an
LES model, i.e., the NS-α model is shown to produce an accurate dynamical description of the large scale features
of turbulence driven at large scales, even at resolutions for which the fine scales are not resolved. The NS-α model
may at first appear not to be an LES model, since it has rate dependence that is not admitted by LES models.
However, the NS-α model was recently shown to transform to a generalized LES similarity model in [8]. This is a
promising result for LES modeling, since the mathematical theorems available in [6] for existence, uniqueness and
finite dimensional global attractor for the NS-α model will now be transferable to the continuous formulations of
this class of generalized LES similarity models. As a basis for numerical schemes, the NS-α model also resembles
vorticity methods, as observed in [20,40,41].
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5.2. Geodesic motion

The completely integrable one-dimensional Camassa–Holm equation [42] is expressed on the real line as

∂v

∂t
+ u∂v

∂x
+ 2v

∂u

∂x
= 0, u(x, t) = 1

2

∫ ∞

−∞
e|x−y| v(y, t) dy. (5.1)

Thus, we have v = u−∂2u/∂x2, cf. Eqs. (2.7) with definition (2.20). This one-dimensional equation is formally the
Euler–Poincaré equation for geodesic motion on the diffeomorphism group with respect to the metric given by the
mean kinetic energy Lagrangian, which is right-invariant under the action of the diffeomorphism group. See [9,10] for
detailed discussions, applications and references to Euler–Poincaré equations of this type for ideal fluids and plasmas.
See [9,10] for the original derivation of the n-dimensional Camassa–Holm, or Euler-α equation in Euclidean space.
See [43,44] for discussions of its generalization to Riemannian manifolds, its existence and uniqueness on a finite
time interval, and more about its relation to the theory of second-grade fluids. Additional properties of the Euler-α
equations, such as smoothness of the geodesic spray (the Ebin–Marsden theorem), are also shown to hold in [44] and
the limit of zero viscosity for the corresponding viscous equations is shown to be a regular limit, even in the presence
of boundaries for either homogeneous (Dirichlet) boundary conditions, or for boundary conditions involving the
second fundamental form of the boundary. Functional-analytic studies of the ideal Euler-αmodel are made in [20,45].
The methods introduced and applied in [20,45], while geometrical in nature, also address analytical issues and obtain
results that were not previously available by traditional techniques for partial differential equations. For example,
these methods produce local in time existence of C∞ viscosity independent solutions for the Euler-α equations in n
dimensions (and in particular 3D) for a fluid container that can be an arbitrary Riemannian manifold with boundary. 3

5.3. Mathematical estimates for strong solutions with dissipation

Paper [6] provides the mathematical estimates that are needed to show that the solutions of the NS-α model exist
globally, are unique and possess a global attractor with finite fractal dimension satisfying Eq. (3.24). The estimates
in [6] do depend on the viscosity remaining positive.
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