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ABSTRACT

This paper describes the database on U.S. patents that we have developed over the past decade,
with the goal of making it widely accessible for research.  We present main trends in U. S. patenting over
the last 30 years, including a variety of original measures constructed with citation data, such as backward
and forward citation lags, indices of “originality” and “generality”, self-citations, etc. Many of these
measures exhibit interesting differences across the six main technological categories that we have
developed (comprising Computers and Communications, Drugs and Medical, Electrical and Electronics,
Chemical, Mechanical and Others), differences that call for further research.  To stimulate such research,
the entire database—about 3 million patents and 16 million citations—is now available on the NBER
website. We discuss key issues that arise in the use of patent citations data, and suggest ways of
addressing them. In particular, significant changes over time in the rate of patenting and in the number
of citations made, as well as the inevitable truncation of the data, make it very hard to use the raw number
of citations received by different patents directly in a meaningful way. To remedy this problem we suggest
two alternative approaches: the fixed-effects approach involves scaling citations by the average citation
count for a group of patents to which the patent of interest belongs; the quasi-structural approach attempts
to distinguish the multiple effects on citation rates via econometric estimation.
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I. Introduction 
 

The goal of this paper is to describe the data base on U. S. patents that we have 

developed over the past decade, so as to make it widely accessible for research. In so 

doing we discuss key issues that arise in the use of patent citations data, and suggest ways 

of addressing them. We also present some of the main trends in patenting over the last 30 

years, including a variety of original measures constructed with citation data, such as 

indices of “originality” and “generality”, self-citations, backward and forward citation 

lags, etc. Many of these measures exhibit interesting differences across the six main 

technological categories that we have developed (comprising Computers and 

Communications, Drugs and Medical, Electrical and Electronics, Chemical, Mechanical 

and Others). 

 

Broadly speaking, the data comprise detailed information on almost 3 million U. 

S. patents granted between January 1963 and December 1999, all citations made to these 

patents between 1975 and 1999 (over 16 million), and a reasonably broad match of 

patents to Compustat (the data set of all firms traded in the U. S. stock market). As it 

stands now, the data file is fully functional, and can be used with relative ease with 

standard software such as SAS or Access. We hope that the availability of patent data in 

this format will encourage researchers to use these data extensively, thus making patent 

data a staple of research in economics.   

 

This represents the culmination of a long-term research and data-creation effort 

that involved a wide range of researchers (primarily the present authors, Rebecca 

Henderson, and Michael Fogarty), institutions (the NBER, REI at Case-Western, Tel-

Aviv University), programmers (Meg Fernando, Abi Rubin, and Adi Raz), research 

assistants (notably Guy Michaels and Michael Katz), and financial resources (primarily 

from various NSF grants). Hopefully, the contribution of these data to present and future 

research in economics will justify the magnitude of the investment made. 
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 Patents have long been recognized as a very rich and potentially fruitful source of 

data for the study of innovation and technical change. Indeed, there are numerous 

advantages to the use of patent data:  

• Each patent contains highly detailed information on the innovation itself, the 

technological area to which it belongs, the inventors (e.g. their geographical location), 

the assignee, etc. Moreover, patents have very wide coverage (in terms of fields, types 

of inventors, etc.), and in the course of the last three decades U. S. patents 

increasingly reflect not only inventive activity in the U. S. itself, but also around the 

world.1  

• There are a very large number of patents, each of which constitutes a highly 

detailed observation: the “stock” of patents is currently in excess of 6 million, and the 

flow is of over 150,000 patents per year (as of 1999-2000). Thus the wealth of data  

potentially available for research is huge.  

• Patents have been granted in the U. S. continuously since the late 18th century. 

The current numbering and reporting system dates to the 1870s, meaning that there 

are (in principle) over 100 years of consistently reported data. 

• In contrast to other types of economic information, the data contained in patents 

are supplied entirely on a voluntary basis, and the incentives to do so are plain and 

clear. After all, the whole idea of patents is that they constitute a “package deal,” 

namely, the grant of temporary monopoly rights in exchange for disclosure.  

• Patent data include citations to previous patents and to the scientific literature. 

These citations open up the possibility of tracing multiple linkages between 

inventions, inventors, scientists, firms, locations, etc. In particular, patent citations 

allow one to study spillovers, and to create indicators of the "importance" of 

individual patents, thus introducing a way of capturing the enormous heterogeneity in 

the “value” of patents. 

 

There are also serious limitations to the use of patent data, the most glaring being 

the fact that not all inventions are patented. First, not all inventions meet the patentability 

                                                   
1 The percentage of U. S. patents awarded to foreign inventors has risen from about 20% in the early 
sixties, to about 45% in the late1990s.  
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criteria set by the USPTO (the invention has to be novel, non-trivial, and has to have 

commercial application). Second, the inventor has to make a strategic decision to patent, 

as opposed to rely on secrecy or other means of appropriability. Unfortunately, we have 

very little idea of the extent to which patents are representative of the wider universe of 

inventions, since there is no systematic data about inventions that are not patented. This is 

an important, wide-open area for future research. Another problem that used to be a 

serious hindrance stemmed from the fact that the patent file was not entirely 

computerized. Furthermore, until not long ago it was extremely difficult to handle those 

“chunks” that were computerized, because of the very large size of the data. In fact, the 

whole feasibility of this data construction project was called into question (certainly at the 

beginning of this endeavor, in the early 1990s), in view of these problems. However, 

rapid progress in computer technology has virtually eliminated these difficulties, so much 

so that at present the whole data reside in personal computers, and can be analyzed with 

the aid of standard PC software. 

 

The idea of using patent data in a large scale for economic research goes back at 

least to Schmookler (1966), followed by Scherer (1982), and Griliches (1984).2 The work 

of Schmookler involved assigning patent counts to industries (by creating a concordance 

between patent subclasses and SICs), whereas Griliches’ research program at the NBER 

entailed matching patents to Compustat firms. In both cases the only data item used, aside 

from the match itself, was the timing of the patent (i.e. the grant or application year), such 

that in the end the patent data available for research consisted of patent counts by 

industries or firms, by year. Of course, it is the linking out of such data that made it 

valuable, since it could then be related to the wealth of information available on the 

industries/firms themselves. The project that Scherer undertook involved classifying a 

sample of 15,000 patents into industry of origin and industries of use, by the textual 

examination of each patent. The result was a detailed technology flow matrix, that again 

could be linked to other, external data, such as R&D expenditures on the one hand, and 

productivity growth on the other hand.  
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One of the major drawbacks of these and related research programs, extremely 

valuable as they had been, was that they relied exclusively on simple patent counts as 

indicators of some sort of innovative output. However, it has long been known that 

innovations vary enormously in their technological and economic “importance”, 

“significance” or “value”, and moreover, that the distribution of such “values” is 

extremely skewed. The line of research initiated by Schankerman and Pakes (1986) using 

patent renewal data clearly revealed these features of the patent data (see also Pakes and 

Simpson, 1991). Thus, simple patent counts were seriously and inherently limited in the 

extent to which they could faithfully capture and summarize the underlying heterogeneity 

(see Griliches, Hall and Pakes, 1987). A further (related) drawback was of course that 

these projects did not make use of any of the other data items contained in the patents 

themselves, and could not do so, given the stringent limitations on data availability at the 

time.  

 

Keenly aware of the need to overcome these limitations on the one hand, and of 

the intriguing possibilities held by patent citations on the other hand, we realized that a 

major data construction effort was called for. Encouraged by the novel finding that 

citations appear to be correlated with the value of innovations (Trajtenberg, 1990), we 

undertook work aimed primarily at demonstrating the potential usefulness of citations for 

a variety of purposes: as indicators of spillovers (Jaffe, Trajtenberg and Henderson, 1993, 

Caballero and Jaffe, 1993), and as ingredients in the construction of measures for other 

features of innovations, such as “originality” and “generality” (Trajtenberg, Jaffe and 

Henderson, 1997). We used for each of these projects samples of patent data that were 

acquired and constructed with a single, specific purpose in mind. As the data 

requirements grew, however, we came to the conclusion that it was extremely inefficient 

if not impossible to carry out a serious research agenda on such a piece-wise basis.  

 

                                                                                                                                                        
2 This is by no means a survey of patent-related work, rather we just note the key data-focused research 
projects that put forward distinctive methodologies, and had a significant impact on further research. For a 
survey of research using patent data, see Griliches (1990). 
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In particular, the “inversion” problem that arises when using citations received 

called for an all-out solution. The inversion problem refers to the fact that the original 

data on citations come in the form of citations made (i.e. each patent lists references to 

previous patents), whereas for many of the uses (certainly for assessing the importance of 

patents) one needs data on citations received. The trouble is that in order to obtain the 

citations received by any one patent granted in year t, one needs to search the references 

made by all patents granted after year t. Thus, any study using citations received, 

however small the sample of patents is, requires in fact access to the whole citations data, 

in a way that permits efficient search and extraction of citations. The latter means in fact 

being able to “invert” the citations data, sorting it not by the patent number of the citing 

patent, but by the patent number of the cited patent. This inherent indivisibility led us to 

aim for a comprehensive data construction effort.3  

 
 The paper is organized as follows: Section II describes the data in detail, and 

presents summary statistics (primarily via charts) for each of the main variables. Since 

these statistics are computed on the basis of the whole data, the intention is both to 

provide benchmark figures that may be referred to in future research, as well as to 

highlight trends and stylized facts that call for further study. Section III discusses the 

problems that arise with the use of citation data, because of truncation and other changes 

over time in the citation process. We outline two ways of dealing with these issues, a 

“fixed-effects” approach, and a structural-econometric one. 

  

 
II. Description of the Data  

 
II.1 Scope, Contents and Sources of the Data 

The main data set extends from January 1, 1963 through December 30, 1999 (37 

years), and includes all the utility patents granted during that period, totaling 2,923,922 

                                                   
3 It is interesting to note that in the early 1990s this enterprise seemed rather far-fetched, given the state 
(and costs) of computer technology at the time: the patent data as provided then by the Patent Office 
occupied about 60 magnetic tapes, and the inversion procedure (of millions of citations) would have 
necessitated computer resources beyond our reach. However, both computers and data availability 
improved along the way fast enough to make this project feasible. 
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patents; 4 we shall refer to this data set as PAT63_99. This file includes two main sets of 

variables, those that came from the Patent Office (“original” variables), and those that we 

created from them (“constructed” variables). The citations file, CITE75_99, includes all 

citations made by patents granted in 1975-1999, totaling 16,522,438 citations. In 

addition, we have detailed data on inventors, assignees, etc. The patent data themselves 

were procured from the Patent Office, except for the citations from patents granted in 

1999, which come from MicroPatent. The PAT63_99 file occupies less than 500 MB (in 

Access or in SAS), the CITE75_99 about 260 MB. The contents of these files are as 

follows:  

 

1. PAT63_99 
 (i) Original Variables:5 

1. Patent number 
2. Grant year 
3. Grant date6 
4. Application year (starting in 1967) 
5. Country of first inventor 
6. State of first inventor (if U. S.) 
7. Assignee identifier, if the patent was assigned (starting in 1969) 
8. Assignee type (i.e., individual, corporate, or government; foreign or domestic) 
9. Main U.S. patent class 
10. Number of claims (starting in 1975) 

 
(ii) Constructed variables: 

1. Technological category 
2. Technological sub-category 
3. Number of citations made 
4. Number of citations received 
5. Percent of citations made by this patent to patents granted since 19637  
6. Measure of “generality” 

                                                   
4 In addition to utility patents, there are three other minor patent categories: Design, Reissue, and Plant 
patents. The overwhelming majority are utility patents: in 1999 the number of utility patents granted 
reached 153,493, versus just 14,732 for Design patents, 448 Reissue, and 421 Plant. Our data do not 
include these other categories.  
5 We also have the patent subclass, and the SICs that the Patent Office matched to each patent. However, 
we have not used these data so far, and they are not included in the PAT63_99 file. 
6 Number of weeks elapsed since January 1, 1960.  
7 That is, for each patent we compute the following ratio: number of citations made to patents granted since 
1963 divided by the total number of citations made. The point is that older citations are not in our data, and 
hence for purposes such as computing the measure of originality, the actual computation is done only on 
the basis of the post-63 citations. However, one needs to know to what extent such calculations are partial.  
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7. Measure of “originality” 
8. Mean forward citation lag 
9. Mean backwards citations lag 
10. Percentage of self-citations made –upper and lower bounds 

 

2. CITE75_99 
1. Citing patent number 
2. Cited patent number 

 

3. The “Inventors” file 
This file contains the full names and addresses of each of the multiple inventors listed 

in each patent (most patents have indeed multiple inventors, the average being over 2 

per patent). Both the names of the inventors and their geographical locations offer a 

very rich resource for research that has yet to be fully exploited. 
 

4. The “Coname” file 
1. Assignee identifier (numerical code, as it appears in PAT63_99) 
2. Full assignee name 
 

5. The Compustat match file (see II.11 below) 
 
 
II.2 Dating of Patents, and the Application – Grant Lag 

Each patent document includes the date when the inventor filed for the patent (the 

application date), and the date when the patent was granted. Our data contains the grant 

date and the grant year of all patents in the file (i.e., of all utility patents granted since 

1963) and the application year for patents granted since 1967.8 Clearly, the actual timing 

of the patented inventions is closer to the application date than to the (subsequent) grant 

date. This is so because inventors have a strong incentive to apply for a patent as soon as 

possible following the completion of the innovation, whereas the grant date depends upon 

the review process at the Patent Office, which takes on average about 2 years, with a 

                                                   
8 Actually the grant year can be retrieved from the patent numbers, since these are given sequentially along 
time. Moreover, the Patent Office publishes a table indicating the first and last patent number of each grant 
year. 
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significant variance (see Table 1). Indeed, the mode of operation of the Patent Office 

underwent significant changes in the past decades, thereby introducing a great deal of 

randomness (that have nothing to do with the actual timing of the inventions) into any 

patent time series dated by grant year.  

 

Thus, and whenever possible, the application date should be used as the relevant 

time placer for patents.9 On the other hand one has to be mindful in that case of the 

truncation problem: as the time series move closer to the last date in the data set,10 patent 

data timed according to the application date will increasingly suffer from missing 

observations consisting of patents filed in recent years that have not yet been granted. 

Table 1 shows the distribution of application-grant lags for selected sub-periods, as well 

as the mean lag and its standard deviation.11 Overall the lags have shortened significantly, 

from an average of 2.4 years in the late 1960s to 1.8 years in the early 1990s, at the same 

time as the number of patents examined (and granted) more than doubled. Notice 

however that the trend was not monotonic: during the early 1980s the lags in fact 

lengthened, but shortened again in the second half of the 1980s and early 1990s. Notice 

also that the percentage granted 2 years after filing is about 85% (for recent cohorts), and 

after 3 years about 95%. Thus, it is advisable to take at least a 3-year “safety lag” when 

dating patents according to application year, and/or to control for truncation, for example 

by including dummies for years.  

 

II.3 Number of Patents 

Figure 1 shows the annual number of granted patents by application year, and 

Figure 2 the number of patents by grant year. The extent of the truncation problem can be 

clearly seen in Figure 1, for the years 1996-99: the sharp drop in the series is just an 

artifact reflecting the fact that the data include patents granted up to the end of 1999, and 

hence for the years just before that we only observe those patent applications that were 

                                                   
9 The series for the patent variables that we present below are indeed mostly by application year, and 
include data up to 1997: given that we have patents granted only up to December 1999, there are too few 
applications for 1998 and 1999.  
10 For our data this date is December 1999.  
11 The figures presented there may still suffer slightly from truncation: there probably are patents applied 
for in 1990-92 that still were not granted by 12/1999.  
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granted relatively fast, but not all those other patents that will be granted afterwards. The 

series in Figure 1 are smoother than those in Figure 2, reflecting the changing length of 

the examination process at the Patent Office, which causes the series dated by granting 

date to vary from year to year in a rather haphazard way. 

 

Figure 1 shows that the total number of successful patent applications remained 

roughly constant up to 1983, oscillating around 65,000 annually, and then took off 

dramatically, reaching almost 140,000 in the mid 1990’s. In terms of patents granted, the 

single most pronounced changed occurred between 1997 and 1998, when the number of 

patents granted increased by almost 1/3 (from 112K to 148K). In terms of composition, 

the number of patents granted to U. S. inventors actually declined up to 1983, but such 

decline was almost exactly compensated by the increase in the number of patents granted 

to foreigners. Despite these differences for the pre-1983 period, the acceleration that 

started in 1983 applies both to U. S. and to foreign inventors (see Kortum and Lerner, 

1998). Note in Figure 2 that the turning point there (i.e. according to grant year) would 

appear to have occurred in 1979, but that just reflects the application-grant lag (and 

changes in that respect) and not a “real” phenomenon.   

 

II.4 Types of Assignees 

The USPTO classifies patents according to the type of assignees, into the 

following seven categories (the figures are the percentages of each of these categories in 

our data): 

1 – Unassigned        18.4% 

Assigned to:          

2 – U. S. non-government organizations (mostly corporations)  47.2%   

3 – Non-U. S., non-government organizations (mostly corporations) 31.2% 

4 – U. S. individuals        0.8% 

5 – Non-U. S. individuals       0.3% 

6 – The U. S. Federal Government      1.7% 

7 – Non-U. S. Governments       0.4% 
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“Unassigned” patents are those for which the inventors have not yet granted the 

rights to the invention to a legal entity such as a corporation, university or government 

agency, or to other individuals. These patents were thus still owned by the original 

inventors at the time of patenting, and they may or may have not transferred their patent 

rights at a later time (we do not have data on transfers done after the grant date). By far 

the vast majority of patents (78.4%) are assigned to corporations,12 and another 18.4% are 

unassigned. Of the remaining ones, 2.1% are assigned to government agencies, and 1.1% 

to individuals. This later category is thus unimportant, and for practical purposes can be 

regarded as part of the “unassigned” category. As Figure 3 shows, the percentage of 

corporate patents for U. S. inventions increased slightly over the period from 72% to 

77%, whereas for foreign patents the increase was much steeper, from 78% in 1965 to 

90% in 1997. The increase in the share of corporate inventions reflects the long-term 

raising dominance of corporations as the locus of innovation, and the concomitant 

relative decline of individual inventors.  

 

II.5 Technological Fields 

The USPTO has developed over the years a highly elaborate classification system 

for the technologies to which the patented inventions belong, consisting of about 400 

main (3-digit) patent classes,13 and over 120,000 patent subclasses. This system is being 

updated continuously, reflecting the rapid changes in the technologies themselves, with 

new patent classes being added and others being reclassified and discarded.14 Each patent 

is assigned to an “original” classification (class and subclass), and to any number of 

subsidiary classes and subclasses. For the vast majority of uses one is likely to resort only 

to the original, 3-digit patent class, and hence we include only it in the PAT63_99 file.  

 

Furthermore, even 400 classes are far too many for most applications (such as 

serving as controls in regressions), and hence we have developed a higher-level 

                                                   
12 The category refers as said to “non-government organizations”, which consists overwhelmingly of 
business entities (i.e. corporations), but includes also universities. 
13 There were 417 classes in the 1999 classification, which is the one we use.  
14 From time to time the Patent Office reassigns patents retroactively to patent classes according to the most 
recent patent classification system. Therefore, one has to be careful when using jointly data files created at 
different times, or when adding recent patents to older sets.  
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classification, by which the 400 classes are aggregated into 36 two-digit technological 

sub-categories, and these in turn are further aggregated into 6 main categories: Chemical 

(excluding Drugs); Computers and Communications (C&C); Drugs and Medical (D&M); 

Electrical and Electronics (E&E); Mechanical; and Others (see Appendix 1). Of course, 

there is always an element of arbitrariness in devising an aggregation system and in 

assigning the patent classes into the various technological categories, and there is no 

guarantee that the resulting classification is “right”, or adequate for most uses. For 

example, we found that within the category Drugs and Medical there is a high degree of 

heterogeneity between sub-categories in some of the dimensions explored: the sub-

category Drugs (no. 31) exhibits a much higher percentage of self-citations than the 

others, and Biotechnology (no. 32) scores significantly higher in terms of generality and 

originality. Thus, we suggest that while convenient, the present classification should be 

used with great care, and reexamined critically for specific applications.  

  

Figure 4 shows the number of patents in each of the six technological categories 

over time by application year, Figure 5 expresses these numbers as shares of total patents. 

The changes are quite dramatic: the three traditional fields (Chemical, Mechanical and 

Others) have experienced a steady decline over the past 3 decades, from about 25% to 

less than 20% each. The big winner has been Computers and Communications, which 

rose steeply from 5% in the 1960s to 20% in the late 1990s, and also Drugs and Medical, 

which went from 2% to over 10%. The only stable field is Electrical and Electronics, 

holding steady at 16-18%. All told the 3 traditional fields dropped from 76% of the total 

in 1965 to 54% in 1997 by application year.  (Their share of 1999 grants was just 51%.) 

This clearly reflects the much-heralded “technological revolution” of our times, 

associated with the rise of Information Technologies on the one hand, and the growing 

importance of Health Care Technologies on the other hand. 

 

Figure 4 reveals yet another aspect of these changes: The absolute number of 

patents in the traditional fields (Chemical, Mechanical and Others) declined slightly up to 

1983 (certainly during the late seventies), and then increased by 20-30%. By contrast, the 

emerging fields of Computers and Communications and Drugs and Medical increased 
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throughout the whole period, with a marked acceleration after 1983. All told, the absolute 

number of patents in C&C experienced a 5-fold increase since 1983, and similarly for 

those in D&M. This makes clear both the extent to which there was a turning point in the 

early 1980s (across the board), and the dramatic changes in the rates of growth of 

innovations in emerging versus traditional technologies. Comparing patents of U. S. 

versus non-U. S. inventors, the only significant difference is that the field of D&M grew 

significantly faster in the U. S.: by the mid 1990s the share of D&M for U. S. inventors 

was 12%, versus 8% for non-U. S.. 

 

II.6 Citations Made and Received 

A key data item in the patent document is “References Cited – U. S. Patent 

Documents” (hereafter we refer to these just as “citations”). Patent citations serve an 

important legal function, since they delimit the scope of the property rights awarded by 

the patent. Thus, if patent B cites patent A, it implies that patent A represents a piece of 

previously existing knowledge upon which patent B builds, and over which B cannot 

have a claim. The applicant has a legal duty to disclose any knowledge of the “prior art,” 

but the decision regarding which patents to cite ultimately rests with the patent examiner, 

who is supposed to be an expert in the area and hence to be able to identify relevant prior 

art that the applicant misses or conceals. The presumption is thus that citations are 

informative of links between patented innovations. First, citations made may constitute a 

“paper trail” for spillovers, i.e. the fact that patent B cites patent A may be indicative of 

knowledge flowing from A to B; second, citations received may be telling of the 

“importance” of the cited patent.15 The following quote provides support for the latter 

presumption:  

 

“..the examiner searches the…patent file. His purpose is to identify any prior 
disclosures of technology… which might be similar to the claimed invention and 
limit the scope of patent protection...or which, generally, reveal the state of the 
technology to which the invention is directed. If such documents are found...they 
are “cited”... if a single document is cited in numerous patents, the technology 
revealed in that document is apparently involved in many developmental efforts. 

                                                   
15 See Jaffe, Trajtenberg and Fogarty (2000) for evidence from a survey of inventors on the role of citations 
in both senses. 
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Thus, the number of times a patent document is cited may be a measure of its 
technological significance.” (OTAF, 1976, p. 167) 

 
 

Beyond that, one can construct citations-based measures that may capture other 

aspects of the patented innovations, such as “originality”, “generality”, “science-based”, 

etc. (see Trajtenberg, Jaffe and Henderson, 1997). We discuss below some of these 

measures.  

 

Our data include citations made starting with grant year 1975, and to the best of 

our knowledge there are no computerized citations data prior to that.16 Figure 6 shows the 

mean number of citations made and received over time. Notice the steep rise in the 

number of citations made: from an average of about 5 citations per patent in 1975, to over 

10 by the late 1990s.17 This increase is partly due to the fact that the patent file at the 

USPTO was computerized during the 1980s, and hence patent examiners were able to 

find potential references much more easily.18 Beyond that, we cannot tell the extent to 

which some of the rise may be “real” as opposed to being purely an artifact that just 

reflects changing practices at the USPTO. Thus, one has to be very careful with the time 

dimension of citations, and use appropriate controls for citing years.  

 

The decline in the number of citations received in recent years as shown in Figure 

6 is a result of truncation: patents applied for in say 1993 can receive citations in our data 

just from patents granted up to 1999, but in fact they will be cited by patents in 

subsequent years as well, only that we do not yet observe them. Obviously, for older 

patents truncation is less of an issue; in general, the extent to which truncation is a 

problem depends on the distribution of citation lags, which we examine below. Notice 

                                                   
16 Citations were made before 1975, and may have resided within the PTO in some computerized form. 
However, we have not been able to establish when precisely the current citation practices started at the 
USPTO, and moreover, no publicly available electronic data of which we are aware contains pre-1975 
(grant year) citations. 
17 The decrease in the mean number of citations made after 1995 in the series plotted by application year is 
somewhat puzzling, in view of the fact that the series keeps rising when plotted by grant year. The 
divergence may be due to the fact that patent applications that make fewer citations are less “complex” and 
hence are granted relatively quickly.  
18 Another reason may be the steep rise in the number of patents granted since 1983, which means that there 
are many more patents to cite.  
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that patents applied for prior to 1975 also suffer from truncation, but in a different way: a 

1970 patent will have all the citations received from patents granted since 1975, but none 

of the citations from patents granted in 1970-74. Truncation thus reinforces the need to 

use appropriate controls for the timing of citations, beyond the aforementioned problem 

of the rising number of citations made.  

 

Figure 7 shows the number of citations made by technological categories, and 

Figure 8 does the same for citations received. Clearly, patents belonging to different 

technological categories diverge far more in terms of citations received than in terms of 

citations made. In general, the traditional technological fields cite more and are cited less, 

whereas the emerging fields of C&C and D&M are cited much more but are in between 

in terms of citations made. Thus, the category Others displays the highest number of 

citations made, Electrical and Electronics the lowest, Computers and Communications 

makes as many citations as Chemicals, whereas Drugs and Medical went from making 

the lowest number of citations to making the second highest.  

 

On the receiving side, the distinction between traditional and advanced fields is 

clear-cut, and the differences are very large. Thus, C&C received up to 12 citations per 

patent (twice as many as Mechanical), D&M about 10, E&E over 7, whereas the 

traditional fields received just about 6. Once again, we do not know whether the 

differences in citations made reflect a “real” phenomenon (e.g. fields citing less are truly 

more self-reliant, and perhaps more “original”), or rather different citation practices that 

are somehow artifactual. On the other hand the differences in citations received are more 

likely to be “real”, since it is hard to believe that there are widespread practices that 

systematically discriminate between patents by technological fields when making 

citations. 

 

II.7 Citation Lags 

 There are two ways to look at citation lags, backwards and forward. The 

backward lags focus on the time difference between the application or grant year of the 

citing patent, and that of the cited patents. For patents granted since 1975 we have the 
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complete list of citations made, we know their timing, and therefore we can compute for 

them the entire distribution of backward citation lags. When we look at citations received 

and hence at forward lags the situation is very different, because of truncation: for patents 

granted in 1975 the citations lags may be at most of 24 years, and for more recent patents 

the distribution of lags is obviously truncated even earlier.  

 

 Figure 9 shows the frequencies of backward citation lags up to 50 years back, and 

separately the remaining tail for lags higher than 50; Figure 10 shows the cumulative 

distribution up to 50 years back.19 The striking fact that emerges is that citations go back 

very far into the past (some even over a hundred years!), and that to a significant extent 

patents seem to draw from old technological predecessors. Thus, 50% of citations are 

made to patents at least 10 years older than the citing patent, 25% to patents 20 years 

older or more, and 5% of citations refer to patents that are at least 50 years older than the 

citing one! Reversing the perspective, if this distribution and the number of patents 

granted were to remain stable over the long haul, patents granted in year 2,000 will 

receive just half of their citations by 2,010, 75% by 2,020, and even by 2,050 they will 

still be receiving some. Of course, we know very little about the stability of the lag 

distribution (strictly speaking it is impossible to ascertain it), but there is some indication 

that the lags have been shortening lately, as evidenced by the following figures for 

various cohorts of citing patents: 

 

 

 

 

 

                                                   
19 These distributions are computed by taking each citation to be an observation, rather than by taking the 
average lag for each patent. The backward lags are computed from the grant year of the citing patent to the 
grant year of the cited patent: we do not have the application year for patents granted prior to 1967, and 
hence could not compute the lags from application to application years. For the forward lags we do have the 
application year for both citing and cited patents (starting with the 1975 cited patents), and hence they are 
computed from application year to application year.  
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 Mean Backward Lag (in years)20 

Cohort by citations by citing patents 

1975-77 15.22 14.30 

1983-85 16.44 15.22 

1989-91 15.96 14.52 

1997-99 14.08 12.66 

 

Thus, starting in the early 1980s the backward citation lag has shortened significantly (by 

over 2 years). As discussed further below, however, this trend could simply be due to the 

fact that the rate of patenting has accelerated since then, meaning that the “target” 

population to cite is, on average, younger than it used to be.  

 

Turning now to forward citation lags, Figure 11 shows the frequency distribution 

of lags for patents from selected application years. An interesting feature of these 

distributions is that they are quite flat, particularly those for the earlier years. This is 

simply the result of the steep rise both in the number of citations made per patent and in 

the number of patents granted (and hence citing). Take the distribution for 1975 patents: 

after the first 3 – 4 years, and as time advances, these patents should have been getting 

fewer citations. In fact though, the number of citations that the 1975 patents received did 

not fall, because the number of citations made by later patents kept rising (and among 

others they were citing the 1975 patents), and the number of citing patents kept growing. 

These trends compensated for the fact that the 1975 were getting older and hence 

becoming less likely to be cited. Of course, as the distribution approaches the maximum 

lag possible (of 24 years for the 1975 patents), the number of citations has to fall because 

of truncation.  

 

 Another feature of interest is that it took over 10 years for the 1975 patents to 

receive 50% of their (forward) citations. Thus, even with truncation it is clear that the 

citation process is indeed a lengthy one, however one looks at it. It is therefore imperative 

                                                   
20 The mean lag “by citation” is computed by taking the lag of each citation to be an observation and 
computing the mean for all of the citations; the mean lag “by citing patent” means that we first compute the 
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to take quite a wide time window in order to get significant coverage of forward citations. 

This does not imply that citation analysis has to be confined to old patents, but that one 

needs to carefully control for timing in using citations.  

 

II.8 “Self” Citations 

One of the interesting issues in this context is whose patents are cited, and in 

particular, to what extent they cite previous inventions patented by the same assignee (we 

refer to these as “self citations”), rather than patents of other, unrelated assignees. This 

has important implications, inter alia, for the study of spillovers: presumably citations to 

patents that belong to the same assignee represent transfers of knowledge that are mostly 

internalized, whereas citations to patents of “others” are closer to the pure notion of 

(diffused) spillovers.  

 

We compute the percentage of self-citations made as follows: for each patent that 

has an assignee code we count the number of citations that it made to (previous) patents 

that have the same assignee code, and we divide the count by the total number of citations 

that it made.21 This is in fact a lower bound, because the assignee code variable starts 

only in 1969, and hence for citations to patents granted earlier we cannot establish 

whether they are self-citations or not.22 We also compute an upper bound, dividing the 

count of self-citations by the number of citations that have an assignee code, rather than 

by the total number of citations.23  

 

The mean percentage of self-citations made is 11% for the lower bound, and 

13.6% for the upper bound. However, there are wide differences across technological 

                                                                                                                                                        
mean lag for each citing patent, and then take the mean for all citing patents.  
21 We exclude from the computation citing patents that are unassigned (about 25% of patents), since by 
definition there is no “match” possible to any other assignee of the cited patents. 
22 There is a further reason for this to be a lower bound: the assignee code is not “consolidated”, that is, the 
same firm may appear in different patent documents under various, slightly different names, one assignee 
may be a subsidiary of the other, etc. Thus, if for example we were to compute the percentage of self-
citations using the Compustat CUSIPs (after the match) rather than the assignee codes, we would surely 
find higher figures.  
23 This is presumably an upper bound because we know that self-citations occur earlier on average than 
citations to unrelated assignees; given that patents with missing assignee codes are relatively old (i.e. 
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fields, as shown in Figure 12 (computed for the lower bound). The fact that the 

percentages are much higher in Chemical and in Drugs and Medical corresponds well 

with what we know about these fields: innovation is concentrated there in very large 

firms, and hence the likelihood that they will cite internally is higher.24 Others and 

Mechanical are at the other extreme: in those fields innovation is much more widely 

spread among highly heterogeneous assignees (in terms of size, types of products, etc.), 

and hence self-citations are on average less likely. 

 

Self-citations occur much more rapidly than citations to other patents: for the 

cohort of patents granted in 1997-99, the overall mean backward citation lag was of 14.1 

years, and the median of 9 years. For self-citations the mean was of just 6.5 years, and the 

median 5 years. These differences are part of a more general phenomenon: citations to 

and from patents that are “closer” in terms of geography, technology, or institutional 

belonging occur earlier than citations to and from patents that are further removed along 

those dimensions (see Jaffe, Trajtenberg, and Henderson, 1993). 

 

Figure 13 examines how the fraction of self-citations made has varied over time.  

There was a gradual increase over the decade of the 1970s.  After 1980 there are some 

movements up and down but no clear trend.  This may reflect some kind of increase in 

competition in invention in the last two decades, but that is pure conjecture at this point.  

More detailed examination of these variations in self-citation rates might provide 

valuable insights into the cumulative and competitive aspects of dynamic innovation. 

 

Just as we have looked at the fraction of self-citations made; we can also examine 

the fraction of the citations received by a given patent that come from the same assignee.  

Self-citations received are, however, potentially distorted by the truncation of our data 

series, interacting with the phenomena that self-citations come sooner.  That is, because 

they come sooner, self-citations are less affected by truncation than non-self-citations, 

                                                                                                                                                        
granted prior to 1969), citations to them would be less likely to be self-citations. However, the issue raised 
in the previous footnote still remains open, and hence this is not an upper bound in that sense.  
24 There is a huge difference between “Drugs” and “Medical” in this respect: the percentage of self-citations 
in Drugs is about 20%, that in the remaining D&M sub-categories just 8%.  
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causing the calculated percentage of self-citations received for recent cohorts to be biased 

upward.  This is seen clearly in Figure 14, which is analogous to Figure 13 but calculated 

on the basis of percent of self-citations received.  It shows the same slight upward trend 

in the 1970s, followed by a leveling off, and then a rapidly rising rate as we approach the 

truncation of the data in the 1990s. 

 

II.9 Measures of “Generality” and “Originality”  

A wide variety of citations-based measures can be defined and computed in order 

to examine different aspects of the patented innovations and their links to other 

innovations. We have computed and integrated into the data two such measures, 

“Generality” and “Originality,” as suggested in Trajtenberg, Jaffe and Henderson, 1997:25  

 

∑−= in

j iji sGenerality 21  , 

 

where sij denotes the percentage of citations received by patent i that belong to patent 

class j, out of ni patent classes (note that the sum is the Herfindahl concentration index). 

Thus, if a patent is cited by subsequent patents that belong to a wide range of fields the 

measure will be high, whereas if most citations are concentrated in a few fields it will be 

low (close to zero). Thinking of forward citations as indicative of the impact of a patent, a 

high generality score suggests that the patent presumably had a widespread impact, in 

that it influenced subsequent innovations in a variety of fields (hence the “generality” 

label). “Originality” is defined the same way, except that it refers to citations made. Thus, 

if a patent cites previous patents that belong to a narrow set of technologies the originality 

score will be low, whereas citing patents in a wide range of fields would render a high 

score.26  

 

                                                   
25 Note that these measures depend of course upon the patent classification system: a finer classification 
would render higher measures, and conversely for a coarser system.  
26 As indicated earlier, we included in the data a variable indicating the % of citations made by each patent 
to patents granted since 1963, which in the present context means the percentage of cited patents that have a 
patent class. Since “originality” was computed on the basis of these patents only (rather than on the total 
number of citations made), this is an indicator of the extent to which the computation is accurate.  
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 These measures tend to be positively correlated with the number of citations made 

(for originality) or received (for generality): highly cited patents will tend to have higher 

generality scores, and likewise patents that make lots of citations would display on 

average higher originality. In effect, where there are more citations, there is a built-in 

tendency to cover more patent classes.  How one thinks about this tendency is to some 

extent a matter of interpretation.  To some degree, the tendency of highly cited patents to 

also have a more general impact is presumably real.  It can, however, lead to potentially 

misleading inferences, particularly when comparing patents or groups of patents that have 

different numbers of citations because they come from different cohorts and are therefore 

subject to differing degrees of truncation.  If one views the observed distribution of 

citations across patent classes as a draw from an underlying multinomial distribution, 

then it can be shown that the observed concentration is biased upward (and hence the 

generality and originality measures are biased downward), due to the integer nature of the 

observed data.  In effect, it is likely that many of the classes in which we observe zero 

citations do have some non-zero expected rate of citation.  The resulting bias will be 

particularly large when the total number of citations is small.  Appendix 2 (due to 

Bronwyn Hall) shows how to calculate the magnitude of the bias, and hence bias-adjusted 

measures, under fairly simple assumptions about the structure of the process. 

 

Figure 15 shows the averages over time for both generality and originality.  The 

steep decline in generality at the end of the period is almost surely due to truncation, 

which reduces the number of observed citations; the adjustment described in the previous 

paragraph mitigates but does not eliminate this decline.  The decline remaining after 

adjustment may be due to the tendency of citations that are “nearer” in technology space 

to come sooner, so that even after adjusting for the number of citations, generality is 

biased downward when based only on “fast” citations.27  Figures 16 and 17 present these 

measures over time by technological fields. The traditional fields Mechanical and Others 

are at the bottom in terms of generality, whereas Computers and Communications is at 

                                                   
27 The slight decline in the mean originality during 1996-97 may also be due to truncation, in the sense that 
the number of citations made may be indicative of the “complexity” of the patent, and hence patents that 
are granted relatively fast probably make fewer citations; since originality is correlated with number of 
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the top, with Chemical and Electrical and Electronics in between. Surprisingly perhaps, 

Drugs and Medical is also at the bottom, both in terms of generality and of originality. 

However, a closer look reveals that the sub-category of Biotechnology stands much 

higher than the rest of D&M both in generality and originality, and hence that the 

aggregation in this case may be misleading in terms of these measures. Also somewhat 

surprisingly, Chemical (that we regard as a traditional field) stands high in both measures, 

being second to C&C in generality, and even higher than C&C in terms of originality. 

 

 The fact that Computers and Communications scores highest in terms of 

generality fits well the notion that this field may be playing the role of a “General 

Purpose Technology” (see Bresnahan and Trajtenberg, 1995), and its high originality 

score reinforces the view that it is breaking traditional molds even within the realm of 

innovation. Likewise, the low scores of Mechanical and Others correspond to 

expectations, in terms of the low innovativeness and restricted impact of those fields. In 

that sense, this constitutes a sort of “validation” of the measures themselves. At the same 

time, we should be aware of the fact that both originality and generality depend to a large 

extent upon the patent classification system, and hence there is an inherent element of 

arbitrariness in them. Thus, a “finer” classification within a field, in terms of number of 

3-digit patent classes available, will likely result ceteris paribus in higher originality and 

generality measures, and one may justly regard that just as an artifact of the classification 

system (that may be the case for example with Chemicals). In terms of field averages, 

there is the further issue of degree of heterogeneity within fields, as for example with 

Drugs and Medical. Further exploration of these issues, and the possible role played by 

the calculation bias in them, is a fruitful area for future research.  

 

II.10 Number of Claims 

A further item in our data is “number of claims”, as it appears in the front page of 

each patent. The claims specify in detail the “components”, or building blocks of the 

patented invention, and hence their number may be indicative of the “scope” or “width” 

                                                                                                                                                        
citations made, and for those years we have only those patents that were granted relatively quickly (by 
application year), we would observe indeed a decline in originality for recent years.  
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of the invention (see for example Lanjouw and Schankerman, 1999). The average number 

of claims made has risen substantially over time, from 9.3 in 1974 to 14.7 in 1996. Figure 

18 shows the averages by technological fields over time: traditional fields make fewer 

claims than advanced fields, with Chemical crossing from high to low in the 1990s. The 

differences are very substantial: the average for Computer and Communications (the top 

field) in 1995 was 16.8, the average for Others (the lowest) just 13.7.  

 

II.11 Match to Compustat 

In order to take full advantage of the wealth of information contained in patent 

data, one needs to be able to link patents to outside data of various sorts – otherwise the 

analysis would be self-contained, with all the limitations that implies. Thus for example 

the information on the location of inventors (state/city/counties for U. S. inventors, 

country/city for foreign ones) allows one to place each patent in geography space, and 

hence link out with location-specific data. Similarly for data items such as technological 

field, time, and institutional belonging.  

 

One of the potentially most fruitful linkages is through the identity of the 

assignee: if one could relate each patent to the corporation that owns it, and bring 

together data about the corporations and about the patents, the scope of analysis would be 

greatly expanded. This is indeed what Zvi Griliches envisioned in setting up the NBER 

R&D, patents, and productivity project in the early 1980s (see Griliches, 1984). At that 

time though the only data item available about patents was patent counts by assignees, 

which were then attached to Compustat. Linking out our data allows one to use all the 

patent data fields, not just their count.  

 

As already mentioned, about 80% of patents are assigned to non-government 

organizations, which are in fact mostly corporations, and our data contains both the name 

of the assignee, and an assignee code. The trouble is that there are about 150,000 such 

names, and their corresponding code is internal to the patent system, with no outside 

linkages. We undertook to match these assignee names to the names of corporations as 

they appear in Compustat, which comprises all firms traded in the U. S. stock market 
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(about 36,000 of them). This was one of the most difficult and time-consuming tasks of 

the entire data construction project. 

 

Figure 19 shows the percentage of patents matched, out of the total number of 

assigned patents. Not surprisingly, the percentage of foreign patents matched is very 

small, given that the overwhelming majority of foreign assignees are not traded in the U. 

S. stock market and hence do not appear in Compustat. For U. S. patents, though, the 

percentage is quite high up to the early 1980s, hovering around 70%. The steep decline 

from then on probably reflects both the fact that the match was done for the 1989 

Compustat file, and the rapidly changing composition of patents. Indeed, and as 

mentioned above, the technological composition of patents has changed quite drastically 

since the mid-1980s, with traditional fields declining to less than 50% of all patents. It is 

quite likely that these changes have been accompanied by a large turnover in the 

composition of assignees, with many of the new entrants not yet traded by 1989, the year 

of the match. 

 
 

III. “Benchmarking” of Citation Data 
III.1 Overview 

Although the previous section have demonstrated intriguing trends and contrasts 

visible in data on patent citations, it must be acknowledged that there is no natural scale 

or value measurement associated with citations data. Standing by itself, the fact that a 

given patent has received 10 or 100 citations does not tell you whether that patent is 

“highly” cited. Intrinsically, information on patent citations is meaningful only when used 

comparatively. That is, the evaluation of the patent intensity of an invention, an inventor, 

an institution, or any other group of patents, can only be made with reference to some 

“benchmark” citation intensity. 

 

The determination of the appropriate benchmark is complicated by several 

phenomena that are inherent to the patent citations data. First, as already mentioned, the 

                                                   
28 Bronwyn Hall was the main driving force behind the matching process, and it is only thanks to her 
monumental efforts that this task was accomplished.  
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number of citations received by any given patent is truncated in time because we only 

know about the citations received so far. More importantly, patents of different ages are 

subject to differing degrees of truncation. For example, it is not obvious whether a 1990 

patent that received 5 citations by 1999 should be thought of as more or less highly cited 

than a 1985 patent that received 10 citations by 1999. Second, differences in Patent 

Office practices across time or across technological areas may produce differences in 

citation intensities that are unrelated to the true impact for which we use citations as a 

proxy. As shown above, the average patent issued in 1999 made over twice as many 

citations as the average patent issued in 1975 (10.7 versus 4.7 citations). At first blush, 

this would seem to imply something about the meaning or value of a given number of 

citations. 

 

The problem created by the increase in the number of citations made per patent is 

exacerbated by the fact that the number of patents issued has also been rising steeply 

since 1983. Even if each patent issued made the same number of citations as before, the 

increase in the universe of citing patents would increase the total number of citations 

made. The combination of more patents making more citations suggests a kind of citation 

“inflation” that may mean that later citations are less significant than earlier ones. As a 

result, if we compare the citations received by a 1994 patent 5 years forward (i.e. up to 

1999) with those received by a 1975 patent up to 1980, we cannot be sure that these totals 

are comparable.  Thus even such “fixed-window” comparisons—which do not suffer 

from truncation bias—may be hard to make. 

 

In addition to varying over time, the number of citations made per patent varies by 

technological field (See Figure 7). Thus, one might suspect that a given number of 

citations received from patents in Computers and Communications (which typically make 

fewer citations than those in other fields) is indicative of a larger impact than the same 

number of citations received from other fields. On the other hand, differences in citations 

received per patent (across time, fields, etc.) could be indicative of “real” differences in 

technological impact (see Figure 8). 
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The way in which we treat any of these systematic differences in citation 

intensities when developing appropriate benchmarks for analyzing citation data will 

depend on maintained hypotheses as to which of them are to be regarded as “real” and 

which as “artifacts.” For example, we might believe that the increase in the rate of 

patenting represents a real increase in the rate of invention, so that its contribution to 

changes in the number of citations received by patents is part of the real technological 

impact of the cited patents. At the same time, we might believe that the increase in the 

number of citations made per patent is a pure artifact of changes in patent examination 

practices, so that the best measure of “real” technological impact would be citation 

intensity “purged” of any differences due to the changing citation propensity. If so, we 

would want to control for the latter, but not make any adjustment for changes in the rate 

of patenting. Or we may be agnostic, and try to infer the nature of these effects by 

constructing citation-based impact measures with and without first purging the citations 

data of these effects, and then examining which measures are more highly correlated with 

non-patent indicators of technological or economic impact. 

 

This discussion assumes implicitly that it is possible to identify and quantify the 

changes in citation intensity that are associated with the different effects. But this is 

actually harder than it may seem. Consider, for example, the increase in the average 

number of citations made per patent. It might seem that if each patent is making twice as 

many citations, that means each citation is “worth” half as much. But since the stock of 

patents available to be cited has been growing at a rapid (and accelerating) rate, this is not 

clear. Since there are so many potentially cited patents “competing” for the citations, you 

might think that getting one means as much as it did before, not withstanding the increase 

in the flow of citations. 

 

To begin to think systematically about this set of issues, consider the following 

stylized facts that hold in our data: (i) the average number of citations received by patents 

in their first 5 years has been rising over time; (ii) the average number of citations made 

per patent has been rising over time (see Figure 6); and (iii) the observed citation-lag 

distributions for older cohorts have fatter “tails” than those of more recent cohorts (see 
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Figure 11). Considering the first fact in isolation, one might conclude either that more 

recent cohorts are more “fertile,” or that the citation-lag distribution has shifted to the left 

(citations are coming sooner than they used to.) Considering the second fact in isolation, 

one might conclude that there has been an artifactual change in the propensity to make 

citations.29 The last fact, taken by itself, seems to suggest that the citation-lag distribution 

has shifted to the right. Without further assumptions one cannot tell apart which of these 

competing scenarios is “correct”, and hence one cannot make any statistical adjustments 

to the citations data, including adjustments for truncation of lifetime citations. 

 

In this section we discuss two generic approaches to these problems. The first, 

which we call the fixed-effects approach, involves scaling citation counts by dividing 

them by the average citation count for a group of patents to which the patent of interest 

belongs.30 This approach treats a patent that received say 11 citations and belongs to a 

group in which the average patent received 10 citations, as equivalent to a patent that 

received 22 citations, but happens to belong to a group in which the average was 20. 

Likewise, such a patent would be regarded as inferior to a patent receiving just 3 citations 

but for which the group average was only 1. The advantage of this approach is that it does 

not require one to make any assumptions about the underlying processes that may be 

driving differences in citation intensities across groups. The disadvantage is that, 

precisely because no structure is assumed, it does not distinguish between differences that 

are “real” and those that are likely to be artifactual. 

 

The second or “quasi-structural” approach attempts to distinguish the multiple 

effects on citation rates via econometric estimation.31 Once the different effects have 

thereby been quantified, the researcher has the option to adjust the raw citation counts to 

remove one or more of the estimated effects. If the assumptions inherent in the 

econometric estimation are correct, this approach permits the extraction of a stronger 

signal from the noisy citation data than the non-structural, fixed-effects approach. 

                                                   
29 Another, more subtle interpretation could be that the rising propensity to cite is itself merely a reflection 
that more recent cohorts have been more fertile.  
30 Empirical analyses based on this approach include Henderson, Jaffe and Trajtenberg, 1998, and Jaffe and 
Lerner, 2001. 
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III.2 The “fixed-effects” approach 

The fixed-effects approach assumes that all sources of systematic variation over 

time in citation intensities are artifacts that should be removed before comparing the 

citation intensity of patents from different cohorts. That is, we “re-scale” all citation 

intensities, and express them as ratios to the mean citation intensity for patents in the 

same cohort.32 If we want to compare a 1990 patent with 2 citations to a 1985 patent with 

4 citations, we divide each by the average number of citations received by other patents 

in the cohort. This rescaling purges the data of effects due to truncation, effects due to 

any systematic changes over time in the propensity to cite, and effects due to changes in 

the number of patents making citations. Unfortunately, it also purges the data of any 

systematic movements over time in the importance or impact of patent cohorts. It is 

possible that the typical 1985 patent has more citations than the typical 1990 patent 

(partly) because it is indeed more “fertile”. Conversely, it could be that the 1990 patent is 

in fact “better” than the 1985 patent, once the effects of truncation are removed. Under 

the fixed-effects approach we do not attempt to separate “real” differences among cohorts 

from those due to truncation and propensity to cite effects, so any “real” effects that may 

be there are lost. 

 

An issue arises as to how to treat technological fields in applying the fixed-effects 

correction. As with any fixed-effect approach, one can “take out” year effects, field 

effects, and/or year-field interaction effects.33 As discussed above, there are systematic 

differences across fields in the frequency of citations made and received. If one believes 

that such effects are “real,” then it is not appropriate to remove them when rescaling. To 

the extent that they are artifacts of, for example, the disciplinary training of patent 

                                                                                                                                                        
31 An example of analysis based on this approach is Hall, Jaffe and Trajtenberg, 2001. 
32 Henderson, Jaffe and Trajtenberg examined the citation intensity of university patents by comparing it to 
the citation intensity of corporate patents from the same year. Since most patents are corporate patents, this 
is similar in effect to comparing the university patents to the overall mean. 
33 An obvious question to ask is why we propose to rescale the citations data rather than simply including 
the corresponding fixed-effect in whatever regression or other statistical analysis we are going to use the 
citations in. The reason is that such analyses typically have as a unit of observation entities that in any 
given year hold patents from many different cohorts. Hence the rescaling described here does not 
correspond to a simple fixed effects regression.  
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examiners in different fields, one may want to remove them. Further, the empirical lag 

distribution of citations vary by technological field, which means that the extent of 

truncation of a patent of given vintage depends on its technological field. 

 

Tables 2 shows the average number of citations received by patents of each cohort 

(Table 2a according to application year and 2b by grant year) in each technological field, 

and the overall means. In order to remove all year, field and year-field effects, one can 

take the number of citations received by a given patent and divide by the corresponding 

year-field mean. Alternatively, to remove only pure year effects, one can divide by the 

yearly means (calculated without regard to field). Finally, one can envision the removal 

of year effects and year-field interaction effects but not the main field effect. This can be 

accomplished by dividing the entries in Table 2 by the overall mean for each 

technological category (bottom row). Each cell in the resulting matrix is then the year-

field mean relative to the overall mean for the field. If actual citation counts are then 

divided by the appropriate entry from this adjusted matrix, overall differences in mean 

intensities across fields are not removed. This permits the correction for truncation to 

vary by field, while allowing the overall average differences in citation intensity by fields 

to remain in the rescaled data.34 

 

To summarize, the fixed-effects rescaling aims to increase the signal-to-noise 

ratio in the data and allow comparability of citation counts over time by removing from 

the data variance components that are associated with truncation and also with possibly 

artifactual aspects of the citations generation process. Unfortunately, there is no way to 

do so without also removing variance components that might be real. The only way to 

tune this more finely is to put more structure on the problem, with a model that, under 

additional assumptions, allows separate identification of different sources of variation. 

 

                                                   
34 Note that we have calculated these rescaling factors by the technological field of the cited patent. One 
could imagine constructing similar factors by technological field of the citing patent. Indeed, one might 
believe that variations by field of the citing patent are more likely to be pure artifacts than variations by 
field of the cited patent. As a practical matter, rescaling by the field of the citing patent is computationally 
much more difficult. The rescaling factors that we propose can be applied directly to the total citations 
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III.3 The “quasi-structural” approach 

If the citation-lag distribution, the fertility of different patent cohorts, and the 

propensity to cite have all been varying over time, there is no general way to identify 

separately the contribution of each of these to variations in observed citation rates. The 

fixed-effects approach accepts this reality and simply removes variance components that 

are likely to be contaminated to some degree. To go any further one must impose 

additional structure, and in particular one must commit to some identifying assumptions. 

The assumptions that we make here are as follows: 

• Proportionality: the shape of the lag distribution over time is independent of the 

total number of citations received, and hence more highly cited patents are more 

highly cited at all lags.  

• Stationarity: the lag distribution does not change over time, i.e., does not depend 

on the cohort (application or grant year) of the cited patent. 

These assumptions accomplish two objectives. First, stationarity means that we 

can estimate a time-invariant citation-lag distribution, which tells us the fraction of 

lifetime citations that are received during any specified time interval in the life of the 

patent. With proportionality, the observed citation total at a point in time for any patent 

can then be corrected for truncation, simply by “scaling up” the observed citation total by 

dividing it by the fraction of the lifetime citations that are predicted to occur during the 

lag interval that was actually observed. Second, these assumptions allow us to estimate 

changes in the propensity to cite over time in a way that controls for the citation lag 

distribution, as well as for changes in the “fertility” of the cited cohorts (at least to some 

extent). In principle, this allows a researcher who believes that the “citing year” effects 

are artifactual but “cited” year effects are real to remove the former but not the latter. In 

contrast, the fixed-effects approach implicitly takes out both. 

 

Of course, we cannot know whether these identifying assumptions are really 

valid. As to proportionality, we found some (still weak) supporting evidence in the fact 

                                                                                                                                                        
received by a given patent. Rescaling factors tied to the field of the citing patent would have to be applied 
individually to each citation rather than simply to each cited patent. 
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that there is virtually zero correlation between the average forward citation lag per patent, 

and the number of citations received.35 That is, the average citation lag for patents with 

few citations is virtually identically to the mean lag for patents that receive lots of 

citations. Stationarity is a more complex issue, since the observed citation-lag distribution 

could shift over time for different reasons, and without making other identifying 

assumptions it is difficult to test this in data while other things are also changing over 

time. 

 

To implement this approach, let Pks be total patents observed in technological 

field k in year s. Let Ckst be the total number of citations to patents in year s and 

technology field k, coming from patents in year t. The ratio Ckst/Pks is then the average 

number of citations received by each s-k patent from the aggregate of all patents in year t. 

Consistent with our proportionality assumption, we model this citation frequency as a 

multiplicative function of cited year (s) effects, citing-year (t) effects, field (k) effects, 

and citation lag effects. Denoting the citation lag (t-s) as L, we can write this as: 

 

Ckst/Pks=α0’ αs’ αt’ αk’ exp[fk(L)] 

or, equivalently, 

log[Ckst/Pks]=α0 + αt + αk + fk(L) 

 

where α j=log(αj’), and fk(L) indicates some function, perhaps varying by technological 

field, that describes the shape of the citation-lag distribution. It could be a parametric 

function such as the double exponential used by Caballero and Jaffe (1993) and Jaffe and 

Trajtenberg (1999), or it could be different proportions estimated for each lag. We impose 

the constraint that the summation of exp[fk(L)] over L (L=1...35) is unity. We also 

normalize αt=1 = αk=1 = 0.36 

 

                                                   
35 The correlation coefficient is of 0.03 for all patents, and of 0.015 for patents with 5 citations or more. 
36 Note that since L=t-s, all of the αs and αt may not be identified, depending on the functional form of fk(L). 
We discuss this further below. 
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This equation can be estimated by OLS, at least for some forms of fk(L), or by 

non-linear methods, as in Jaffe and Trajtenberg (1999). The α parameters can be 

interpreted as the proportional difference in citation intensity for a given year or field 

relative to the base group. These parameters can therefore be used directly to adjust or 

normalize observed citations for these effects, if desired. The estimated fk(L) can be used 

to adjust patent totals for differential truncation across cohorts. 

 

Implementation of this approach is illustrated in Table 3, which updates through 

1999 estimates originally presented in Hall, Jaffe and Trajtenberg (2001). In this model, 

fk(L) is given by: 

 

fk(L)=exp(-β1kL)(1-exp(-β2k)) 

 

where the parameter β1k captures the depreciation or obsolescence of knowledge and β2k 

captures its diffusion.37 Because this function is non-linear, it is possible to identify 

distinct αs and αt effects, at least in principle. In practice, we found that estimation was 

difficult with a full set of unconstrained cited year and citing year effects. Because we 

believe that the true “fertility” of invention changes only slowly, we grouped the cited 

years and estimated separate αs coefficients for five-year intervals. The αt effects are 

allowed to vary every year. 

 

The estimates in the first column constrain the diffusion parameter β2 to be the 

same across different fields k, while allowing the obsolescence parameter β1 to vary.  The 

second column reverses this, holding obsolescence constant but allowing diffusion to 

vary.  The column labeled “Full Model” allows both of these parameters to vary across 

fields.  Although allowing the βcoefficients to vary does not have a large effect on the 

overall fit, it does affect somewhat the estimated shape of the lag distributions; this can 

be seen in summary form in the variations in the simulated modal citation lags shown in 

the bottom of the table.  We will focus herein on the Full Model results in the last column  

                                                   
37 For a motivation of this parameterization, see Caballero and Jaffe, 1993. 
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The results show that the citing year effects are indeed significant.38 After 

controlling for the effects of the lag distribution, the number of patents available to be 

cited, and cited year fertility, the number of citations made roughly tripled between 1975 

and 1995.  Note that this is the combination of effects due to the increased number of 

citing patents and the increased rate of citations made per patent. The part that is due to 

the increased rate of citations made per patent, because it has been purged of other 

effects, can be thought of as a measure of changes in the “pure” propensity to make 

citations.  To focus on this, Table 4 takes the series of increasing citing year effects and 

decomposes it between the rise in the number of citing patents, and the pure propensity to 

cite effect. We see in Column 2 that the number of citing patents by application year 

peaks in 1995 in our data at about twice the number in 1975.39  Column 3 is just the α t 

coefficients from Table 3. Column 4 divides this series by the index of the number of 

potentially citing patents by application year (Column 2), thus removing the effect due to 

the rising number of citing patents. We find that the pure propensity to cite was also 

rising until 1995, accounting for about a 50% increase in citations made. 

 

In looking at totals of citations made, one could similarly divide the number made 

by the entry in the table that corresponds to the application year of the patent(s) of 

interest. 

 

It is interesting to compare this estimated “pure” propensity to cite effect with the 

“raw” change in the average number of citations made by each patent.  The latter 

increased by about 100% between 1975 and 1995 (from about 5 to about 10).  Our 

estimates say that roughly half of this increase was due to rising “pure” propensity to cite, 

and the other half was due to the fact that there were many more patents out there 

available to be cited. 

 

                                                   
38 There is less variation in the cited year effects, and no clear pattern over time. 
39 This was already seen in Figure 1.  To emphasize again, the decline in the application year numbers in 
the late 1990s is due to the truncation in the application-year series based on patents granted by the end of 



 35 

After 1995, both the number of patents and the estimated overall citing year effect 

decline.  Indeed, the citing year coefficients from the regression decline faster than the 

number of patents, causing the rise in the pure propensity to cite to reverse itself.  Now, 

this latter effect is not due to truncation.  It says that the patents issued in the late 1990s 

made fewer citations, after controlling for the size and fertility of the stock of patents 

available to be cited, than those before.40  This finding is very consistent with the general 

notion that the patent office has been overwhelmed by the dramatic upsurge in patent 

applications in the last few years, with patent examiners having less time to review each 

application, and, therefore, being less thorough in finding prior art that should be cited. 

 

The series presented in Columns 3 or 4 of Table 4 can be interpreted as 

“deflators” that can be used to purge citation totals of effects due to the rising tide of 

citations made. For a given patent or set of patents, one can divide the number of citations 

received from each application year by the appropriate entry in the table.  Dividing counts 

of citations by the deflator in Column 3 removes all citing year effects.  Dividing by 

Column 4 removes only the effect due to the changing propensity to cite, thus implicitly 

treating the effect due to the rising patenting rate as real. Either way, the resulting 

deflated totals of citations received can be interpreted as “real 1975 citations,” in the 

same way that nominal dollar amounts divided by a base year 1975 price index are 

interpreted as real 1975 dollars.41 

 

If one were interested in “deflating” the number of citations made by a given 

patent or set of patents, one does not need to worry about effects due to the rising number 

of patents.  But one might be interested in removing the pure propensity to cite effect.  

This could be accomplished by dividing the number of observed citations made by the 

entry in Column 4 corresponding to the application year of the patent(s) of interest. 

 

                                                                                                                                                        
1999.  Once the rest of the applications from the late 1990s are processed, we will no doubt see a continued 
increase in successful applications per year. 
40 This effect is even visible in the raw averages of citations made per patent, which also turn downward in 
the late 1990s after the earlier increases already noted. 
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Analogous “deflators” derived from Table 3 can be used across technology fields, 

if one believes that the average difference in citation rates across technology fields is an 

artifact of field practices rather than a real difference across fields in knowledge flows.  

One can simply “deflate” citation totals by dividing by the αk coefficients for the different 

fields. This would have the interpretation of converting citation totals into equivalent 

numbers of citations for the “Other” technology field (the base group, whose α-

coefficient is normalized to unity). We have not employed such adjustments in our work, 

because we believe that field effects are likely to contain a significant real component. 

But this is a topic for further research. If field effects are real, then deflating citation 

totals by field effects ought to decrease the signal to noise ratio in citations data, 

implying that the correlation of citations with other indicators of technology impact (e.g. 

market value) ought to be reduced by deflation. If the opposite is true, it would suggest 

that much of the variance in the citation intensity across fields is artifactual. 

 

The estimates in Table 3 can also be used to correct the citation totals of any 

given patent for truncation. As shown in Figure 20, the estimates for β1 and β2 can be 

used to construct the citation-lag distribution by field (normalized to unity over 35 years), 

after removing cited and citing year effects. The contrast between Figure 20 and Figure 

11 illustrates the dramatic impact of the citing and cited year effects on the shape of the 

citation-lag distributions. The variations across field are also quite apparent. Citations in 

Computers and Communications come the fastest, followed by Electronics.  Drugs and 

Medical and “Other” are the slowest, with Chemicals and Mechanical falling in the 

middle. This has some effect on corrections for truncation. The estimates imply, for 

example, that if we have citation data truncated at 5 years after the initial application, we 

are seeing about 33% of the “lifetime” (actually, of the first 35 years) citation total for an 

average C&C patent, but only 22% of the “lifetime” citations for a Drug and Medical 

patent. 

 

                                                                                                                                                        
41 Because is “purged” of truncation effects, the deflator in Column 4 applies (in principle) to citation totals 
no matter how derived.  Column 3, however, reflects the truncation by application year in our data, and so 
is appropriate only for citation totals derived from within this dataset. 



 37 

The yearly fractions underlying Figure 20 are presented in cumulative form in 

Table 5.  These can be used directly to adjust citation totals, based on the observed 

interval, whether the truncated or unobserved portion is at the end, at the beginning (cited 

patents applied for before 1975), or both. For example, for a patent applied for in 1973, 

we observe only years 2 through 25 of the citation lag distribution (1975-1999).  If this 

were a Chemical patent, we see from Table 5 that for the typical Chemical patent, 87% of 

the estimated or predicted “lifetime” citations occur in this interval (.906 - .037), so we 

would divide the observed total by 0.87 to yield the truncation-adjusted total. 

 

Finally, under the proportionality assumption that we have made, all corrections 

or adjustments are purely multiplicative.  This makes it possible, in principle, to correct 

or adjust for any combination of effects.  If, for example, one wants totals corrected for 

pure propensity-to-cite effects and for truncation, one would divide the number of 

citations received from each year by column 4 of Table 4, and then take the resulting total 

for each patent and normalize using Table 5.  If one also wanted to remove technology 

field effects, one could then divide by the estimated αk reported in the last column of 

Table 3.  Of course, none of these adjustments should be taken as gospel or applied 

mechanically; we present them to illustrate the approach and encourage further research 

on the best ways to maximize the signal-to-noise ratio in these data. 

 
 
 

IV. Conclusion 
 

It has been a major theme of the NBER since its inception that good economic 

research depends on the generation of appropriate and reliable economic data.  It is 

generally agreed that the 21st century economy is one in which knowledge—particularly 

the technological knowledge that forms the foundation for industrial innovation—is an 

extremely important economic commodity.  The inherently abstract nature of knowledge 

makes this a significant measurement challenge.  We believe that patents and patent 

citation data offer tremendous potential for giving empirical content to theorizing about 

the role of knowledge in the modern economy.  We hope that by constructing the NBER 
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Patent Citations Data File, demonstrating some of the uses to which it can be put, and 

making it available to other researchers, we can provide a broader and deeper 

measurement base on which to build the economics of technological change.  
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Appendix 1 
Classification of Patent Classes into  

Technological Categories and Sub-Categories42 
Cat. 
Code 

Category Name Sub-Cat. 
Code 

Sub-Category Name Patent Classes 

11 Agriculture, Food, Textiles 8, 19, 71, 127, 442, 504 
12 Coating 106,118, 401, 427 
13 Gas 48, 55, 95, 96 
14 Organic Compounds 534, 536, 540, 544, 546, 548, 

549, 552, 554, 556, 558, 560, 
562, 564, 568, 570 

15 Resins 520, 521, 522, 523, 524, 525, 
526, 527, 528, 530 

1 Chemical 

19 Miscellaneous-chemical 23, 34, 44, 102, 117, 149, 156, 
159, 162, 196, 201, 202, 203, 
204, 205, 208, 210, 216, 222, 
252, 260, 261, 349, 366, 416, 
422, 423, 430, 436, 494, 501, 
502, 510, 512, 516, 518, 585, 
588 

21 Communications 178, 333, 340, 342, 343, 358, 
367, 370, 375, 379, 385, 455 

22 Computer Hardware & 
Software 

341, 380, 382, 395, 700, 701, 
702, 704, 705, 706, 707, 708, 
709, 710, 712, 713, 714 

23 Computer Peripherals 345, 347 

2 Computers & 
Communications 

24 Information Storage 360, 365, 369, 711 

31 Drugs 424, 514 
32 Surgery & Medical 

Instruments 
128, 600, 601, 602, 604, 606, 
607 

33 Biotechnology 435, 800 

3 Drugs & 
Medical 

39 Miscellaneous-Drug&Med 351, 433, 623 

41 Electrical Devices 174, 200, 327, 329, 330, 331, 
332, 334, 335, 336, 337, 338, 
392, 439 

42 Electrical Lighting 313, 314, 315, 362, 372, 445 
43 Measuring & Testing 73, 324, 356, 374 
44 Nuclear & X-rays 250, 376, 378 
45 Power Systems 60, 136, 290, 310, 318, 320, 

322, 323, 361, 363, 388, 429 
46 Semiconductor Devices 257, 326, 438, 505 

4 Electrical & 
Electronic 

49 Miscellaneous-Elec. 191, 218, 219, 307, 346, 348, 
377, 381, 386 

  

                                                   
42 Based on the Patent Classification System as of 12/31/1999. The list of patent classes as of that date 
includes 8 additional new classes that are not to be found in the data: 532, 901, 902, 930, 968, 976, 984, and 
987. 
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Appendix 1 - Continued 
 
Cat. 
Code 

Category Name Sub-Cat. 
Code 

Sub-Category Name Patent Classes 

51 Materials Processing. & 
Handling 

65, 82, 83, 125, 141, 142, 144, 
173, 209, 221, 225, 226, 234, 
241, 242, 264, 271, 407, 408, 
409, 414, 425, 451, 493 

52 Metal Working 29, 72, 75, 76, 140, 147, 148, 
163, 164, 228, 266, 270, 413, 
419, 420 

53 Motors, Engines & Parts 91, 92, 123, 185, 188, 192, 251, 
303, 415, 417, 418, 464, 474, 
475, 476, 477 

54 Optics 352, 353, 355, 359, 396, 399 
55 Transportation 104, 105, 114, 152, 180, 187, 

213, 238, 244, 246, 258, 280, 
293, 295, 296, 298, 301, 305, 
410, 440 

5 Mechanical 

59 Miscellaneous-Mechanical 7, 16, 42, 49, 51, 74, 81, 86, 89, 
100, 124, 157, 184, 193, 194, 
198, 212, 227, 235, 239, 254, 
267, 291, 294, 384, 400, 402, 
406, 411, 453, 454, 470, 482, 
483, 492, 508 

 
61 Agriculture, Husbandry, 

Food 
43, 47, 56, 99, 111, 119, 131, 
426, 449, 452, 460 

62 Amusement Devices 273, 446, 463, 472, 473 
63 Apparel & Textile 2, 12, 24, 26, 28, 36, 38, 57, 66, 

68, 69, 79, 87, 112, 139, 223, 
450 

64 Earth Working & Wells 37, 166, 171, 172, 175, 299, 
405, 507 

65 Furniture, House Fixtures 4, 5, 30, 70, 132, 182, 211, 256, 
297, 312 

66 Heating 110, 122, 126, 165, 237, 373, 
431, 432 

67 Pipes & Joints 138, 277, 285, 403 
68 Receptacles 53, 206, 215, 217, 220, 224, 

229, 232, 383 

6 Others 

69 Miscellaneous-Others 1, 14, 15, 27, 33, 40, 52, 54, 59, 
62, 63, 84, 101, 108, 109, 116, 
134, 135, 137, 150, 160, 168, 
169, 177, 181, 186, 190, 199, 
231, 236, 245, 248, 249, 269, 
276, 278, 279, 281, 283, 289, 
292, 300, 368, 404, 412, 428, 
434, 441, 462, 503 
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Appendix 2 
A Note on the Bias in Herfindahl-type Measures 

Based on Count Data 
by Bronwyn H. Hall  

 
1. Introduction 

Measures based on citations obtained by patents in individual patent classes or 
held by individual firms often suffer from bias due to the count nature of the underlying 
data. The source of the bias is the fact that cells with small numbers of expected citations 
have a non-zero probability that no citations will actually be observed. When this 
happens, the cell is removed from the analysis, implying that measures of diversification 
will be biased downward and measures of concentration will be biased upwards. In the 
cases considered in the text, patent generality or originality measures take the form of 
diversification measures and will therefore be biased downward when the total number of 
citations to or from the patent are small. If the bias is not corrected for, patents with few 
forward or backward citations will be more likely to be considered less “general” or 
“original” than those with many. 

 
 This appendix suggests a method for correcting the bias that is valid under a set of 
simple but fairly general assumptions. The two key assumptions are the following: 
 
1. Either we treat the total number of citations (or patents) on which the measure is 

based as given (that is, we condition on them) or the number is large enough 
relative to the individual cell counts so that it can be treated as non-random. 

2. The probability that a given citation or patent falls in a cell is independent of the 
probability that it falls in another cell.  That is, there is no causal connection 
between the deviation of the observed outcome from the expected outcome in a 
particular cell and what happens in another cell (other than the adding up 
constraint). We can therefore describe the probability distribution over a set of 
cells of multinomial probabilities. 

 
Given these assumptions, we are able to compute a simple correction for the bias that 
depends only on the total number of counts in the measure. This correction is large when 
the number of counts is small and quickly converges to zero as the number of counts 
increases. 
 
 Mathematically, the statement of the problem is the following: Suppose a 
researcher uses a Herfindahl-type measure to describe the concentration of patents or 
cites across patent classes, patent holders, or some other set. Here we use patents as an 
example, but all the same arguments apply to citation counts. For a set of N patents 
falling into J classes, with Nj  patents in each class (Nj ≥ 0, j=1,…,J), the sample 
Herfindahl index (HHI) is defined by the following expression: 
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 However, the population Herfindahl is given by 
 

∑
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where the λjs are the multinomial probabilities that the N  patents will be classified in 
each of the J classes. Under reasonable assumptions, 
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Unfortunately, this does NOT imply that 
 
     E[HHI]= η 
 
because of nonlinearity. In fact, in general the measured HHI will be biased upward when 
N is small, due to Jensen’s inequality and the properties of the count distribution. 
 
2.  Computing and adjusting for the bias 

Assume a multinomial distribution with parameters (λj, j=1,…,J) for the {Nj}; 
then the expectation for each 2

jN  is the following (Johnson and Kotz, Discrete 
Distributions): 
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Conditional on the total number of patents, N, this implies the following relation between 
the estimated and true Herfindahl measure:43 
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Note that as  η→∞↑ ]|[, NHHIEN  , as we would expect. The bias in this estimator is 
 

                                                   
43 Conditioning on N is innocuous unless the process that generates the total number of draws (patents or 
citations) is related to the particular set of multinomial parameters with which we are working. For 
example, the procedure outlined here may not be precisely valid if “general” patents (patents whose cites 
are widely distributed across patent classes) are also highly cited patents. I am grateful to Tom Rothenberg 
for a discussion of this point. 
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N
NHHIE ηη −=− 1]|[  

The bias declines at a rate N as the number of counts grows and as concentration 
increases. Both results are intuitive.44 
  

Under the assumptions given in the introduction, it is straightforward to correct 
for this bias. Consider the following estimator for the Herfindahl: 
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For a given N, and under the assumption that the underlying process is multinomial with 
parameters  λj, j=1,…,J,  this estimator is an unbiased estimator of  η: 
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3. The generality index 

For many problems, the measure used is one minus the Herfindahl rather than the 
Herfindahl itself. In particular, we define “generality” as 
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where Ni denotes the number of forward citations to a patent, and Nij is the number 
received from patents in class j, and use a similar formula to measure “originality” based 
on the distributions of citations made. Patents with a high value of Gi are cited across a 
broad range of patent classes. 
 
 This measure is also a biased estimate of the true measure γi=1- ηi: 
 

                                                   
44 It is also true that standard error estimates obtained in the conventional way will be biased, but it is also 
possible to compute the exact relationship between the standard error estimated from biased measures and 
that estimated for the unbiased measures. The standard error of the estimated mean of the Herfindahl will 
be biased downward by (N-1)/N. This is large if N is small and does not depend on the estimated 
Herfindahl. An unbiased estimator for the variance of the mean Herfindahl over a set of M observations is 
the following: 
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where HHIk  is the kth biased estimate of the Herfindahl. Of course, if one uses the unbiased estimator to 
form the mean, one does not need to perform this correction in addition. 
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The bias is the following: 
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i
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Again, the absolute size of the bias declines as the sample size increases and as generality 
decreases. The generality index will be biased downward in general and this effect is 
larger for small N. Appendix Figure 1 plots the bias versus the index for three values of N 
(3, 10, and 100). Clearly the magnitude is largest when N is small or generality is high. 
  
Once again, one can form an unbiased estimator of  γi: 
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The same arguments as the previous apply to standard error estimates of the 

generality index. The true standard errors will be N/(N-1) larger than the estimated 
standard errors. When the number of cites to a patent is small, generality will be 
underestimated and it will be more likely that significant differences among generalities 
of different patents will be found. But as we have indicated, correcting for the bias is 
straightforward. 

 
 
4. Additional Reference 
Johnson, Norman L., and Samuel Kotz. 1969. Discrete Distributions. New York: John 
Wiley and Sons. 
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Table 1 
Application-Grant Lag Distribution by 3-Year Sub-periods 

 
 

 Application Years  
 

 1967-69 1970-72 1973-75 1976-79 1980-82 1983-85 1986-89 1990-92 
Lag 

(years) 
(i) Distribution of Lags (in %) 

0 0.4 0.1 1.0 1.0 0.2 1.0 1.8 2.6 
1 11.3 19.9 40.1 32.5 18.0 26.6 40.4 40.4 
2 48.7 59.8 48.2 51.0 51.1 49.4 43.6 42.0 
3 32.0 16.2 8.0 11.9 24.1 16.7 10.6 11.1 
4 5.6 2.4 1.5 2.0 4.0 3.7 2.5 2.3 
5 1.0 0.9 0.6 0.8 1.2 1.5 0.7 0.7 
6 0.4 0.3 0.2 0.4 0.7 0.7 0.2 0.4 

7+ 0.5 0.3 0.3 0.3 0.7 0.4 0.2 0.4 
Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

 
(ii) Mean and Standard Deviation of the Lag, in Years 

 
Mean 2.39 2.08 1.74 1.88 2.25 2.05 1.76 1.76 

s.d. 1.02 0.93 0.91 0.93 1.02 1.02 0.90 0.95 
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Table 2a 
Citations Received by Application Year and Technological Category 

 
App. 
Year  

Chemical 
 

Computers 
& Comm. 

Drugs & 
Medical  

Elect. &  
Electronics 

Mechanical 
 

Others 
 

All 
 

1967 4.35 4.30 7.27 3.80 3.87 4.52 4.24 
1968 4.72 4.68 7.70 4.20 4.17 4.76 4.57 
1969 5.00 5.80 7.84 4.66 4.50 5.03 4.94 
1970 5.55 6.56 8.37 5.40 4.85 5.44 5.46 
1971 5.90 7.55 8.82 5.82 5.22 5.78 5.87 
1972 6.10 8.02 9.77 6.29 5.58 6.02 6.22 
1973 6.39 8.70 9.64 6.73 5.70 6.26 6.50 
1974 6.42 9.34 10.58 6.80 5.91 6.54 6.74 
1975 6.58 10.06 8.90 7.12 5.90 6.61 6.85 
1976 6.71 10.40 9.32 7.20 5.94 6.52 6.93 
1977 6.69 10.63 9.26 7.30 5.79 6.39 6.89 
1978 6.57 10.62 9.20 7.11 5.80 6.28 6.82 
1979 6.59 10.96 9.63 7.32 5.79 6.23 6.92 
1980 6.70 11.55 9.75 7.31 5.84 6.10 7.04 
1981 6.62 12.06 9.99 7.15 5.80 6.10 7.10 
1982 6.49 11.77 10.04 7.22 5.82 6.18 7.11 
1983 6.77 11.96 10.30 7.40 5.70 6.17 7.24 
1984 6.66 12.21 10.13 7.40 5.80 6.21 7.25 
1985 6.56 11.82 10.64 7.15 5.74 6.12 7.19 
1986 6.32 12.01 10.44 7.23 5.66 5.99 7.14 
1987 6.05 11.42 9.95 6.94 5.34 5.65 6.84 
1988 5.44 11.06 9.10 6.69 5.09 5.21 6.45 
1989 4.93 10.63 8.26 6.24 4.78 4.80 6.03 
1990 4.39 9.75 7.59 5.73 4.38 4.35 5.53 
1991 3.82 8.29 6.79 5.40 3.89 3.91 4.98 
1992 3.34 7.04 5.45 4.55 3.38 3.31 4.26 
1993 2.59 5.62 3.77 3.66 2.67 2.62 3.35 
1994 1.71 3.96 2.18 2.60 1.87 1.81 2.34 
1995 0.93 2.08 0.95 1.49 1.10 1.03 1.28 
1996 0.40 0.75 0.41 0.60 0.49 0.44 0.53 
1997 0.11 0.18 0.10 0.16 0.14 0.13 0.14 
All 4.62 6.44 5.99 4.75 4.17 4.46   
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Table 2b 
Citations Received by Grant Year and Technological Category 

 
Grant 
Year 

Chemical 
 

Computers 
& Comm. 

Drugs & 
Medical 

Elec. & 
Electronics 

Mechanical 
 

Others 
 

All 
 

1963 2.86 1.98 4.89 2.21 2.77 3.36 2.90 
1964 3.08 1.99 5.35 2.30 2.93 3.43 3.01 
1965 3.47 2.20 5.75 2.44 3.08 3.67 3.20 
1966 3.63 2.47 5.21 2.72 3.24 3.90 3.40 
1967 3.71 2.92 6.40 2.89 3.39 4.07 3.61 
1968 3.85 3.25 6.57 3.24 3.62 4.23 3.82 
1969 4.11 3.19 6.95 3.51 3.78 4.42 4.02 
1970 4.41 3.93 7.72 3.82 4.07 4.73 4.35 
1971 4.85 5.20 8.71 4.59 4.41 4.93 4.83 
1972 5.41 6.74 8.03 5.42 4.85 5.45 5.45 
1973 5.81 7.27 8.56 5.89 5.20 5.73 5.82 
1974 5.92 8.03 9.27 6.40 5.51 6.06 6.16 
1975 6.17 8.65 10.20 6.78 5.80 6.40 6.54 
1976 6.44 9.25 9.59 6.82 5.97 6.58 6.73 
1977 6.57 10.10 9.10 7.23 5.95 6.73 6.92 
1978 6.75 10.64 8.56 7.27 5.87 6.57 6.91 
1979 6.76 10.11 9.27 7.32 5.90 6.42 6.92 
1980 6.46 10.62 9.30 7.17 5.75 6.24 6.81 
1981 6.77 10.86 9.15 7.28 5.85 6.22 6.90 
1982 6.63 11.28 10.02 7.21 5.91 6.26 7.05 
1983 6.72 11.56 10.14 7.26 5.96 6.24 7.10 
1984 6.72 12.66 10.14 7.24 5.70 6.13 7.08 
1985 6.72 11.91 10.09 7.40 5.71 6.18 7.11 
1986 6.67 11.75 10.91 7.27 5.80 6.07 7.17 
1987 6.59 12.07 11.46 7.38 5.80 6.08 7.33 
1988 6.27 11.81 10.40 7.12 5.63 6.00 7.09 
1989 5.82 11.18 9.69 6.79 5.20 5.37 6.67 
1990 5.33 11.18 9.20 6.63 4.97 4.97 6.34 
1991 4.84 10.26 8.64 6.14 4.58 4.66 5.87 
1992 4.43 10.06 7.83 5.69 4.24 4.23 5.48 
1993 3.73 9.17 6.52 5.23 3.72 3.69 4.90 
1994 3.17 7.92 5.47 4.37 3.13 3.08 4.22 
1995 2.37 6.05 3.85 3.50 2.50 2.40 3.30 
1996 1.61 4.43 2.40 2.47 1.74 1.63 2.34 
1997 0.85 2.45 1.09 1.40 0.99 0.90 1.28 
1998 0.32 0.87 0.33 0.51 0.39 0.34 0.48 
1999 0.03 0.06 0.02 0.05 0.03 0.03 0.04 
All 4.62 6.44 5.99 4.75 4.17 4.46   
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Table 3: Estimation of Citation Probabilities 
 

Constant Diffusion Constant 
Obsolescence 

Full 
Model 

 

Coef. S.E. Coef. S.E. Coef. S.E. 
Tech Field Effects (base=other)      
Chemicals exc. Drugs 1.004 0.026 0.867 0.020 0.526 0.030 
Computers & Comm. 2.281 0.058 1.451 0.033 1.495 0.094 
Drugs & Medical 1.295 0.035 1.818 0.051 0.724 0.042 
Electrical & Electronics 1.374 0.035 0.896 0.021 0.678 0.038 
Mechanical 0.937 0.026 0.742 0.019 0.444 0.025 
Citing Year Effects (base=1975)      

1976 0.742 0.036 0.812 0.038 0.871 0.040 
1977 0.764 0.037 0.828 0.038 0.878 0.039 
1978 0.839 0.041 0.900 0.041 0.943 0.041 
1979 0.905 0.044 0.962 0.043 0.997 0.042 
1980 0.956 0.045 1.008 0.044 1.034 0.041 
1981 0.967 0.048 1.010 0.047 1.026 0.043 
1982 1.022 0.052 1.059 0.050 1.064 0.045 
1983 1.010 0.055 1.037 0.051 1.030 0.045 
1984 1.110 0.061 1.130 0.056 1.111 0.048 
1985 1.230 0.070 1.243 0.063 1.209 0.053 
1986 1.360 0.080 1.362 0.071 1.312 0.059 
1987 1.545 0.094 1.530 0.083 1.459 0.069 
1988 1.728 0.111 1.692 0.097 1.600 0.079 
1989 1.855 0.123 1.800 0.106 1.684 0.085 
1990 1.931 0.132 1.856 0.112 1.724 0.090 
1991 2.018 0.143 1.919 0.120 1.769 0.096 
1992 2.256 0.165 2.119 0.137 1.940 0.109 
1993 2.551 0.195 2.365 0.159 2.151 0.127 
1994 3.053 0.241 2.799 0.197 2.529 0.155 
1995 3.947 0.321 3.583 0.261 3.218 0.205 
1996 3.382 0.284 3.033 0.227 2.709 0.180 
1997 2.816 0.246 2.495 0.193 2.217 0.152 
1998 0.701 0.069 0.612 0.054 0.542 0.044 
1999 0.030 0.003 0.026 0.002 0.023 0.002 

Cited Year Effects (base=1963-64)      
1965-69 0.635 0.018 0.710 0.022 0.814 0.021 
1970-74 0.637 0.018 0.741 0.022 0.886 0.029 
1975-79 0.602 0.022 0.724 0.027 0.911 0.038 
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1980-84 0.555 0.027 0.700 0.033 0.926 0.049 
1985-89 0.511 0.032 0.686 0.040 0.937 0.062 
1990-94 0.433 0.033 0.624 0.046 0.866 0.068 
1995-99 0.287 0.029 0.434 0.041 0.604 0.063 

Beta1: Obsolescence by Technology Field     
Chemicals exc. Drugs 1.007 0.020   0.689 0.025 
Computers & Comm. 1.297 0.026   1.099 0.034 
Drugs & Medical 0.760 0.018   0.503 0.024 
Electrical & Electronics 1.235 0.025   0.850 0.027 
Mechanical 1.040 0.022   0.653 0.025 
Beta1  (Base=Other) 0.102 0.003 0.104 0.004 0.111 0.003 
Beta2: Diffusion by Technology Field       
Chemicals exc. Drugs   1.639 0.105 3.404 0.362 
Computers & Comm.   2.358 0.156 2.200 0.203 
Drugs & Medical   0.783 0.048 2.919 0.287 
Electrical & Electronics   2.615 0.188 3.815 0.390 
Mechanical   2.091 0.144 4.572 0.527 
Beta2 (Base=Other) 0.436 0.016 0.225 0.012 0.162 0.011 

       
R-squared 0.950 0.941 0.956 
Standard error of 
regression 

0.0595 0.0653 0.0561 

    
Simulated Modal Lag       
Chemicals exc. Drugs 3.81 4.10 3.82 
Computers & Comm. 3.35 3.41 3.83 
Drugs & Medical 4.34 5.62 4.75 
Electrical & Electronics 3.43 3.22 3.27 
Mechanical 3.74 3.63 3.26 
Other 3.82 5.11 5.55 
 
Note: The dependent variable is citations (by citing year, cited year, cited field) divided 
by potentially citable patents (by cited year and cited field).  Cited years run from 1963-
99 and citing years from 1975-99, for a total of 3,600 observations 
[6*(12*25+(24*25)/2)]. 
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Table 4 

Potential “Deflators” for Citing Patent Totals 
 
 

 (1) (2) (3) (4) 
Application 

Year 
Total 

Patents 
Index of 

Patent Total 
(1975=1) 

Citing Year 
Coefficient 

(from Table 3) 

Pure 
Propensity to 

Cite Effect 
[(3)/(2)] 

1975 65888 1.000 1.000 1.000 
1976 65804 0.999 0.871 0.872 
1977 65978 1.001 0.878 0.877 
1978 65601 0.996 0.943 0.947 
1979 65726 0.998 0.997 0.999 
1980 66491 1.009 1.034 1.025 
1981 63910 0.970 1.026 1.058 
1982 65009 0.987 1.064 1.078 
1983 61563 0.934 1.030 1.103 
1984 67071 1.018 1.111 1.091 
1985 71442 1.084 1.209 1.115 
1986 75088 1.140 1.312 1.151 
1987 81458 1.236 1.459 1.180 
1988 90134 1.368 1.600 1.170 
1989 96077 1.458 1.684 1.155 
1990 99254 1.506 1.724 1.145 
1991 100016 1.518 1.769 1.165 
1992 103307 1.568 1.940 1.237 
1993 106848 1.622 2.151 1.326 
1994 120380 1.827 2.529 1.384 
1995 137661 2.089 3.218 1.540 
1996 131450 1.995 2.709 1.358 
1997 114881 1.744 2.217 1.271 
1998 33780 0.513 0.542 1.057 
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Table 5 

Simulated Cumulative Lag Distributions by Technology Field 
 

Lag Chem. exc. 
Drugs 

Comp & 
Comm 

Drugs & 
Medical 

Electrical & 
Electronic 

Mechanical Other 

1 0.037 0.045 0.026 0.048 0.043 0.026 
2 0.091 0.112 0.067 0.115 0.101 0.069 
3 0.152 0.188 0.114 0.187 0.164 0.123 
4 0.214 0.266 0.165 0.259 0.226 0.182 
5 0.275 0.342 0.216 0.327 0.285 0.244 
6 0.333 0.413 0.265 0.390 0.341 0.306 
7 0.387 0.479 0.314 0.448 0.393 0.366 
8 0.438 0.538 0.360 0.502 0.442 0.424 
9 0.485 0.592 0.404 0.550 0.487 0.479 
10 0.529 0.640 0.446 0.594 0.530 0.530 
11 0.569 0.683 0.486 0.635 0.569 0.578 
12 0.607 0.721 0.524 0.671 0.606 0.622 
13 0.642 0.755 0.560 0.705 0.640 0.662 
14 0.674 0.785 0.593 0.735 0.671 0.699 
15 0.704 0.812 0.625 0.763 0.701 0.732 
16 0.732 0.835 0.656 0.788 0.728 0.763 
17 0.758 0.856 0.684 0.811 0.753 0.790 
18 0.782 0.875 0.711 0.832 0.777 0.815 
19 0.804 0.891 0.737 0.851 0.799 0.837 
20 0.824 0.906 0.761 0.868 0.820 0.858 
21 0.843 0.919 0.784 0.884 0.839 0.876 
22 0.861 0.930 0.806 0.898 0.856 0.892 
23 0.877 0.940 0.826 0.911 0.873 0.907 
24 0.892 0.949 0.845 0.923 0.888 0.920 
25 0.906 0.957 0.864 0.934 0.902 0.932 
26 0.919 0.964 0.881 0.943 0.916 0.942 
27 0.931 0.970 0.897 0.952 0.928 0.952 
28 0.942 0.976 0.913 0.960 0.939 0.961 
29 0.952 0.981 0.928 0.968 0.950 0.968 
30 0.962 0.985 0.941 0.975 0.960 0.975 
31 0.971 0.989 0.954 0.981 0.969 0.981 
32 0.979 0.992 0.967 0.986 0.978 0.987 
33 0.987 0.995 0.978 0.991 0.986 0.992 
34 0.994 0.998 0.990 0.996 0.993 0.996 
35 1.000 1.000 1.000 1.000 1.000 1.000 
 
 



Figure 1
Number of Patents by Application Year
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Figure 2
Number of Patents by Grant Year
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Figure 3
Share of Patents Assigned to Corporations
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Figure 4
Distribution of Patents by Technological Categories

 (absolute numbers)
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Figure 5
Distribution of Patents by Technological Categories - Shares 
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Figure 6
Mean Citations Made and Received
by Application Year and Grant Year
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Figure 7
Mean Citations Made by Technological Categories
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Figure 8
Mean Citations Received by Technological Categories
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Figure 9
Distribution of Backward Citation Lags
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Figure 10
Cumulative Distribution of Backward Citation Lags (up to 50 years back)
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Figure 11
Distribution of Forward Citation Lags 

Selected Cohorts: 1975, 1980, 1985 and 1990
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Figure 12
Self-Citations Made by Technological Category
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Figure 13
Self Citation as a Percentage of Total Citations Made by Application Year
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Figure 14
Self Citation as a Percentage of Total Citations Received by Application Year

0%

5%

10%

15%

20%

25%

30%

35%

40%

1969 1974 1979 1984 1989 1994

Application Year

M
ea

n 
Se

lf-
C

ita
tio

n 
Pe

rc
en

ta
ge



Figure 15
Measures of Generality and Originality

Yearly Averages
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Figure 16
Generality by Technological Category

Yearly Averages
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Figure 17
Originality by Technological Category

Yearly Averages
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Figure 18
Claims Made by Technological Categories

Yearly Averages
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Figure 19
Percentage of Patents Matched to Compustat

(out of assigned patents)
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Figure 20
Simulated Citation Lag Distributions by Field
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Appendix Figure 1
Bias of the Generality Index Based on Patent Citations
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