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This paper is concerned with an analysis of the near tip region of a propagating fluid-
driven fracture in a saturated permeable rock. The study attempts to accurately resolve
the coupling between the physical processes - rock breakage, fluid pressure drop in the
viscous fluid flow in the fracture, and fluid exchange between fracture and the rock - that
exert influence on the hydraulic fracture propagation, yet occur over lengthscales often
too small to be efficiently captured in existing coarse grid numerical models. We consider
three fluid balance mechanisms: storage in the fracture, pore fluid leak-in from the rock
into the fracture as the result of dynamic suction at the dilating crack tip, and fluid
leak-off from the fracture into the rock as the fluid pressure in the fracture recovers with
distance away from the tip. This process leads to the formation of a pore fluid circulation
cell adjacent to the propagating fracture tip. We obtain the general numerical solution for
the fracture opening and fluid pressure in the semi-infinite steadily propagating fracture
model and fully characterise the solution within the problem parametric space. This
allows to identify the parametric regimes of fracture propagation, assess the impact of
pore fluid leak-in and the associated near-tip circulation cavity on the solution, and
explore limitations of the widely-used, pressure-independent Carter’s leak-off model. The
obtained solution can be further used as a tip element in a numerical realisation of a
solution for a transient growth of a finite fracture (e.g., within the Planar3D approach).

Key words: Boundary layer structure, lubrication theory, porous media, particle/fluid
flow

1. Introduction

Tensile fracture driven by internal pressurisation of viscous fluid takes place in the
transport of magma in the lithosphere (Spence and Turcotte 1985; Lister and Kerr 1991;
Rubin 1993), tensile jointing of overpressured saturated rock formation (Secor 1965;
Engelder and Lacazette 1990), and in hydraulic fracturing, a widely used method for the
development of oil or gas reservoirs. Modelling of these fractures remains a challenge,
owing to the strong, non-linear coupling of the governing physical processes, associated
with breakage of the rock, viscous fluid flow in the fracture and the fluid exchange between
the fracture and permeable formation, often manifested at distances from the moving
fracture tip too small to be efficiently resolved in conventional numerical models (e.g.
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Detournay (2016) and references therein). To overcome this deficiency, one approach
has been to devise an accurate near-fracture-tip model for the small-scale processes
(Lister 1990; Desroches et al. 1994; Garagash and Detournay 2000; Garagash et al.
2011), which can then be bridged with the macroscopic process of hydraulic fracture
propagation by incorporating it as the near-tip module of an appropriate numerical
framework (Siebrits and Peirce 2002; Peirce and Detournay 2008; Dontsov and Peirce
2017; Zia and Lecampion 2018). On both the macro- and micro- scales, the complexity of
the fluid flow inside the fracture increases along a number of orthogonal axes (rheology of
the carrier fluid, impact of carried proppant particles, bridging of particles, the effect of
fracture surface roughness, individual settling or particles and gravitational convection,
and interplay between the fluid flow inside the open fracture and outside in the permeable
ambient medium) (Osiptsov 2017). In this work we will focus on the classic formulation:
Newtonian incompressible fluid, no particles and smooth fracture walls, fracturing and
pore fluids have the same properties.
The models of the near-tip region have proliferated since the early contributions focus-

ing on elastohydrodynamic coupling in fully-fluid-filled fracture (Lister 1990; Desroches
et al. 1994) to include the effects of the fluid lag and rock fracture toughness (Rubin
1993; Spence and Sharp 1985; Garagash and Detournay 2000), fracturing fluid leak-off
into permeable rock (Lenoach 1995; Garagash et al. 2011), pore pressure diffusion and
poroelasticity (Detournay and Garagash 2003; Kovalyshen 2010), non-laminar flow in the
fracture (Dontsov 2016; Lecampion and Zia 2019), viscous fluid drag onto the fracture
walls (Wrobel et al. 2017), and non-Newtonian fracturing fluid rheology (Moukhtari and
Lecampion 2018; Dontsov and Kresse 2018), among others.
In this paper we revisit the nature of the fluid exchange between the fracture and the

host permeable rock, and its coupling to the fluid flow in the fracture and to the fracture
propagation. As the fluid exchange (usually viewed as the leak-off of the pressurized
fracturing fluid into the rock) influences the propagating fracture (fluid-filled) volume and
the level of fluid pressurisation in the fracture, it exerts the first order influence on the
fracture opening and propagation. Fluid exchange between the pressurized fracture and
the rock can be complicated by a priori unknown time-and-space varying fluid pressure
in the fracture and that of the resulting process of the pore pressure diffusion in the
permeable rock, time-dependent poroelastic effects, and the ’cake-building’ (deposition
of fracturing fluid solids at the fracture walls and in the pore space of the wall-rock). As
the result, many modelling attempts resorted to the use of a phenomenological Carter’s
model (Carter 1957), which suggests that the local rate of fluid exchange (leak-off) at the
fracture wall can be approximated by the inverse of the square root of the exposure time
(the time since the fracture front has arrived at the considered location along the fracture
path). The underpinnings of the Carter’s relation is the assumption of the invariant
(constant in space and time) fluid pressure differential between the fracture wall and
the far field ambient pore pressure in the rock, pf − po ≈ const. The latter assumption
often justified on the grounds that the fluid pressure in the fracture scales with the
far field confining stress σo (in order for the fracture to stay open), pf ≈ σo, while
the latter assumed to be distinctly larger than the pore fluid pressure, i.e. σo > po,
leading to approximately constant pressure differential between the fracture and the rock,
pf − po ≈ σo − po. This reasoning, may it be justifiable on average along the fracture
length, it does not stand the scrutiny locally when the fluid pressure drop in the flow
towards the fracture tip(s) is considered. Indeed, near tip solutions for fully-fracturing-
fluid-filled hydraulic fracture in impermeable rock (Desroches et al. 1994) and permeable
rock with Carter’s leak-off (Lenoach 1995; Garagash et al. 2011) lead to the infinite fluid
suction at the tip, which not only invalidates the Carter’s leak-off assumptions in some
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vicinity of the fracture tip, but actually calls for the separation (lagging) of the fracturing
fluid behind the fracture front (Rubin 1993; Garagash and Detournay 2000), and pore
fluid leak-in (not fracturing fluid leak-off) into the vacant volume of the (fracturing)
fluid lag (Detournay and Garagash 2003). A number of recent numerical studies of the
hydraulic fracture propagation in permeable rock which account for the pore pressure
diffusion, e.g. (Carrier and Granet 2012; Sarris and Papanastasiou 2011; Golovin and
Baykin 2018), do not show pore fluid leak-in, as a possible consequence of the spatially
under-resolved fracture tip region in these simulations.

This paper deals with the near-tip region of a fluid-driven fracture propagating in a
permeable reservoir rock, while allowing for pressure-dependent fluid leak-off and leak-
in and associated pore pressure diffusion in the host rock. In formulating the problem,
we build on the original model framework of Detournay and Garagash (2003), further
generalised by Kovalyshen (2010); Kovalyshen and Detournay (2013). Specifically, we
consider the stationary plane-strain problem of a semi-infinite fracture moving at constant
speed under the following simplifying assumptions: (i) the fracture propagates under the
condition of small scale yielding (or Linear Elastic Fracture Mechanics) (Rice 1968);
(ii) the incompressible viscous fracturing fluid is Newtonian and its flow in the fracture
is described by Poiseuille lubrication theory (Batchelor 1967); (iii) the fluid exchange
between the fracture and the host rock (leak-off and leak-in) is governed by the one-
dimensional pore pressure diffusion; (iv) possible properties’ contrast between the pore
and the fracturing fluids is neglected; and (v) the poroelastic ’backstress’ effects are
considered negligible (Kovalyshen 2010).

This paper is organised as follows. First, the problem formulation, underlining as-
sumptions, and the resulting governing equations are presented. We follow with the
discussion of the various asymptotic limits of the solution, including the reduction to the
Carter’s leak-off case (Garagash et al. 2011), which then allows us to frame the general
structure of the sought solution and its parametric dependence. Next, we introduce the
characteristic scalings of the solution as they pertain to corresponding limiting regimes
of the fracture propagation, and the general non-dimensional problem parametric space
defined in terms of two numbers, non-dimensional leak-off χ and leak-in ζ. The rest
of the paper is devoted to the analytical and numerical exploration of the solution to
the problem in the parametric space, including an analysis of the relative importance
of pressure-dependent effects in the fluid exchange process between the fracture and the
reservoir.

2. Model formulation

2.1. Problem definition

To examine the near tip behaviour of fluid-driven fracture, we consider the problem of a
semi-infinite fracture (figure 1) propagating with constant velocity V , which is understood
as the instantaneous local tip velocity of the parent hydraulic fracture fracture. The host
permeable linear-elastic rock is characterised by Young’s modulus E and Poisson’s ratio
ν. Small scale yielding (Rice 1968), i.e. the rock damage/yielding zone at the advancing
fracture front small compared to the lengthscales of other physical processes active near
the tip (e.g., dissipation in the viscous fluid flow) is assumed. Linear elastic fracture
mechanics (LEFM) theory is therefore utilised for the modelling of the quasi-static
propagation of the fracture in the rock characterised by the fracture toughness KIc.

Figure 1 shows the schematics of the considered problem. The fracture, loaded in-
ternally by the fluid pressure pf (x), opens (with aperture distribution w(x)) against the



4 E. A. Kanin, D. I. Garagash and A. A. Osiptsov

Figure 1: Schematic picture of fracture tip model with pressure-dependent fluid exchange
between the fracture and permeable saturated rock.

in-situ confining stress σo. We consider fluids presented in the model as Newtonian. Fluid
flow in the fracture is described by lubrication theory (Batchelor 1967).

The rock adjacent to the fracture is permeable and saturated by pore fluid at ambient
pore pressure po. The fluid exchange between the fracture and the reservoir is driven
by the pressure difference between the fracture (pf ) and the reservoir (po). The fluid ex-
change process is modelled by one-dimensional pressure-dependent leak-off/leak-in (PDL)
driven by pore pressure diffusion in the rock (Detournay and Garagash 2003; Kovalyshen
2010; Kovalyshen and Detournay 2013). This model is a convenient approximation of a
full two-dimensional leak-off and associated diffusion problem (Detournay and Garagash
2003) based on the assumption that the characteristic thickness of the diffusive boundary
layer around the crack is small compared to the characteristic lengthscale of the fracture
tip problem. The local rate of the fluid exchange is denoted as g(x). We also assume that
the pore and hydraulic fracturing fluids have similar (identical in the model) properties.

Fluid pressure pf (x) diminishes in the fluid flow along the fracture towards the tip.
If its minimum value at the tip, pf (0), drops below po, there exists a near-tip zone of
some length λo (x ∈ [0, λo]) along which the pore fluid flows into the fracture from
the surrounding rock. For distance larger than λo, the fluid pressure recovers enough to
enable the leak-off of the formation fluid from the fracture back into the rock. Due to the
steady crack propagation (i.e. problem is stationary in the coordinate system x moving
with the crack tip), all of the formation fluid leaked-in along x ∈ [0, λo] has to circulate
(leak-off) back into the formation, thus defining the pore-fluid circulation zone of some
length λ > λo near the fracture tip (figure 1). The crack channel withing the interval
[λ,+∞) is filled by the hydraulic fracturing fluid which, due to pressure continuity, is
also expected to leak-off into the rock.

2.2. Governing equations

Let us consider the moving coordinate system (x, y) related to the fixed coordinate
system (X,Y ) by equations: x = V t −X, y = Y . The considered problem is stationary
in the moving coordinate system. The governing equations are written for unknown
fracture opening w(x) and net pressure distribution p(x) = pf (x)−σo along the fracture
(0 < x < +∞), elaborating further on the framework proposed in Garagash et al. (2011).
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2.2.1. Fracture propagation

LEFM fracture propagation criteria under quasi-static conditions states that the stress
intensity factor at the crack tip matches the rock toughness: KI = KIc. This condition
prescribes the asymptotic behaviour of the fracture opening near its front (Irvin 1957):

w(x) =
K ′

E′
√
x (2.1)

where E′ = E
1−ν2 is the plane strain modulus and K ′ = 4

√
2
πKIc is the toughness

parameter.

2.2.2. Crack elasticity

The net pressure p(x) in the fracture could be expressed as the crack line integral of
the opening w(x) using the elasticity equation (Bilby and Eshelby 1968):

p(x) =
E′

4π

ˆ ∞

0

dw(s)

ds

ds

x− s
(2.2)

Equation (2.2) can be inverted (Garagash and Detournay 2000) to aid in the numerical
implementation of problem solution:

w(x) =
K ′

E′
√
x+

4

πE′

ˆ ∞

0

K(x, s)p(s)ds (2.3)

where the integral kernel is: K(x, s) = ln
∣∣∣
√
x+

√
s√

x−√
s

∣∣∣ − 2
√

x
s . This form of crack elasticity

equation already accounts for the propagation condition (2.1) (i.e. the integral in (2.3)
is o(

√
x)).

2.2.3. Fluid flow

The flow of viscous incompressible fluid in the crack channel is described by the
continuity equation averaged across the fracture aperture, which, upon transforming
to the moving coordinate system, is given by:

V
dw

dx
− d(wv)

dx
+ g = 0 (2.4)

where g is the local rate of fluid exchange between the fracture and the rock (g > 0
for leak-off and g < 0 for leak-in) given in the PDL model by the following expression
(Appendix A):

g(x) = Q′√V
(
p(0) + σ′

o

2
√
x

+

ˆ x

0

dp

dx′
dx′

2
√
x− x′

)
(2.5)

where Q′ = 4k
µ
√
πc

is a leak-in coefficient defined in terms of the pore pressure diffusivity

coefficient c, reservoir permeability k and fluid viscosity µ, p(0) = pf (0) − σo is the net
fluid pressure value at the fracture front, and σ′

o = σo − po is the ambient value of the
effective confining stress.
Integrating Eq. (2.4) from the tip x = 0 to some distance x > 0, we obtain:

wv = wV + q⊥, q⊥ =

ˆ x

0

g(s)ds (2.6)

which signifies that the local fluid volumetric flow rate at distance x from the fracture
tip w(x)v(x) is partitioned between the fluid stored in the fracture w(x)V and in the
rock via the cumulative rate of fluid exchange q⊥(x), given by
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q⊥(x) = Q′√V
ˆ x

0

p(s) + σ′
o

2
√
x− s

ds = C ′√V x+Q′√V
ˆ x

0

p(s)

2
√
x− s

ds (2.7)

Here C ′ = Q′σ′
o =

4kσ′

o

µ
√
πc

is the Carter’s leak-off coefficient. The first term in the right

hand side of (2.7) corresponds to the classical Carter’s leak-off expression strictly valid
only when pf (x) = σo (or p(x) = 0), while the second term is the pressure-dependent
correction. Since the net fluid pressure p(x) < 0 (or pf (x) < σo) in semi-infinite hydraulic
fracture (e.g., Garagash and Detournay (2000)), the corrective pressure-dependent term
is always negative, or, in other words, corresponds to a corrective leak-in.

Finally, the Poiseuille’s law for the fluid velocity along the crack channel

v =
w2

µ′
dp

dx
, (2.8)

with µ′ = 12µ designating a viscosity parameter, completes the fluid flow description.

3. Asymptotes and structure of general solution

3.1. Vertex solutions

Two different mechanisms govern the propagation regime of a finite hydraulic fracture,
(e.g., Garagash et al. (2011)). The first one is the partitioning of the injected fluid between
the fracture and the reservoir as a result of the leak-in and leak-off processes (fracture
storage vs fluid exchange with the rock). The second mechanism is partitioning of the
total dissipated energy between the creation of the new fracture surfaces and flow of the
viscous fluid along the fracture (toughness vs viscosity).
In the process of fracture growth, the partition of the fracturing fluid and the partition

of the dissipated energy change over time, which can lead to the realisation of different
limiting regimes dominated by one storage and one dissipation mechanisms at different
time. In the context of semi-infinite hydraulic fracture, the change in the partitioning of
the fluid and of the energy with time can be recast in the change with the distance from
the fracture tip.
One can suggest four limiting propagation regimes that are characterised by the dom-

inance of one storage/exchange and one dissipation mechanisms: toughness dominated
(µ′ = 0), storage-viscosity dominated (C ′ = Q′ = 0,K ′ = 0), leak-off-viscosity dominated
(C ′ → ∞,K ′ = 0), storage-leak-in-viscosity dominated (K ′ = 0, C ′ > 0, Q′ < +∞). The
corresponding solutions are referred to as “vertex” solutions in a problem parametric
space.

While the leak-in (Q′) and the leak-off (C ′) coefficients define the partitioning of the
fluid, viscosity µ′ and toughness K ′ parameters are responsible for the partitioning of
dissipated energy.

The first three vertex solutions (k, m, m̃) are given, e.g., by Garagash et al. (2011),
and summarised in table 1 for completeness, in terms of the following three characteristic
length scales:

ℓk =

(
K ′

E′

)2

, ℓm = V
µ′

E′ , ℓm̃ =

(
C ′√V µ′

E′

)2/3

(3.1)

The pressure-dependency of the fluid exchange between the fracture and the rock is
coupled with the fluid pressure drop in the flow toward the crack tip (when viscosity is
non negligible: µ′ > 0). This fact suggests that the leak-in dominates near the fracture
front. In other words, we anticipate that near the fracture tip the newly created crack
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Limiting solutions opening w(x) net pressure p(x) velocity v(x)

k Toughness (µ′ = 0) ℓ
1/2
k x1/2 0 V + E′C′

√
V

K′

m Storage-viscosity (K′ = 0, C′ = Q′ = 0) β0ℓ
1/3
m x2/3 δ0E

′ ℓ
1/3
m

x1/3 V

m̃ Leak-viscosity (K′ = 0, C′ → ∞) β̃0ℓ
3/8
m̃ x5/8 δ̃0E

′ ℓ
3/8
m̃

x3/8
V

β̃0

ℓ
9/8
m̃

ℓmx1/8

Coefficients: β0 = 21/335/6, δ0 = β0f(2/3), β̃0 = 2.534, δ̃0 = β̃0f(5/8), with f(λ) = λ cot(πλ)/4

Table 1: Three limiting solutions of a semi-infinite hydraulic fracture for the identified
limiting values of problem parameters.

volume (storage) is accommodated entirely by the pore fluid leaking-in from the rock
(while the fluid flow towards the fracture tip along the crack channel is negligible there,
v ≈ 0). However, this dominance of leak-in has to be limited to a finite near tip region,
since crack elasticity requires that p(x) vanishes as x → ∞, or pf (x) → σo > po, thus
eventually giving way to the leak-off.

Vertex solutions k, m, m̃ (table 1) provide solution for the entire semi-infinite fracture
for the corresponding limiting values of parameters. They can be obtained from the
monomial solution to the crack elasticity equation (2.2):

wλ(x) = Bxλ; pλ(x) = E′Bf(λ)xλ−1, f(λ) =
λ cot(πλ)

4
, 0 < λ < 1

where particular values of the prefactor B and the exponent λ are constrained by the
lubrication equation when setting parameters (C ′, µ′ and K ′) to the corresponding
limiting values, as detailed by Garagash et al. (2011). In the k−vertex, viscosity is
negligble (µ′ = 0) and solution follows from the propagation condition (2.1). In the
m−vertex, the fluid exchange (C ′ = Q′ = 0) and toughness (K ′ = 0) are negligible, and
solution is recovered by balancing the fluid flux in the crack w(x)v(x) with the storage
term w(x)V in the continuity equation. We anticipate that in the general parametric
case (i.e. not limited to the stated values of K ′ and other parameters) the m−vertex
solution provides the far-field solution asymptote, (e.g., Garagash et al. (2011)). In the
m̃−vertex, the fluid storage (C ′ → ∞), and toughness (K ′ = 0) are negligible. In this
case, the fluid flux in the crack is balanced with the Carter’s leak-off term. In general
case, the m̃−vertex can be realised as the intermediate field solution (Garagash et al.
2011).

The new storage-leak-in-viscosity vertex õ emerges as a particular case of the viscosity-
dominated (K ′ = 0) behaviour linked to the dominance of the fluid leak-in (rather than
the leak-off) in the fracture near field (x → 0). It corresponds to the classical zero-
toughness behaviour of the crack opening, w = Bõx

3/2, and the non-singular pressure:

p = −σ′
0 − 3

2Bõ
V 1/2

Q′
x. The first term in the expression for the net pressure is obtained

from balancing the leak-in and leak-off terms in the continuity equation. On the other
hand, the second term arises from the matching the leak-in and the fracture storage
terms, gains particular importance in/near the zero-leak-off limit (σ′

0 = 0). This vertex
solution contains prefactor Bõ (with units 1/

√
m) that is unknown and a part of the

overall solution. This betrays the fact that the õ-asymptote can only be realised as the
near or intermediate field of the fracture, as it can not satisfy the elasticity equation over
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opening w(x) net pressure p(x) velocity v(x)

k Toughness (K′ > 0) ℓ
1/2
k x1/2 −σ′

0 −
K′V 1/2

E′Q′ 0

õ Storage-leak-in-viscosity (K′ = 0) Bõ x
3/2 −σ′

0 −
3
2
Bõ

V 1/2

Q′ x − 3
2
B3

õ
V 1/2

Q′µ′ x
3

Coefficients: Bõ is a part of the solution.

Table 2: Near-field (x→ 0) of semi-infinite hydraulic fracture

the full semi-infinite crack extent. The second term in the net pressure is found with
the assumption that the õ−vertex solution is realised in the near-field, and in this case,
the left-hand side of the continuity equation (∼ w3(x)p′(x)) for this vertex solution is
negligible as compared to terms in the right-hand side (storage, leak-off and leak-in).
For non-zero fracture toughness K ′ > 0, the near-field (x → 0) behaviour of the

fracture opening is given by the k−vertex solution (Table 1), as stems from the propa-
gation condition (2.1). Corresponding asymptotic expression for the net pressure p(x→
0) = −σ′

0 − K′V 1/2

E′Q′
follows from the fluid continuity equation (2.6) by balancing the

fluid exchange (the leak-in pore fluid volume) with the fracture storage. (We note that
the fluid flux along the crack wv is negligibly small in the near field fluid balance).
The obtained finite net pressure value at the fracture tip is drastically different from
the one in the Carter’s, pressure-independent leak-off model (Garagash et al. 2011),
where the pressure sustains a negative singularity as the fracturing fluid is assumed
to reach the tip of the fracture. When reformulated in terms of the fluid pressure,
pf (x → 0) = p0 − K ′√V /(E′Q′), this asymptote suggests that the fluid pressure at
the crack tip is reduced from its drained value given by the ambient pore pressure p0
by the amount K ′√V /(E′Q′). The latter, undrained pressure change vanishes for slowly
propagating cracks (V → 0) or/and zero rock toughness (K ′ → 0).
The obtained near-field k (K ′ > 0) and õ (K ′ = 0) asymptotes are summarised in

table 2.

3.2. Structure of solution and scaling

The general solution of the considered problem can be tracked within the parametric
triangular pyramid mm̃õk formed by four aforesaid vertices. The schematic picture of
this pyramid is represented in figure 2.
Four triangular faces of pyramid mm̃õk correspond to either the dominance of one of

the three fluid storage/exchange mechanisms or one of the dissipation mechanisms:
• storage-leak-off face mm̃k: leak-in process is negligible, Q′ = 0
• storage-leak-in face mõk: leak-off process is negligible, C ′ ∝ σ′

o = 0
• leak-face m̃õk: fluid storage in the fracture is negligible, C ′ → ∞
• viscosity-face mm̃õ: toughness is negligible, K ′ = 0

Six edges of the pyramidmm̃õk correspond to intersection of the corresponding two faces,
and thus, reflect the dominance of one of the three fluid storage/exchange mechanisms
and one of the dissipation mechanisms. E.g., m̃õ is the leak-viscosity edge (C ′ → ∞ and
K ′ = 0), bounding the leak m̃õk (C ′ → ∞) and the viscosity mm̃õ (K ′ = 0) faces, and,
thus, corresponds to the negligible storage and toughness.
Proposed pyramidal parametric space mm̃õk for the HF with pressure-dependent leak-
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Figure 2: Parametric diagram (pyramid mm̃õk) and corresponding four limiting faces
corresponding to the dominance of one energy dissipation or one fluid storage mechanism.
Few solution trajectories parameterized by the leak-off χ and leak-in ζ numbers (or their
ratio ψ = χ/ζ) are also shown.

off is a direct generalization of the triangular parametric space, facemm̃k, for the Carter’s
(pressure-indepdent) leak-off (Garagash et al. 2011), by the addition of the new vertex
õ. The emergent edges õk, m̃õ, and mõ are expected to describe the transitions of the
corresponding limiting solutions with distance from the crack tip between corresponding
vertices (from the 2nd to the 1st, i.e. m̃õ−edge corresponds to the transition from the
near-field õ to the far-field m̃, etc). As discussed in the above, the õ−vertex solution can
only be realised in the near-field of a semi-infinite fracture, thus, suggesting that the
õk−edge may in fact corresponds to the near-field expansion of the k−vertex (w ∝ x1/2)
which includes the next order correction given by õ−vertex solution (w ∝ x3/2), which
may come to eventually dominate (over the k−term) with increasing distance from the
tip.

In the case of the other two edges involving the õ-vertex as the fracture near-field,
i.e. m̃õ (K ′ = 0, C ′ → ∞) and mõ (K ′ = 0, C ′ ∝ σ′

o = 0), they should in principle
provide solutions for the entire semi-infinite HF under the corresponding limiting values
of the parameters. Before attempting these (and other edge) solutions, let us attempt
to constrain the apriori unknown near-field coefficient Bõ in the õ expression for the
opening w = Bõx

3/2 (x → 0). Using the inverted form of the elasticity equation (2.3)
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with K ′ = 0, and formally passing to the asymptotic limit x→ 0 under the integral, we
get

Bõ =
8

3πE′

ˆ ∞

0

p(s)

s3/2
ds (3.2)

Since p(s → 0) = −σ′
0 − 3

2Bõ
V 1/2

Q′
s (Table 3), the above integral expression for Bõ

converges (finite) for the mõ−edge (when σ′
o = 0) and diverges for the m̃õ−edge. This

suggests that the underlining formal limit-taking procedure to arrive to (3.2) is not
applicable to the latter (m̃õ−edge), while conversely (3.2) can be used to constrain
coefficient Bõ in the former case (mõ−edge). Specifically, we observe for the mõ−edge
that if the net pressure is negative in the entire crack coordinate domain (p(s) < 0
for all s > 0), which is suggested by the negative net pressure values in the both near
and far fields, then (3.2) results in Bõ < 0 or, in other words, negative crack opening
near the tip. This contradiction rules out the existence of the mõ−edge solution (under
plausible assumption of the negative net pressure in the crack), which implies that the
general solution to the problem does not have well-defined limiting solution when both
toughness and leak-off (or, conversely, ambient effective stress) are null.
General solution of the fracture tip problem within the parametric pyramid transitions

with increasing distance from the tip from the near field k to the far fieldm vertex, and in
different limiting cases can collapse onto or be attracted to a series of faces and/or edges,
as apparent from their parametric definitions. To identify non-dimensional parameters
which fix a given solution trajectory in the parametric space, we follow the methodology
of Garagash et al. (2011), and introduce characteristic scales for the transition distance
ℓ∗, opening w∗, and pressure p∗ closely related to the evolution of the solution along
a given edge in the parametric space between the two corresponding vertices, or the
‘edge-scalings’.

Edge-scaling mk, m̃k, and mm̃ are defined after Garagash et al. (2011) such that
the solutions for either p(x) or w(x) for the corresponding two vertices forming the
edge in question “intersect” at x ∼ ℓ∗. For example, in the case of the storage mk
edge, we find the characteristic length by contrasting the k and m asymptotes for the

opening, w∗ = ℓ
1/2
k ℓ

1/2
∗ = ℓ

1/3
m ℓ

2/3
∗ , while p∗ follows from the elastic scaling constraint

w∗/ℓ∗ = p∗/E′. Edge-scalings which involve vertex õ (i.e. m̃õ and õk) are obtained
similarly but also recognising that the õ-asymptote depends on the solution trajectory
(via a-priori unknown prefactor). In the m̃õ-case, the transition lengthscale ℓ∗ is found
by contrasting the leading order õ-asymptote for the net pressure (i.e. p ≈ −σ′

o) with
that of the m̃-vertex, i.e. p∗ = σ′

o = E′(ℓm̃/ℓ∗)3/8, while w∗ follows from the elastic
constraint. In the õk−scaling the characteristic pressure is taken equal to p∗ = σ′

0. Using
p∗, elastic scaling constraint and balancing õ and k vertex solutions, we find ℓ∗ = K ′2/σ′2

o

and w∗ = K ′2/E′σ′
o. All of the above edge-scalings are recorded in Table 3.

Comparing three transition (edge) lengthscales within a given parametric face of the
pyramidmm̃õk allows to identify a ’trajectory number’ parameterising that face solution.
Considering, for example, the zero-leak-in face mm̃k, ζ = 0, one can introduce a single
number expressible as a ratio of any two of the this face’s three transition lengthscales
(ℓmk, ℓmm̃, and ℓm̃k) (Garagash et al. 2011)

χ =

(
ℓmm̃

ℓmk

)1/6

=

(
ℓmk

ℓm̃k

)1/2

=

(
ℓmm̃

ℓm̃k

)1/8

=
C ′E′

K ′V 1/2
(3.3)

This number, which can be interpreted as a dimensionless leak-off or ambient effective
stress (since C ′ = Q′σ′

o), or non-dimensional reciprocal of toughness, parametrises
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Scaling ℓ∗ w∗ p∗

mk ℓmk = ℓ3k/ℓ
2
m ℓ2k/ℓm E′ ℓm/ℓk

mm̃ ℓmm̃ = ℓ9m̃/ℓ
8
m ℓ6m̃/ℓ

5
m E′ (ℓm/ℓm̃)3

m̃k ℓm̃k = ℓ4k/ℓ
3
m̃ ℓ

5/2
k /ℓ

3/2
m̃ E′ (ℓm̃/ℓk)

3/2

m̃õ ℓm̃õ = (E′/σ′
o)

8/3 ℓm̃ (E′/σ′
0)

5/3 ℓm̃ σ′
0

õk ℓõk = (K′/σ′
0)

2 K′2/(E′σ′
0) σ′

0

Table 3: Characteristic distance from the tip ℓ∗, pressure p∗, and opening w∗ = (p∗/E′)ℓ∗,
corresponding to the five scalings of the problem.

solution trajectory within the mm̃k-face. The limiting case χ → 0 corresponds to the
storage-dominated mk-edge solution

ζ = 0, χ = 0 : k →
ℓmk

m (3.4)

which transitions from the k to the m vertex with distance from the tip over lengthscale
ℓmk (shown by blue-colour trajectory in figure 2). While the other limiting case χ→ ∞
corresponds to the separation of the corresponding transitional scales, ℓm̃k ≪ ℓmm̃, (3.3),
leading to the nested solution structure corresponding to the succession of the two edge
solutions (m̃k and mm̃)

ζ = 0, χ→ ∞ : k →
ℓm̃k

m̃ →
ℓmm̃

m (3.5)

signifying transition with distance from the tip first from the k to m̃ vertex over
lengthscale ℓm̃k and then from the m̃ to m vertex over lengthscale ℓmm̃ (shown by brown-
colour trajectory in figure 2).
Similarly, for the zero-storage face m̃õk, χ → ∞, we define another number in terms

of ratios of any two of the corresponding three edge lengthscales (ℓõk, ℓm̃õ, and ℓm̃k)

ζ =

(
ℓõk
ℓm̃k

)1/6

=

(
ℓm̃õ

ℓõk

)1/2

=

(
ℓm̃õ

ℓm̃k

)1/8

=
E′

K ′

(
µ′Q′V 1/2

)1/3

(3.6)

which can be interpreted as dimensionless leak-in or a reciprocal of toughness. This
number parametrises solution trajectory within the m̃õk-face. The limiting case ζ →
0 corresponds to the leak-off-dominated m̃k-edge solution, also a part of the limiting
trajectory (3.5) in the mm̃k face. While ζ → ∞ corresponds to the separation of the
relevant transitional scales, ℓõk ≪ ℓm̃õ, (3.6), leading to the nested solution structure
corresponding to the succession of the two edge solutions (õk and m̃õ) with distance
from the tip

χ→ ∞, ζ → ∞ : k →
ℓõk

õ →
ℓm̃õ

m̃ (3.7)

For the the zero-toughness face mm̃õ, χ→ ∞, we can define another number in terms
of ratio of the m̃õ and mm̃ edge lengthscales

ψ =

(
ℓmm̃

ℓm̃õ

)1/8

= σ′
o

(
Q′

µ′1/2V

)2/3

(3.8)
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Scaling Lubrication (2.6)-(2.8) Elasticity (2.2) Propagation (2.1)
ξ → 0

mk Ω3 dΠ
dξ

= Ω + χ ξ1/2 + ζ3
´ ξ

0

Π(s)ds

2
√
ξ−s

Ω = ξ1/2

mm̃ Ω3 dΠ
dξ

= Ω + ξ1/2 + ψ−3
´ ξ

0

Π(s)ds

2
√
ξ−s

Ω = χ−1 ξ1/2

m̃k Ω3 dΠ
dξ

= χ−1Ω + ξ1/2 + ζ3
´ ξ

0

Π(s)ds

2
√
ξ−s

Π(ξ) = 1
4π

´∞
0

dΩ(s)
ξ−s

Ω = ξ1/2

m̃õ Ω3 dΠ
dξ

= ψ−1Ω + ξ1/2 +
´ ξ

0

Π(s)ds

2
√
ξ−s

Ω = ζ−1 ξ1/2

õk ζ−3Ω3 dΠ
dξ

= χ−1Ω + ξ1/2 +
´ ξ

0

Π(s)ds

2
√
ξ−s

Ω = ξ1/2

Table 4: Normalised governing equations for the scaled opening Ω = w/w∗ and net
pressure Π = p/p∗ as a function of the scaled position ξ = x/ℓ∗ in different scalings
(ℓ∗, w∗, p∗) from table 3.

which can be interpreted as, e.g., dimensionless effective confining stress. Note that ψ
is not an independent parameter, but expressible in terms of the previously introduced
leak-off χ and leak-in ζ numbers, ψ = χ/ζ. This number parametrises solution trajectory
within the mm̃õ face, such that ψ → ∞ corresponds to the separation of the two
lengthscales, ℓm̃õ ≪ ℓmm̃, (3.8), resulting in the solution comprised of the two edge
solutions (mõ and mm̃)

χ→ ∞, ψ = χ/ζ → ∞ : õ →
ℓm̃õ

m̃ →
ℓmm̃

m (3.9)

The other limit, ψ = 0, corresponding to the viscosity-leak-in mõ edge, is not expected
to exist per discussion in the above. The behaviour of the solution within the mm̃õ and
particularly how it approaches the non-existing mõ edge with diminishing value of ψ is
to be explored numerically.

We note that in the case when the parametric conditions in (3.7) and (3.9) are
combined, i.e. when χ → ∞, ζ → ∞, and ψ = χ/ζ → ∞, the three scales separate,
ℓõk ≪ ℓm̃õ ≪ ℓmm̃, and the ‘triple-nested’ solution structure is realised

χ→ ∞, ζ → ∞, ψ = χ/ζ → ∞ : k →
ℓõk

õ →
ℓm̃õ

m̃ →
ℓmm̃

m (3.10)

as shown by the green-colour trajectory in figure 2.

For the fourth and final face of the pyramid, the zero-leak-off face mõk, χ = 0,
we can use the previously defined non-dimensional leak-in number ζ to track solution
trajectories, such that ζ = 0 corresponds to the storagemk-edge, and ζ → ∞ corresponds
to the non-existing limit of either mõ edge or the õk edge. (Note that the õk edge can
only be realised as the near or near-to-intermediate field of a given solution, thus, non-
existence of the õm solution, which would form the intermediate-to-far-field solution in
the limit ζ → ∞, implies the non-existence of the near-to-intermediate-field, õk edge,
solution within the zero-leak-off face mõk).
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3.3. Asymptotic expansions of the vertices

Some insight into how the solution departs from the vertices in the parametric space
in response to small perturbation of problem parameters and distance from the fracture
tip can be afforded by constructing corresponding asymptotic expansions.

3.3.1. Expansion near k−vertex

The near-field k−vertex expression (table 2) for the net pressure is simply given by
the value at tip set by the balance between incipient fluid exchange and crack opening,
respectively, and thus independent of the fluid flow along the crack channel. The latter
becomes more important when moving away from the tip, and can be accounted for by
incorporating next order terms in the k−vertex asymptotic expansion (Appendix B).
The k-expansion for net fluid pressure is given by

ζ > 0 :
p

E′ =
ℓ
1/2
k

ℓ
1/2
1

[
− 1

ζ3
+

1

γ(ζ)

(
x

xo

)γ(ζ)
]

(3.11)

ζ = 0 :
p

E′ =
ℓ
1/2
k

ℓ
1/2
1

ln

(
x

xo

)
(3.12)

in the general ζ > 0 case and in the Carter’s ζ → 0 limit (Garagash et al. 2011),
respectively. Lengthscale ℓ1 is defined in terms of a pair of transitional lengthscales

ℓ1 = (ℓ
−1/2
mk + ℓ

−1/2
m̃k )−2

Exponent γ = γ(ζ) in (3.11) is given implicitly by (B 3), and xo is a priori unknown part
of the solution. One can directly confirm that (3.11) reduces to (3.12) in the Carter’s
limit ζ → 0 in view of the vanishing power-law exponent γ(ζ → 0) ∼ ζ3.
We again point out the marked difference in the net pressure behaviour near the

fracture tip between the general (pressure dependent leak-off case ζ > 0) and the Carter’s
limit. In the former, the net pressure at the tip is bounded p(0) = −E′(ℓk/ℓ0)1/2 =
−(σ′

o +K ′V 1/2/E′Q), while in the latter - logarithmically singular.
Corresponding k-vertex expansion for the crack opening is

ζ > 0 : w = ℓ
1/2
k x1/2 +

ℓ
1/2
k

ℓ
1/2
1

[
4 tanπγ

γ(1 + γ)

xγ+1

xγo
+
x3/2

x
1/2
1

]
(3.13)

ζ = 0 : w = ℓ
1/2
k x1/2 +

ℓ
1/2
k

ℓ
1/2
1

4πx (3.14)

where xo and x1 are a priori unknown parts of the solution. Once again, the Carter’s
expression (3.14), identical to that of (Garagash et al. 2011) follows from the general
expression (3.13) when taking the limit ζ → 0 in the latter. We observe that the choice of
the next order term (after the leading term ∼ x1/2) in the opening expansion depends on
the value of γ(ζ). Specifically, it is given by xγ+1 term when γ(ζ)+1 < 3/2, corresponding
to ζ < 0.862, and by the x3/2 term otherwise (when ζ > 0.862). In relation to the problem
parametric diagram, the ζ-dependent form of the next order term in (3.14) determines
how the solution trajectory emanates from the k-vertex along a given ζ trajectory. For
example, considering the zero-storage m̃õk face, the zero-leak-in (ζ=0) trajectory exits
the k-vertex along the m̃k-edge described by the linear correction xγ(0)+1 (γ(0) = 0)
to the opening, and the zero-leak-off (ζ = ∞) trajectory exits the k-vertex along the
õk-edge described by the x3/2 correction to the opening.
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3.3.2. Expansion near m−vertex

The m-vertex solution does not depend on the rock toughness and the parameters
defining fluid-exchange processes. Moving away from the far-field region, where the m-
vertex dominates, towards the crack tip, the latter effects start to influence the solution.
These higher-order effects can be captured in the m-vertex expansion which can be
obtained using the procedure of Garagash et al. (2011) (thier Appendix C) in the following
form:

w = ℓ1/3m x2/3


β0 +

3∑

j=1

β−j

(
ℓmm̃

x

)j/6

+ β̊−3

(
ℓmõ

x

)1/2

............................

+ (β−4)∗(χ, ζ)

(
ℓm∗
x

)2/3−h



(3.15)

p

E′ = ℓ1/3m x−1/3


δ0 +

3∑

j=1

δ−j

(
ℓmm̃

x

)j/6

+ δ̊−3

(
ℓmõ

x

)1/2

............................

+ (δ−4)∗(χ, ζ)

(
ℓm∗
x

)2/3−h



(3.16)
where coefficients β−j are

β0 = 21/335/6, β−1 =
1

2
, β−2 = −31/6

27/3
, β−3 =

27/3

35/3
, β̊−3 = −27/3

35/3
9Γ

(
2
3

)
Γ
(
5
6

)

2
√
π

and δ−j = β−jf
(
2
3 − j

6

)
for j = 0, 1, 2, 3, δ̊−3 = β̊−3f(7/6), (δ−4)∗ = (β−4)∗f(h) with

h = 0.138673.

The terms in Eq. (3.15) and (3.16) underlined by a single line are scaled by charac-
teristic length ℓmm̃ and represent leak-off corrections to the m-vertex solution. The term
underlined by the double line can be scaled by either of the three pertinent transitional
lengthscales (i.e., ℓm∗ is given by either ℓmk, ℓmm̃, or ℓmõ) since the coefficient β−4(χ, ζ)
in front of it can be found only from the complete numerical solution. As a result,
this term can be interpreted as correction in either toughness, leak-off, or leak-in. The
corresponding expressions for the coefficient (β−4)∗ are linked by the following relations:
(β−4)k = χ4−6h(β−4)m̃ = ζ4−6h(β−4)õ.

The structure of the derived m-vertex expansion differes from that in the case of the
Carter’s leak-off (Garagash et al. 2011) by a single term, underlined in the above by a
dotted line and corresponding to the pressure-dependent, leak-in correction, scaled by
the ℓmõ = (E′/σ′

o)
2(µ′Q′V 1/2)2/3 transitional lengthscale.

3.3.3. Expansion near m̃−vertex

The m̃-vertex solution may arise at intermediate distances max (ℓm̃k, ℓm̃õ) ≪ x≪ ℓm̃m

from the fracture tip, when the featured transitional lengthscales separate, within one of
the corresponding limiting solution trajectories given by k → m̃→ m, (3.5), õ→ m̃→ m,
(3.9), or the combination thereof k → õ → m̃ → m, (3.10), and shown by red and
green colour in figure 2. The essential condition for the existence of the intermediate m̃-
asymptote is therefore χ≫ 1 and ψ = χ/ζ ≫ 1, where the latter is always satisfied along
the zero-leak-in (Carter’s) edge, ζ = 0, previously explored by Garagash et al. (2011).

The asymptotic expansion about the m̃−vertex solution, including small corrections
due to toughness, storage, and pressure-dependent leak-off effects (see Appendix C for
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details) is given by

w = ℓ
3/8
m̃ x5/8


β̃0 +

3∑

j=1

β̃j

(
x

ℓmm̃

)j/8

+
˚̃
β−3

(
ℓm̃õ

x

) 3
8

............................

+ (β̃−1)∗(χ, ζ)

(
ℓm̃∗
x

) 5
8−h̃




(3.17)

p

E′ = ℓ
3/8
m̃ x−3/8

[
δ̃0 +

2∑

j=1

δ̃j

(
x

ℓmm̃

)j/8

+ δ̃3

(
x

ℓmm̃

)3/8

ln

(
x

x̃0

)
+

+
˚̃
δ−3

(
ℓm̃õ

x

) 3
8

............................

+ (δ̃−1)∗(χ, ζ)

(
ℓm̃∗
x

) 5
8−h̃]

(3.18)

where h̃ = 0.0699928 and known coefficients are given by β̃0 = 2.53356, β̃1 =

1.30165, β̃2 = −0.451609,
˚̃
β−3 = −0.524805, and by δ̃j = β̃jf

(
5
8 + j

8

)
for j = 0, 1, 2;

˚̃
δ−3 =

˚̃
β−3f(1/4); δ̃−1 = β̃−1f(h̃); and δ̃3 = β̃3/4π. Parameters β̃−1 and x̃0 are a priori

not known and are a part of the general numerical solution.
The terms underlined by the dotted and double lines correspond to the leak-in and

toughness/leak-in corrections to the leading order (m̃-vertex) term within the m̃õk
face solution, appropriately scaled with that face transitional lengthscales. The single
line designates corrections due to fracture storage effects in the mm̃ edge solution,
appropriately scaled by that edge transitional lengthscale. In the zero storage case
(ℓm̃m = ∞), the leading term and terms underlined by the double line yield the far-field
(x ≫ ℓm̃k) of the m̃k−edge solution. Further, in the zero toughness case (ℓm̃k = 0), the
leading term and terms underlined by the single line compose the near-field (x ≪ ℓm̃m)
of the m̃m−edge solution.

4. Solution

In this section, we will first introduce normalised governing equations based on different
“edge” scalings (Table 3), followed by exploration of solutions in the problem parametric
space (Figure 2): (i) the parameterless edge-solutions, (ii) one-parametric solution fami-
lies of solutions for the faces of the parametric pyramid, and (iii) representive examples
of two-parametric solution trajectories within the pyramid.

4.1. Normalised equations

Upon introducing normalised coordinate ξ = x/ℓ∗, fracture opening Ω = w/w∗ and
net pressure Π = p/p∗, the corresponding normalised governing equations in different
edge-scalings (table 3) are given in table 4. Normalised equations are parameterised by
a pair of the non-dimensional numbers; which, depending on the used scaling, are either
(χ, ζ) or (ψ, ζ), as defined in (3.3), (3.6) and (3.8).
When presenting the overall solution, we will make the most use of the mk-scaling,

as it is based on the transition between the near k and the far m field behaviour of the
general solution. In the limiting cases, when either one of the dissipation mechanisms
or one of the storage mechanisms is negligible, corresponding to the four different (one-
parametric) faces of the parametric pyramid mm̃õk, we will use the scaling pertinent to
the corresponding near-to-far transition. For example, the zero-leak-in facemm̃k (Q′ = 0)
and the zero-leak-off face mõk (C ′ ∝ σ′

o = 0), are both conveniently solved in the mk-
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scaling with ζ = 0 (parametrised by χ) and with χ = 0 (parametrised by ζ), respectively.
The zero-storage face m̃õk (C ′ = ∞), is conveniently solved in the m̃k-scaling with χ = ∞
(parametrised by ζ). Finally, for the zero-toughness face mm̃õ (K ′ = 0) and since the
mõ−edge solution does not exist, we will use the m̃õ−scaling with ζ = ∞ (parameterised
by ψ = χ/ζ).

To compute the numerical solution, we utilise the numerical algorithm first developed
by Garagash et al. (2011) which details are recounted in Appendix D.

4.2. Edge solutions

Fracture opening and net fluid pressure profiles for mk, m̃k, m̃medge solutions are
shown in figure 3 and for the m̃õ-edge in figure 4, in their respective scalings. The former
were previously obtained by Garagash et al. (2011) and are reproduced in figure 3 for
completeness and validation of the used numerical algorithm. For the m̃õ−edge solution,

we estimate Bõ ≈ 3.322 · wm̃õ/ℓ
3/2
m̃õ for the dimensional coefficient Bõ of the õ−vertex

(w = Bõx
3/2) realised in the near-field of this edge. As expected, the edge solutions

correspond to the transition with distance from the tip between the corresponding pair
of the vertex solutions, as indicated in figures 3 and 4.

4.3. Face solutions

One-parametric families of solutions for the crack opening and net-pressure correspond-
ing to the four limiting faces of the parametric pyramid (figure 2) are shown in figures
5-9 in their preferred scalings, (a), and in the form normalised by the respective far-field
asymptote, (b). In these plots, we also show the vertex solutions, as correspond to the
near, far, and (where appropriate) intermediate fields of a given face solution.

The Carter’s, zero-leak-in (ζ = 0), mm̃k-face solution is shown on figure 5 for various
values of the leak-off number χ from χ = 0 to χ = 100. The former corresponds to the
storage mk-edge solution trajectory (k → m), while the latter closely approximates the
two-edge (m̃k and mm̃) solution trajectory marked by the emergence of the intermediate
m̃-vertex asymptote (k → m̃ → m). This face solution has been obtained previously by
Garagash et al. (2011) and shown here for completeness.

The zero-leak-off (χ = 0), mõk-face solution is shown on figure 6 in the mk-scaling
for various values of the leak-in number ζ from ζ = 0 to ζ = 20. The former, once
again, corresponds to the storage mk-edge solution, while the latter signals large leak-
in conditions. The solution is seen to evolve with increasing leak-in number such that
the region dominated by the near-field k-asymptote expands outwards from the fracture
tip, while the transition to the far-field m-asymptote takes place in increasingly abrupt
fashion, as particularly evident for the crack opening (figure 6 left). The net pressure
near field behaviour is dominated by the nearly constant (tip) value, which domain is
seen to expand outward from the tip with increasing leak-in number. For large values
of ζ, the net pressure initially decreases with the distance from the tip (signalling the
dominance of leak-in and the reversed direction of the fluid flow inside the crack channel
there), passes through the minimum, and eventually recover towards the zero value,
as solution transitions towards the far field m asymptote. The net-pressure minimum
becomes increasingly abrupt with increasing ζ, marking effective pinching of the fracture
there and spatially correlating with the maximum crack opening gradient. The crack is
effectively closed over the enlarging with ζ region adjacent to the fracture tip, such that
its effective tip corresponds to the ‘pinching’ at the net-pressure minimum. No emergent
intermediate õ-vertex (3/2 opening slope) is evident with increasing ζ (which would have
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(a) mk−edge (χ = 0, ζ = 0)

(b) m̃k−edge (χ→ ∞, ζ = 0)

(c) mm̃−edge (χ→ ∞, ζ = 0)

Figure 3: Fracture opening (left) and net fluid pressure (right) profiles with distance from
the crack tip for edges: (a) mk, (b) m̃k and (c) m̃m in their pertinent scalings (Table
3). Various vertex solutions corresponding to the near and far field asymptotes are also
shown.

led to the two-edge limiting solution trajectory k → õ → m), underscoring the previous
assertion that the mõ-edge solution does not exist in the limit ζ ≫ 1 limit.

The zero-storage (χ = ∞), m̃õk−face solution is shown on figure 7 in the m̃k−scaling
for various values of the leak-in number ζ from ζ = 0 to ζ = 10. As previously, the former
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Figure 4: Fracture opening (left) and net fluid pressure (right) profiles with distance
from the crack tip for the m̃õ−edge in the pertinent scaling (Table 3). Vertex solutions
corresponding to the near and far field asymptotes are also shown.

(a)

(b)

Figure 5: Zero-leak-in (ζ = 0) mm̃k−face solution for the fracture opening (left) and net
fluid pressure (right) profiles in the mk−scaling for various values of the leak-in number
ζ. Solutions are shown in (a) the explicit form and (b) normalised by the m−vertex
solution. The m̃k−, mm̃−edges, and k, m and m̃−vertices are also shown in (b).
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(a)

(b)

Figure 6: Zero-leak-off (χ = 0) mõk−face solution for the fracture opening (left) and net
fluid pressure (right) profiles in the mk−scaling for various values of the leak-in number
ζ: (a) explicit form and (b) normalised by the m−vertex solution. The k and m−vertices
are also shown in (b).

corresponds to the mk-edge solution, while the increasing leak-in leads to somewhat
similar evolution of the solution to that within the mõk-face considered in the above
(figure 6). I.e. increasing leak-in leads to the expansion of the near k field outward from the
crack tip, seen as the nearly constant net pressure (tip) value on figure 7a (left), with one
important distinction from the mõk-face in that the net-pressure is now monotonically
increasing everywhere along the crack, without developing a pinching point (the local
minimum). As a result, the intermediate õ behaviour is seen to emerge at large leak-in
(ζ = 10), indicating the convergence of the solution trajectory towards the two-edge (õk
and m̃õ) trajectory, k → õ → m̃. This trend is explored for yet larger values of ζ in
figure 8.

The zero-toughness (χ = ∞), mm̃õ−face solution is shown on figure 9 for various
values of the effective-stress number ψ = χ/ζ from ψ = 0.5 to ψ = 100. The small ψ value
solution is approaching the non-existing mõ−edge limit, which is, as discussed previously
in the context of approaching mõ−edge from within the m̃õk−face, characterised by the
net pressure minimum and the crack pinching point. Large ψ solution approaches the
limit of the two-edge (m̃õ and mm̃) solution trajectory õ → m̃ → m which is realized
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(a)

(b)

Figure 7: Zero-storage (χ = ∞) m̃õk−face solution for the fracture opening (left) and net
fluid pressure (right) profiles in the m̃k−scaling for various values of the leak-in number
ζ: (a) explicit form and (b) normalised by the m̃−vertex solution. The m̃õ−, õk−edges,
and k, m̃ and õ−vertices are also shown in (b).

over very wide range of distances from the tip (see figure 10 showing the solutions in
the extended coordinate range).

4.4. Examples of the general solution inside the parametric pyramid

For presentation of particular solution trajectories within the parametric pyramid (i.e.
when 0 < χ, ζ < ∞) we choose several values of the leak-off parameter: χ = 0.1, 1
and 10, and values of the leak-in parameter ζ are selected so that to maintain constant
O(1) non-dimensional leak-off-to-leak-in ratio χ/ζ3 = 1, i.e. ζ = χ1/3 = 0.46, 1, 2.15,
respectively. Fracture opening and net fluid pressure profiles for the aforesaid cases are
shown in the mk−scaling on figure 11 and normalised by the m-vertex solution on figure
12. The corresponding Carter’s leak-off solutions (ζ = 0) are also shown by dashed black
lines for comparison. Additionally, in figure 12, we show the near-field (k), the far-field
(m) and the intermediate-field (m̃) vertex-solutions and their expansions (Section 3.3)
by coloured dashed lines in order to underscore the corresponding asymptotic domains
and degree of approximation for the solution afforded by the asymptotic expansions.

One of the distinguishing features of the obtained profiles as compared to the Carter’s
leak-off case is the finite value of the net fluid pressure at the fracture tip. In the
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Figure 8: Zero-storage (χ = ∞) m̃õk−face solution for the fracture opening normalised
by m̃-vertex solution, as in figure 7 (left), but for larger values of leak-in number ζ. The
intermediate õ asymptote is shown by dotted lines.

(a)

(b)

Figure 9: Zero-toughness (χ = ∞) mm̃õ−face solution for the fracture opening (left) and
net fluid pressure (right) profiles in the mõ−scaling for various values of the leak-off-to-
leak-in ratio ψ = χ/ζ: (a) explicit form and (b) normalised by the m−vertex solution.
The m̃õ−, mm̃− edges, and õ, m and m̃−vertices are also shown in (b).
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Figure 10: Zero-toughness (χ = ∞) mm̃õ−face solution normalised by the m-vertex
solution from figure 9b shown in an extended coordinate range.

mk−scaling, it is defined by the equation: p(0)/pmk = −(χ + 1)/ζ3 (table 2). From
figures 11a, 12a one could find out that the departure of the solution from the Carter’s
one is small for χ = 0.1 case, but it become more considerable for χ = 1 (figures 11b,
12b) and χ = 10 (figures 11c, 12c).
The applicability zone of the m-expansion shrinks when the value of the leak-off

parameter χ increases. At the same time, the coordinate range, where k-expansion
approximates the numerical solution, expands, and its length is much larger than in
the Carter’s leak-off case. Neither m̃ nor õ−vertex solutions are realized as intermediate
asymptotes in the solutions for the parametric choices in figures 11-12, i.e. χ 6 10
and ζ 6 2.15, since the conditions for these intermediate behaviours call for χ, ψ =
χ/ζ ≫ 1 and χ, ζ ≫ 1, respectively (see (3.9) and (3.7)). However, the intermediate
m̃-expansion (3.17), (3.18) does appear to closely approximate the numerical solution
in the intermediate field in the case of χ = 10 (figure 12c) signalling the emergent
intermediate asymptotic behaviour. Indeed, this trend persists in Figure 13, where we
show the normalized solution for higher values of the leak-off and leak-in numbers,
χ = 100, ζ = 4.64 and χ = 1000, ζ = 10. We observe that the solution is closely
approximated by (i) the m̃õk−face solution (χ = ∞, see figure 7) and (ii) the mm̃-edge
solution matched over intermediate distances from the tip. In other words, corresponding
solution trajectories are approaching the limit of k → (õ) → (m̃) → m (see green-coloured
trajectory on figure 2) where parenthesised intermediate vertices are emergent within the
considered solutions.

5. Discussion

5.1. Representative values of problem parameters

In order to frame the discussion of the obtained solutions to the hydraulic fracture
tip problem, we consider estimates for typical values/ranges of dimensional problem
parameters, as pertain to the application of hydraulic fracturing in petroleum reservoir
stimulation field, and the corresponding ranges of the non-dimensional HF tip parameters
χ and ζ (or their ratio χ/ζ3). We base parametric estimates on two types of hydrocarbon
reservoir rock: shale and sandstone, which typify the lower and higher limits of reservoir
rock volumetric and filtration properties, respectively, while have similar geomechanical
properties. Specifically, we take the following value ranges:
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(a) χ = 0.1, ζ = 0.46

(b) χ = 1, ζ = 1

(c) χ = 10, ζ = 2.15

Figure 11: Solution for the fracture opening (left) and net fluid pressure (right) shown in
the mk−scaling for fixed ratio χ/ζ3 = 1 and different values of χ: (a) χ = 0.1, ζ = 0.46,
(b) χ = 1, ζ = 1, (c) χ = 10, ζ = 2.15. The corresponding Carter’s solutions (ζ = 0) are
shown by dashed lines for comparison.
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(a) χ = 0.1, ζ = 0.46

(b) χ = 1, ζ = 1

(c) χ = 10, ζ = 2.15

Figure 12: Solution for the fracture opening (left) and net fluid pressure (right) from
figure 11 normalised by the far-field m-vertex solution. Near-, intermediate- (χ = 10)
and far-field asymptotic expansions are shown by dashed coloured lines.

• for the geomechanical properties and stress - plane-strain elastic modulus E′ = 30
GPa, pore volume total compressibility ct = 1/GPa (water in pore space); rock fracture
toughness KIc between 0.3 and 1 MPa·

√
m (Chandler et al. 2016), and confining stress

σo = 30 MPa;
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Figure 13: Fracture opening and net fluid pressure profiles normalised by the m−vertex
solution for cases: χ = 100, ζ = 4.64 and χ = 1000, ζ = 10.

• for the formation reservoir properties and pore pressure - permeability in the range
k = 0.1 ÷ 100 mD (Li et al. 2016), porosity φ = 5 ÷ 25% (Magara 1980; Manger 1963),
and pore-pressure-to-stress-ratio po/σo = 0.95 ÷ 0.4 (Walsh 1981) - where the bounds
correspond to a shale and sandstone type reservoir (the latter is assumed to be at the
hydrostatic pore pressure, while the former is overpressurized)

• fluid characteristics: µ = 1 cP (water), 5 cP (slick water);
• fracture propagation velocity: V between 0.1 and 1 m/s.
Figure 14 shows the parametric domain in the space of the HF tip non-dimensional

parameters χ and χ/ζ3 when the dimensional parameters are independently varied
within the ranges described in the above (e.g., allowing for overpressured reservoirs with
sandstone properties and normally pressured reservoirs with shale properties, etc). At
each boundary of shown polygon one or two dimensional parameter are varied while the
other remain fixed at their lower or upper bound (as applicable). The sense of change of
(χ, χ/ζ3) with increase of a given dimensional parameter are shown by arrows.
In addition we consider four specific limiting parametric choices corresponding to the

overpressured-shale / normally-pressured-sandstone reservoir types (with parameteric
values given by the lower/upper bounds of the assumed ranges), water / slick-water fluid
types, while takingKIc = 1 MPa·

√
m and V = 1 m/s. The corresponding four parametric

points (χ, ζ, χ/ζ3) are recorded in table 5 and shown by symbols on the map of figure 14.

5.2. Asymptotic fields and fluid-exchange domains

We consider now boundaries of applicability of various asymptotic fields (vertex
solutions) within the general HF tip solution. An asymptotic bound is defined here as
a distance from the fracture tip where the crack opening solution deviates from the
considered asymptote (e.g., k, m, etc. vertex) by 5%. Specifically, we refer to x0 as the
upper boundary of the k-vertex asymptotic region 0 < x < x0, and x∞ as the lower
boundary of the m-vertex asymptotic region x∞ < x < ∞. Similarly, we define the
5% asymptotic thresholds corresponding to the intermediate m̃, x̃∞ < x < x̃0, and õ,
x̃o∞ < x < x̃o0, asymptotes, whenever either of them is realised in the solution.
Furthermore, in order to characterise the effect of fluid-exchange on the hydraulic

fracture tip solution, we introduce the boundary xS of the “crack-storage-domain” xS <
x <∞ where the rate of the cumulative fluid exchange between the fracture and the rock
q⊥ is a small fraction (less than 5%) of the crack storage wV , q⊥(xS) = 0.05 · w(xS)V .
In the complimentary domain 0 < x < xS , the fluid exchange is non-negligible, and the
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Sandstone Shale

HF tip parameter Water Slick water Water Slick water

χ 61 27.3 0.07 0.03
ζ 1.8 4 0.03 0.06

χ/ζ3 17 3.4 1.4 0.3

λ/ℓmk 6 · 10−5 0.01 0.02 2.2
xC/ℓmk 0.5 32 174 2 · 104

Table 5: Values of non-dimensional leak-off χ, leak-in ζ parameters, and of ratio χ/ζ3

for sandstone/shale reservoir, and water/slick-water fluid, as specified in the text. The
corresponding solutions for the size of the near tip pore fluid circulation zone λ and the
boundary xC of the Carter’s leak-off domain (x > xC) are also shown normalized by the
mk transitional lengthscale (ℓmk ≈ 9 m for water and 0.4 m for slick-water).

Figure 14: Parametric domain in terms of the non-dimensional leak-off number χ and
leak-off-to-leak-in ration χ/ζ3 representative of the field range estimates of the problem
parameters. Symbols show particular field cases (sandstone vs. shale rock and slick-water
vs. water fracturing fluid) from Table 5.

relative significance of the Carter’s leak-off and leak-in correction terms in the expression
for q⊥ can gauged by their ratio as a function of the distance from the tip,

PDI(x) = − 1

σ′
o

√
x

ˆ x

0

p(s)

2
√
x− s

ds,

which we refer to as the pressure-dependent leak-off index (PDI). We can use this function
to evaluate the extent λ of the near tip pore fluid circulation zone in the fracture, 0 <
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x < λ, (figure 1), for which

PDI(λ) = 1,

and the boundary xC of the far field fracture domain dominated by Carter’s leak-off,
xC < x <∞, defined as distance from the tip where the cumulative leak-in correction is
at 5% of the cumulative Carter’s leak-off, i.e.

PDI(xC) = 0.05

Figure 15 show maps of the asymptotic fields (left) and the various fluid-exchange
domains (right) along the fracture (x/ℓmk) as a function of the leak-off number χ for
four fixed values of the leak-off-to-leak-in ratio χ/ζ3 = 0.1, 1, 10, and 1000 (a-d). For
each of the above four cases, the corresponding range of χ representative of the field
conditions (see parametric domain on figure 14) is indicated by a thick-line interval on
the χ-axis.

When considering the asymptotic vertex domains within the general solution (fig-
ure 15 (left)), we observe that the near-field k domain expands with increasing leak-
in (corresponding to the decreasing leak-off-to-leak-in ratio χ/ζ3 from the case with
χ/ζ3 = 1000, (d), to χ/ζ3 = 0.1, (a)) over most of the shown leak-off χ range (vertical
axis in figure 15). In turn, the far-field m domain dependence on χ/ζ3 is non-monotonic,
as it is seen to expand from the case with χ/ζ3 = 10, (c), to χ/ζ3 = 1, (b), and
then shrink to the case with χ/ζ3 = 0.1, (a). The former expansion of the m and
k domains with diminishing χ/ζ3 is likely linked to diminishing leak-off effects and
the disappearance of the intermediate Carter’s leak-off m̃ behaviour, while the further
m−domain contraction may be caused by proliferation of the pressure-dependent leak-
in effects at the smallest value of the ratio considered here χ/ζ3 = 0.1, figure 15(a).
(This can be further substantiated by expanding size λ of the pore-fluid circulation zone
with diminishing χ/ζ3, as seen on figure 15 (right)). The intermediate field m̃-domain
appears only in the case χ/ζ3 = 1000, (d), when the pressure dependent leak-in effects are
small, and, additionally, the leak-off is large (χ > 50). The intermediate viscosity-leak-in
õ domain does not appear in all considered cases since the conditions of its existence
(χ, ζ ≫ 1) are not met.
Let us now consider the effects of the fluid exchange between the fracture and the rock

onto the solution summarised in the PDI maps on figure 15 (right). We observe that
the crack-storage-dominated domain in the semi-infinite fracture (x > xS) shrinks, or
migrates further away from the tip, with both (i) increasing leak-off χ at fixed leak-off-
to-leak-in ratio χ/ζ3 and (ii) increasing pressure-dependent leak-in effects corresponding
to diminishing value of the ratio χ/ζ3, from χ/ζ3 = 1000, (d), to χ/ζ3 = 0.1, (a).
The increasing influence of the leak-in with diminishing value of χ/ζ3 is also reflected by
overall increase of the pressure-dependence-index PDI (hotter colours in figure 15 (right)),
corresponding growth of the near tip circulation zone λ, and shrinkage, or migration away
from the tip, of the Carter’s leak-off domain (x > xC).
The importance of the pressure-dependent fluid exchange effects to the propagation of

a finite hydraulic fracture (for which we have provided the near tip solution here) can
be gauged by comparing the Carter’s leak-off boundary xC in the near tip solution with
the representative lengthscale ℓ of the finite fracture, e.g., the radius of a penny-shape
hydraulic fracture or the half-length of a plane-strain KGD fracture, etc. If xC ≪ ℓ, then
the pressure-dependent fluid exchange effects are not important on the scale of the parent
finite fracture, as they are confined to the very small near tip region effectively shielded
by the Carter’s leak-off domain from the rest of the fracture. In this case, the Carter’s
leak-off model is an appropriate approximation. Otherwise, i.e. when xC comparable
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or larger than ℓ, the pressure-dependent fluid exchange effects are prominent in the
finite fracture propagation, and Carter’s model should be abandoned. Since, the Carter’s
bound xC = ℓmk ξC(χ, ζ) is a dynamic lengthscale (i.e. it depends on the fracture tip
propagation velocity V = dℓ/dt via the tip lengthscale ℓmk and via the non-dimensional
tip parameters χ and ζ, see corresponding definitions in table 2 and equations (3.3)
and (3.6)), the regime of the fluid exchange (pressure-dependent vs. Carter’s), as it
corresponds to the ratio xC/ℓ may change during the propagation.
To underscore the above discussion, consider a particular example of the HF prop-

agation with χ = ζ = 1, which, according to the parametric estimates in figure 14
and table 5, corresponds to a slick-water HF in a reservoir with intermediate values of
hydraulic properties (roughly geometric mean of the ‘shale’ and ‘sandstone’ cases in table
5). Figure 15b indicates that λ ≈ ℓmk and xC ≈ 3 × 103 ℓmk, while lengthscale ℓmk is
in the range from 0.4 to 40 meters for the range of the propagation velocity V from 1
to 0.1 m/s, respectively, (KIc = 1 MPa×m 1/2 and E′ = 30 GPa). Thus, in this case,
the tip circulation cavity is of metric size, while the effects of the pressure-dependent
fluid exchange can be neglected for fractures exceeding 10s kilometers in lengths (i.e.
when ℓ > xC). If we are now to consider the limiting cases of the ‘shale’ and ‘sandstone’
reservoirs from table 5, we observe that similar conclusions about the general inadequacy
of the Carter’s approximation (which calls for unrealistically long fracture) to slick-
water fracture apply. However, in the ‘shale’ case the fracture tend to propagate in the
storage-dominated regime (χ < 0.1), which allows to reasonably neglect fluid exchange
all together.

5.3. Some limitations of the model

5.3.1. 1D pore pressure diffusion

Our model of the pressure dependent leak-off is hinged on the assumption of the 1D
pore pressure diffusion in the permeable rock surrounding the fracture. As pointed out by
Detournay and Garagash (2003), the 1D assumption is approximately valid when the pore
pressure perturbation introduced by fracturing is contained to a boundary layer abating
the fracture that is thin compared to the characteristic lengthscale of fluid pressure change
along the part of the fracture where the fluid exchange process is important. Taking for
the latter the size λ of the near-tip pore fluid circulation zone, and for the former the
corresponding thickness of the pore pressure boundary layer

√
ct built up over the time

t = λ/V it takes for the fracture tip to propagate distance λ, the 1D condition reads

λ≫ ℓd, ℓd = c/V

Detournay and Garagash (2003) refer to this condition as the ‘large velocity limit’ of the
circulation cavity problem in reference to the inverse dependence of ‘diffusion lengthscale’
ℓd on the fracture propagation velocity.
When evaluating the above 1D condition, it is convinient to express diffusion length-

scale ℓd in the mk-scaling, ℓd/ℓmk = cE′4µ′2V/K ′6 = (π/16)(SE′)−2 ζ6. In the latter,
the non-dimensional product E′S of the rock elastic modulus E′ and rock pore space
storativity S = φct is weakely dependent on the rock type and can be estimated based
on the previously discussed typical values of these parameters as E′S ∼ 3, resulting
in ℓd/ℓmk ∼ 0.01ζ6. This estimate is shown in the maps in figures 15(right) where it
can be directly compared to the circulation zone length λ/ℓmk. We observe that 1D
fluid-exchange condition is satisfied for all considered values of χ in the case χ/ζ3 = 0.1,
figure 15(a), for χ . 0.1 in the case χ/ζ3 = 1, figure 15(b),and finally, for for χ . 5 in the
case χ/ζ3 = 10, figure 15(c). In other words, the 1D approximation of the pore pressure
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(a) χ/ζ3 = 0.1

(b) χ/ζ3 = 1

(c) χ/ζ3 = 10

(d) χ/ζ3 = 1000

Figure 15: Regime maps (on the left) with applicability ranges of vertex solutions and
PDI maps (on the right) with several characteristic boundaries (λ, ℓd, xC , xS) in four
different cases: χ/ζ3 = 0.1 (a), 1 (b), 10 (c), and 1000 (d). (Corresponding ranges of χ
representative of the field (figure 14) are indicated by thick bar).
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diffusion is more readily justified when the pressure-dependent leak-in effects are more
prominent (i.e. smaller values of the leak-off-to-leak-in ratio χ/ζ3 and correspondingly
larger circulation zone size λ).

5.3.2. Sameness of the formation and fracturing fluids

The assumption that the formation and fracturing fluids have identical properties is a
restrictive one, in that it limits practical applications of this analysis (as the result, we
focused here on the slick-water fracturing parametric examples, as the latter viscosity
∼ 5 cP may be similar to that of the light oil). The future work will consider relaxing this
assumption in order to extend the analysis to conventional fracturing fluids (polymeric
gells) with the viscosity orders of magnitude larger than that of the formation fluid,
and possibly to the ‘cake building’ due to leak-off (i.e. deposition of fracturing fluid
solids and polymers into a thin, semi-solid, low-permeability ‘cake’ at the fracture wall).
Kovalyshen and Detournay (2013) provide a workable theoretical framework to include
these effects by distinguishing between the pore and fracturing fluid viscosities in the
fluid flow in the fracture and tracking the ‘cake’ build-up, while reasonably assuming
that the leaked-off filtrate (i.e. the base of the fracturing fluid when stripped from the
solids and polymers) displacing the pore fluid in the permeable rock abating the fracture
has properties identical to that of the formation pore fluid.

5.3.3. Potential vaporisation of the pore fluid at the fracture tip

The near tip region of the fracture dominated by the pore fluid leak-in corresponds to
the absolute fluid pressure below the ambient field value po. Specifically at the tip, we
have (table 2)

pf (0) = po −∆pund, ∆pund =
K ′V 1/2

E′Q′ =
σ′
o

χ

where ∆pund corresponds to the undrained value of the pressure drop. The fluid will
vapourize and form so-call ‘fluid lag’ adjacent to the fracture tip if pressure drops below
the saturated vapour value. Taking the latter to be small compared to the reservoir
ambient pore pressure value, the incipient fluid lag condition requires po < ∆pund, which
in view of (5.3.3) can be rewritten in terms of the leak-off number

fluid lagging: χ < χvapour =
σ′
o

po
=
σo
po

− 1

The above threshold value of χ can be estimated as χvapour ≈ 1.5 for normally-pressurised
and ≈ 0.05 for overpressured reservoirs. The normally-pressurized reservoir value of
χvapour is indicated on the parametric maps of figure 15. The vaporisation at the fracture
tip, when predicted, does not necessarily invalidate the considered solutions, as long as
the vapour-filled region (fluid lag) remains small compared to the predicted circulation
zone size λ.

6. Conclusions

We analysed the near-tip region of a hydraulic fracture propagating in a permeable
elastic solid, while allowing for pressure-dependent fluid exchange (leak-off and leak-
in) between the fracture and the host rock and associated pore pressure diffusion. In
formulating the problem, we built on the original modelling framework of Detournay and
Garagash (2003); Kovalyshen and Detournay (2013), which recognises the existence of the
near fracture tip cavity dynamically filled by the pore fluid. The pore fluid is sucked from
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the rock into the dynamically depressurised fracture tip to be recirculated back into the
rock some distance behind the tip. Asymptotic analysis of a number of limiting cases,
including the reduction to the pressure-independent, Carter’s leak-off case (Garagash
et al. 2011), allowed us to frame the general structure of the solution and its parametric
dependence within the space of two non-dimensional parameters dependent on the crack
tip velocity V : the leak-off χ ∼ (E′/K ′)(kσ′

o/µ
√
cV ) and leak-in ζ ∼ (E′/K ′)(k

√
V/c)1/3

numbers, respectively.
The full numerical solution of the near tip problem in (χ, ζ) space provides a practical

framework to understand the coupling of the physical processes near the fracture tip and
its evolution with the crack tip velocity. The constructed maps of the near tip domains
dominated by fracture toughness, fluid viscosity, and by pressure-dependent leak-off/leak-
in with distance from the tip (figure 15) allow to assess the propagation regime of a finite
hydraulic fracture by contrasting the asymptotic domain boundaries to the length of the
finite fracture (Garagash et al. 2011). For example, when considering representative field
values of parameters for slick-water hydraulic fracturing, we found that the pressure-
dependent fluid-exchange domain in the near tip solution extends beyond the typical
field fracture length, thus, invalidating the pressure-independent Carter’s leak-off model
in this case.
The obtained solution allows one to accurately model the interplay between the pore

pressure and fluid pressure dynamics inside the fracture, captured by the pressure-
dependent leak-off (and leak-in), and their combined impact on the transient propagation
of a finite hydraulic fracture, e.g., within the Planar3D approach (Peirce 2015; Dontsov
and Peirce 2017). In doing so, the near tip solution obtained in this work may be
numerically implemented into a module for the growth of a finite fracture in the form of
a so-called tip element, used to match the fracture opening in the near-tip zone between
the global numerical solution and the local near-tip asymptotics.
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Appendix A. The rate of fluid exchange between the fracture and

the ambient rock

Under previously stated assumptions that (i) pore and fracturing fluid have the same
properties and (ii) the characteristic distance over which fluid pressure varies along the
fracture is much larger than the thickness of the diffusive boundary layer in the fracture-
normal direction, the pore pressure diffusion at any fixed point X on the fracture plane
(Y = 0) can be approximated as one dimensional problem of diffusion into half-space
Y > 0 with ambient pore pressure pr(t = 0) = pr(Y → ∞) = po from the prescribed
source located on the fracture face. This source is characterised by fluid pressure inside
the fracture which evolution in time can be prescribed by pr(X,Y = 0, t) = pf (x) where
x = V t−X is the time-dependent distance of the fixed point X from the moving crack
tip, and pf (x) is the ‘stationary’ fluid pressure profile in the steadily advancing fracture.

Solution to this problem can be furnished by time-convolution of the unit pressure step
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solution, or Green’s function, (Carslaw and Jaeger 1959):

pG(Y, t) = erfc(Y/
√
4ct)

where c = k/µS is the diffusivity coefficient in terms of the reservoir permeability k
storage coefficient S, and erfc(·) is the complementary error function. Corresponding
Green’s function for the local rate of fluid exchange between the fracture and the rock
follows by applying the Darcy’s law:

gG(t) = −2
k

µ
∇pr|Y=0 = 2

k

µ
√
πct

where prefactor 2 accounts for the exchange across two identical fracture faces.
At t = 0 when the fracture front first arrives at the considered point along the fracture

plane, the fluid pressure undergoes a jump pf (0) − po from the ambient value po in the
rock to that pf (0) at the fracture tip. By applying convolution integral to the function
gG(t), we obtain the dependency of fluid exchange rate on time:

g(t) = (pf (0)− po)gG(t) +

ˆ t

0

dpf (V t
′ −X)

dt′
gG(t− t′)dt′ (A 1)

This expression is further recorded in Eq. (2.5) in the main text after substituting for time
in terms of the distance from the moving crack tip, t = (x+X)/V . Further integrating
the local fluid exchange rate from the tip x = 0 to some distance away from the tip
x > 0, we can obtain an expression for the local ‘cumulative’ fluid exchange rate q⊥(x) =
´ x

0
g(x′)dx′. This expression, after some simplifications involving interchanging of the

order of integration in the resulting double integral and integrating the corresponding
transformed form, is recorded in Eq. (2.7) of the main text.

Appendix B. Asymptotic expansion near k−vertex

The leading term in the opening expansion for x → 0 is given by the propagation

condition w = ℓ
1/2
k x1/2 written in terms of the toughness lengthscale ℓk. To obtain the

corresponding leading term in the net pressure expansion, we write the fluid balance
equation in terms of the viscosity ℓm, leak-off ℓm̃, and new leak-in ℓõ = (µ′Q′V 1/2)2/3

lengthscales as follows (similar to the treatment of Appendix B of (Garagash et al. 2011))

w2 dp/E
′

dx
= ℓm + ℓ

3/2
m̃

x1/2

w
+
ℓ
3/2
õ

w

ˆ x

0

p(s)/E′

2
√
x− s

ds

Further, taking the integral by parts on assumption that p(0) <∞, we can write

w2 dp/E
′

dx
= ℓm +

(
ℓ
3/2
m̃ + ℓ

3/2
õ

p(0)

E′

)
x1/2

w
+
ℓ
3/2
õ

w

ˆ x

0

dp/E′

ds

√
x− sds (B 1)

Further, assuming that the pressure gradient at the tip is also bounded, and using the
leading term expression for the opening, we observe that the left hand side (∝ fluid
velocity) and the integral term vanish when x→ 0, suggesting that to the leading order

p(0)

E′ = −
ℓ
3/2
m̃ + ℓmℓ

1/2
k

ℓ
3/2
õ

= −σ′
o −

K ′V 1/2

E′Q′ (B 2)

as recorded in table 2 of the main text.
The next order (non-constant) term in the net pressure expansion corresponds to the
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following linear equation on the net pressure gradient, as results from (B1) with (B 2)
and use of the opening leading asymptote,

x3/2
dp

dx
=

(
ℓõ
ℓk

)3/2 ˆ x

0

dp

ds

√
x− sds

where the lengthscale ratio can be conviniently expressed in term of the leak-in non-
dimensional number ζ, ℓõ/ℓk = ζ2. This linear equation possesses a power law solution
which we choose to write in the form dp/dx = −p(0) ζ3 (x/xo)γ(ζ)−1 where xo is unknown
constant and the exponent γ(ζ) is given implicitely by

2√
π

Γ
(
γ + 3

2

)

Γ (γ)
= ζ3 (B 3)

This prescribes monotonically increasing γ(ζ) from zero in the Carter’s limit ζ → 0,
γ ∼ ζ3, to infinity when ζ → ∞, γ ∼ π1/3ζ2/3.

The corresponding k-vertex expansion of the net-pressure follows by integration

p

E′ =
p(0)

E′

[
1− ζ3

γ

(
x

xo

)γ]
(B 4)

This form, upon substituting expression for p(0) is given in Eq. (3.11) of the main text.
The above net pressure expansion for ζ > 0 can be formally reduced to the expression
given by (Garagash et al. 2011) in the Carter’s limit ζ → 0, as given by Eq. (3.12) in the

main text. Indeed, the latter follows upon noticing that, first, p(0)/E′ = −ζ−3 ℓ
1/2
k /ℓ

1/2
1

where ℓ1 = (ℓ
−1/2
mk + ℓ

−1/2
m̃k )−2 is the lengscale introduced by (Garagash et al. 2011) in the

Carter’s case, second, γ ∼ ζ3 and xγ/γ ∼ 1/γ + lnx when ζ → 0.
To obtain the next order term(s) in the k-vertex expansion for the opening, we follow

the approach of (Garagash et al. 2011) (Appendix B) by evaluating the crack elasticity
integral (2.3) using the net-pressure expansion (B 4), truncating the upper limit of
integration to some finite value X, and then expanding the result for small x→ 0

w − ℓ
1/2
k x1/2 =

4

π

ˆ X

0

K(x, s)
p(0)

E′

[
1− ζ3

γ

(
s

xo

)γ]
ds ∼

∼ −ζ3 p(0)
E′

[
x3/2

x
1/2
1

+
4 tanπγ

γ(1 + γ)

xγ+1

xγo

]

where contributions to the x3/2-term from the both terms in the net pressure expansion
are dependent on the truncated value of X, and thus, a priori unknown part of the full
numerical solution for semi-infinite fracture, lumped in the above into a single unkwnon

prefactor x
−1/2
1 . As further discussed in the main text the order of the non-leading

x3/2 and xγ+1 terms in the opening expansion depends on the value of ζ, specifically,
the former is dominant among the two when 3/2 < γ(ζ) + 1, which takes place when
ζ > 0.862, and the oppositeis true, i.e. xγ+1 is dominant among the two, when ζ < 0.862.

Appendix C. Asymptotic expansion near m̃−vertex

The intermediate leak-off dominated asymptotic solution in the mk−scaling (Table

3) has the form: Ω(ξ) = β̃0χ
1/4ξ5/8, Π(ξ) = δ̃0χ

1/4ξ−3/8. This asymptotic behaviour
arises in the distance range max(ℓm̃k, ℓm̃õ) ≪ x ≪ ℓm̃m (in dimensional coordinate x).
In the parametric space the essential condition for m̃ asymptote existence is χ ≫ 1 and
ψ = χ/ζ ≫ 1 which is a consequence of transition lengthscales separation.
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Firstly, we introduce “bar” variables that is normalised values on the leak-off asymp-
tote.

Ω̄(ξ) =
Ω(ξ)

χ1/4ξ5/8
, Π̄(ξ) =

Π(ξ)

χ1/4ξ−3/8

In these new variables lubrication equation can be rewritten in the form:

ξ
dΠ̄

dξ
− 3Π̄

8
=

(
ξ

χ6

)1/8
1

Ω̄2
+

1

Ω̄3
+

ζ3

Ω̄3ξ1/2χ3/4

ˆ ξ

0

Π̄(ξ′)ξ′−3/8

2
√
ξ − ξ′

dξ′ (C 1)

We find expansion terms using monomial solutions in the following form:

w̄λ(ξ) = Bξλ, Π̄λ = Bf

(
5

8
+ λ

)
ξλ

where parameter λ should satisfy the following condition 0 < 5
8 + λ < 1

Let us firstly consider zero-storage case (ℓm̃m = ∞). Here we should consider the far-
field (x ≫ max(ℓm̃k, ℓm̃õ) or ξ ≫ max (χ−2, ζ8χ−2)) of the m̃õk pyramid face. In this
limiting case the first term in the right-hand side of Eq. (C 1) is absent:

ξ
dΠ̄

dξ
− 3Π̄

8
=

1

Ω̄3
+

ζ3

Ω̄3ξ1/2χ3/4

ˆ ξ

0

Π̄(ξ′)ξ′−3/8

2
√
ξ − ξ′

dξ′

Further, we identity the presence of the small parameter in the interested limit (ξ → ∞)
that is in the pressure-dependent leak-off term. Since we consider Π̄(ξ) in the form of
monomial solution: Π̄(ξ) ∼ ξλ, this term has the following form: ∼ ζ3 · ξλ−3/8 · χ−3/4.
According to the condition for λ parameter, we know that this power is less than zero and,

therefore, pressure-dependent term includes the small parameter
(
ζ8/(ξχ2)

)3/8
. So, we

could represent the “bar” solution in the form of the summation of Taylor and non-Taylor
terms:

Ω̄(ξ) = β̃0+

(
ζ8

ξχ2

)3/8
˚̃
β−3+

β̃−1(χ, ζ)

(χ2ξ)
5
8−h̃

, Π̄(ξ) = β̃0f(5/8)+

(
ζ8

ξχ2

)3/8
˚̃
β−3f(1/4)+

β̃−1(χ, ζ)

(χ2ξ)
5
8−h̃

f(h̃)

Substituting this expansion into the lubrication equation for ’bar’ functions in this
particular limit, we could match coefficient in front of appropriate terms:

β̃0 = 2.53356, β̃−3 = −0.52481

and for non-Taylor term we obtain the following equation for h̃:

−β̃−1(χ, ζ)f(h̃)(1− h̃)

(
1

ξ

) 5
8−h̃

= − 3

β̃4
0

β̃−1(χ, ζ)

ξ
5
8−h̃

Solving the obtained equation numerically, we obtain the following valued for param-
eter h̃: h̃ = 0.0699928. The coefficient β̃1(χ, ζ), which depends on the both parameters χ
and ζ, could not be found without general numerical solution.
In order to find the second part of the m̃-expansion it is necessary to consider the

zero-toughness case, namely, the near-field (x ≪ ℓmm̃) of the m̃m−edge solution. Here
we neglect the pressure-dependent term in the right-hand side of the Eq. (C 1) because
of the near-field of this edge solution is represented by m̃−vertex solution that could
potentially occur in the general solution when the leak-off process becomes pressure-
independent (described by Carter’s law). This asymptotic solution is derived by Garagash
et al. (2011).
By using the aforesaid to limiting pats, we obtain the m̃−expansion.
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Let us consider case of the large value of χ parameter and coordinate range x ≪
ℓm̃m. The O(1) solution is located on the zero-storage face (m̃õk). The next-order term
corresponds to a small storage χ−1 ≪ 1 perturbation. This fact is the consequence of the
lubrication equation written in the ℓm̃k scaling (η = ξχ2):

η
dΠ̄

dη
− 3Π̄

8
=

(
η1/8

χ

)
1

Ω̄2
+

1

Ω̄3
+

ζ3

Ω̄3η1/2

ˆ η

0

Π̄(η′)η′−3/8

2
√
η − η′

dη′

The first term in the right-hand side of the previous equation is a small storage correction
at distances η ≪ χ8 (or in the dimensional form x ≪ ℓm̃m). As a result, the next-order
term in the solution for the large χ parameter could be found in the form of Taylor
expansion in the small storage parameter ǫ = χ−1 ≪ 1:

Ω̄ = Ω
(0)

+ ǫΩ
(1)
, Π̄ = Π

(0)
+ ǫΠ

(1)

where Ω
(0)
, Π

(0)
is zero-storage m̃k-edge solution.

Substituting the Taylor expansion into lubrication equation and keeping terms of order
O(ǫ), we obtain the following equation:

η
dΠ

(1)

dη
− 3Π

(1)

8
=

η1/8

Ω
(0)2

− 3Ω
(1)

Ω
(0)4

−

−3Ω
(1)

Ω
(0)4

ζ3
√
η

ˆ η

0

Π
(0)

(η′)η′−3/8

2
√
η − η′

dη′ +
1

Ω
(0)3

ζ3
√
η

ˆ η

0

Π
(1)

(η′)η′−3/8

2
√
η − η′

dη′

In the far-field (x≫ max (ℓm̃õ, ℓm̃k)) the O(1) term is given by the following equations:

Ω̄(ξ) = β̃0 +

˚̃
β−3

η3/8
+
β̃−1(χ, ζ)

η
5
8−h̃

, Π̄(ξ) = β̃0f(5/8) +

˚̃
β−3f(1/4)

η3/8
+
β̃−1(χ, ζ)

η
5
8−h̃

f(h̃)

where the values of coefficients and h̃ are derived earlier. The next-order term is found
in the form of monomial solution. Using the condition for the considered coordinate
range (η ≫ 1), we could neglect both terms relating to the pressure-dependent leak-off

because of the following reason: substituting the expression of Π
(0)

into the first integral(
∼ 1√

η

´ η

0
Π

(0)
(η′)η′−3/8

√
η−η′

dη′
)
, it is possible to derive that it is proportional to the η in

the negative exponent; on the other hand, as shown earlier, that the second integral(
∼ 1√

η

´ η

0
Π

(1)
(η′)η′−3/8

√
η−η′

dη′
)

also provides with the term with the negative exponent

of coordinate when the function Π
(1)

has the form of monomial solution. As a result,
both terms contain coordinate η in the negative exponent, and the equation could be
simplified to the following:

η
dΠ

(1)

dη
− 3Π

(1)

8
=

η1/8

Ω
(0)2

− 3Ω
(1)

Ω
(0)4

Further, we balance this equation with the help of the next-order term in the form:

Ω
(1)

= β̃1η
1/8, Π

(1)
= β̃1f(3/4)η

1/8 where the numerical value of the coefficient β̃1 is
derived earlier.
Using the obtained result, we could conclude that m̃−expansion is the sum of the

far-field of the m̃õk face solution and the first term of the near-field of the m̃m-edge
expansion.
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Repeating this analysis for the higher order terms O(ǫ2), O(ǫ3), we could derive other
terms from near-field m̃m-edge expansion.
As a result, the m̃−expansion in the mk−scaling (returning from “bar” variable to the

original variables in the mk−scaling) has the following form:

Ω(ξ) = χ1/4ξ5/8
(
β̃0 +

3∑

j=1

β̃j

(
ξ

χ6

)j/8

+

(
ζ8

ξχ2

)3/8
˚̃
β−3 +

β̃−1(χ, ζ)

(χ2ξ)
5
8−h̃

)
(C 2)

Π(ξ) = χ1/4ξ−3/8

(
β̃0 +

2∑

j=1

δ̃j

(
ξ

χ6

)j/8

+
β̃3
4π

(
ξ

χ6

)3/8

ln

(
ξχ6

ξ̃0

)

+

(
ζ8

ξχ2

)3/8
˚̃
δ−3 +

δ̃−1(χ, ζ)

(χ2ξ)
5
8−h̃

)
(C 3)

where we use coefficients δ̃j = β̃jf
(
5
8 + j

8

)
for j = 0, 1, 2,

˚̃
δ−3 =

˚̃
β−3f(1/4) and δ̃−1 =

β̃−1f(h̃) are utilised.

Appendix D. Numerical scheme

The numerical method is an extension of the approach of Garagash et al. (2011). In
the this section, we recount the main parts of the numerical algorithms and also highlight
differences borne by the more general problem formulation in this study as compared to
Garagash et al. (2011).
The coordinate range 0 < ξ <∞ is divided into three parts: [0, Ξ0], [Ξ0, Ξ∞], [Ξ∞,+∞]

(the normalized problem formulation in the mk−scaling is utilised). The first and the
last segments are approximated by the analytical asymptotic expressions for the near-
field Π∗

0 (ξ) (subsection 3.3.1) and the far-field Π∗
∞(ξ) (subsection 3.3.2) correspondingly.

For function Π∗
0 (ξ) (in the majority cases) we utilise only the leading term of the near-

field asymptotic expansion. However, when parameter ζ is small (ζ < 1) we also use the
next order power term that is derived in Appendix B. In turn, for function Π∗

∞(ξ), the
m−vertex solution is utilised.
The intermediate segment, Ξ0 6 ξ 6 Ξ∞, is the computational domain that is

discretised by n nodes into n−1 sub-intervals (ξi, ξi+1), i = 1, ..., n−1 where ξ1 = Ξ0 and
ξn = Ξ∞. The value of pressure between nodes is approximated by linear combination
of the constant function Π0(ξ) = −1 and the far-field vertex solution Π∞. The whole
representation of the pressure profile is the following:

Π(ξ) =





Π∗
0 (ξ), ξ ∈ (0, ξ1),

aiΠ0(ξ) + biΠ∞(ξ), ξ ∈ (ξi, ξi+1), i = 1, ..., n− 1,

Π∗
∞(ξ), ξ ∈ (ξn,∞)

(D 1)

Coefficients ai and bi for i = 1, ..., n − 1 are found from values of pressure at nodes
(Πi = Π(ξi)) by imposing continuity of pressure distribution:

ai =
Π∞(ξi)Πi+1 −Π∞(ξi+1)Πi

Π∞(ξi)Π0(ξi+1)−Π∞(ξi+1)Π0(ξi)
, bi = − Π0(ξi)Πi+1 −Π0(ξi+1)Πi

Π∞(ξi)Π0(ξi+1)−Π∞(ξi+1)Π0(ξi)

Moreover, in the end nodes we define value of pressure by using analytical asymptotic
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expansions Π∗
0 (ξ) and Π

∗
∞(ξ):

Π1 = Π∗
0 (ξ1), Πn = Π∗

∞(ξn)

Fracture opening is found by integrating the inverted elasticity integral, Eq. (2.3),
using the above approximate representation for the net-pressure, in the following form

Ω(ξ) =
√
ξ + F [Π∗

0 ](ξ, ξ1) +

n−1∑

i=1

(aiF [Π0](ξ, η)+

+biH[Π∞](ξ, η))

∣∣∣∣
η=ξi+1

η=ξi

+H[Π∗
∞](ξ, ξn)

where F [] and H[] are integral operators defined by

F [Π](ξ, η) =
4

π

ˆ η

0

K(ξ, η)Π(η)dη,H[Π](ξ, η) =
4

π

ˆ ∞

η

K(ξ, η)Π(η)dη

The analytical expressions for the integrals in F and H for power and constant pressure
functions that represent Π∗

0 (ξ), Π0(ξ), Π
∗
∞(ξ) and Π∞(ξ) are given in (Garagash and

Detournay 2005; Garagash et al. 2011).
Further, in each node we write out the lubrication and elasticity equations, and together

with boundary conditions forΠ1 andΠn they constitute the system of nonlinear algebraic
equations. It is solved numerically by using Levenberg-Marquardt algorithm implemented
in the SciPy library (Jones et al. 2001) of Python programming language.
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