
Position Paper: WSSSPE’2, Second Workshop on Sustainable Software for Science: Practice and Experiences, 2014

 1

The Nebuchadnezzar Effect: Dreaming of Sustainable
Software through Sustainable Software Architectures

Colin C. Venters,

€

2Michael K. Griffiths,

€

1Violeta Holmes,

€

1Rupert R. Ward and

€

3David J. Cooke

€

1School of Computing and Engineering
University of Huddersfield

Huddersfield, UK
{v.holmes; r.r.ward}@hud.ac.uk

 €

2
Corp. Information & Computing Services

University of Sheffield
Sheffield, UK

m.griffiths@sheffield.ac.uk
 €

3School of Applied Sciences
University of Huddersfield

Huddersfield, UK
david.j.cooke@hud.ac.uk

Abstract—Sustainability is emerging as an area of growing
interest in the field of software engineering. While there is no
agreed definition of the concept it is increasingly being
considered as a non-functional requirement; a desired quality of
a software system. One of the principal challenges in defining
sustainability as a non-functional requirement is how to develop
appropriate metrics and measures to demonstrate that the
software is sustainable. Software architectures are the foundation
of any software system and provide a mechanism for reasoning
about quality attributes. However, architectural design is in part
a creative process based on the level expertise of the software
architect and tacit architectural knowledge, and is often made in
an unsystematic and undocumented manner. Given the high
dependency of non-functional requirements on their software
architecture, this paper proposes that sustainable software
architectures are fundamental to the development of technical
sustainable software to address architectural drift and erosion,
and architectural knowledge vaporization.

Index Terms—Architectural sustainability, non-functional
requirements, software architectures, software quality,
sustainability, software sustainability, technical sustainability.

I. INTRODUCTION
Sustainability has been identified as an important future

topic in the field of software engineering as software systems
become increasingly more complex and operate in evolving,
distributed eco-systems [1]. However, the concept of software
sustainability is an elusive and ambiguous term with
diametrical opposed views and interpretations [2]. As a result,
there is a considerable amount of mystification and divergence
regarding what software sustainability means, how it can be
measured or demonstrated, and how to train and educate the
broad spectrum of domain scientists or advance the skills of
software engineers to develop software that is sustainable [3].

Change is inevitable [4]. It estimated that approximately
50–70% of the total lifecycle cost is spent on evolving a system
[5]. If change is an inevitable feature of the software lifecycle
this raises the question, what is the most efficient and effective
method or approach for managing change and evolution in
terms of software’s sustainability?

The biblical tale of Nebuchadnezzar’s dream relates to a
statue composed of different types of metal built on a
foundation of clay and iron [6]. However, iron and clay are
materials that cannot bond to form a long-lasting foundation
and will deteriorate overtime. The analogy of the feet of clay is

now commonly used to refer to a weakness or flaw. The central
thesis of this paper is that sustainable software should be built
from a strong and solid foundation that allows efficient and
effective maintenance and evolutionary change. To achieve
this, this paper proposes that sustainable software architectures
are fundamental to the development of technical sustainable
software. The principle aim of this paper is to explore existing
work to provide the theoretical foundation to support our thesis.
Section 2 examines the concept of sustainability and its
relationship to sustainable software. Section 3 examines the
relationship between non-functional requirements,
sustainability and software architectures. Section 4 explores
emerging work in the area of developing sustainable software
architectures. In Section 5, conclusions are drawn and future
directions are outlined.

II. SUSTAINABLE SOFTWARE
Before software sustainability can be measured as an

attribute it must be understood [7]. The word sustainability is
derived from the Latin sustinere. The Oxford English
Dictionary [8] defines sustainability as ‘the quality of being
sustained’, where sustained can be defined as ‘capable of being
endured’ and ‘capable of being ‘maintained’. This suggests
that longevity and the ability to maintain are key factors at the
heart of understanding sustainability.

As a part of the concept of sustainable development, the
most widely adopted definition of sustainability was that
proposed by the Brundtland commission [9], which was
defined as ‘meeting the needs of the present without
compromising the ability of future generations to meet their
own needs’. The word ‘need’ is central to this definition and
includes a dimension of time, present and future. However, this
definition is problematic for several reasons including that it is
broad in its scope, it is open to interpretation, and it is difficult,
if not impossible, to quantify.

In recent years, a triple bottom line perspective of
sustainability has been adopted which considers sustainability
to include three dimensions: environment, society and
economy [10]. Environmental sustainability is concerned with
minimizing the impact on the environment and natural
resources. Social sustainability is concerned with building
social equity. Economic sustainability is concerned with
economic growth and its impact on social or natural resources.

Position Paper: WSSSPE’2, Second Workshop on Sustainable Software for Science: Practice and Experiences, 2014

 2

It is argued that by addressing the three dimensions it can lead
to more sustainable outcomes [11]. Goodland [12] and
Penzenstadler and Femmer [13] extend these dimensions to
include individual and technical sustainability where individual
sustainability is ‘the maintenance of the private good of
individual human capital’ i.e. health, education etc., and
technical sustainability is ‘the long-term usage of systems and
their adequate evolution with changing surrounding conditions
and respective requirements’. In addition, we can also consider
the five dimensions in relation to three orders of impact or
effects of software systems [10]:

• First-order: direct impacts created by the physical
existence and the processes involved including design,
production, distribution, maintenance and disposal;

• Second-order: indirect impacts created by ongoing
usage;

• Third-order: systemic impacts aggregated over the
medium to long term.

Koziolek [14] takes a literal interpretation of the concept of
sustainability and suggests that sustainable software can be
defined as ‘a software-intensive system that operates for more
than fifteen years’. This is a position supported by Tamai and
Torimitsu [15] who suggest that the average software lifetime
is ten years, with a minimum of two years, and a maximum of
thirty. In addition, they highlight that longevity requirements
can be embedded in a number of domains where there are large
[financial] investments. Koziolek [14] extends this definition
where sustainable software is defined as ‘a long-living software
system which can be cost-efficiently maintained and evolved
over its entire life-cycle’. This definition suggests that
maintainability and extensibility are key features of
sustainability, which are tightly coupled with an economical
dimension.

Similarly, a number of definitions have emerged from the
field of software engineering, which focuses on the
sustainability of the software artifact where maintainability and
evolution are key factors of sustainability [7, 16-18]. In this
context maintainability can be defined as ‘the ease with which
a software system or component can be modified to correct
faults, improve performance or other attributes, or adapt to a
changed environment’ [19]. Maintainability is also related to
extendability and flexibility, which the former is concerned
with increasing storage or functional capacity, and the later is
concerned with integration with other applications or
environments respectively. The main objective of software
evolution is ensuring reliability and flexibility of the system
where the former is concerned with functional performance
and is also related to availability. This strongly suggests that
software sustainability is a composite attribute.

There has also been a parallel interest in defining
sustainable software from a software development perspective,
which is concerned with the broader direct and indirect impacts
on the economy, society and the environment [20-21].
However, Fenner et. al., [22] argue that for sustainable
engineering to be successful it requires a paradigm shift in
thinking to embrace a holistic approach enshrined in the field
of complex systems science.

A diametrically opposed position of an absolute definition
of software sustainability is that it is simply an emergent
property of a software system determined by market forces
[23]. This suggests that sustainability cannot be designed or
engineered and quantified until after the software system is
operational. While it could be argued that software
sustainability is an emergent property similar to safety [24], it
is a highly probable that a software artifact that has endured
over time will have at the very minimum been maintained [25].
This suggests that software sustainability is at the very
minimum a measure of maintainability metrics such as the
maintainability index, which can be derived from such
measures as lines-of-code, McCabe or Halstead complexity
[26]. In addition, the software artifact may have evolved or
been ported on to different platforms. This strongly suggests
that software sustainability is not an emergent property and is a
composite attribute with a number of sub-characteristics related
to maintenance and evolution.

Increasingly, software sustainability is being considered a
first class, non-functional requirement [24]. In the field of
software engineering, non-functional requirements or software
quality attributes can be defined as ‘the degree to which a
system, component or process meets a stakeholders needs or
expectations’ [19]. This aligns with the Brundtland [9]
definition of sustainability addressing needs.

Without explicit reference to specific non-functional
requirements, the GREENSOFT model proposed by Naumann
et. al., [21] is designed to incorporate a range of non-functional
requirements within the three categories of the sustainability
criteria and metrics section of the reference model. This
separation allows the examination of first-, second- and third-
order impacts from an environmental perspective that result
from effects of supply, effects of usage and systemic effects.
However, they suggest that the fundamental question at the
heart of the model is not, in which phase are metrics applied or
in which phases are they taken in order to improve the quality
attributes? The principal question is, in which life cycle phase
can the related effects be observed?

Venters et. al., [27-28] defined software sustainability as a
composite, non-functional requirement which is ‘a measure of
a systems extensibility, interoperability, maintainability,
portability, reusability, scalability, and usability’. Several of
the metrics are directly related to the concept of evolution of
the software system. The rationale for including usability as a
metric of sustainability is that it is directly related to perceived
usefulness from a stakeholder’s perspective and thereby aligns
sustainability with the issue of need. In addition, several of the
quality attributes specify the ‘effort required’ to achieve a
particular outcome. This suggests that the concept of
sustainability is strongly coupled to other quality attributes
such as energy and cost efficiency, and resource utilization
over the software’s entire lifetime and aligns with the
dimensions of environmental and economic sustainability.

Defining software sustainability as a composite, non-
functional requirement is also a position supported by Calero,
Bertoa, and Moraga [29] who suggest that software
sustainability is related to a number of the main quality

Position Paper: WSSSPE’2, Second Workshop on Sustainable Software for Science: Practice and Experiences, 2014

 3

attributes and their sub-characteristics defined in ISO/IEC
25010 [30]; the standard has eight product quality
characteristics and thirty one sub-characteristics. However,
they suggest that sustainability can be considered from two
perspectives: energy efficiency and perdurability. Energy
efficiency is related to consumption and resource optimization,
which aligns to the dimension of environmental sustainability.
Based on the sub-characteristics of reusability, modifiability,
and adaptability they define perdurability as the ‘degree to
which a software product can be modified, adapted and reused
in order to perform specified functions under specified
conditions for a long period of time’. However, this
significantly narrows the view of software sustainability as a
composite, non-functional requirement and potentially
eliminates important software quality attributes related to
software evolution. Similarly, it is not clear why attempting to
redefine software sustainability in terms of its perdurability i.e.
very durable, is different from the overall aim of making
software sustainable, at least in terms of the artifact, as the
basic definition of sustainability is underpinned by the idea of
enduring. Similarly, Koziolek et. al., [31] define software
sustainability from a maintainability perspective in terms of its
modifiability, reusability, modularity and testability. These
definitions of software sustainability strongly suggest that it
can be categorized as a composite, non-functional requirement.
At the very minimum, technical software sustainability should
address two core quality attributes including appropriate sub-
characteristics: maintainability and extendibility. Nevertheless,
maintainability as defined by ISO/IEC 25010 has new sub-
characteristics of modularity, reusability, and modifiability,
which address the issue of software evolution. As a result, what
metrics and measures are suitable to demonstrate software
sustainability is an open research problem.

However, one of the principal challenges in defining
software sustainability as a non-functional requirement is how
to demonstrate that the quality factors have been addressed in a
quantifiable way. How this might be achieved is discussed in
the following section.

III. SUSTAINABILITY & SOFTWARE ARCHITECTURES
To achieve technical sustainable software, we postulate that

[sustainable] software architectures are fundamental to their
development [28]. A software architecture is ‘the fundamental
organization of a system embodied in its components, their
relationships to each other, and to the environment, and the
principles guiding its design and evolution’ [ISO/IEC 42010-
2007]. The rationale for this position is that it is argued that
successful software systems development and evolution is
highly dependent on making informed decisions at the
architectural level as the architecture is the primary carrier of
system qualities such as maintainability, modifiability,
reusability, portability and scalability, none of which it is
argued can be achieved without a unifying architectural vision
[33-34]. In addition, Koziolek [35] argues that software
architectures determine sustainability as they influence how
developers are able to understand, analyze, extend, test and
maintain a software system. As a result, software architectures
are not only the blueprint of how the software system will be

built, they hold the key to post-deployment system
understanding, maintenance, and evolution. As a result, this
strongly suggests that software architectures are fundamental to
achieving software sustainability.

An example of how software architectures are fundamental
to the development of sustainable software was reported by
Berriman et. al., [36]. They present a case study of an approach
to sustainable software applied over a ten year period to
astronomy software services at the NASA Infrared Processing
and Analysis Center. In this context, software sustainability is
implicitly defined as long living. Their approach involved
using a component-based architecture, which consisted of
approximately one hundred core components, and was
designed from its inception to support sustainability i.e.
longevity, extensibility, and portability. The rationale for
implementing the architectural style was to enable reusability,
adaptability and portability. Their approach demonstrates that
longevity can be embedded in a software architecture at the
outset to support changing stakeholder requirements and
technical obsolesce. In addition, they recommend a number of
best practices for software sustainability based on their
experience:

• Design for sustainability, extensibility, reusability and
portability from the outset;

• Adopt a component-based architecture;
• Assess impact and risk of adopting new or emerging

technology;
• Build a user community;
• Encourage stakeholder engagement;
• Adopt rigorous software engineering practices;
• Develop open source software.
However, architectural design is in part a creative process

where the design of a system must provide a balance between
the functional and non-functional requirements. As a result,
Sommerville [37] suggests that it is useful to think of this
process as a series of decisions where a number of fundamental
questions are answered rather than a sequence of activities. In
addition, Avgeriou, Stal, and Hilliard [38] highlight that while
the software architecture is the foundation of a software system
encompassing a system architects and stakeholders strategic
decisions, these are often made in an unsystematic and
undocumented manner. As a result, this can lead to
architectural drift and erosion, resulting in a decrease in
software quality, which in turn leads to increased costs and
dissatisfied stakeholders. This suggests the architectural design
and reasoning is based on the level expertise of the software
architect and tacit architectural knowledge. As a result, it is
essential to consider the sustainability of the software
architecture as an intrinsic part of overall software
sustainability.

IV. SUSTAINABLE SOFTWARE ARCHITECTURES
Architecture sustainability is the capacity of a software

architecture to endure different types of change through
efficient maintenance and orderly evolution over its entire life
cycle [38]. Koziolek [14] conducted a systematic review of the

Position Paper: WSSSPE’2, Second Workshop on Sustainable Software for Science: Practice and Experiences, 2014

 4

literature in order to address a number of key questions related
to architectural sustainability:

• How do scenario-based architecture evaluation
methods used industry support the sustainability of
software architectures?

• Which are the most appropriate architectural-level
metrics to analyze the sustainability of software
architectures?

Twenty scenario-based methods were initially identified. Of
these only two, ATAM [39] and ALMA [40], met the criteria
for inclusion; were active and applied in industrial settings.
While ATMA was not specifically designed for sustainability
evaluation it offered a range of techniques in the context of
sustainability evaluation. In contrast, ALMA was specifically
designed for modifiability and offers a number of techniques
for change scenario elicitation. However, the overall results
suggest that existing scenario-based methods do not provide
sufficient support for the systematic analysis of ripple effects,
or the integration with reverse engineering tools and knowledge
management support. Similarly, forty architectural-level
metrics were identified, which could potentially assist
sustainability evaluation of implemented architectures.
However, many were based on plausibility and have not been
systematically validated. As a result, their value in addressing
sustainability is an open research question.

Zdun et. al., [41] suggest that software architectures not
only comprise a systems structure but essential design
decisions based on architectural knowledge. They argue that to
achieve sustainable architectures, requires capturing significant
sustainable design decisions and their rationale as failure to do
so can lead to decision rationale erosion. They derive five key
criteria to define decision sustainability:

• Strategic consequences;
• Measurable and manageable;
• Achievable and realistic;
• Rooted in requirements;
• Timeliness.

They suggest that the five criteria are strongly related to the
decision life cycle. As a result, the evolution of decisions
across the life cycle affects the degree of sustainability
achieved at any given time period. Based on the results of a
case study, they propose a set of guidelines to identify and
capture a minimalistic set of relevant decisions and trace links
including

• Establishing explicit traceability links between
decisions and requirements;

• Establishing traceability links among decisions,
architecture, and code;

• The use and application of design rationale;
• Minimal decision documentation.

As a result, it is suggested that capturing and maintaining
relationships between sources and architectural design
decisions can prevent ‘architectural knowledge vaporization’.
How this can be achieved in practice is unclear and provides
further avenues for research.

Avgeriou, Stal, and Hilliard [38] identify several causes of
change that are significant for architecture sustainability:

• New requirements emerge while older requirements
change;

• Interdependence between requirements and
architecture;

• Changes in business strategies and goals;
• Environment changes;
• Architecture erosion or drift;
• Accidental complexity;
• Technology change;
• Deferred decisions to meet near-term goals;
• Human error.

To improve architecture sustainability they propose ‘systematic
architecting’ which considers a system in its total environment,
where environment is defined as the ‘context determining the
setting and circumstances of all influences upon a system
including developmental, technological, business, operational,
organizational, political, economic, legal, regulatory,
ecological and social influences’ [42]. As a whole, these
elements form the basis for establishing the forces that
architects must consider when making decisions and
identifying the risks to be mitigated throughout the systems
lifecycle. To support this they distinguish between three types
of approaches for handling change systematically which are
listed in order of severity:

• Refactoring: modifying existing components without
impacting functionality.

• Renovating: rebuilding one or more essential
components from scratch;

• Rearchitecting: creating a new architecture.
While maintainability and evolution are usually treated
individually they advocate making explicit the differences
between the approaches as they suggest that mixing the three
types obfuscates the challenges of architecture sustainability
for practicing architects and offers no clear direction to
researchers.

To address the cost-effective and sustainable evolution of
industrial software systems, Koziolek et. al., [43] proposed
MORPHOSIS; a holistic, sustainable, software architectural
method that incorporates evolution scenario analysis to deal
with technological change and unexpected redesign;
architecture enforcement to avoid architectural erosion; and
architectural-level code metrics framework to assess trends of
sustainability. Architectural-level code metrics were based on
existing metrics and selected on the basis of their relevance to
maintainability [44]. They argue that alternative approaches
have only gained limited adoption in practice because the
return on investment is unknown. However, they acknowledge
that the limitations of their approach are that the metrics are not
widely used in practice, some metrics conflict with each other,
and that they could not quantify the return on investment of
applying their method.

In a follow on study, Koziolek et. al., [45] argue that it is
difficult to express a software architecture’s sustainability in a
single metric as relevant information may be spread across a

Position Paper: WSSSPE’2, Second Workshop on Sustainable Software for Science: Practice and Experiences, 2014

 5

range of related factors including requirements and architecture
design documents, technology choices, source code, systems
context, and the software architectures tacit knowledge. As a
result, software architecture sustainability should consider
multiple perspective including volatile requirements,
technology decisions, architecture erosion, and modularization.
Applying the MORPHOSIS approach [46], they report the
results of a two-year longitudinal study, which tracked selected
sustainability measurements of a large-scale, distributed
industrial control system. The results suggest that a number of
predicted evolution scenarios had occurred and those that had
not were still valid. Similarly, the use of architecture
enforcement to avoid architectural erosion created a higher
awareness for the architecture specification resulting in fewer
dependency violations. Finally, the architectural-level code
metrics framework led to an improvement in the overall code
quality at the design level because a measurement instrument
was in place. This suggests that assessments can be conducted
with limited effort and that through regular assessment code
can be improved through refactoring to achieve improved
sustainability. Nevertheless, further work is required to
correlate software maintenance costs with the architectural
metrics to enable quantitative cost-benefit analysis. However, it
was noted that software maintenance remained a challenge.

Sehestedt, Cheng, and Bouwers [47] state that software
architectures and their representations in models are
instrumental in achieving sustainability, and the fulfillment of
functional and non-functional requirements. They suggest that
the quality of a software architectural model can be measured
by evaluating it against the following criteria: completeness,
consistency, correctness and clarity. In addition they propose
seven, system independent metrics, against which the four-C’s
criteria can be judged:

• Decomposition quality;
• Best practices adherence;
• View consistency;
• Rationalization completeness;
• Requirement fulfillment;
• Change scenario robustness;
• Decision traceability.

The proposed metrics address quality attributes from three
views: architecture models; architectural decisions; and
requirement specifications. This approach differs from
traditional methods as it indirectly assesses the quality of the
architecture through its documentation. The rationale for this is
that architecture models and related documentation are
generally not formal models through which an architect can
evaluate the architectural model in a consistent and repeatable
way. However, they acknowledge that coverage of the
proposed metrics is limited and requires validation to test the
limits of their approach.

In contrast, Ameller et. al., [48] present an interesting
counter argument to our position and the general consensus on
the symbiotic relationship between non-functional
requirements and software architectures. The aim of the study
was to investigate how architects deal with non-functional
requirements and focused on four questions:

• What types of non-functional requirements are relevant
to software architects?

• How are non-functional requirements elicited?
• How are non-functional requirements documented?
• How are non-functional requirements validated?

Based on semi-structured interviews with thirteen software
architects at twelve software intensive organizations covering a
variety of business and application domains, the results
revealed a number of interesting findings. Firstly, non-
functional requirements were principally defined by architects
rather than being driven by stakeholders needs. Secondly, non-
functional requirements are generally not documented or
precise in their representation. Finally, non-functional
requirements were only partially validated, if at all. Overall, the
results suggest that there is a significant mismatch between
software engineering theory and practice. However,
Buschmann et. al., [49] suggests that this apparent mismatch
provides valuable insights into how to deal with non-functional
requirements in software development; a prime indicator is
their business value. As a result, software architects need to be
pragmatic in how they balance the inclusion of non-functional
requirements as a prime driver of architecture design.

V. SUMMARY & CONCLUSIONS
In this paper we propose that sustainable software

architectures are fundamental to the development of technical
sustainable software as a basis for discussion in order to
consider how we can address the challenge of developing and
achieving sustainable software. The paper explores previous
research to provide the theoretical foundation to support our
thesis.

Examination of the concept of sustainability and its
relationship to software demonstrates that software
sustainability has been defined from a number of different
perspectives including that of the software artifact and the
software engineering development process. While there is no
agreement on an absolute definition of software sustainability
there is growing consensus that software sustainability should
be considered a first-class, non-functional requirement that is a
measure of a number of core quality attributes. We suggest that
at the very minimum, a software’s technical sustainability
should address two core quality attributes: maintainability and
extendibility. To what extent existing metrics and measures of
quality attributes defined within existing standards are
appropriate for measuring a software artifact’s technical
sustainability is an open research question and provides further
avenues for research. In addition, how to make software
sustainable both in terms of the software artifact, the
development process, and how these relate to the wider
concerns of environmental, economic, social, individual, and
technical sustainability remains an open area of research

Software architectures can be considered the Quoins of
sustainable software. While research into the relationship
between software architectures and sustainability is strictly
limited, emerging evidence suggests that the architecture plays
a critical role in satisfying non-functional requirements. As a
result, software architectures are not only fundamental in

Position Paper: WSSSPE’2, Second Workshop on Sustainable Software for Science: Practice and Experiences, 2014

 6

understanding how the software system will be built in the first
instance, they are critical to post-deployment system
maintenance and evolution, which in turn leads to software that
is sustainable. While it is suggested that architectural design is
more of a creative process, which requires a degree of
expertise, the principal challenge is how to embed software
architectural practice into software engineering best practice
rather than viewed as a by-product of the software engineering
process; which is particularly true of software developed in
academic environments.

An emerging area of interest in the field of software
architectures is architectural sustainability, which aims to
address architectural drift and erosion that can result in a
decrease in software quality. While a small number of
approaches have been proposed their value is unknown and
require validation to test their limits. Critical to architectural
sustainability is capturing decision viewpoints and their
rationale as first-class elements of architectural descriptions.
How this can be achieved in practice is unclear and is an area
ripe for research. However, based on our previous work into
the relationship between trust, provenance, and high-value
decision making in data intensive, service-oriented computing
environments, we suggest that integrating requirements
traceability methods and provenance potentially provides an
avenue for further research.

If we accept the premise that software architectures are the
key to developing technical sustainable software then ensuring
architectural sustainability is critical to its success. Future work
will focus on the development of a software sustainability
evaluation framework that will assist in facilitating a greater
holistic view of sustainable hybrid, GPU-enabled
magnetohydrodynamcs (MHD) code in the field of solar
plasma physics and serial and parallel molecular dynamics
simulation software in the field of computational chemistry.

REFERENCES
[1] A.	 Geist,	 and	 R.	 Lucas.	 “Major	 computer	 science	 challenges	 at	

exascale,”	 International	 Journal	 of	 High	 Performance	
Computing	 Applications,	 23(4):	 pp:	 427-‐436,	 2009.	

[2] C.	 C.	 Venters,	 et.	 al.,	 “Software	 Sustainability:	 The	 Modern	
Tower	 of	 Babel,”	 RE4SuSy:	 Third	 International	 Workshop	 on	
Requirements	 Engineering	 for	 Sustainable	 Systems,	 2014.	

[3] B.	 Penzenstadler,	 and	 A.	 Fleischmann.	 “Teach	 sustainability	
in	 software	 engineering?”	 Proceedings	 of	 the	 24th	 IEEE-‐CS	
Conference	 on	 Software	 Engineering	 Education	 and	 Training,	
IEEE	 Computer	 Society,	 pp:	 454-‐458,	 2011.	

[4] A.	 B.	 Bener,	 M.	 Morisio,	 A.	 Miranskyy.	 “Green	 software,”	 IEEE	
Software,	 31(3),	 2014,	 pp:	 36-‐39.	

[5] E.	 F.	 Ecklund,	 Jr.,	 L.	 M.	 L.	 Delcambre,	 and	 M.	 J.	 Freiling.	
“Change	 cases:	 use	 cases	 that	 identify	 future	 requirements,”	
In:	 OOPSLA	 '96:	 Proceedings	 of	 the	 11th	 ACM	 SIGPLAN	
conference	 on	 Object-‐oriented	 programming,	 systems,	
languages,	 and	 applications,	 pp:	 342-‐358,	 1996.	

[6] The	 Bible,	 Daniel	 2:34-‐45.	
[7] R.	 C.	 Seacord,	 J.	 Elm,	 W.	 Goethert,	 G.	 A.	 Lewis,	 D.	 Plakosh,	 J.	

Robert,	 L.	 Wrage,	 and	 M.	 Lindvall.	 “Measuring	 software	
sustainability,”	 Software	 Engineering	 Institute,	 Carnegie	
Mellon	 University,	 Pittsburgh,	 PA,	 USA,	 2003.	

[8] Oxford	 English	 Dictionary.	 2012.	 Oxford	 Dictionaries.	

[9] United	 Nations:	 World	 Commission	 on	 Environment	 and	
Development:	 Our	 Common	 Future.	 Oxford	 Univ.	 Press,	
1987.	

[10] European	 Information	 Technology	 Observatory.	 “The	 impact	
of	 ICT	 on	 sustainable	 development,”	 pp:	 250-‐283,	 2002.	

[11] J.	 Elkington.	 “Enter	 the	 triple	 bottom	 line,”	 In:	 R.	 Henriques	
and	 A.	 Richardson	 (eds.).	 The	 triple	 bottom	 line:	 Does	 it	 all	
add	 up?	 pp:	 1-‐16,	 2004.	

[12] R.	 Goodland.	 “Sustainability:	 Human,	 social,	 economic	 and	
environmental,”	 Encyclopedia	 of	 Global	 Environmental	
Change,	 John	 Wiley	 &	 Sons,	 2002.	

[13] B.	 Penzenstadler	 and	 H.	 Femmer.	 “A	 generic	 model	 for	
sustainability	 with	 process-‐	 and	 product-‐specific	 instances,”	
In	 International	 Workshop	 on	 Green	 In	 Software	
Engineering	 and	 Green	 By	 Software	 Engineering	 at	 AOSD,	
2013.	

[14] H.	 Koziolek.	 “Sustainability	 evaluation	 of	 software	
architectures:	 A	 systematic	 review,”	 Proceedings	 of	 the	 joint	
ACM	 SIGSOFT	 conference	 on	 quality	 of	 software	
architectures.	 Boulder,	 Colorado,	 USA,	 ACM:	 3-‐12,	 2011.	

[15] T.	 Tamai	 and	 Y.	 Torimitsu.	 “Software	 lifetime	 and	 its	
evolution	 process	 over	 generations,”	 Proceedings	 of	 the	
Conference	 on	 Software	 Maintenance,	 pp:	 63-‐69,	 1992.	

[16] Software	 Sustainability	 Institute.	 Available:	
http://www.software.ac.uk/about.	 	

[17] Z.	 Durdik,	 B.	 Klatt,	 H.	 Koziolek,	 K.	 Krogmann,	 J.	 Stammel,	 and	
R.	 Weiss.	 “Sustainability	 guidelines	 for	 long-‐living	 software,”	
ICSM	 2012:	 Proceedings	 of	 the	 28th	 IEEE	 International	
Conference	 in	 Software	 Maintenance,	 Trento,	 Italy,	
September	 23-‐28,	 2012.	 	

[18] B.	 Penzenstadler.	 “Towards	 a	 definition	 of	 sustainability	 in	
and	 for	 software	 engineering,”	 SAC’13:	 Proceedings	 of	 the	
28th	 Annual	 ACM	 Symposium	 on	 Applied	 Computing,	
Coimbra,	 Portugal,	 March	 18-‐22,	 pp:	 1183-‐1185,	 2013.	

[19] IEEE.	 1990.	 “IEEE	 standard	 glossary	 of	 software	 engineering	
terminology,”	 IEEE	 Std.	 610.12-‐1990.	

[20] N.	 Amsel,	 Z.	 Ibrahim,	 A.	 Malik,	 B.	 Tomlinson.	 “Toward	
sustainable	 software	 engineering,”	 ICSE:	 Proceedings	 of	 the	
33rd	 International	 Conference	 on	 Software	 Engineering.	
Waikiki,	 Honolulu,	 HI,	 USA,	 pp:	 976-‐979,	 2011.	 	

[21] S.	 Naumann,	 M.	 Dick,	 E.	 Kern,	 T.	 Johann.	 “The	 GREENSOFT	
model:	 A	 reference	 model	 for	 green	 and	 sustainable	 software	
and	 its	 engineering,”	 Sustainable	 Computing:	 Informatics	
and	 Systems,	 1,	 pp:	 294-‐304,	 2011.	 	

[22] R.	 A.	 Fenner,	 C.	 M.	 Ainger,	 H.	 J.	 Cruickshank,	 P.	 M.	 Guthrie.	
“Widening	 engineering	 horizons:	 Addressing	 the	 complexity	
of	 sustainable	 development,”	 Proceedings	 of	 the	 ICE:	
Engineering	 Sustainability,	 159	 (4),	 pp:	 145-‐154.	 2006.	

[23] WSSSPE	 Collaborative	 notes.	 Available	 bit.ly/wssspe13	
[24] B.	 Penzenstadler,	 A.	 Raturi,	 D.	 Richardson,	 and	 B.	 Tomlinson.	

“Safety,	 security,	 now	 sustainability:	 The	 nonfunctional	
requirement	 for	 the	 21st	 century,”	 IEEE	 Software,	 31(3),	 pp:	
40-‐47,	 2014.	

[25] F.	 Brooks,	 “The	 mythical	 man-‐month,”	 Addison-‐Wesley,	
1995.	

[26] D.	 M.	 Coleman,	 D.	 Ash,	 B.	 Lowther,	 and	 P.	 W.	 Oman,	 “Using	
metrics	 to	 evaluate	 software	 system	 maintainability.”	 IEEE	
Computer,	 27	 (8),	 pp.	 44–49,	 1994.	

[27] C.	 C.	 Venters	 et.	 al.,	 “The	 blind	 men	 and	 the	 elephant:	
Towards	 an	 empirical	 evaluation	 framework	 for	 software	
sustainability,”	 WSSSPE’1:	 First	 workshop	 on	 sustainable	
software	 for	 science:	 practice	 and	 experiences,	 SC’13,	 17	
November	 2013,	 Denver,	 CO,	 USA,	 2013.	 	

Position Paper: WSSSPE’2, Second Workshop on Sustainable Software for Science: Practice and Experiences, 2014

 7

[28] C.	 C.	 Venters	 et.	 al.,	 “The	 blind	 men	 and	 the	 elephant:	
Towards	 an	 empirical	 evaluation	 framework	 for	 software	
sustainability,”	 Journal	 of	 Open	 Research	 Software.	 2(1):e8,	
pp:	 1-‐6,	 2014.	

[29] C.	 Calero,	 M.	 A.	 Moraga,	 and	 M.	 F.	 Bertoa.	 “Towards	 a	
software	 product	 sustainability	 model,”	 WSSSPE’1:	 First	
workshop	 on	 sustainable	 software	 for	 science:	 practice	 and	
experiences,	 SC’13,	 17	 November	 2013,	 Denver,	 CO,	 USA,	
2013.	

[30] ISO/IEC	 25010:2011:	 Systems	 and	 software	 engineering	 -‐-‐	
Systems	 and	 software	 Quality	 Requirements	 and	 Evaluation	
(SQuaRE)	 -‐-‐	 System	 and	 software	 quality	 models.	

[31] H.	 Koziolek,	 D.	 Domis,	 T.	 Goldschmidt,	 and	 P.	 Vorst.	
“Measuring	 architecture	 sustainability,”	 IEEE	 Software,	 30	
(6),	 pp:	 54-‐62,	 2013.	

[32] ISO/IEC	 42010:2007	 Systems	 and	 software	 engineering	 -‐-‐	
Recommended	 practice	 for	 architectural	 description	 of	
software-‐intensive	 systems.	

[33] P.	 Clements,	 R.	 Kazman,	 and	 M.	 Klien,	 “Evaluating	 software	
architectures:	 methods	 and	 case	 studies,”	 Addison-‐Wesley	
Professional,	 2002.	 	

[34] Software	 Engineering	 Institute.	 Defining	 software	
architectures.	 Available	 at:	
http://www.sei.cmu.edu/architecture/	

[35] Koziolek,	 H.	 “Sustainability	 evaluation	 of	 software	
architectures:	 a	 systematic	 review,”	 In:	 QoSA-‐ISARCS'11:	
Proceedings	 of	 the	 joint	 ACM	 SIGSOFT	 conference	 on	 quality	
of	 software	 architecture	 and	 architecting	 critical	 system,	
New	 York,	 NY,	 USA,	 pp:	 3-‐12,	 2011.	

[36] G.	 B.	 Berriman,	 J.	 Good,	 E.	 Deelman,	 A.	 Alexov.	 “Ten	 years	 of	
software	 sustainability	 at	 the	 infrared	 processing	 and	
analysis	 center,”	 Philosophical	 Transactions	 of	 the	 Royal	
Society	 A.	 pp:	 3384-‐3397,	 2011.	

[37] I.	 Sommerville.	 “Software	 engineering,”	 9th	 edition,	 Pearson,	
2011.	

[38] P.	 Avgeriou,	 M.	 Stal,	 and	 R.	 Hilliard.	 “Architecture	
sustainability,”	 IEEE	 Software,	 30	 (6),	 pp:	 40-‐44,	 2013.	

[39] P.	 Clements,	 R.	 Kazman,	 and	 M.	 Klein.	 Evaluating	 software	
architeture	 analysis	 methods.	 IEEE	 Transactions	 on	 Software	
Engineering,	 28(7),	 pp:	 638-‐653,	 2002.	

[40] P.	 Bengtsson,	 N.	 Lassing,	 J.	 Bosch,	 and	 H.	 van	 Vliet.	
“Architecture-‐level	 modifiability	 analysis	 (ALMA),”	 Journal	 of	
Systems	 and	 Software,	 69(1-‐2),	 pp:	 129-‐147,	 2004.	

[41] U.	 Zdun,	 R.	 Capilla,	 H.	 Tran,	 and	 O.	 Zimmermann.	
“Sustainable	 architectural	 design	 decisions,”	 IEEE	 Software,	
30	 (6),	 pp:	 46-‐53,	 2013.	

[42] Systems	 and	 Software	 Engineering-‐Architecture	 Description,	
IEEE	 Std.	 ISO/IEC/IEEE	 42010,	 2011.	

[43] H.	 Koziolek,	 D.	 Domis,	 T.	 Goldschmidt,	 P.	 Vorst,	 and	 R.	 J.	
Weiss.	 “MORPHOSIS:	 A	 lightweight	 method	 facilitating	
sustainable	 software	 architectures,”	 WICSA-‐ECSA:	
Proceedings	 of	 the	 2012	 Joint	 Working	 IEEE/IFIP	
Conference	 on	 Software	 Architecture	 (WICSA)	 and	 European	
Conference	 on	 Software	 Architecture	 (ECSA),	 Helsinki,	
Findland,	 pp:	 253-‐257,	 2012.	

[44] S.	 Sakar,	 G.	 M.	 Rama,	 and	 A.	 C.	 Kak.	 “API-‐Based	 and	
information-‐theoretic	 metrics	 for	 measuring	 the	 quality	 of	
software	 modularization,”	 IEEE	 Transactions	 on	 Software	
Engineering,	 33	 (1),	 pp:	 14-‐32,	 2007.	

[45] H.	 Koziolek,	 D.	 Domis,	 T.	 Goldschmidt,	 and	 P.	 Vorst.	
“Measuring	 architecture	 sustainability,”	 IEEE	 Software,	
30(6),	 pp:	 54-‐62,	 2013.	

[46] H.	 Koziolek,	 D.	 Domis,	 T.	 Goldschmidt,	 P.	 Vorst,	 and	 R.	 J.	
Weiss.	 “MORPHOSIS:	 A	 lightweight	 method	 facilitating	
sustainable	 software	 architectures,”	 WICSA-‐ECSA:	
Proceedings	 of	 the	 2012	 Joint	 Working	 IEEE/IFIP	
Conference	 on	 Software	 Architecture	 (WICSA)	 and	 European	
Conference	 on	 Software	 Architecture	 (ECSA),	 Helsinki,	
Findland,	 pp:	 253-‐257,	 2012.	

[47] S.	 Sehestedt,	 C-‐H.	 Cheng,	 and	 E.	 Bouwers.	 “Towards	
quantitative	 metrics	 for	 architecture	 models.	 First	
International	 Workshop	 on	 Software	 Architecture	 Metrics,”	
WICSA	 2014:	 11th	 Working	 IEEE/IFIP	 Conference	 on	
Software	 Architecture,	 Sydney,	 Australia,	 April	 7-‐11,	 2014.	

[48] D.	 Ameller,	 C.	 Ayala,	 J.	 Cabot,	 and	 X.	 Franch.	 “Non-‐functional	
requirements	 in	 architectural	 decision	 making,”	 IEEE	
Software,	 30	 (2),	 pp:	 61-‐67,	 2013.	

[49] F.	 Buschmann,	 D.	 Ameller,	 C.	 P.	 Ayala,	 J.	 Cabot,	 and	 X.	 Franch.	
“Architecture	 quality	 revisited,”	 IEEE	 Software,	 29,	 4	 pp:	 22-‐
24,	 2012.	

