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Abstract—Sustainability is emerging as an area of growing 
interest in the field of software engineering. While there is no 
agreed definition of the concept it is increasingly being 
considered as a non-functional requirement; a desired quality of 
a software system. One of the principal challenges in defining 
sustainability as a non-functional requirement is how to develop 
appropriate metrics and measures to demonstrate that the 
software is sustainable. Software architectures are the foundation 
of any software system and provide a mechanism for reasoning 
about quality attributes. However, architectural design is in part 
a creative process based on the level expertise of the software 
architect and tacit architectural knowledge, and is often made in 
an unsystematic and undocumented manner. Given the high 
dependency of non-functional requirements on their software 
architecture, this paper proposes that sustainable software 
architectures are fundamental to the development of technical 
sustainable software to address architectural drift and erosion, 
and architectural knowledge vaporization. 

Index Terms—Architectural sustainability, non-functional 
requirements, software architectures, software quality, 
sustainability, software sustainability, technical sustainability. 

I. INTRODUCTION 
Sustainability has been identified as an important future 

topic in the field of software engineering as software systems 
become increasingly more complex and operate in evolving, 
distributed eco-systems [1]. However, the concept of software 
sustainability is an elusive and ambiguous term with 
diametrical opposed views and interpretations [2]. As a result, 
there is a considerable amount of mystification and divergence 
regarding what software sustainability means, how it can be 
measured or demonstrated, and how to train and educate the 
broad spectrum of domain scientists or advance the skills of 
software engineers to develop software that is sustainable [3].  

Change is inevitable [4]. It estimated that approximately 
50–70% of the total lifecycle cost is spent on evolving a system 
[5]. If change is an inevitable feature of the software lifecycle 
this raises the question, what is the most efficient and effective 
method or approach for managing change and evolution in 
terms of software’s sustainability? 

The biblical tale of Nebuchadnezzar’s dream relates to a 
statue composed of different types of metal built on a 
foundation of clay and iron [6]. However, iron and clay are 
materials that cannot bond to form a long-lasting foundation 
and will deteriorate overtime. The analogy of the feet of clay is 

now commonly used to refer to a weakness or flaw. The central 
thesis of this paper is that sustainable software should be built 
from a strong and solid foundation that allows efficient and 
effective maintenance and evolutionary change. To achieve 
this, this paper proposes that sustainable software architectures 
are fundamental to the development of technical sustainable 
software. The principle aim of this paper is to explore existing 
work to provide the theoretical foundation to support our thesis. 
Section 2 examines the concept of sustainability and its 
relationship to sustainable software. Section 3 examines the 
relationship between non-functional requirements, 
sustainability and software architectures. Section 4 explores 
emerging work in the area of developing sustainable software 
architectures. In Section 5, conclusions are drawn and future 
directions are outlined. 

II. SUSTAINABLE SOFTWARE  
Before software sustainability can be measured as an 

attribute it must be understood [7]. The word sustainability is 
derived from the Latin sustinere. The Oxford English 
Dictionary [8] defines sustainability as ‘the quality of being 
sustained’, where sustained can be defined as ‘capable of being 
endured’ and ‘capable of being ‘maintained’. This suggests 
that longevity and the ability to maintain are key factors at the 
heart of understanding sustainability. 

As a part of the concept of sustainable development, the 
most widely adopted definition of sustainability was that 
proposed by the Brundtland commission [9], which was 
defined as ‘meeting the needs of the present without 
compromising the ability of future generations to meet their 
own needs’. The word ‘need’ is central to this definition and 
includes a dimension of time, present and future. However, this 
definition is problematic for several reasons including that it is 
broad in its scope, it is open to interpretation, and it is difficult, 
if not impossible, to quantify. 

In recent years, a triple bottom line perspective of 
sustainability has been adopted which considers sustainability 
to include three dimensions: environment, society and 
economy [10]. Environmental sustainability is concerned with 
minimizing the impact on the environment and natural 
resources. Social sustainability is concerned with building 
social equity. Economic sustainability is concerned with 
economic growth and its impact on social or natural resources. 
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It is argued that by addressing the three dimensions it can lead 
to more sustainable outcomes [11]. Goodland [12] and 
Penzenstadler and Femmer [13] extend these dimensions to 
include individual and technical sustainability where individual 
sustainability is ‘the maintenance of the private good of 
individual human capital’ i.e. health, education etc., and 
technical sustainability is ‘the long-term usage of systems and 
their adequate evolution with changing surrounding conditions 
and respective requirements’. In addition, we can also consider 
the five dimensions in relation to three orders of impact or 
effects of software systems [10]: 

• First-order: direct impacts created by the physical 
existence and the processes involved including design, 
production, distribution, maintenance and disposal; 

• Second-order: indirect impacts created by ongoing 
usage; 

• Third-order: systemic impacts aggregated over the 
medium to long term. 

Koziolek [14] takes a literal interpretation of the concept of 
sustainability and suggests that sustainable software can be 
defined as ‘a software-intensive system that operates for more 
than fifteen  years’. This is a position supported by Tamai and 
Torimitsu [15] who suggest that the average software lifetime 
is ten years, with a minimum of two years, and a maximum of 
thirty. In addition, they highlight that longevity requirements 
can be embedded in a number of domains where there are large 
[financial] investments. Koziolek [14] extends this definition 
where sustainable software is defined as ‘a long-living software 
system which can be cost-efficiently maintained and evolved 
over its entire life-cycle’. This definition suggests that 
maintainability and extensibility are key features of 
sustainability, which are tightly coupled with an economical 
dimension. 

Similarly, a number of definitions have emerged from the 
field of software engineering, which focuses on the 
sustainability of the software artifact where maintainability and 
evolution are key factors of sustainability [7, 16-18]. In this 
context maintainability can be defined as ‘the ease with which 
a software system or component can be modified to correct 
faults, improve performance or other attributes, or adapt to a 
changed environment’ [19]. Maintainability is also related to 
extendability and flexibility, which the former is concerned 
with increasing storage or functional capacity, and the later is 
concerned with integration with other applications or 
environments respectively. The main objective of software 
evolution is ensuring reliability and flexibility of the system 
where the former is concerned with functional performance 
and is also related to availability. This strongly suggests that 
software sustainability is a composite attribute. 

There has also been a parallel interest in defining 
sustainable software from a software development perspective, 
which is concerned with the broader direct and indirect impacts 
on the economy, society and the environment [20-21]. 
However, Fenner et. al., [22] argue that for sustainable 
engineering to be successful it requires a paradigm shift in 
thinking to embrace a holistic approach enshrined in the field 
of complex systems science. 

A diametrically opposed position of an absolute definition 
of software sustainability is that it is simply an emergent 
property of a software system determined by market forces 
[23]. This suggests that sustainability cannot be designed or 
engineered and quantified until after the software system is 
operational. While it could be argued that software 
sustainability is an emergent property similar to safety [24], it 
is a highly probable that a software artifact that has endured 
over time will have at the very minimum been maintained [25]. 
This suggests that software sustainability is at the very 
minimum a measure of maintainability metrics such as the 
maintainability index, which can be derived from such 
measures as lines-of-code, McCabe or Halstead complexity 
[26]. In addition, the software artifact may have evolved or 
been ported on to different platforms. This strongly suggests 
that software sustainability is not an emergent property and is a 
composite attribute with a number of sub-characteristics related 
to maintenance and evolution. 

Increasingly, software sustainability is being considered a 
first class, non-functional requirement [24]. In the field of 
software engineering, non-functional requirements or software 
quality attributes can be defined as ‘the degree to which a 
system, component or process meets a stakeholders needs or 
expectations’ [19]. This aligns with the Brundtland [9] 
definition of sustainability addressing needs. 

Without explicit reference to specific non-functional 
requirements, the GREENSOFT model proposed by Naumann 
et. al., [21] is designed to incorporate a range of non-functional 
requirements within the three categories of the sustainability 
criteria and metrics section of the reference model. This 
separation allows the examination of first-, second- and third- 
order impacts from an environmental perspective that result 
from effects of supply, effects of usage and systemic effects. 
However, they suggest that the fundamental question at the 
heart of the model is not, in which phase are metrics applied or 
in which phases are they taken in order to improve the quality 
attributes? The principal question is, in which life cycle phase 
can the related effects be observed? 

Venters et. al., [27-28] defined software sustainability as a 
composite, non-functional requirement which is ‘a measure of 
a systems extensibility, interoperability, maintainability, 
portability, reusability, scalability, and usability’. Several of 
the metrics are directly related to the concept of evolution of 
the software system. The rationale for including usability as a 
metric of sustainability is that it is directly related to perceived 
usefulness from a stakeholder’s perspective and thereby aligns 
sustainability with the issue of need. In addition, several of the 
quality attributes specify the ‘effort required’ to achieve a 
particular outcome. This suggests that the concept of 
sustainability is strongly coupled to other quality attributes 
such as energy and cost efficiency, and resource utilization 
over the software’s entire lifetime and aligns with the 
dimensions of environmental and economic sustainability. 

Defining software sustainability as a composite, non-
functional requirement is also a position supported by Calero, 
Bertoa, and Moraga [29] who suggest that software 
sustainability is related to a number of the main quality 
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attributes and their sub-characteristics defined in ISO/IEC 
25010 [30]; the standard has eight product quality 
characteristics and thirty one sub-characteristics. However, 
they suggest that sustainability can be considered from two 
perspectives: energy efficiency and perdurability. Energy 
efficiency is related to consumption and resource optimization, 
which aligns to the dimension of environmental sustainability. 
Based on the sub-characteristics of reusability, modifiability, 
and adaptability they define perdurability as the ‘degree to 
which a software product can be modified, adapted and reused 
in order to perform specified functions under specified 
conditions for a long period of time’. However, this 
significantly narrows the view of software sustainability as a 
composite, non-functional requirement and potentially 
eliminates important software quality attributes related to 
software evolution. Similarly, it is not clear why attempting to 
redefine software sustainability in terms of its perdurability i.e. 
very durable, is different from the overall aim of making 
software sustainable, at least in terms of the artifact, as the 
basic definition of sustainability is underpinned by the idea of 
enduring. Similarly, Koziolek et. al., [31] define software 
sustainability from a maintainability perspective in terms of its 
modifiability, reusability, modularity and testability. These 
definitions of software sustainability strongly suggest that it 
can be categorized as a composite, non-functional requirement. 
At the very minimum, technical software sustainability should 
address two core quality attributes including appropriate sub-
characteristics: maintainability and extendibility. Nevertheless, 
maintainability as defined by ISO/IEC 25010 has new sub-
characteristics of modularity, reusability, and modifiability, 
which address the issue of software evolution. As a result, what 
metrics and measures are suitable to demonstrate software 
sustainability is an open research problem. 

However, one of the principal challenges in defining 
software sustainability as a non-functional requirement is how 
to demonstrate that the quality factors have been addressed in a 
quantifiable way. How this might be achieved is discussed in 
the following section. 

III. SUSTAINABILITY & SOFTWARE ARCHITECTURES 
To achieve technical sustainable software, we postulate that 

[sustainable] software architectures are fundamental to their 
development [28]. A software architecture is ‘the fundamental 
organization of a system embodied in its components, their 
relationships to each other, and to the environment, and the 
principles guiding its design and evolution’ [ISO/IEC 42010-
2007]. The rationale for this position is that it is argued that 
successful software systems development and evolution is 
highly dependent on making informed decisions at the 
architectural level as the architecture is the primary carrier of 
system qualities such as maintainability, modifiability, 
reusability, portability and scalability, none of which it is 
argued can be achieved without a unifying architectural vision 
[33-34]. In addition, Koziolek [35] argues that software 
architectures determine sustainability as they influence how 
developers are able to understand, analyze, extend, test and 
maintain a software system. As a result, software architectures 
are not only the blueprint of how the software system will be 

built, they hold the key to post-deployment system 
understanding, maintenance, and evolution. As a result, this 
strongly suggests that software architectures are fundamental to 
achieving software sustainability. 

An example of how software architectures are fundamental 
to the development of sustainable software was reported by 
Berriman et. al., [36]. They present a case study of an approach 
to sustainable software applied over a ten year period to 
astronomy software services at the NASA Infrared Processing 
and Analysis Center. In this context, software sustainability is 
implicitly defined as long living. Their approach involved 
using a component-based architecture, which consisted of 
approximately one hundred core components, and was 
designed from its inception to support sustainability i.e. 
longevity, extensibility, and portability. The rationale for 
implementing the architectural style was to enable reusability, 
adaptability and portability. Their approach demonstrates that 
longevity can be embedded in a software architecture at the 
outset to support changing stakeholder requirements and 
technical obsolesce. In addition, they recommend a number of 
best practices for software sustainability based on their 
experience: 

• Design for sustainability, extensibility, reusability and 
portability from the outset; 

• Adopt a component-based architecture; 
• Assess impact and risk of adopting new or emerging 

technology; 
• Build a user community; 
• Encourage stakeholder engagement; 
• Adopt rigorous software engineering practices; 
• Develop open source software. 
However, architectural design is in part a creative process 

where the design of a system must provide a balance between 
the functional and non-functional requirements. As a result, 
Sommerville [37] suggests that it is useful to think of this 
process as a series of decisions where a number of fundamental 
questions are answered rather than a sequence of activities. In 
addition, Avgeriou, Stal, and Hilliard [38] highlight that while 
the software architecture is the foundation of a software system 
encompassing a system architects and stakeholders strategic 
decisions, these are often made in an unsystematic and 
undocumented manner. As a result, this can lead to 
architectural drift and erosion, resulting in a decrease in 
software quality, which in turn leads to increased costs and 
dissatisfied stakeholders. This suggests the architectural design 
and reasoning is based on the level expertise of the software 
architect and tacit architectural knowledge. As a result, it is 
essential to consider the sustainability of the software 
architecture as an intrinsic part of overall software 
sustainability. 

IV. SUSTAINABLE SOFTWARE ARCHITECTURES  
Architecture sustainability is the capacity of a software 

architecture to endure different types of change through 
efficient maintenance and orderly evolution over its entire life 
cycle [38]. Koziolek [14] conducted a systematic review of the 
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literature in order to address a number of key questions related 
to architectural sustainability:  

• How do scenario-based architecture evaluation 
methods used industry support the sustainability of 
software architectures? 

• Which are the most appropriate architectural-level 
metrics to analyze the sustainability of software 
architectures? 

Twenty scenario-based methods were initially identified. Of 
these only two, ATAM [39] and ALMA [40], met the criteria 
for inclusion; were active and applied in industrial settings. 
While ATMA was not specifically designed for sustainability 
evaluation it offered a range of techniques in the context of 
sustainability evaluation. In contrast, ALMA was specifically 
designed for modifiability and offers a number of techniques 
for change scenario elicitation. However, the overall results 
suggest that existing scenario-based methods do not provide 
sufficient support for the systematic analysis of ripple effects, 
or the integration with reverse engineering tools and knowledge 
management support. Similarly, forty architectural-level 
metrics were identified, which could potentially assist 
sustainability evaluation of implemented architectures. 
However, many were based on plausibility and have not been 
systematically validated. As a result, their value in addressing 
sustainability is an open research question. 

Zdun et. al., [41] suggest that software architectures not 
only comprise a systems structure but essential design 
decisions based on architectural knowledge. They argue that to 
achieve sustainable architectures, requires capturing significant 
sustainable design decisions and their rationale as failure to do 
so can lead to decision rationale erosion. They derive five key 
criteria to define decision sustainability: 

• Strategic consequences; 
• Measurable and manageable; 
• Achievable and realistic; 
• Rooted in requirements; 
• Timeliness. 

They suggest that the five criteria are strongly related to the 
decision life cycle. As a result, the evolution of decisions 
across the life cycle affects the degree of sustainability 
achieved at any given time period. Based on the results of a 
case study, they propose a set of guidelines to identify and 
capture a minimalistic set of relevant decisions and trace links 
including  

• Establishing explicit traceability links between 
decisions and requirements; 

• Establishing traceability links among decisions, 
architecture, and code; 

• The use and application of design rationale; 
• Minimal decision documentation.  

As a result, it is suggested that capturing and maintaining 
relationships between sources and architectural design 
decisions can prevent ‘architectural knowledge vaporization’. 
How this can be achieved in practice is unclear and provides 
further avenues for research. 

Avgeriou, Stal, and Hilliard [38] identify several causes of 
change that are significant for architecture sustainability: 

• New requirements emerge while older requirements 
change; 

• Interdependence between requirements and 
architecture; 

• Changes in business strategies and goals; 
• Environment changes; 
• Architecture erosion or drift; 
• Accidental complexity; 
• Technology change; 
• Deferred decisions to meet near-term goals; 
• Human error. 

To improve architecture sustainability they propose ‘systematic 
architecting’ which considers a system in its total environment, 
where environment is defined as the ‘context determining the 
setting and circumstances of all influences upon a system 
including developmental, technological, business, operational, 
organizational, political, economic, legal, regulatory, 
ecological and social influences’ [42]. As a whole, these 
elements form the basis for establishing the forces that 
architects must consider when making decisions and 
identifying the risks to be mitigated throughout the systems 
lifecycle. To support this they distinguish between three types 
of approaches for handling change systematically which are 
listed in order of severity: 

• Refactoring: modifying existing components without 
impacting functionality. 

• Renovating: rebuilding one or more essential 
components from scratch; 

• Rearchitecting: creating a new architecture.   
While maintainability and evolution are usually treated 
individually they advocate making explicit the differences 
between the approaches as they suggest that mixing the three 
types obfuscates the challenges of architecture sustainability 
for practicing architects and offers no clear direction to 
researchers. 

To address the cost-effective and sustainable evolution of 
industrial software systems, Koziolek et. al., [43] proposed 
MORPHOSIS; a holistic, sustainable, software architectural 
method that incorporates evolution scenario analysis to deal 
with technological change and unexpected redesign; 
architecture enforcement to avoid architectural erosion; and 
architectural-level code metrics framework to assess trends of 
sustainability. Architectural-level code metrics were based on 
existing metrics and selected on the basis of their relevance to 
maintainability [44]. They argue that alternative approaches 
have only gained limited adoption in practice because the 
return on investment is unknown. However, they acknowledge 
that the limitations of their approach are that the metrics are not 
widely used in practice, some metrics conflict with each other, 
and that they could not quantify the return on investment of 
applying their method. 

In a follow on study, Koziolek et. al., [45] argue that it is 
difficult to express a software architecture’s sustainability in a 
single metric as relevant information may be spread across a 
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range of related factors including requirements and architecture 
design documents, technology choices, source code, systems 
context, and the software architectures tacit knowledge. As a 
result, software architecture sustainability should consider 
multiple perspective including volatile requirements, 
technology decisions, architecture erosion, and modularization. 
Applying the MORPHOSIS approach [46], they report the 
results of a two-year longitudinal study, which tracked selected 
sustainability measurements of a large-scale, distributed 
industrial control system. The results suggest that a number of 
predicted evolution scenarios had occurred and those that had 
not were still valid. Similarly, the use of architecture 
enforcement to avoid architectural erosion created a higher 
awareness for the architecture specification resulting in fewer 
dependency violations. Finally, the architectural-level code 
metrics framework led to an improvement in the overall code 
quality at the design level because a measurement instrument 
was in place. This suggests that assessments can be conducted 
with limited effort and that through regular assessment code 
can be improved through refactoring to achieve improved 
sustainability. Nevertheless, further work is required to 
correlate software maintenance costs with the architectural 
metrics to enable quantitative cost-benefit analysis. However, it 
was noted that software maintenance remained a challenge. 

Sehestedt, Cheng, and Bouwers [47] state that software 
architectures and their representations in models are 
instrumental in achieving sustainability, and the fulfillment of 
functional and non-functional requirements.  They suggest that 
the quality of a software architectural model can be measured 
by evaluating it against the following criteria: completeness, 
consistency, correctness and clarity. In addition they propose 
seven, system independent metrics, against which the four-C’s 
criteria can be judged: 

• Decomposition quality; 
• Best practices adherence; 
• View consistency; 
• Rationalization completeness; 
• Requirement fulfillment; 
• Change scenario robustness; 
• Decision traceability. 

The proposed metrics address quality attributes from three 
views: architecture models; architectural decisions; and 
requirement specifications. This approach differs from 
traditional methods as it indirectly assesses the quality of the 
architecture through its documentation. The rationale for this is 
that architecture models and related documentation are 
generally not formal models through which an architect can 
evaluate the architectural model in a consistent and repeatable 
way. However, they acknowledge that coverage of the 
proposed metrics is limited and requires validation to test the 
limits of their approach. 

In contrast, Ameller et. al., [48] present an interesting 
counter argument to our position and the general consensus on 
the symbiotic relationship between non-functional 
requirements and software architectures. The aim of the study 
was to investigate how architects deal with non-functional 
requirements and focused on four questions:  

• What types of non-functional requirements are relevant 
to software architects? 

• How are non-functional requirements elicited? 
• How are non-functional requirements documented? 
• How are non-functional requirements validated? 

Based on semi-structured interviews with thirteen software 
architects at twelve software intensive organizations covering a 
variety of business and application domains, the results 
revealed a number of interesting findings. Firstly, non-
functional requirements were principally defined by architects 
rather than being driven by stakeholders needs. Secondly, non-
functional requirements are generally not documented or 
precise in their representation. Finally, non-functional 
requirements were only partially validated, if at all. Overall, the 
results suggest that there is a significant mismatch between 
software engineering theory and practice. However, 
Buschmann et. al., [49] suggests that this apparent mismatch 
provides valuable insights into how to deal with non-functional 
requirements in software development; a prime indicator is 
their business value. As a result, software architects need to be 
pragmatic in how they balance the inclusion of non-functional 
requirements as a prime driver of architecture design. 

V. SUMMARY & CONCLUSIONS 
In this paper we propose that sustainable software 

architectures are fundamental to the development of technical 
sustainable software as a basis for discussion in order to 
consider how we can address the challenge of developing and 
achieving sustainable software. The paper explores previous 
research to provide the theoretical foundation to support our 
thesis. 

Examination of the concept of sustainability and its 
relationship to software demonstrates that software 
sustainability has been defined from a number of different 
perspectives including that of the software artifact and the 
software engineering development process. While there is no 
agreement on an absolute definition of software sustainability 
there is growing consensus that software sustainability should 
be considered a first-class, non-functional requirement that is a 
measure of a number of core quality attributes. We suggest that 
at the very minimum, a software’s technical sustainability 
should address two core quality attributes: maintainability and 
extendibility. To what extent existing metrics and measures of 
quality attributes defined within existing standards are 
appropriate for measuring a software artifact’s technical 
sustainability is an open research question and provides further 
avenues for research. In addition, how to make software 
sustainable both in terms of the software artifact, the 
development process, and how these relate to the wider 
concerns of environmental, economic, social, individual, and 
technical sustainability remains an open area of research 

Software architectures can be considered the Quoins of 
sustainable software. While research into the relationship 
between software architectures and sustainability is strictly 
limited, emerging evidence suggests that the architecture plays 
a critical role in satisfying non-functional requirements. As a 
result, software architectures are not only fundamental in 
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understanding how the software system will be built in the first 
instance, they are critical to post-deployment system 
maintenance and evolution, which in turn leads to software that 
is sustainable. While it is suggested that architectural design is 
more of a creative process, which requires a degree of 
expertise, the principal challenge is how to embed software 
architectural practice into software engineering best practice 
rather than viewed as a by-product of the software engineering 
process; which is particularly true of software developed in 
academic environments. 

An emerging area of interest in the field of software 
architectures is architectural sustainability, which aims to 
address architectural drift and erosion that can result in a 
decrease in software quality. While a small number of 
approaches have been proposed their value is unknown and 
require validation to test their limits. Critical to architectural 
sustainability is capturing decision viewpoints and their 
rationale as first-class elements of architectural descriptions. 
How this can be achieved in practice is unclear and is an area 
ripe for research. However, based on our previous work into 
the relationship between trust, provenance, and high-value 
decision making in data intensive, service-oriented computing 
environments, we suggest that integrating requirements 
traceability methods and provenance potentially provides an 
avenue for further research.  

If we accept the premise that software architectures are the 
key to developing technical sustainable software then ensuring 
architectural sustainability is critical to its success. Future work 
will focus on the development of a software sustainability 
evaluation framework that will assist in facilitating a greater 
holistic view of sustainable hybrid, GPU-enabled 
magnetohydrodynamcs (MHD) code in the field of solar 
plasma physics and serial and parallel molecular dynamics 
simulation software in the field of computational chemistry. 
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