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Any interpolation, any hand contouring or digital drawing of a map or a numerical model necessarily calls 

for a prior model of the multiple-point statistics that link together the data to the unsampled nodes, then 

these unsampled nodes together. That prior model can be implicit, poorly defined as in hand contouring; it 

can be explicit through an algorithm as in digital mapping. The multiple-point statistics involved go well 

beyond single-point histogram and two-point covariance models; the challenge is to define algorithms that 

can control more of such statistics, particularly those that impact most the utilization of such maps beyond 

their visual appearance. 

The newly introduced multiple-point simulation (mps) algorithms borrow the high order statistics from a 

visually and statistically explicit model, a training image. It is shown that mps can simulate realizations 

with maximum entropy character as well as, and much faster than, traditional Gaussian-based algorithms, 

while offering the flexibility of considering alternative training images with various levels of low entropy 

(organized structures or non random statistics). The impact on flow performance (spatial connectivity) of 

choosing a wrong training image among many sharing the same histogram and variogram is demonstrated. 

 

KEY WORDS: variogram, connectivity, training image, pattern reconstruction, Gaussian model, multiple-

point simulation. 

 

INTRODUCTION AND CONCLUSIONS 

 

 In some geostatistical circles there is a resistance to acknowledge the deeds of the 

recently introduced concept of multiple-point simulation (mps), to accept that digital and 

somewhat fuzzy processing of multiple-point patterns could complement or even replace 

the well established two-point pattern, covariance-based, algorithms. Arguments range 

from the theoretical to the practical to flat dismissal:  

    (1) mps has little theoretical pedigree, as if in a time of massive computing power a 
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pedigree should come only from analytical derivations. Such thinking proceeds from a 

19
th

 Century need for concise thus analytical models at a time when computers were not 

yet available to handle data in their full riche. 

 (2) mps relies on training images (Tis) to deliver the necessary structural information, 

then such Tis are subjective and difficult to obtain, as if the maximum entropy image 

implicit to all covariance-based algorithms was not a similarly subjective decision.  

 

   This paper will suggest that a training image can be seen as a visually and statistically 

explicit prior random function model, one that discloses fully those prior statistics 

required by the simulation algorithm, whether single-point (histogram), two-point 

(covariance) or multiple-point up to the size of the scanning template. More exactly, a Ti 

is a realization assumed representative of that prior random function model. Stochastic 

simulation then consists of drawing alternative realizations from a random function 

model updated from that prior by both the local data and the specific implementation of 

the simulation algorithm used. Indeed the conditioning data retained need not be all 

consistent with the prior model, and any practical implementation algorithm necessarily 

entails approximations and some departure from the prior model properties. For example, 

sequential Gaussian simulation consists of morphing (hence updating) a prior maximum 

entropy model to fit conditioning data that may reveal clear patterns structure beyond the 

prior covariance input. It will be shown that multiple-point simulation (mps) can handle 

maximum entropy prior models as well as do traditional covariance-based algorithms, but 

can also handle a whole range of prior lower entropy structural models that would be 

more consistent with either the conditioning data or prior geological expertise. 



- 4 - 

 

     To make our various points, a reference exhaustively known image interpreted as 

crack  distribution is sampled, and is given for reconstruction to the well established 

algorithm of sequential Gaussian simulation (GSLIB program sgsim, in Deutsch and 

Journel, 1998), then to a newly developed mps algorithm (program filtersim, in Zhang, 

Switzer and Journel, 2005). The ideal inference condition is considered for application of 

the sgsim algorithm, that is, the exhaustive reference variogram model and a 

representative data histogram is made available. As for filtersim, a range of training 

images is considered, from a maximum entropy Ti to a low entropy Ti, the latter 

reflecting an excellent prior knowledge of the crack structure. Both sgsim and filtersim 

algorithms are conditioned to the same sparse data set. The results are compared as 

simulated realizations and as estimated maps (E-type averages of many simulated 

realizations).  The filtersim results based on a maximum entropy Ti reproduce that Ti 

covariance as well as sgsim realizations would reproduce the same covariance, but with a 

definite advantage in processing speed (CPU). However, if there is any prior inkling of 

the existence of cracks, mps with a corresponding crack-type Ti, no matter how poor that 

Ti, would do better than the traditional sgsim approach.  

    The E-type average of filtersim realizations compare favorably with direct kriging 

estimates, particularly when these realizations capitalize on the additional structural 

information delivered by an appropriate Ti. Therefore and provided a representative Ti is 

available, mp simulation would outperform the traditional covariance-based approaches 

both in terms of simulation (reproduction of structures) and estimation (local accuracy). 

 Interpreting the crack image as a permeability distribution, a water flood flow 
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experiment is applied to the various simulated realizations generated. It is shown that for 

some well configurations the maximum entropy of sgsim realizations does not matter as 

long as the histogram (single-point statistic) of the reference image is correctly 

reproduced. However, for other well configurations, it is critical that the crack-type 

structure be reproduced with its fast flow conduits. 

 

THE REFERENCE IMAGE 

 

A soil crack image was selected from the published literature of computer sciences and                                    

image analysis                                                                                                              

(www.vision.ee.ethz.ch/~rpaget/nonparaMRFfastContents_Xu_Zhu_Shum_Guo.htm) 

The original image gray scale was converted through a rank-preserving transform into a 

scale that could represent a permeability distribution with the cracks providing the high 

values tail. The resulting image could be seen as depicting a distribution of low entropy, 

well structured, high permeability flow paths (the cracks) within a high entropy 

amorphous background. Figure 1 gives that reference image, its statistics, and the 

location of 50 samples taken at random yet whose set reproduces reasonably the 

exhaustive reference histogram. Figure 2 gives the exhaustive variograms calculated from 

the original (Z) values and their normal score transform along the two principal directions 

of anisotropy, NS and EW. These variograms were fitted by an anisotropic exponential 

model with a small nugget effect. This reference exponential model is made accessible to 

the task of reconstruction using the sequential Gaussian algorithm and program sgsim. 

This corresponds to an extremely favorable application condition; indeed, the 
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experimental variograms calculated from the  50 data (not given here) were too noisy to 

allow any interpretation, a fact not uncommon in practice. 

 

THE GAUSSIAN APPROACH TO SIMULATION 

 

     The traditional route to simulation of a continuous variable would call for the sgsim 

algorithm, which ensures reproduction of the data values at their locations, the data 

histogram and the input normal score variogram model. Beyond the variogram and 

histogram input the sgsim algorithm uses its own prior structural model, that is, its own 

set of multiple-point (mp) statistics. No simulation or estimation algorithm can operate 

without an mp structural model linking all data and all unknowns together, not only pair 

wise but all together jointly. In the case of sgsim, that model is multivariate Gaussian, a 

model that imposes maximum entropy that is maximum randomness beyond the input 

variogram and data histogram. Maximum entropy, far from being a no-model or a safe 

non-committing model (Journel and Deutsch, 1993), corresponds to a very particular 

training image, one that displays no pattern as exemplified by any non-conditional sgsim 

realization reproducing only the variogram input, see Figure 3.  Of the six equally 

probable realizations shown in that figure, the upper right one was retained as a high 

entropy training image for multiple-point simulation (mps) using the filtersim algorithm. 

That particular realization was chosen because it provides an excellent reproduction of 

the 50 data histogram and the input variogram model (check figure not given here).  

     Figure 4 gives six conditional sgsim realizations. These represent the very best one 

could get from a Gaussian-based algorithm, in that these realizations identify the 50 data 
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values at their locations and reproduce well the data histogram and the input reference 

variogram, see the leftmost column of Figure 9. Yet, none of these sgsim realizations 

could be considered a fair reproduction of the reference image of Figure 1. The limitation 

is not in the implementation of the sgsim algorithm or in the input variogram model, it is 

in the inappropriateness of the training image implicit to the sgsim Gaussian model: that 

training image (anyone of Figure 3) fails to render the patterns present in the reference 

image of Figure 1. 

 

THE mps APPROACH 

 

     If prior information exists about the type of structures to be reconstructed, that 

information should be used to improve on the random appearance of the realizations of 

either Figure 3 or 4. Multiple-point simulation (mps) algorithms use such prior 

information as delivered by training images. Consider three such different Tis:  

• The first Ti is precisely the maximum entropy sgsim non-conditional realization 

given in the upper right of Figure 3, reproduced in the upper right of Figure 5. The 

idea here is to compare the performance of mps and sgsim algorithms under the same 

Ti, that used implicitly by sgsim. 

• The second Ti provides a low entropy excellent depiction of the reference image 

structures. It was generated as a non-conditional realization of an mps algorithm 

using for Ti the reference image itself, see the upper left image of Figure 5. 

• The third Ti was generated as a mixture of the two previous Tis, where at each 

location the z-value is taken from one or the other Ti depending on a spatially 
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distributed simulated indicator variable shown in the middle upper row of Figure 5. 

That medium entropy Ti is shown at the bottom of Figure 5; it could represent a 

structural model built from an imperfect prior knowledge of the type of cracks to be 

reproduced.  

   All three Tis share approximately the reference image histogram and variogram (check 

figures not given here). These Tis are only structural models, and as such they need not 

have any local accuracy: none honor any of the 50 data values. The task of any stochastic 

simulation, and for that matter of any estimation algorithm, is to produce maps which fill-

in the voids between the local conditioning data. Estimation, however, is not required to 

reproduce the structural model used in the interpolation process. 

      A case can be made here for the construction of a digital catalog of “basic” training 

images from which to retrieve or build up any specific Ti reflecting one’s prior vision of 

the structures deemed to prevail over the study field. Linear transforms, such as rotations 

followed by affinity (Caers and Zhang, 2004), and combination of these basic Tis as done 

in Figure 5, would make that catalog far reaching.  

 

The filtersim algorithm 

  

      The specific mps algorithm used for this demonstration is filtersim (Zhang, Switzer 

and Journel, 2005). In a nutshell, the filtersim algorithm starts by decomposing any 

training pattern into a few (6 to 9) linear filter scores which are weighted averages of the 

Ti z-values over moving windows of a specific template size. These Ti patterns are then 

classified in their multidimensional filter score space; the classification aims at 
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regrouping similar patterns, where similarity is defined by a specific distance measure. 

That classification is done only once per Ti, prior to the actual simulation process. 

Sequential simulation then proceeds along a random path visiting the unsampled grid 

locations: at each node the conditioning data event available within that node 

neighborhood template is related to the training class closest to it according to the 

previous distance; a training pattern is drawn from that class and patched onto the 

simulation grid. The inner part of that patch is frozen not to be re-simulated, but all patch 

values contribute as data values to define distances to training classes. Hard data 

conditioning is obtained by freezing the corresponding grid node values never to be 

changed during the course of simulation; these hard data contribute preferentially to the 

similarity distances thus ensuring that no training pattern would be retained if it creates 

discontinuities. 

      One could see the training part of filtersim as taking a training image, cutting it into 

puzzle pieces, and then classifying similar pieces into different piles. Simulation proceeds 

like a puzzle reconstruction by a sequence of digs into the appropriate pile, the pile that 

matches best the neighboring puzzle pieces already laid on the image, then patching the 

new piece onto the image being built. The piles never get exhausted because any piece 

taken out is immediately replaced by an identical one. 

      From a probabilistic angle, one could see these piles or classes of similar patterns as a 

distribution of multiple-point patterns built from the Ti. Simulation consists first of 

retrieving whatever conditioning data informs the local neighborhood to be simulated, 

then searching for the class matching best these data, last drawing a pattern from that 

class or conditional distribution.  
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     Note that filtersim simulates patterns from pattern data; this is as opposed to the 

original mps algorithm, snesim, introduced by Strebelle (2000, 2002), which simulates 

single point values from pattern data. Also as opposed to snesim, the filtersim algorithm 

is not limited to simulation of categorical variables, it can handle continuous variables: its 

coding does not require large RAM memory because of the dimension reduction brought 

by the reduction of any mp pattern to a few filter scores. In many regards, filtersim is 

closer to the simpat algorithm (Arpat and Caers, 2005) which also patches patterns 

conditional to pattern data with, however, one major difference: simpat does not perform 

any prior classification and it looks for the single pattern most similar to the conditioning 

mp data. 

 

FILTERSIM SIMULATION RESULTS 

 

High entropy training image 

 

    The mps filtersim algorithm was applied first using for Ti the non-conditional sgsim 

realization shown in the upper right of either Figure 5 or 6. The resulting filtersim 

conditional simulations shown in Figure 6 reproduce the maximum entropy character 

(lack of well structured patterns) of the conditional sgsim realizations of Figure 4. Notice, 

however, the discontinuities due to the frozen inner part of the training patterns patched 

onto the simulation. Their occurrence can be reduced by reducing the size of the inner 

patch when transferring a Ti pattern onto the image being built, all the way down to a 
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patch limited to a single point; the cost is greater CPU but also poorer reproduction of the 

Ti patterns. These discontinuities do not affect, however, reproduction of the target 

statistics which are the 50 data histogram and the Ti variogram, as shown in the second 

column of Figure 9.  

   RAM-wise filtersim is no more demanding than sgsim. CPU-wise, although the 

filtersim code used here is still experimental (coded in Matlab), it has the potential to be 

much faster than sgsim for it does not call for any kriging system construction and 

solution; at each node it requires only a data search (as does sgsim) then a distance 

calculation to find the closest class. The cost associated to that search can be considerably 

reduced if there are few classes and these classes are well ordered in a tree structure. The 

prior task of classification of training patterns is common to all filtersim realizations, and 

could be fully discounted if such classification is already part of the Ti catalog. 

 

Medium entropy training image 

 

   The filtersim algorithm was then applied using the second Ti shown at the bottom of 

Figure 5. That Ti is a mixture of high and low entropy structures. The five filtersim 

conditional realizations shown in Figure 7 indicate that the mps algorithm has succeeded 

to reproduce the style of variability and patterns depicted by the training image used. The 

target statistics, data histogram and Ti variogram, are tightly reproduced, see the third 

column of Figure 9.  

   Although this simulation exercise has been built such that all Tis used share 

approximately the same histogram (that of the 50 conditioning data) and the same 
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variogram model, the control of any higher order statistics is beyond the realm of sgsim. 

The sgsim realizations of Figure 4 fail to reproduce the structures of the reference image 

of Figure 1 even though they reproduce well its histogram and variogram. Even with a 

poor Ti, but one that indicates presence of cracks, the filtersim realizations of Figure 7 

fare much better. That visual evidence is later backed quantitatively in Figure 10. 

 

Low entropy training image 

 

   If the training image depicts correctly the structures present in the reference image, as 

does the third Ti shown at the upper left of Figure 5 and repeated at the upper right of 

Figure 8, the resulting conditional filtersim realizations are excellent, except again for 

some local discontinuities. Figure 9 (last column) shows that the 50 data histogram and 

Ti variogram are tightly reproduced by the filtersim realizations. 

 

Multiple-point connectivity comparison 

 

    To back the preceding visual comparisons, a specific measure of spatial connectivity 

was calculated on the reference image and its reproduction checked on the various 

simulations. That measure is the multiple-point rectilinear connectivity proposed by 

Krishnan and Journel (2003). It is the proportion of rectilinear strings of n contiguous 

pixels or nodes all valued above a given threshold; that proportion is standardized to be 1 

for n=1 and decreases as n increases along the particular direction considered, see Figure 

10. The greater these successive proportions, the higher in the graph lies the connectivity 
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function indicating a better alignment in space (lower entropy) of values higher than the 

threshold considered.  

     Figure 10 gives the NS rectilinear connectivity measure of the four sets of simulated 

realizations, one set for sgsim at the far left, and the three sets for filtersim, one for each 

different Ti used. These simulated connectivity measures are all compared to the 

reference connectivity curve calculated from the reference image of Figure 1; they are 

also compared to the connectivity curve of the Ti used. All realizations simulated with 

sgsim underestimate the reference connectivity; this is a consequence of their maximum 

entropy characteristic or maximum disorder beyond the 2-point statistics controlled by 

the input covariance model. As expected, the filtersim realizations using the correct low 

entropy Ti reproduce best the reference connectivity. Any set of realizations, whether 

originating from sgsim or filtersim, brackets well the connectivity curve of its respective 

Ti; this latter curve is not seen because it is buried within the corresponding cloud of 

realizations in Figure 10. 

  

Flow experiment results 

 

 To evaluate the impact of the crack pattern reproduction, a water flood experiment was 

conducted interpreting the reference image as a permeability distribution; see Figure 11 

and Table 1 for the specifics of the flow simulation performed. 

 Figure 12 gives the oil production rates and water concentrations vs. time calculated 

from the 30 sgsim-simulated fields. Figure 13 gives the same results for 30 filtersim- 

simulated fields using the crack-revealing Ti of Figure 8. These oil/water recovery curves 
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are compared to the reference curves obtained from the reference image of Figure 1. 

Somewhat surprisingly the high entropy models provided by sgsim bracket correctly the 

reference recoveries; there appears no bias induced by the absence of cracks (high 

permeability conduits) in the sgsim images. One possible explanation is that the reference 

high permeability cracks are all over the place with no preferential direction or cluster, a 

form of high entropy. The central location of the producer combined with the high 

mobility ratio allows an even sweep of the evenly distributed oil in place associated to the 

assumed constant porosity. However, had we considered the same 5 wells pattern but 

with 4 corner producers instead of a single central producer, the scores of the sgsim 

models would not have been so good. In any case, Figure 13 indicates that the filtersim-

based recovery predictions are equally unbiased but they bracket more narrowly the 

reference curves. 

 This apparently inconclusive flow experiment recalls us that two images can be similar 

for some global mp statistics (flow recovery values are examples of such statistics), and 

dissimilar for others. Our visual appreciation of the global difference or similarity of two 

images is based implicitly on many such global mp statistics, and from one person to 

another the particular statistics retained may be different. The accuracy of an estimated or 

simulated map depends on what that map or numerical model is going to be used for, and 

the human eye at times can be a poor referee. 
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E-TYPE AVERAGES AS LOCAL ESTIMATES 

 

     Since all realizations of a given set of simulated values are equally probable, their 

point wise average provides the conditional expected value map, also called E-type 

estimated map. Each value of that E-type map can be seen as a least-squared error 

estimate of the corresponding unsampled value. The four E-type maps derived from the 

four sets of simulated values, one for sgsim and three for filtersim, allows evaluating the 

contribution of a specific Ti to local estimation. 

     Recall that in an estimation mode local accuracy is needed, as characterized for 

example by an estimation variance. In a simulation mode it is reproduction of the 

structural model which is sought, whether that structural model is a variogram or a 

training image.   

     Figure 14 gives the four E-type estimated maps with the corresponding four error 

histograms. That error is the difference between the E-type estimated value and the 

reference value at any one of the 40,000 nodes of the reference field. The estimation 

variance is but the variance of the error histogram. The more centered on zero (no bias) 

and the less spread the error histogram, the more locally accurate the estimation 

algorithm. 

    Figure 14 indicates that the better the Ti the better the estimation, both in terms of bias 

and error variance. As expected, the filtersim E-type using the high entropy sgsim-

generated Ti has scores close to that of the sgsim E-type. The filtersim E-type using the 

best Ti provides the best estimation scores: utilizing the correct multiple-point statistics 

as delivered by an appropriate Ti not only delivers the best simulation but also the best 
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LS estimate. In hindsight this is not surprising because both simulation and estimation 

build on structural information (variogram or Ti) in addition to local data; refer to the 

dual interpretation of kriging as fitting pieces of a surface or polynomial to the data, thus 

the more relevant these pieces the more accurate the final surface. Note however that the 

error histograms do not render full justice to the better E-type map delivered by filtersim 

with the correct Ti: this is because error histograms are but single-point statistics which 

cannot acknowledge reproduction of the few crack fragments seen on the low entropy 

estimation map. 

 

CONCLUSIONS AND DISCUSSION 

 

     Least squares algorithms, whether called regression or kriging, became practical in the 

earth sciences with the advent of computers which allowed sifting through large amount 

of data, setting up and solving the many required systems of linear equations. Stochastic 

simulations rapidly followed suit. Running tens of realizations of numerical models with 

millions of pixels or voxels are now common practice on mere desktop computers. Yet, 

the theoretical algorithms underlying kriging or stochastic simulation, and for that matter 

most of geostatistics, are still anchored on 19th Century analytical models established at a 

time when all applications had to be developed “by hand”.  

     The multivariate Gaussian model is one such example: prior to computers one could 

not dream getting from data more than a mean and a covariance matrix, hence the unique 

properties of the Gaussian model were critically convenient since these few statistics 

define fully all regressions (linear) and all conditional distributions (Gaussian). Simply 
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said, no practical application was possible outside that Gaussian framework, the 

convenience of that model took precedence over what the data may say. The infamous 

Central Limit theorems, maximum entropy principle and other Okham razors gave a 

veneer of theoretical justification to a model which is only remarkable for its concision 

thus convenience. 

     All medals carry two faces, no convenience come free of limitations. In a time of 

massive computing power, there is no more justification to accept blindly the limitations 

associated to the Gaussian model and its clones. Data can now speak for themselves. 

 

    Corollary to the Gaussian model is the continued reliance on two-point or bivariate 

statistics and the belief that these may suffice. Indeed, a kriging system or direct 

sequential simulation (Journel, 1993) need not call for any Gaussian model, but they also 

deliver remarkably little. In the case of kriging, one gets only an estimate and an 

estimation variance, not any error distribution, hence no possibility to derive confidence 

intervals. The case of simulation is even more severe and revealing, since there cannot be 

any simulation without a multivariate distribution model, a model that links the data to 

the values being simulated and the simulated values together. That multivariate or multi-

point (mp) model is typically not specified explicitly, it is in-built in the simulation 

algorithm used. Those undisclosed statistics are outside any control from either the 

operator or the data. The question is which arbitrariness is preferable, accept blindly the 

mp model in-built into the algorithm or try one’s own mp model. We suggest that in most 

applications prior information does exist which allows building prior mp models more 

relevant to the phenomenon under study than the traditional assemblage “two-point 
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statistics + maximum entropy model”. A training image is one vehicle to carry such prior 

mp models into the simulation algorithm. If that prior mp model is uncertain, alternative 

Tis could easily be considered. Our present computing ability allows trying many such 

prior models, there is no more reason to remain constrained by Gaussian-related models 

with their characteristic lack of spatial patterns. Analytical convenience is, no more, 

enough justification for accepting unrealistic looking simulated realizations that do not 

reflect prior knowledge about structures and patterns. 

    The crack case study presented in this paper demonstrates the flexibility of the training 

image-based multiple-point simulation (mps) approach. If indeed the image to 

reconstitute is deemed structure-free beyond an input variogram model, then a Gaussian-

based simulation algorithm such as sgsim is relevant, but so would be a mps with a high 

entropy training image; this latter alternative actually allows a tighter reproduction of the 

target statistics (histogram and variogram) and is more efficient CPU wise. If there is any 

prior knowledge about existence of specific structures, the mps alternative offers the 

flexibility to account for such information: it suffices to draw a training image reflecting 

that structural information (no local accuracy needed), and let mps anchor that Ti to the 

actual conditioning data. Sensitivity analysis to alternative Tis is immediate, there is no 

need to change anything in the mps algorithm, just replace the Ti by another one and run 

again; with proper coding such runs should be CPU-fast and RAM-reasonable. The 

medium entropy Ti example considered in this paper indicates that even a poor training 

image, but one that has a minimum structural semblance with the actual phenomenon, 

would improve considerably the simulations. A severely wrong Ti would, of course, lead 

to non-representative simulated images, but so would a maximum entropy Ti if equally 
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inappropriate. As earth scientists, we believe that maximum entropy (little or no spatial 

organization) models are a priori inappropriate; they should not be default models. 

     Our belief that structures or patterns matter should be mitigated by the flow simulation 

results presented: visually very different images may share (approximately) the same 

specific global statistics, a histogram, a variogram or a water rate curve as do the sgsim 

and filtersim realizations shown in this study.   

    An important result, not yet documented in the literature, is the finding that mps has 

the potential to improve estimation in addition to simulation. The point wise E-type 

average of simulated realizations carries the multiple-point structural information of the 

Ti used; if that Ti is appropriate, the E-type average value at each node, taken as a local 

estimated value, equals kriging in the very error variance that kriging aims at minimizing 

and outperforms kriging in reproducing multiple-point structures where there are enough 

data to reveal them. There is no theoretical contradiction nor should this come as a 

surprise, since mps and thus its E-type average amount to fit a multiple-point covariance 

(actually a mp pattern) to the data, whereas kriging (seen under its dual version) is limited 

to fitting 2-point covariance models. The additional structural information used by mps, if 

relevant, leads to not only better simulation but also more accurate estimated maps. Of 

course, with mps one runs into the risk of using a totally wrong Ti; whether this could 

lead to much worse prediction results than a wrong but amorphous maximum entropy Ti 

depends on the application considered. 

     As for the common criticism about training images being difficult to get and carrying 

too subjective information it can be easily dismissed in view of the equally common 

difficulty in obtaining informative experimental variograms and the equally subjective, 



- 20 - 

albeit rarely stated, assumption of maximum entropy beyond the uncertain variogram 

model. 
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Figure 1: Reference crack training image, 50 hard data and their histogram 
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Figure 2: Reference variograms and their models fit, 

in Z-space (left column) and in normal score space (right column); 

upper plots are EW, lower plots are NS. 
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Figure 3: Six non-conditional sgsim realizations; the top right realization is taken as 

the high entropy training image 

 

 

 

High entropy Ti 
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Figure 4: Six conditional sgsim realizations 
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Figure5: Mixture training image obtained by combining low and high entropy 

images with a simulated indicator field 
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Figure 6: Six conditional filtersim simulations, 

using the high entropy training image given at right top 

 

 

High entropy Ti 
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Mixture Ti 

     

 

 

     

 

Figure 7: Six conditional filtersim simulations, 

using the mixture training image given at right top 
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Low entropy Ti 

     

 

     

 

Figure 8: Six conditional filtersim simulations, 

using the low entropy training image given at right top 
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Figure 9: Reproduction of histograms (Q-Q plots) and NS variograms 

HET: high entropy Ti, MET: mixture Ti, LET: low entropy Ti 

sgsim: sequential Gaussian simulation,      FS: filtersim simulation 

 

 

 

      Cond. sgsim vs. data       Cond. HET. vs. data     Cond. MET. Vs. data       Cond. LET. Vs. 
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Figure 10: Reproduction of NS rectilinear connectivity (dots: reference image) 

 

• Field dimension:  200x200x1 

• Block size 15 ft x 15 ft x 500 ft 

• Layer top depth: 8000 ft 

• Constant porosity 20% 

• 2 phases: oil/water 

• Oil-water contact OWC:  10000 ft 

• 4 injectors at corners + 1 producer at the center of the field 

• Flow rate constraint for each injector: 15000 STB/day 

• Flow rate constraint 50000 STB/day first 

Followed by 1000 PSI BHP constraint for producer 

 

Table 1: Reservoir properties for flow simulation 
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Figure 11: Example of water saturation distribution at 3 different time steps 

(4 corner injectors, 1 central producer; flow simulation run 1000 days) 
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Figure 12: Oil production rate and water cut from 30 sgsim realizations 

(thick curve: reference field) 

 

 

 

Figure 13: Oil production rate and water cut from 30 low entropy filtersim 

realizations   (thick curve: reference field) 
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Figure 14: E-type estimated maps and histograms of point-wise estimation errors 
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