
Hindawi Publishing Corporation
Journal of Robotics
Volume 2011, Article ID 679875, 6 pages
doi:10.1155/2011/679875

Research Article

The Need for High-Fidelity Robotics Sensor Models

Phillip J. Durst,1 Christopher Goodin,1 Burhman Q. Gates,1

Christopher L. Cummins,1 Burney McKinley,1 Jody D. Priddy,1

Peter Rander,2 and Brett Browning2

1 Mobility Systems Branch, Geotechnical and Structures Laboratory, US Army Engineer Research and Development Center,
3909 Halls Ferry Road, Vicksburg, MS 39180, USA

2 National Robotics Engineer Center, Carnegie Mellon University, Ten 40th street, Pittsburgh, PA 15201, USA

Correspondence should be addressed to Phillip J. Durst, phillip.j.durst@usace.army.mil

Received 11 January 2011; Accepted 7 September 2011

Academic Editor: Lyle N. Long

Copyright © 2011 Phillip J. Durst et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Simulations provide a safe, controlled setting for testing and are therefore ideal for rapidly developing and testing autonomous
mobile robot behaviors. However, algorithms for mobile robots are notorious for transitioning poorly from simulations to fielded
platforms. The difficulty can in part be attributed to the use of simplistic sensor models that do not recreate important phenomena
that affect autonomous navigation. The differences between the output of simple sensor models and true sensors are highlighted
using results from a field test exercise with the National Robotics Engineering Center’s Crusher vehicle. The Crusher was manually
driven through an area consisting of a mix of small vegetation, rocks, and hay bales. LIDAR sensor data was collected along the
path traveled and used to construct a model of the area. LIDAR data were simulated using a simple point-intersection model for
a second, independent path. Cost maps were generated by the Crusher autonomy system using both the real-world and simulated
sensor data. The comparison of these cost maps shows consistencies on most solid, large geometry surfaces such as the ground,
but discrepancies around vegetation indicate that higher fidelity models are required to truly capture the complex interactions of
the sensors with complex objects.

1. Introduction

As sensors are the medium through which mobile robots
observe their environments, it seems only intuitive that
mobile robot simulations should strive to model sensors
to the highest level of fidelity. However, modeling sensors
using first principles is a difficult and time-intensive task, so
most simulations make use of simplified, and often idealized,
methods to reproduce sensor outputs. While some effort
has been given to quantifying the gap between simulation
and reality for mobile robots, no work has been done
specifically to address the shortcomings of these simplified
sensor models. Furthermore, much of the research that does
exist is outdated, with very little recent research available
addressing the issue. In this paper, we focus on the most
popular of UGV sensors for off-road environments, light
detection and ranging (LIDAR) sensors. Section 2 provides
an overview of the published work related to the gap between
simulations and field experiments.

A survey of mobile robotics today shows that LIDAR sen-
sors are one of the most popular solutions to the autonomous
navigation problem. Most simulations make use of surface
models (e.g., a triangle mesh) to represent geometry, and
then use either a simple point-intersection model [1] or a
Z-buffer technique [2] for generating LIDAR outputs. In the
case of the point-intersection model, ray casting is used to
project an infinitesimally thin line from the sensor into the
scene, and the facet within the scene that the line intersects
is taken to be the output range of the LIDAR sensor. The Z-
buffer technique works in the opposite direction, determin-
ing the closest facet within the field of view of each pixel.
Both of these approaches represent the LIDAR in its idealized
form, always detecting the presence of any shape, without
any noise. In some cases, this range is corrupted using
empirically derived noise (typically Gaussian) before being
output to the autonomy system [3]. However, this additive
noise accounts for the stochasticity of real data in a simplistic
way and does not fully capture the true statistics, which
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Figure 1: The range histogram showing the variation in range re-
turns for vegetation and a fitted Gaussian distribution. Data was
collected from a stationary velodyne aimed at a small bush and ex-
tracting the ranges from a single laser for a specific angular reading.

are scene dependent and may show significant intrascan
correlations. Figure 1 shows an example histogram of range
returns for a single laser (from a velodyne) aimed at a small
bush. Unlike smooth planes, where range estimates have
Gaussian-like noise, this histogram is clearly non-Gaussian.
The resulting distribution is much more complex due to the
many boundaries present in the scene [4].

To show the shortcomings of the point-intersection
LIDAR model, which is considered the more accurate of the
two, a point-intersection LIDAR model was created for the
presented study, and details about this model are given in
Section 3.

To provide evidence supporting this assertion, data from
an experiment with the National Robotics Engineering Cen-
ter’s Crusher unmanned ground vehicle (UGV) are presented
[5]. The Crusher collected LIDAR data from a short pass
through a simple outdoor scene containing some vegetation,
three hay bales, and a boulder. The same scene was generated
in simulation, and the LIDAR sensor model was simulated
moving along the same path as the Crusher’s LIDAR sensors.
The accuracy of the simulated LIDAR was tested by observing
its effect on the Crusher’s autonomy system.

One common approach to autonomous navigation, as
used on the Crusher system [5], is to plan optimal paths that
are efficient and safe trajectories across the ground surface.
A cost map is used to represent mobility cost for the terrain,
where higher cost represents areas that present a safety risk
to the vehicle (e.g., a protruding rock or a ditch). Crusher’s
autonomy system builds a mobility cost map from sensor
data by reasoning about positive obstacles (vegetation, rocks,
etc.) and the ground surface. The system explicitly reasons
about vegetation, which often appears “porous” with LIDAR
measurements, and estimates hidden ground surfaces that
may be occluded.

Using the resulting cost map, the vehicle moves along
an optimal path, which can be found using path planning
algorithms like those in [6]. Therefore, the cost map provides
a convenient way to evaluate the impact of simulated sensor

data on the autonomy system. We can use the autonomy
system with real sensor data captured in the field to build
a cost map and compare it to the same autonomy system
running on simulated sensor data from a model of the
same area. If the two cost maps are identical, or nearly so,
then the simulated sensor outputs can be trusted for use in
simulations of the Crusher UGV. Section 4 provides such a
comparison and shows that for complex and outdoor envi-
ronments simple LIDAR models are only marginally useful
for developing autonomy algorithms for mobile robots.

2. Related Work

A search of the literature reveals that the gap between
autonomous robot simulations and experiments has received
little consideration. There are a few sources, though, that
document the failure of simple simulations to accurately
predict robot behaviors. In their research with Nomad 200
and sonar sensors, Lee et al. found that “simulation results
can only be transferred to real robot controls in very simple
cases” [7]. A similar conclusion was reached by Brooks, who
found that “programs which work well on simulated robots
will completely fail on real robots because of the differences
in real-world sensing and actuation” [8]. Gat [9] compared
simulation and field tests of a Rocky 3.2 mobile robot
operating at low speeds in a small, simple environment. The
robot’s behavior in simulation was nearly identical to its
behavior in the field. This agreement is likely due to the
simplicity of the scene, and it held when robot failures, which
the simulator could not accurately model, were ignored.

More recent research by Nehmzow [10, 11] delves more
deeply into the disparity between simulations and experi-
ments. His research found that “a fundamental difference
exists between a physical mobile robot and its simulation.”
Through a quantitative analysis of the divergence between
mobile robots and their simulations, he concluded that “a
simple generic model of robot sensors and actuators is
insufficient to model a mobile robot faithfully.”

Of course, most of these papers describe research that is
over a decade old. During that time, almost no research has
been published specifically addressing the simulation-reality
gap.

With the rapid advancement in desktop computing
power, robotics simulators have become much more accu-
rate and robust. The simplified approach used by today’s
simulations often return results that are accurate to within
allowable error for environments with large solid surfaces
when compared to LIDAR beam width, such as with indoor
environments. For example, the work in [12] quantitatively
compared simulation and real-world results with favorable
results. However, as our experiments below reveal, for
outdoor terrains with vegetation, the pitfalls remain. We
argue that this is primarily due to the presence of vegetation,
which with its comparatively small geometries (e.g., leaves,
grass) results in many LIDAR returns that exhibit boundary
effects. We expect that when one considers the full richness
of outdoor environments, where mud, water puddles, surface
dew, atmospheric particulates, and other complexities are
common, the simulation accuracy deteriorates further.
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Figure 2: The test site at Ft. Drum, NY, where the data for this
experiment were taken.

Figure 3: Sceen capture of the simulated scene mesh corresponding
to part of the area shown in Figure 1.

3. Crusher Experiment

3.1. Scene Generation. For this experiment, the Crusher
made several passes across a parking apron at Fort Drum,
New York. The test area (Figure 2) contained various objects,
including some vegetation, three hay bales, and a large
boulder. The test environment was set up to include a variety
of obstacles in an attempt to include objects that would
result in a wide range of costs in the navigation cost map.
The Crusher was driven, via teleoperation, to the center of
the test site from six different starting positions, and LIDAR
data were used to generate cost maps. LIDAR data collected
by the Crusher’s four forward-facing SICK LMS LIDAR
sensors from five of the six test runs were used to create the
simulation scene. The LIDAR point cloud data from these
passes were used to create a triangular mesh, an example of
which is show in Figure 3.

The size, location, and orientation of the boulder, hay
bales, and vegetation were determined through segmentation
of the LIDAR data gathered by the Crusher’s sensors. Rep-
resentative meshes were used for the vegetation, hay bales,
and boulder. These meshes were scaled and oriented using
the values from the segmentation process. The vegetation
models were not chosen to match the species of the real
vegetation; instead, a model of a small creosote plant was
substituted for vegetation higher than 18 cm. A model of
grass was substituted for shorter vegetation.

Simulated LADAR

Figure 4: Overhead view of the simulated scene and simulated
LIDAR point cloud data for the four forward-facing LIDAR sensors
and the path traveled by the sensors. Points for each sensor are
colored differently and the ground surface is colored in red (best
viewed in color).

3.2. LIDAR Model. The Crusher has eight SICK LMS 291-
S14 scanning LIDAR sensors [13]. The SICK LMS 291-S14
is a time of flight LIDAR, meaning it uses the time between
laser beam emission and received reflection to calculate the
distance to objects. For use on the Crusher, these LIDAR
sensors were set to take sweeps over a 90-degree range at
a resolution of 0.5 degrees for a total of 181 angle-range data
points. The distance from the sensor to any objects encoun-
tered at each 0.5 degree angular spacing for each sweep is
recorded on the Crusher and passed to the autonomy system.
The autonomy system then uses these angle-range data to
make a geometric model of the world captured as a cost
map [5]. For this experiment, the four forward-facing LIDAR
sensors were simulated using the point-intersection model
described below.

The LIDAR model developed for this study was similar to
that found in [14, 15]. It was a pencil ray point-intersection
model that relied on ray tracing techniques. The advantage of
this type of model and the main reason for its prevalence is
that it is not computationally intensive and can run in real
time. For each laser cast by the LIDAR at each 0.5 degree
angular spacing, a single ray was cast from the sensor into
the scene. The first intersection between each ray and a facet
within the scene was recorded, and this distance was taken
to be the sensor’s output range. Figure 4 shows an overhead
view of the simulation scene, the path traveled by the Crusher
in simulation, and the LIDAR points generated by the four
forward-facing LIDAR sensors using the point-intersection
sensor model. Figure 5 shows the simulated LIDAR points
for one scan of the two right-facing LIDAR sensors.

The obvious drawback of this model is that is does not
take into account any physical effects, such as dispersion
of the laser beam and possible second-order interactions
between the beam and the environment. While this sim-
plification does not have a major impact on simulation
validity for small-scale, indoor robotics applications, it has
not been tested for complex and outdoor environments. To
test the accuracy of this simplified LIDAR sensor model for
such environments, the poses of the Crusher’s four forward-
facing LIDAR sensors were recorded by the Crusher during
each teleoperated pass through the test site. For each pose
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Figure 5: Side view of the simulated scene (see Figure 4 for color
scheme details).
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Figure 6: Cost map generated by the Crusher during field testing
for the region shown in Figure 4. Plotted is the log of the cost
associated with each (x, y) position within the scene. The large light
blue areas are the high-cost regions created by ground occlusion.

logged during one of the passes, simulated LIDAR data
were generated for the forward-facing sensors. The simulated
LIDAR data were then used as input for the Crusher’s
autonomy system, and a cost map was generated. The cost
map generated using the simulation data was then compared
to the cost map generated by the LIDAR data collected in the
field, and the results of this comparison are presented in the
following section.

4. Results

The LIDAR data generated in simulation was used to gener-
ate a cost map, and this simulated cost map was compared to
the one generated by the Crusher during the on site testing.
A comparison of these two cost maps can be used to show
the relative accuracy of the simulated sensor for predicting
the choices the autonomy system would have made. Figure 6
is the cost map generated by the Crusher during field testing.
Higher numbers/brighter colors represent obstacles or areas
of higher perceived cost. The main areas of cost can be
associated with the objects placed within the scene, namely,
the boulder and hay bales. However, two areas of high-cost
can be seen in the area behind the vegetation. These high
cost areas correspond to areas where the ground surface
that were occluded by the vegetation. As such, the ground
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Figure 7: Cost map generated using the simulated LIDAR data. The
cost of the vegetation is the same as the cost generated using real
data, but the area of cost associated with the vegetation is smaller by
roughly 75%.

−0.5–0

−1–−0.5

−1.5–−1

−2–−1.5

4.5–5

4–4.5

3.5–4

3–3.5

2.5–3

2–2.5

1.5–2

1–1.5

0.5–1

0–0.5

Figure 8: Plot showing the difference between the two cost maps,
simulated cost-real cost, at each (x, y) point in the scene. The major
disparity between the two cost maps in the regions behind the vege-
tation is clearly visible.

height is inferred, but additional cost is added to reflect
the uncertainty about whether there is a potential unseen
negative hazard in that location.

The Crusher’s LIDAR sensors did not receive any returns
from the region directly behind the vegetation. Because the
laser emitted by the SICK LIDAR is not a perfect infinitesimal
ray but instead is a beam with width that disperses as it
propogates, none of the emitted laser beams penetrated
through the vegetation to the ground behind it.

Figure 7 shows the cost map generated using the sim-
ulated LIDAR data. Again, higher numbers/brighter colors
represent areas of higher cost and therefore greater potential
risk to the UGV. As with the cost map generated using true
LIDAR data, the areas of high cost correlate to the objects
within the scene. However, the simulated cost map does not
contain any areas of high cost behind the vegetation. Figure 8
shows the difference of the two cost maps, simulated cost-real
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cost at each (x, y) location. As is evident there are significant
differences in cost corresponding to the two “hidden” areas
in the real data. The simple point-intersection LIDAR model
was not able to recreate this effect and would therefore not
have been able to accurately predict Crusher’s behavior in
the field.

A second complicating factor is due to the challenges of
modeling vegetation. As a result, the simulation model of
the vegetation is not identical to the real vegetation present
in the scene. These geometric differences have an obvious
impact on the simulated LIDAR beams. Indeed, the challenge
to accurately modeling vegetation on the large scale, suggests
that an alternative approach is required and is something we
will pursue in future work.

Figure 9 shows an object-to-object cost comparison
between the simulated and real cost maps. For rigid objects
with fixed boundaries, namely, the two hay bales and boul-
der, the simulation results are in good agreement with the
ground truth data. For these simple objects, the point-
intersection LIDAR model was adequate. On the other hand,
the two maps are in very poor agreement for the area of
the test site containing vegetation. These types of objects are
not strictly bounded, and the point-intersection model did
not accurately recreate the outputs of a true LIDAR sensor.
These are areas that the Crusher would have tried to avoid in
the field and would have made much less effort to avoid in
the simulation. This type of simplistic LIDAR model could
not be used for the development and testing of algorithms
for mobile robots in outdoor environments, particularly in
highly vegetated areas.

5. Conclusions

The ultimate goal of this effort was to show, through ana-
lysis of LIDAR data and autonomous navigation algorithm
outputs gathered using the NREC’s Crusher UGV, the
limitations of current sensor modeling methodologies for the
simulation of autonomous mobile robots. The simulation
environments being used currently for the development
and testing of autonomy behaviors make use of empiri-
cal/probabilistic sensor models. While these sensor models
may be adequate for robots designed to operate in man-
made environments without vegetation, mud, and other
complexities, they cannot accurately predict robot behaviors
in complex natural environments.

The simple point-intersection LIDAR model did not
recreate the complex beam-world interaction effects seen in
the real-world data in vegetated areas. The cost map gen-
erated in simulation was similar to the cost map generated
in the field for only those obstacles that were geometrically
simple and had well-defined boundaries. In a more densely
vegetated environment, the simulation would certainly have
failed to predict the Crusher’s behavior.

As autonomous mobile robots are used in increasingly
complex environments, the gap between simulation and
reality will become more pronounced. As long as sensor-
environment interactions are generated simplistically, simu-
lations will remain unable to accurately predict autonomous
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Figure 9: Comparison between simulated and actual costs associ-
ated with each object in the scene. On the left is an overhead view
of the scene with each object labeled along with the path the UGV
traveled. The average cost of each object is very similar between the
simulated and ground truth data for the boulder and hay bales, but
the area of high cost seen behind the vegetation generated by the
true LIDAR data was not reproduced in simulation.

robot performance in these environments. The development
of new, high-fidelity sensor models will be critical for the
future development and expansion of robotics into complex,
natural outdoor environments.
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