
In Proceedings of the 2001 International Joint Conference on Neural Networks (IJCNN’01), 115-119.

The Need for Small Learning Rates
on Large Problems

D. Randall Wilson
fonix Corporation

180 West Election Road
Draper, Utah, USA

WilsonR@fonix.com

Tony R. Martinez
Computer Science Department

Brigham Young University
Provo, Utah, USA

martinez@cs.byu.edu

Abstract

In gradient descent learning algorithms such as error back-
propagation, the learning rate parameter can have a
significant effect on generalization accuracy. In particular,
decreasing the learning rate below that which yields the
fastest convergence can significantly improve generalization
accuracy, especially on large, complex problems. The
learning rate also directly affects training speed, but not
necessarily in the way that many people expect. Many
neural network practitioners currently attempt to use the
largest learning rate that still allows for convergence, in
order to improve training speed. However, a learning rate
that is too large can be as slow as a learning rate that is too
small, and a learning rate that is too large or too small can
require orders of magnitude more training time than one that
is in an appropriate range. This paper illustrates how the
learning rate affects training speed and generalization
accuracy, and thus gives guidelines on how to efficiently
select a learning rate that maximizes generalization
accuracy.

1 Introduction

Training a neural network using an algorithm such as error
back-propagation [1,2,3,4] usually requires a lot of time on
large, complex problems. Such algorithms typically have a
learning rate parameter that determines how much the
weights can change in response to an observed error on the
training set. The choice of this learning rate can have a
dramatic effect on generalization accuracy as well as the
speed of training. Almost anyone who has used such
training algorithms has been faced with the problem of
choosing the learning rate, but there is seldom much
guidance on what value to use, since the best value to use
depends on the particular task.

Several algorithms exist for automatically tuning the
learning rate parameter [6, 7, 8], but such methods typically
concentrate on improving the speed of convergence and fail
to focus on generalization accuracy.

Many neural network practitioners currently use the largest
learning rate that allows convergence, in an attempt to speed
up training. However, on large and complex problems, a

learning rate that is too large hurts generalization accuracy
and also slows down training. On the other hand, once the
learning rate is small enough, further reductions in size
waste computational resources without any further
improvement in generalization accuracy.

It should be stated at the outset that this paper assumes the
use of on-line training (where weights are updated after the
presentation of each training instance) rather than batch
training (where weight changes are accumulated and applied
at the end), since batch training requires more training time
than on-line training on most problems of practical interest
without any corresponding improvement in accuracy [5].

This paper shows the typical effect of the size of the
learning rate on training speed and generalization accuracy.
It then shows how to find the learning rate which will yield
the fastest training, and then discusses how to decide when a
learning rate is small enough to yield the maximum
generalization accuracy.

2 The Effect of Learning Rates on Training
Speed and Accuracy

When using a gradient descent learning algorithm, the error
gradient (or an approximation thereof) is calculated at the
current point in weight space, and the weights are changed
in the opposite direction of this gradient in an attempt to
lower the error. However, although the gradient may
indicate what direction the weights should be moved, it does
not specify how far the weights may safely be moved in
that direction before the error quits decreasing and starts
increasing again.

Therefore, a learning rate that is too large often moves too
far in the “correct” direction, resulting in overshooting a
valley or minimum in the error surface, thus hurting
accuracy. Because of this effect, a learning rate that is too
large takes longer to train, because it is continually
overshooting its objective and “unlearning” what it has
learned, thus requiring expensive backtracking or causing
unproductive oscillations. This instability often causes
poor generalization accuracy as well, since the weights can
never settle down enough to move all the way into a
minimum before bouncing back out again.

Figure 1: Training time (in epochs) and maximum hold-out set phoneme generalization accuracy for
each learning rate, on a digit speech recognition task. The bars indicate the number of epochs needed to
reach the maximum generalization accuracy, and the line indicates what the maximum accuracy was for
each learning rate.

Learning Rate

T
ra

in
in

g
T

im
e

(i
n

E
po

ch
s)

0

1000

2000

3000

4000

5000

6000

10
0 50 10 5 1

0.
5

0.
1

0.
05

0.
01

0.
00

5

0.
00

1

0.
00

05

0.
00

01

0.
00

00
5

0.
00

00
1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Epochs

Accuracy

G
en

er
al

iz
at

io
n

A
cc

ur
ac

y

Once the learning rate is small enough to avoid such
overcorrections, it can proceed in a relatively smooth path
through the error landscape, finally settling in a minimum.
Reducing the learning rate further can make this path more
smooth, and doing so can significantly improve
generalization accuracy. However, there comes a point at
which reducing the learning rate any more simply wastes
time, resulting in taking many more steps than necessary to
take the same path to the same minimum.

2.1 Digit Speech Recognition Experiments
In order to illustrate the effect of learning rates on training
speed and generalization accuracy, experiments were run on
a phoneme classification task. A multilayer perceptron
with 130 inputs (plus one bias), 100 hidden nodes, and 178
outputs was trained on 21,085 training instances. The
output class of each instance corresponded to one of 178
context-dependent phoneme categories from a digit
vocabulary. Each context-dependent phoneme belonged to
one of 23 base phoneme classes. For each instance, one of
the 178 outputs had a target of 1, and all other outputs had a
target of 0. The targets of each instance were derived from
hand-labeled phoneme representations of a set of training
utterances.

The neural network was trained using 15 different learning
rates from 100 down to 0.00001. Each neural network
began with random initial weights, and the training
instances were presented in a different random order each
training iteration (or epoch). For all learning rates, the
same random number seeds were used, so the initial weights
and order of presentation of the training instances were
identical.

To measure the accuracy of the trained neural networks, a
hold-out set of 9,306 instances was used. The output node
with the highest activation was chosen as the “winning”
output. The output was considered correct if its context-
dependent phoneme belonged to the same base phoneme as
the target of the instance.

A summary of the results of these experiments is presented
graphically in Figure 1. The bars indicate training time in
epochs (using the scale on the left) before the maximum
generalization accuracy was reached. The overlaid line
indicates the maximum generalization accuracy achieved by
each learning rate. These values are also presented
numerically in Table 1, along with the total number of
epochs tested for each learning rate.

Table 1: Training time (in epochs) and
maximum hold-out set phoneme generalization
accuracy for each learning rate, on a digit
speech recognition task.

100
50
10
5
1

0.5
0.1

0.05
0.01

0.005
0.001

0.0005
0.0001

0.00005
0.00001

3,017
3,282
1,955
4,821
1,817

160
7
9

14
39

242
473

2,252
5,913

18,595

25.63%
24.70%
29.21%
38.66%
56.14%
59.96%
64.86%
66.62%
68.71%
69.04%
69.48%
69.47%
69.43%
69.47%
69.46%

Learning
Rate

Best
Training
Epoch

Maximum
Generalization

Accuracy

5,000
5,000
5,000
5,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
5,000

10,000
30,000

Tested
Training
Epochs

As can be seen from Figure 1 and Table 1, the maximum
generalization accuracy is quite poor for large learning rates,
and improves as the learning rate is reduced to a level of
0.001. Learning rates smaller than this show no
improvement (nor, in fact, any significant difference).

Training time was quite fast for learning rates of 0.1 to
0.005, and reasonably fast from 0.5 to 0.0005. Larger
learning rates, however, took thousands of epochs to reach
their maximum accuracy, which was ultimately poor
anyway. Learning rates smaller than 0.001 took longer and
longer to reach the same accuracy as 0.001, but yielded no
further improvement in accuracy.

Those seeking simply for the learning rate that produces the
fastest convergence would probably settle on a learning rate
of 0.1. However, doing so would yield a generalization
accuracy of only 64.86%, which is significantly lower than
the accuracy of 69.48% achievable by using a smaller
learning rate.

3. How to Choose a Learning Rate

As illustrated in the above example, if the learning rate is
too large, accuracy will be poor and training speed will also
be poor. As the learning rate decreases, generalization
accuracy improves and training speed also improves. As the
learning rate is dropped further, accuracy continues to
improve slightly while training speed starts to once again
get worse. Finally, there comes a point at which accuracy
flattens out and does not improve with a smaller learning

rate, and further reductions in the learning rate only waste
computational resources.

The obvious question, then, is how to choose a learning
rate that is small enough to achieve good generalization
accuracy without wasting computational resources.

3.1 Avoiding Learning Rates that are too Large
First we look at how to rule out learning rates that are so
large that they train slower and are less accurate than a
smaller learning rate. This can be done by examining either
the generalization accuracy on a hold-out set or, more
conveniently, by examining the total sum squared (tss) error
calculated during the training process itself.

Figure 2 shows the tss error for each learning rate after 1, 5,
10, 100 and 1000 training epochs. In every case, the
learning rate of 0.05 has the smallest error, indicating that it
is the “fastest” learning rate, in terms of reduction in tss
error. In this example, any learning rate larger than 0.05
can be discarded from further consideration, since it is
slower and most likely less accurate, and thus has no
advantage over the “fastest” learning rate.

In order to avoid learning rates that are too large, then, it is
possible to train a collection of neural networks for just one
epoch using learning rates at different orders of magnitude
(using the same initial weights and order of presentation for
each network). The learning rate that results in the lowest
tss error is then considered the “fastest” learning rate, and all
learning rates larger than that are discarded from further
consideration.

3.2 Maximizing Accuracy Using Smaller
Learning Rates
The “fastest” learning rate is quite often not the most
accurate one, though it is almost always at least as accurate
as any larger, slower learning rate. On large, complex
problems, a learning rate smaller than the “fastest” one
often results in higher generalization accuracy, so it is often
worth spending additional training time using smaller
learning rates in order to improve accuracy.

One approach to doing this is as follows.

1. Train the neural network for one epoch using
learning rates of different orders of magnitude (e.g.,
100 down to .00001) in order to find the learning
rate L with the smallest tss error.

2. Continue training the network using the learning
rate L until hold-out set accuracy begins to drop.

3. Record the maximum generalization accuracy for this
learning rate.

4. Reduce the learning rate by a constant factor (e.g., 3)
and retrain the network, using the same initial
weights and order of presentation.

5. Repeat steps 3 and 4 until the maximum accuracy
fails to improve.

Figure 2: Total sum squared error of each learning rate after various numbers of
training epochs. The learning rate of 0.05 consistently had the lowest tss error.

Learning Rate

Su
m

 S
qu

ar
ed

 E
rr

or

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0.
00

00
1

0.
00

00
5

0.
00

01

0.
00

05

0.
00

1

0.
00

5

0.
01

0.
05 0.

1

0.
5 1 5 10 50 10
0

1

5

10

100

1000

Epochs

While this method does require training the neural network
several times, the training is done first with the fastest
learning rate and thus goes relatively quickly. Subsequent
passes are slower, but only a few passes should be required
before the accuracy ceases to improve. All of these passes
put together will typically take about as long as the next
slower learning rate.

In the speech recognition example, if we had used only
powers of 10 between 100 and 0.00001 (rather than using 5,
0.5, etc.), 1 epoch of training would have been done for
each of 8 learning rates, and 0.1 would be chosen as the
“fastest” learning rate. Step 2 would require 7 epochs to
reach a maximum, plus about 5 more to determine that the
accuracy was dropping. Using our non-logarithmic
reductions (i.e., dropping by alternating factors of 2 and 5),
Step 4 would reduce L to 0.05, 0.01, 0.005 and 0.001
before reaching the maximum accuracy, followed by 0.005
to find that the accuracy had stopped improving.

Using the training times from Table 1, this process would
require 7 + 9 + 14 + 39 + 242 + 473 = 784 epochs to
reach the maximums, plus another 10% or so (≈80 epochs)
to determine that each had reached its maximum. Together
with the 8 epochs required in Step 1, an estimated total of
about 872 epochs of training would be needed in order to
achieve the maximum generalization accuracy.

One advantage to this method is that it provides the
confidence that the maximum accuracy has been reached. In
addition, it avoids the extremely long training time required
by even smaller learning rates (e.g., 18,595+ epochs
required by 0.00001). If a very small learning rate were to
be used right from the start, not only could much time be
wasted, but there would still be guarantee that the best
learning rate was really used.

3.3 Stopping Criteria
In order for the above method to work efficiently, it is
important to use the correct stopping criteria. While
convergence is often defined as reaching a certain level of tss
error, this criteria is prone to overfitting and requires the
user to select the error threshold.

Instead, hold-out set accuracy should be used to decide when
the neural network has been trained long enough for a
particular learning rate.

When the learning rate is at least as small as the “fastest”
learning rate, the generalization accuracy typically moves up
smoothly, starts to do some backtracking as it levels off,
and then drops back down as the network overfits, as
demonstrated in Figure 3. This figure also demonstrates
how the learning rate of 0.05 reaches its maximum quickly
and drops off while 0.01 reaches a higher maximum after a
few more epochs. 0.005 eventually overtakes 0.01 and
reaches its maximum after 39 epochs. 0.0001, not shown

Figure 3: Generalization accuracy on a digit phoneme
recognition task for learning rates 0.005, 0.01 and 0.05.

Training Time (in Epochs)

G
en

er
al

iz
at

io
n

A
cc

ur
ac

y

60%

61%

62%

63%

64%

65%

66%

67%

68%

69%

70%

1 10 20 30 40 50 60 70 80 90

LR=0.005

LR=0.01

LR=0.05

in the chart, proceeds much more slowly, but eventually
beats 0.005 by a half a percentage in accuracy.

In our tests we trained much longer than necessary in order
to be able to be more sure of our conclusions. However, in
practice one would need only train until the downward trend
was observed in order to determine the maximum hold-out
set generalization accuracy for each learning rate. This
downward trend can be identified by seeing when a smoothed
running average of the accuracy drops some fraction below
the maximum (smoothed) accuracy seen so far.

4. Conclusions and Future Work

Choosing a learning rate has always been a bit of a magic
art for neural network practitioners. This paper has shown
how to fairly easily avoid learning rates that are so large
that they take longer to train and are less accurate than
networks produced by smaller, faster learning rates.

For large, complex problems, a learning rate smaller than

the “fastest” one can often significantly improve
generalization accuracy. For most problems the improved
generalization accuracy is worth the additional time needed
by smaller learning rates. However, using a learning rate
that is too small is a waste of time and using any one
single learning rate does not guarantee that the best accuracy
has been found.

By starting with the “fastest” learning rate and reducing it
on subsequent experiments, the maximum generalization
accuracy can be achieved without the risk of training with
learning rates that are too much smaller than the optimal
one. This comes at a cost that is dominated by the number
of epochs needed by the last pass.

While this paper presents guidelines on choosing a learning
rate, there remains a need to incorporate these guidelines
into an automated algorithm that will automatically find the
“fastest” learning rate and guide training towards an optimal
learning rate without the need for user intervention.

5 References

[1] Bishop, C. M., Neural Networks for
Pattern Recognition, New York, NY:
Oxford University Press, 1995.

[2] Hassoun, M., Fundamentals of
Artificial Neural Networks, MIT Press,
1995.

[3] Rumelhart, D. E., and J. L.
McClelland, Parallel Distributed
Processing, MIT Press, 1986.

[4] Wasserman, P. D., Advanced Methods
in Neural Computing, New York, NY: Van
Nostrand Reinhold, 1993.

[5] Wilson, D. R., and T. R. Martinez,
“The Inefficiency of Batch Training for
Large Training Sets”, in Proceedings of
the International Joint Conference on
Neural Networks (IJCNN2000), Vol. II,
pp. 113-117, July 2000.

[6] Jacobs, R. A., “Increased Rates of
Convergence through Learning Rate
Adaptation,” Neural Networks, Vol. 1,
No. 4, pp. 295-307, 1988.

[7] Tollenaere, T., “SuperSAB: Fast
Adaptive Back-propagation with Good
Scaling Properties”, Neural Networks,
Vol. 3, No. 5, pp. 561-573, 1990.

[8] Vogl, T. P., J. K. Mangis, A. K.
Rigler, W. T. Zink, and D. L. Alkon,
“Accelerating the Convergence of the
Back-propagation method”, Biological
Cyberne t i c s , Vol. 59, pp. 257-263,
1988.

