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Abstract

This paper introduced a new mixed distribution, namely the neg-
ative binomial-generalized exponential (NB-GE) distribution, which it
obtained by mixing the negative binomial (NB) distribution with a gen-
eralized exponential (GE) distribution. The NB-GE distribution offers
the advantage of being able to handle this kind of data sets, while still
maintaining similar characteristics as the traditional negative binomial.
The closed form and the factorial moment of the NB-GE distribution
are derived. The NB-GE distribution appropriate when we find the one
related to count data which have a large number of zeros and overdisper-
sion in Poisson distribution. In addition, we present the basic properties
of the new distribution such as mean, variance, skewness and kurtosis.
Including, the negative binomial-exponential distributions are presented
as special cases of this NB-GE distribution. Parameters estimation is
also implemented using maximum likelihood method and the usefulness
of the NB-GE distribution is illustrated by real data set. When using a
goodness of fit test, the results show that the NB-GE distribution can
provide a better fit than the NB distribution and Poisson distribution
for count data that contain a large number of zeros.
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1 Introduction

The Poisson distribution plays an important role in the modeling process even
if it is not applicable, because it is often used to derive more realistic model
that meet characteristics of observed data to be used explain parameter of
distribution. The Poisson distribution is usually handle to fit the count data
in practice when number of phenomenon are randomly distributed over time
and/or space the counts of the phenomenon occurring. Equality of mean and
variance are characteristic of the Poisson distribution, but in practice, however,
the observed count data often displays features like overdispersion (variance is
greater than the mean) or underdispersion (variance is smaller than the mean),
which is common in applied data analysis [11].

One frequent manifestation of over-dispersion is that the incidence of zero
counts is greater than expected for the Poisson distribution and this is of
interest because zero counts frequently have special status, which is a violation
of the Poisson restriction that the variance of the observed random variable
equal its mean [15]. Statistical procedures must eliminate for these sources
of variability in count data, which suggested a model in which the mean of
Poisson distribution has a gamma distribution. Practically, this leads to the
negative binomial (NB) distribution.

The NB distribution has become increasingly popular as a more flexible
alternative to Poisson distribution, especially when it is questionable whether
the strict requirements for Poisson distribution could be satisfied [5]. But
NB distribution is better for overdispersed count data that are not necessarily
heavy-tailed. The extremely heavy tail implies overdispersion, but the converse
does not hold [14]. Among the count data issues, which have a large number
of zeros that lead to heavy tail. For such data sets, the number of sites where
no crash is observed is so large that traditional statistical distributions or
models, such as the Poisson and NB distributions, cannot be used efficiently.
The Poisson distribution tends to underestimate the number of zeros given
the mean of the data, while the NB distributions may overestimate zeros, but
underestimate observations with a count [7].

The distribution mixtures define one of the most important ways to obtain
new probability distributions in applied probability and operational research
[3]. In this sense, we are looking for a more flexible alternative to the Pois-
son distribution, especially under the overdispersion, the NB distribution [13]
obtained as a mixture of Poisson and gamma distributions, NB-exponential
distribution [12], NB-Pareto distribution [8], NB-inverse Gaussian distribu-
tions [3], NB-Lindley distribution [16] and NB-beta exponential distribution
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[10] have been proposed in the count data are either overdispersion.
This paper introduced a new mixed NB distribution, which its obtained

by mixing a NB distribution with a generalized exponential (GE) distribution.
The incurred distribution is called negative binomial-generalized exponential
(NB-GE) distribution, which introduces two more free parameter and is more
flexible in fitting count data. Including, we present properties of the NB-GE
distribution are the factorial moments, the first four moments, variance, skew-
ness, and kurtosis. The parameters of NB-GE distribution are estimated by
maximum likelihood Estimation (MLE), and presents the comparison analysis
between the Poisson, NB and NB-GE distributions using real data set.

2 Materials and Methods

2.1 The negative binomial-generalized exponential (NB-

GE) distribution

The NB distribution is often employed in case where a distribution is overdis-
persed. If X denotes a random variable distributed under a NB distribution
with parameter r and p, then its probability mass function (pmf) is given by:

f1(x; r, p) =

(
r + x− 1

x

)
pr(1 − p)x, (1)

where x = 0, 1, 2, . . . for r > 0 and 0 < p < 1. It is consequently, we obtain:

E(X) =
r(1 − p)

p
and E(X2) =

r(1 − p)(1 + r(1 − p))

p2
.

The factorial moment of X is:

μ[k](X) = E[X(X − 1) · · · (X − k + 1)] =
Γ(r + k)

Γ(r)

(1 − p)k

pk
, k = 1, 2, . . . , (2)

where Γ(·) is the gamma function defined by:

Γ(t) =

∫ ∞

0

xt−1e−xdx, t > 0.

The form of a NB-GE distribution which is a mixed NB distribution ob-
tained by mixing the distribution of NB(r, p) where, p = exp(−λ), λ > 0 with
distribution of GE(α, β). The GE distribution has probability density function
(pdf):

f2(x;α, β) = αβ(1 − eβx)α−1e−βx, x > 0, for α, β > 0. (3)
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The GE distribution introduced by Gupta and Kundu [4], and shown in there
that its moment generating function (mgf) is given by:

MX(t) =
Γ(α + 1)Γ(1 − t

β
)

Γ(α− t
β

+ 1)
. (4)

As discussed above, the NB-GE distribution is a mixture of negative binomial
and generalized exponential distribution, which has a heavy tail. We first
provide a general definition of this distribution which will subsequently expose
its probability mass function.

Definition 2.1 Let X be a random variable of a NB-GE(r, α, β) distribu-
tion, X ∼ NB-GE(r, α, β), when the NB distribution have parameters r > 0
and p = exp(−λ), where λ is distributed as GE distribution with positive pa-
rameters α and β, i.e., X|λ ∼ NB(r, p = exp(−λ)) and λ ∼ GE(α, β).

Theorem 2.2 Let X ∼ NB-GE(r, α, β). The probability mass function of
X is given by:

f(x; r, α, β) =

(
r + x− 1

x

) x∑
j=0

(
x

j

)
(−1)j

⎛
⎝Γ(α + 1)Γ

(
1 + r+j

β

)

Γ
(
α + r+j

β
+ 1

)
⎞
⎠ , (5)

where x = 0, 1, 2, . . . , r, α and β > 0.

Proof. If X|λ ∼ NB(r, p = exp(−λ)) in (1) and λ ∼ GE(α, β) in (3), then
the pmf of X can be obtained by:

f(x; r, α, β) =

∫ ∞

0

f1(x|λ)f2(λ;α, β)dλ (6)

where, f1(x|λ) is defined by:

f1(x|λ) =

(
r + x− 1

x

)
e−λx(1 − e−λ)x =

(
r + x− 1

x

) x∑
j=0

(
x

j

)
(−1)je−λ(r+j). (7)

By substituting (7) into (6), we obtain:

f(x|λ) =

(
r + x− 1

x

) x∑
j=0

(
x

j

)
(−1)j

∫ ∞

0

e−λ(r+j)f2(λ;α, β)dλ

=

(
r + x− 1

x

) x∑
j=0

(
x

j

)
(−1)jMλ(−(r + j)). (8)
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Substituting the moment generating function of GE distribution (4) into (8),
the pmf of NB-GE (r, α, β) is finally given as:

f(x; r, α, β) =

(
r + x− 1

x

) x∑
j=0

(
x

j

)
(−1)j

⎛
⎝Γ(α + 1)Γ

(
1 + r+j

β

)

Γ
(
α + r+j

β
+ 1

)
⎞
⎠ .

Equivalently, it can be written as the form:

f(x; r, α, β) =

(
r + x− 1

x

) x∑
j=0

(
x

j

)
(−1)j

(
α(r + j)

αβ + (r + j)
B

(
α,
r + j

β

))
(9)

where, B(·) refers to the beta function defined by:

B(r, s) =
Γ(r)Γ(s)

Γ(r + s)
, r, s > 0.

Next, we display the negative binomial-exponential (NB-E) distribution is
a special cases of the NB-GE distribution, and there graphs of the probability
mass function of a NB-GE random variable of some values of parameters in
Figure 1.

Corollary 2.3 If α = 1 then the NB-GE distribution reduces to the negative
binomial-exponential (NB-E) distribution with pmf given by:

f(x; r, β) =

(
r + x− 1

x

) x∑
j=0

(
x

j

)
(−1)j

(
1 − (−(r + j))

β

)−1

, (10)

where x = 0, 1, 2, . . . , r and β > 0.

Proof. If X|λ ∼ NB(r, p = exp−λ) and λ ∼ GE(α = 1, β), then the pmf of
X is:

f(x; r, β) =

(
r + x− 1

x

) x∑
j=0

(
x

j

)
(−1)j

Γ
(
1 + r+j

β

)

Γ
(
2 + r+j

β

)

=

(
r + x− 1

x

) x∑
j=0

(
x

j

)
(−1)j

(
1 − (−(r + j))

β

)−1

.

From Corollary 2.3, we find the negative binomial-exponential distribution
displayed in (10), which introduced by Panger and Willmot [9].



1098 S. Aryuyuen and W. Bodhisuwan

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

x

P
ro

ba
bi

lit
y

(a)

0 5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

x

P
ro

ba
bi

lit
y

(b)

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

x

P
ro

ba
bi

lit
y

(c)

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

x

P
ro

ba
bi

lit
y

(d)

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

x

P
ro

ba
bi

lit
y

(e)

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

x

P
ro

ba
bi

lit
y

(f)

Figure 1: The probability mass function of a NB-GE random variable (X) of
some values of parameters: (a) r=1, α=5, β=10, (b) r=1, α=10, β=5, (c)
r=10, α=5, β=15, (d) r=10, α=10, β=10, (e) r=10, α=3, β=5 and (f) r=15,
α=6, β=6.

2.2 Properties of the NB-GE distribution

The first result of this section gives the factorial moment of the NB-GE dis-
tribution. Including, this new mixed distribution have the NB-E distribution
which special cases. We hardly need to emphasize the necessity and impor-
tance of factorial moment in any statistical analysis especially in applied work.
Some of the most importance features and characteristics of a distribution can
be studied through factorial moments (eg., mean, variance, skewness, and kur-
tosis).

Theorem 2.4 If X ∼NB-GE(r, α, β), then the factorial moment of order
k of X is given by:

μ[k](X) =
Γ(r + k)

Γ(r)

k∑
j=0

(
k

j

)
(−1)j

⎛
⎝Γ(α + 1)Γ

(
1 − k−j

β

)

Γ
(
α− k−j

β
+ 1

)
⎞
⎠ , (11)

where x = 0, 1, 2, . . . for r, α and β > 0.
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Proof. If X|λ ∼ NB(r, p = exp(−λ)) in (1) and λ ∼ GE(α, β), then the
factorial moment of order k of X can be obtained by:

μ[k](X) = Eλ[μk(X|λ)].

The factorial moment of order k of a NB distribution in (2), μ[k](X) becomes:

μ[k](X) = Eλ

(
Γ(r + k)

Γ(r)

(1 − e−λ)k

e−λk

)
=

Γ(r + k)

Γ(r)
Eλ(e

λ − 1)k.

Using a binomial expansion of (eλ−1)k, then shows that μ[k](X) can be written
as:

μ[k](X) =
Γ(r + k)

Γ(r)

k∑
j=0

(
k

j

)
(−1)jEλ(e

λ(k−j))

=
Γ(r + k)

Γ(r)

k∑
j=0

(
k

j

)
(−1)jMλ(k − j).

From the moment generating function of GE distribution (4) with t = k − j,
we have finally that μ[k](X) which can be written as:

μ[k](X) =
Γ(r + k)

Γ(r)

k∑
j=0

(
k

j

)
(−1)j

⎛
⎝Γ(α + 1)Γ

(
1 − k−j

β

)

Γ
(
α− k−j

β
+ 1

)
⎞
⎠ .

Corollary 2.5 If α = 1 then the factorial moment of order k of negative
binomial-generalize exponential reduces to:

μ[k](X) =
Γ(r + k)

Γ(r)

k∑
j=0

(
k

j

)
(−1)j

(
1 − k − j

β

)−1

,

where x = 0, 1, 2, . . . , r and β > 0.

Proof. Substituting α = 1 into (11), we get:

μ[k](X) =
Γ(r + k)

Γ(r)

k∑
j=0

(
k

j

)
(−1)j

Γ(2)Γ
(
1 − k−j

β

)

Γ
(
2 − k−j

β

)

=

(
r + x− 1

x

) x∑
j=0

(
x

j

)
(−1)j

(
r+j
β

)
!(

1 + r+j
β

)
!

=
Γ(r + k)

Γ(r)

k∑
j=0

(
k

j

)
(−1)j

(
1 − k − j

β

)−1

.
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From the factorial moments of NB-GE distribution, it is straightforward to
deduce the first four moments given in (12) - (15), variance (16), skewness
(17) and kurtosis (18);

E(X) = r (δ1 − 1) (12)

E(X2) = (r2 + r)δ2 − (2r2 + r)δ1 + r2 (13)

E(X3) = (r3 + 3r2 + 2r)δ3 − (3r3 + 6r2 + 3r)δ2

+(3r3 + 3r2 + r)δ1 − r3 (14)

E(X4) = (r4 + 6r3 + 11r2 + 6r)δ4 − (4r4 + 18r3 + 26r2 + 12r)δ3 + r4

+(6r4 + 18r3 + 19r2 + 7r)δ2 − (4r4 + 6r3 + 4r2 + r)δ1 (15)

V ar(X) = E(X2) − (E(X))2

= (r2 + r)δ2 − rδ1 (1 + rδ1) (16)

Skewness(X) =
[
E(X3) − 3E(X2)E(X) + 3E(X) (E(X))2 − (E(X))3] /σ3

=
[
(r3 + 3r2 + 2r)δ3 − (3r2 + 3r)δ2 + rδ1 + 3r2 (δ1)

2

−(3r3 + 3r2)δ1δ2 + 2r3 (δ1)
3] /σ3 (17)

Kurtosis(X) =
[
E(X4) − 4E(X3)E(X) + 6E(X2) (E(X))2

−4E(X) (E(X))3 + (E(X))4
]
/σ4

=
[
(r4 + 6r3 + 11r2 + 6r)δ4 − (6r3 + 18r2 + 12r)δ3 − 3r4 (δ1)

4

+(7r2 + 7r)δ2 − 4rδ1 − 6r3 (δ1)
3 + (12r3 + 12r2)δ1δ2

−(4r4 + 12r3 + 8r2)δ1δ3 + (6r4 + 6r3) (δ1)
2 δ2

]
/σ4 (18)

where, δ1 =
Γ(α+1)Γ(1− 1

β
)

Γ(α− 1
β
+1)

, δ2 =
Γ(α+1)Γ(1− 2

β
)

Γ(α− 2
β
+1)

, δ3 =
Γ(α+1)Γ(1− 3

β
)

Γ(α− 3
β

+1)
, δ4 =

Γ(α+1)Γ(1− 4
β
)

Γ(α− 4
β
+1)

and σ =
√

Var(X).

2.3 Parameters estimation

The estimation of parameters for NB-GE distribution via the MLE method
procedure will be discussed. The likelihood function of the NB-GE(r, α, β) is
given by:

L(r, α, β) =
n∏

i=1

(
r + xi − 1

xi

) xi∑
j=0

(
xi

j

)
(−1)j

⎛
⎝Γ(α + 1)Γ

(
1 + r+j

β

)

Γ
(
α+ r+j

β
+ 11

)
⎞
⎠ (19)
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with corresponding log-likelihood function:

L(r, α, β) = logL(r, α, β)

=
n∑

i=1

log (Γ(r + xi) − Γ(r) − Γ(xi + 1)) +

n∑
i=1

log

⎛
⎝ xi∑

j=0

(
xi

j

)
(−1)j

Γ(α + 1)Γ
(
1 + r+j

β

)

Γ
(
α + r+j

β
+ 1

)
⎞
⎠ . (20)

The first order conditions for finding the optimal values of the parameters
obtained by differentiating (20) with respect to r, α and β give rise to the
following differential equations:

∂

∂r
L(r, α, β)

=
n∑

i=1

ψ(r + xi) − nψ(r) +
n∑

i=1

⎛
⎜⎜⎝

∑xi

j=0

(
xi

j

)
(−1)jΓ(α+ 1) ∂

∂r

(
Γ(1+ r+j

β )
Γ(α+ r+j

β
+1)

)

∑xi

j=0

(
xi

j

)
(−1)j

Γ(α+1)Γ(1+ r+j
β )

Γ(α+ r+j
β

+1)

⎞
⎟⎟⎠

=

n∑
i=1

ψ(r + xi) − nψ(r) +

n∑
i=1

⎛
⎜⎜⎝

∑xi

j=0

(
xi

j

)
(−1)j ∂

∂r

(
Γ(1+ r+j

β )
Γ(α+ r+j

β
+1)

)

∑xi

j=0

(
xi

j

)
(−1)j

Γ(1+ r+j
β )

Γ(α+ r+j
β

+1)

⎞
⎟⎟⎠ (21)

where ψ(x) = Γ′(x)
Γ(x)

is the digamma function [1],

∂

∂α
L(r, α, β) =

n∑
i=1

⎛
⎜⎜⎝

∑xi

j=0

(
xi

j

)
(−1)j ∂

∂α

(
Γ(α+1)Γ(1+ r+j

β )
Γ(α+ r+j

β
+1)

)

∑xi

j=0

(
xi

j

)
(−1)j

Γ(α+1)Γ(1+ r+j
β )

Γ(α+ r+j
β

+1)

⎞
⎟⎟⎠ (22)

and

∂

∂β
L(r, α, β) =

n∑
i=1

⎛
⎜⎜⎝

∑xi

j=0

(
xi

j

)
(−1)j ∂

∂β

(
Γ(1+ r+j

β )
Γ(α+ r+j

β
+1)

)

∑xi

j=0

(
xi

j

)
(−1)j

Γ(1+ r+j
β )

Γ(α+ r+j
β

+1)

⎞
⎟⎟⎠ . (23)

In solving equation with algebraic for such as equation in (21)-(23), which
have difficult and complicated. In this paper we use Newton-Raphson method.

The Newton-Raphson method is a powerful technique for solving equations
numerically. Like so much of the differential calculus, it is based on the simple
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idea of linear approximation [2]. Thus, we estimated parameters of distribution
with estimating (21)-(23) to zero, the MLE solutions of r̂, α̂ and β̂ can be
obtained by solving the resulting equations simultaneously using a numerical
procedure with the Newton-Raphson method. Furthermore, we provide the R
code for the MLE of the NB-GE distribution as follows.

2.3.1 The R code for the MLE of the NB-GE distribution

mlogl<-function(theta,x){

fnbge<-function(theta,x){

mm<-length(x)

k<-numeric(mm)

nbge<-function(theta,x){

if(x==0){

p<-(-log(factorial(theta[1]+x-1))+log(factorial(theta[1]-1))

-log(gamma(theta[2]+1))-log(gamma(1+(theta[1]/theta[3])))

+log(gamma(theta[2]+(theta[1]/theta[3])+1)))}

else if(x>0){

pp1<-(gamma(theta[2]+1)*(gamma(1+theta[1]/theta[3])))

/(gamma(theta[2]+theta[1]/theta[3]+1))

for(j in 1:x){

p1<-((factorial(x)/(factorial(j)*factorial(x-j)))*(-1)^j)

*(gamma(theta[2]+1))*((gamma(1+(theta[1]+j)/theta[3]))

/(gamma(theta[2]+(theta[1]+j)/theta[3]+1)))

pp1<-pp1+p1}

p<-(-log(factorial(theta[1]+x-1)))+log(factorial(theta[1]-1))

+log(factorial(x))-log(pp1)}

p}for(i in 1:length(x)){k[i]<-nbge(theta,x[i])}k}

sum(fnbge(theta,x))}

theta.start<-c(1,1,1)

out<-nlm(mlogl, theta.start, x=x)

r_MLE<-out$estimate[1]

a_MLE<-out$estimate[2]

b_MLE<-out$estimate[3]

3 Results and discussion

We used a real data set which the number of automobile liability policies in
Switzerland for private cars taken from Klugman [6]. These data appear in
Table 1 (first and second columns). As it can be seen in Figure 2, these data
are heavily skewed to the right and overdispersed since sample variance (1.793)
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Figure 2: The probability mass function of accident data (X): (a) the empirical
probability mass function of real data and (b) the probability mass function
of NB-GE (r = 2.4312, α = 3.2896, β = 31.2786) distribution.

Table 1: Observed and expected frequencies of accident data
Number of Observed Fitting distribution
accidents frequency % Poisson NB NB-GE
0 103704 86.53 102629.6 103723.6 103708.8
1 14075 11.74 15922.0 13989.9 14046.8
2 1766 1.47 1235.1 1857.1 1797.8
3 255 0.21

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

66.3

245.2 251.7
4 45 0.04

⎫⎪⎪⎬
⎪⎪⎭

37.2

36.0
5 6 0.01

⎫⎬
⎭ 12.06 2 0.00

7+ 0 0.00
Total 11983 100 11983 11983 11983

Estimates λ̂= 0.1551 r̂ = 1.0327 r̂ = 2.4312
parameters p̂ = 0.1502 α̂= 3.2896

β̂= 31.2786
Chi-squares 1332.30 12.12 4.26
Degrees of freedom 2 2 2
p-value < 0.0001 0.0023 0.1188

is greater than the sample mean (1.551). Therefore, these data must be fitted
by some overdispersed distribution. For this reason, we strongly believe the
NB-GE distribution is suitable for them. Normally these data set are fitted by
Poisson distribution, NB distribution and NB-GE distribution. The maximum
likelihood method provides parameters estimation. By comparing these fitting
distribution in Table 1, based on the p-value of this comparison, the results
have shown that the NB-GE distribution provided better fit than the Poisson
and NB distributions for the count data that have a large number of zeros.
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4 Conclusions

We introduced the NB-GE distribution which is obtained by mixing the NB
distribution with a GE distribution. We showed that the NB-E distribution
is special cases of this new mixed distribution. We have obtained the key
moments of the NB-GE distribution which includes the factorial moments,
mean, variance, skewness, and kurtosis. Parameters estimation are also imple-
mented using maximum likelihood method and the usefulness of the NB-GE
distribution is illustrated by real data set.

This paper has described the application of the NB-GE distribution to data
sets characterized by a large number of zeros and a heavy tail. Traditional
statistical methods that have been proposed for analyzing such data sets have
been found to suffer from important numerical and methodological problems.
From the result that the NB-GE distribution provides a best fit for these data.
In conclusion, it is believed that the NB-GE distribution may offer a very useful
tool for analyzing count data characterized with a large number of zeros.
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