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AABBSSTTRRAACCTT

Following the positive phase of a blast comes a period where the

pressure falls below atmospheric pressure known as the negative

phase. Whilst the positive phase of the blast is well understood,

validation of the negative phase is rare in the literature, and as such it

is often incorrectly treated or neglected altogether. Herein, existing

methods of approximating the negative phase are summarised and

recommendations of which form to use are made based on

experimental validation. Also, through numerical simulations, the

impact of incorrectly modelling the negative phase has been shown

and its implications discussed. 

KKeeyy  wwoorrddss:: Blast; Dynamic response; Experiment; Negative phase; SDOF;

Validation

11..  IINNTTRROODDUUCCTTIIOONN
An explosion is characterised by the rapid release of energy as a mass of reactive material is

converted into an extremely dense region of high pressure gas. This gas rapidly expands and

displaces the surrounding air, causing a pressure disturbance – a blast wave – to propagate

away from the centre of the explosive at supersonic speed. As the blast wave travels through

the air, the front of the pressure disturbance ‘shocks up’, resulting in a near-discontinuous

increase in pressure, density and temperature. Following the shock front the pressure decays

until ambient pressure is reached, the duration of which is known as the positive phase

duration. The positive phase of the blast load acting on a structure can be described by the

semi-empirical ‘modified Friedlander equation’ [1]
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where pr,max is the peak reflected pressure, td is the positive phase duration and b is the

coefficient that describes the rate of decay of the pressure-time curve, known as the

waveform or decay parameter. 

Following the positive phase comes a period of ‘negative’ pressure (below atmospheric); a

partial vacuum caused by over-expansion of the shocked air. An idealised pressure-time

profile for a reflected blast wave is shown in Figure 1, where pr,min is the peak underpressure,

t−d is the negative phase duration, and the positive and negative phase impulses, ir and i−r , are

given as the temporal integral of the positive phase pressure and negative phase pressure

respectively. 

1.1. LITERATURE REVIEW
The influence of the negative phase has become a topic of increased interest over recent

years, in particular the effect of the negative phase on light cladding and glazing panels. This

perhaps reflects the growing awareness of the importance of well-designed glazing in

minimising damage to infrastructure and injuries to building inhabitants in the event of an

explosion. Indeed, it has been suggested that the majority of non-fatal injuries from terrorist

attacks are caused by either airborne glass fragments or damage to hearing from failed glass

panels [2].

Krauthammer and Altenberg [3] studied the influence of the negative phase on the failure

of laminated glass panels using a simplified numerical model. The research showed that it is

possible for the panel to be undamaged by the positive phase of the blast load, yet a

combination of negative phase pressure and elastic rebound may cause failure of the glass

panel towards the source of the blast. Wei & Dharani [4, 5] and Larcher et al. [6] also studied

laminated glass panels, and highlighted instances where the midspan displacement and

stresses within the panel can be as much as twice those caused by the positive phase.

Teich and Gebbeken [7] took a more general approach by conducting a parametric study on

elastic single-degree-of-freedom (SDOF) systems to quantify the effect of the negative phase

relative to the effect of the positive phase alone. It was found that for certain configurations of

scaled distance and dynamic target properties, inclusion of the negative phase in the model

could cause midspan displacement of up to an order of magnitude greater than that of the

positive phase. This study has been extended to quantify the effect on cable net facades [8, 9].

Bryant et al. [10] provided both numerical and experimental examples of situations where the
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Figure 1. Idealised pressure-time profile for a reflected blast wave



negative phase causes adverse target response, and also highlighted the limitations of shock

tube testing to accurately replicate free-field negative phase pressures and impulses, on account

of the inability of a shock tube to replicate the effect of the rising fireball [11].

Whilst these studies show that the negative phase cannot be ignored for certain blast

scenarios, and indeed some effort has been undertaken to define the situations where ignoring

the negative phase is un-conservative, there remains some uncertainty on the issue of how to

properly model the form of the negative phase pressure-time history. The purpose of the paper

is therefore two-fold. Firstly, existing methods of modelling the negative phase will be

summarised and recommendations of which form to use will be made based on experimental

validation. Secondly, through numerical simulations, the impact of ignoring or incorrectly

modelling the negative phase will be shown and its implications discussed.

22..  PPRREEDDIICCTTIINNGG  BBLLAASSTT  WWAAVVEE  PPAARRAAMMEETTEERRSS
The positive phase of the blast load is well understood, with the Kingery and Bulmash [12]

empirical blast parameters well-established in the current literature [13, 14, 15]. These blast

predictions are implemented into the automated predictive tool ConWep [16]. Bogosian

et al. [17] showed that there was generally good correlation between the Kingery and

Bulmash (KB) predictions and empirical data from blast trials, but with some considerable

spread. It is possible that this was due to the fact that the empirical data was generally from

field trials involving very large explosions, with the consequent difficulties in carefully

controlling the test parameters. Recent work by the authors [18, 19] indicates that in small

scale, carefully controlled experimental trials, the correlation between empirical data and the

KB predictions for the positive phase parameters is remarkably good.

Negative phase parameters are also available in the literature [13, 15]. However, as

Bogosian et al. [17] noted in their review, “The precise provenance of these curves is
unknown at the present time.” They suggested that this uncertainty is due in part to the

fact that “Not all (experimental data records) were of sufficient duration and/or quality as

to be able to extract negative as well as positive values, and while some had dubious peak

pressure readings, others became suspect at later time and therefore could not produce

reliable impulses.” This is perhaps inevitable in the large scale experimental tests that

formed the basis of the data analysed in that work.

The original source of the negative phase parameters presented in [13] is unclear, although

a thorough review of the available literature as part of the current study indicates that it may

have been from analytical work conducted in the 1950 s by Granström [20]. Figure 2 shows

the relationship between reflected positive and negative phase blast parameters with scaled

distance,

(2)

where R is the distance from the target to the source of the explosive and W is the mass of

explosive expressed as an equivalent mass of TNT. Note that impulse and time parameters

are scaled by the cube root of the charge mass, after Hopkinson-Cranz scaling [21].

In this study, simplified parameter expressions have been determined by digitizing the

negative phase data presented in [13] and fitting curves to the data points. Relationships for

negative reflected pressure and impulse (for hemispherical surface bursts) are given in

equations 3 and 4 respectively, and can be used to determine the relevant loading parameters.

=Z
R

W3
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(3)

(4)

For small scaled distances, the peak underpressure and negative phase impulse are very

small relative to the positive phase. It is clear, however, from Figure 2 that this observation

is only true for small values of Z, and that the negative phase impulse approaches that of the

positive phase for larger scaled distances and eventually exceeds the positive phase impulse

when Z > 8. In free-field blast experiments, the rising fireball creates a lower pressure near

the ground surface, which draws in the surrounding air. This has the effect of further

lowering the air density, which has already been over-expanded after the shockwave has

passed, and hence results in larger negative phase impulses at larger stand-off distances [11].
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Figure 2. Positive and negative phase reflected blast wave parameters
for hemispherical charges of TNT on the surface [12, 13]



33..  TTHHEE  FFOORRMM  OOFF  TTHHEE  NNEEGGAATTIIVVEE  PPHHAASSEE
3.1.  LINEAR APPROXIMATION
One way of modelling the blast pressure is with a piecewise linear function, as is the

approach of Krauthammer and Altenberg [3]. The positive phase is approximated as a

linearly decaying triangular pulse, with the linear load duration, td,lin, set such that the

impulse given by the triangular load matches that given by the empirical method, i.e. 

td,lin = 2ir/pr,max. The negative phase is modelled as a bilinear approximation with a rise

time equal to 1/4 of the negative phase duration. As per the positive phase, the linear negative

phase duration, t–d,lin, is specified to preserve negative phase impulse, i.e. 

t–d,lin = 2i–
r/pr,min. The negative phase begins at td , rather than td,lin, giving a period of zero

pressure between the linear positive and negative phase. This approach is also recommended

in UFC-3-340-02 [13], with the piecewise expression given in equation 5.

3.2. EXTENDED FRIEDLANDER
Another common method of modelling the negative phase is to simply extend the

Friedlander equation (1) to t = ∞, rather than truncating the expression at td. This is the

approach adopted by Wei & Dharani [4, 5], Gantes [22] and the *LOAD_BLAST subroutine in

LS-DYNA [23]. Given the ConWep positive phase parameters for pressure, duration and

impulse, the waveform parameter can be determined by integrating the Friedlander

expression over the positive phase to give

(6)

which can be solved iteratively to determine the value of b which gives the correct impulse

at that particular scaled distance.

As the negative phase is also constructed from this expression, it is clear that the form of

this negative phase is entirely dependent on the positive phase parameters. As such there are

no variables to control negative phase pressure and impulse – the values given by this

approximation may not match the empirical predictions. Integrating the negative phase of the

Friedlander equation gives the impulse as

i p
t

t
e

p

r r
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(7)

at Z = 10 m/kg1/ 3, for example, ConWep gives pr,max = 31.54 kPa, ir/W 1/ 3 = 59.33

kPa.ms/kg1/ 3 and td /W 1/ 3 = 4.788 ms/kg1/ 3. Iterating equation 6 gives the waveform

parameter, b = 0.771. When these parameters are used as input in equation 7, the negative

phase impulse is given as i−r /W1/ 3 = 118 kPa.ms/kg1/ 3, whereas the parameter relationship

in the literature, shown in Figure 2 and equation 4, gives the negative phase impulse as 

i−r /W1/ 3 = 62 kPa.ms/kg1/3.

3.3. EXTENDED FRIEDLANDER WITH TEICH C –
r

In order to better control the form of the negative phase, Teich & Gebbeken [7] introduce the

negative phase reflection coefficient, C –
r , which is a function of the scaled distance,

(8)

and also offer a scaled distance relationship for an improved waveform parameter

(9)

This enables the value of extended Friedlander peak underpressure to be better matched to

the published empirical value at that particular scaled distance (e.g. Figure 2 and equation 3),

giving the piecewise positive and negative phase expression1 as

(10)

Although the introduction of the negative phase reflection coefficient allows the peak

negative phase pressure to be controlled, the new waveform parameter, α, is again given to

match the positive phase impulse of the Friedlander expression to empirical predictions, i.e.

there remains no variable to control the negative phase impulse.

The Teich extended Friedlander gives the negative phase impulse as

(11)

where, for Z = 10 m/kg1/3, the ConWep peak incident pressure, pso,max = 14.81 kPa and

the reflection coefficient and waveform parameter, C –
r = 1.855 and α = 0.625 from
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1In Teich and Gebbeken’s formulation, pr,max is replaced by Crpso,max, however for consistency with the positive phase

expressions in this article, the former notation is adopted



equations 8 and 9 respectively, gives the Teich extended Friedlander negative phase

impulse as i –
r /W1/3 = 180 kPa.ms/kg1/3. Again this is far greater than the empirical

prediction. Furthermore, in both ‘extended Friedlander’ approaches, the blast pressure will

have a finite pressure value (albeit very small) for all values of t, hence the duration of the

load, and also the impulse, cannot always be accurately captured with an extended

Friedlander expression.

3.4. CUBIC NEGATIVE PHASE
Alternatively, the blast load can be constructed as a piecewise pressure-time function using the

Friedlander positive phase [21] and a cubic expression for the negative phase, shown in

equation 12. This negative phase expression is given by Granström [20], and, although the

origin of the expression is unclear, it appears as though it is a fit to early numerical simulations.

It is worth noting that the negative phase expression given does not vary with scaled distance

and instead is a general fit to the form of the negative phase. The Granström expression is

recommended by the Naval Facilities Engineering Command Design Manual 2.08, Blast

Resistant Structures [24], and the US Army Blast Effects Design Spreadsheet (SBEDS) [25].

(12)

With this expression, the negative phase duration is corrected such that the integral of the

cubic expression gives the same impulse as that given by the empirical prediction in equation

4, i.e. t−
d
= 16i –

r / 9pr,min.

Figure 3 shows normalised pressure-time histories for the different negative phase

approximations at Z = 4 and Z = 16 m/kg1/3. It is clear that the choice of negative phase

approximation has a significant impact on the form of the blast pressure history.

44..  EEXXPPEERRIIMMEENNTTAALL  VVAALLIIDDAATTIIOONN  OOFF  NNEEGGAATTIIVVEE  PPHHAASSEE  AAPPPPRROOXXIIMMAATTIIOONNSS
The lack of agreement between the different negative phase expressions highlights the need

for a well validated negative phase model. In this section, a simple experimental validation

is provided and recommendations are given on which approximation to use. 

A number of blast trials were conducted at the University of Sheffield Blast & Impact

Laboratory, Buxton, UK. 0.25 kg PE4 hemispherical explosive charges were detonated

4 m, 6 m, 8 m and 10 m away from and orthogonal to the external wall of a reinforced

concrete bunker, forming a large, effectively rigid target, such that fluid-structure

interaction effects [26, 27] could be ignored. The charges were detonated on a 50 mm

thick steel plate, placed on a level, flat concrete ground slab, enabling the detonation to

be considered as a hemispherical surface burst. A Kulite HKM 7 bar pressure gauge was

placed 375 mm from the base of the target, and pressure was recorded using a 16-Bit

Digital Oscilloscope at a sample rate of 100 kHz, synchronised with the detonation.
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4.1. EXPERIMENTAL FEATURES
Figure 4 shows, as an example, the experimental trace from the 6 m shot, where the clear

presence of the well-known ‘second shock’ [28] can be seen. This phenomenon is not

accounted for in any of the empirical predictions, and its influence has been discounted in

this study – its influence will be second order compared to the negative phase. In the test

arrangement, the minimum distance from the pressure gauge to the top edge of the bunker

wall was 4 m – a clearing wave travelling at 340 m/s from the nearest free edge would take

∼11.5 ms to reach the gauge location before it could begin to affect the pressure readings.

8 The Negative Phase of the Blast Load
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Again, this can be seen in the experimental readings in Figure 4 and perhaps more clearly in

Figure 5. This feature should be noted in subsequent analysis, but is clearly of relatively low

relevance and the trace can be considered to be almost unaffected by clearing. The distance

from the pressure gauge to the side edges of the bunker wall was greater than 4 m, ensuring

that clearing effects from the side edges could be neglected.

4.2. VALIDATION
Figure 5 shows the experimental and predicted negative phase pressure-time histories and

Figure 6 shows the experimental and predicted impulse-time histories. Negative phase

approximations were constructed assuming a 1.20 TNT equivalence of PE4 [18], giving a

charge mass, W, of 0.3 kg and scaled distances of 6.0, 9.0, 12.0 and 14.9 m/kg1/3.

Apart from the second shock at the beginning of the negative phase (annotated in Figure

4) on the experimental traces, the cubic negative phase matches the experimental traces

remarkably well, both in terms of peak negative pressure and general form of the negative

phase. The linear expression gives a good approximation to the peak underpressure but is not

quite as accurate at matching the shape of the negative phase. Neither extended Friedlander

expressions match the experimental traces very well, particularly for the larger scaled

distances.

Table 1 gives the values of peak impulse determined from the experimental traces and the

negative phase approximations shown in Figure 6 – the time axis is truncated at 25 ms after

detonation, before the extended Friedlander expressions reach their peak impulse value,

which can be determined from the equations given in the previous section. The cubic

expression can model the negative phase impulse to within 10–25% of the experimental

values – the over-prediction can be primarily attributed to neglecting the second shock. The

linear negative phase expression and cubic expressions are impulse-corrected to match

the values given by the empirical parameter relationships; hence their impulse values are the

same despite the waveforms being different. It is worth pointing out that the positive phase
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impulse predictions from ConWep matched the experimental positive phase impulse to

within 5% for the whole test series.

To further illustrate the difference in impulses given by the negative phase

approximations, Figure 7 shows the relationship between normalised net impulse 

([ir + i−r ]/ir) and scaled distance, Z. Here it can be seen how much the extended Friedlander

approaches differ from the experimental (and cubic) impulses – the extended Friedlander

expression using the Teich reflection coefficient gives a negative phase impulse of over an

order of magnitude greater than the positive phase impulse for Z > 30 m/kg1/3.

It is acknowledged that the negative phase requires more stringent validation as well as a

larger experimental database than those provided as part of this study. However, at this stage

it is clear that the empirical predictions appear to be a good indication of the loading

10 The Negative Phase of the Blast Load

0 5 10 15 20 25

0

−2

−4

−6

−8

−10

−12

−14

R
e

fl
e

c
te

d
 o

ve
rp

re
s
s
u

re
 (

k
P

a
)

Time after arrival (ms)

(a) 4 m

0 5 10 15 20 25

0

−2

−4

−6

−8

−10R
e

fl
e

c
te

d
 o

ve
rp

re
s
s
u

re
 (

k
P

a
)

R
e

fl
e

c
te

d
 o

ve
rp

re
s
s
u

re
 (

k
P

a
)

0

−3

−2

−1

−4

−5

−6

−7

0

−3

−2

−1

−4

−5

−6

−7

−8

−9

R
e

fl
e

c
te

d
 o

ve
rp

re
s
s
u

re
 (

k
P

a
)

Time after arrival (ms)

(b) 6 m

0 5 10 15 20 25

Time after arrival (ms)

(c) 8 m

0 5 10 15 20 25

Time after arrival (ms)

(d) 10 m

Experimental

Bilinear negative

Cubic negative

Extended Friedlander

Extended Friedlander (Teich C −r )

Figure 5. Negative phase approximations for a 0.25 kg hemispherical
PE4 (0.3 kg TNT) charge
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Figure 6. Negative phase impulse for a 0.25 kg hemispherical PE4 (0.3 kg
TNT) charge

Table 1. Experimental and predicted negative phase reflected impulse

Load approximation Negative phase impulse (kPa.ms)

Stand-off (m)

4 6 8 10

Experimental 52.8 39.9 31.1 27.7

Linear positive and negative 64.5 45.8 36.0 29.8

Cubic negative 64.5 45.8 36.0 29.8

Extended Friedlander 50.0 79.4 70.1 53.6

Extended Friedlander (Teich C−
r

) 126.9 119.3 118.5 120.7



parameters (for both negative and positive phases), and that the cubic negative phase not only

allows better control of the negative phase to match these parameters, but also appears to

follow the general form of the negative phase well.

55..  MMOODDEELLLLIINNGG  IIMMPPLLIICCAATTIIOONNSS
The first part of this paper has focussed on presenting different methods of approximating

the negative phase and offered experimental validation. It is also important to demonstrate

the influence that incorrectly modelling the negative phase has for certain configurations of

target properties and blast event. This will be the focus of the remainder of this paper.

5.1. THE INFUENCE OF THE NEGATIVE PHASE ON ELASTIC SYSTEMS
For flexible systems subjected to blast loads, the response of the target can be modelled using

the equivalent single-degree-of-freedom (SDOF) method [29]. It is common to ignore

damping in blast-resistant design as it is typically only the first few cycles of displacement

that are of interest, where damping has little effect [3]. In doing so, the equation of motion

for an equivalent SDOF system is given as

(13)

where me and ke are the equivalent mass and stiffness of the system, z̈ and z are the

acceleration and displacement of the system, and Fe(t) is the equivalent externally applied

load. For more information on how to transform a ‘real life’ system into its SDOF equivalent,

the reader is referred to Biggs [29] and Morison [30].

In order to demonstrate the influence that the form of the negative phase has on elastic

systems, the SDOF equivalent equation of motion was solved under the following five load

cases:

m z t k z t F t
e e e
ɺɺ( ) ( ) ( ).+ =
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• The experimental load for R = 10 m and W = 0.3 kg TNT

• A linearly decaying positive phase with no negative phase. This triangular pulse shape

is recommended for use with the SDOF method as a ‘first guess’ of the typical target

response to a blast load

• Friedlander positive phase with cubic negative phase (equation 12)

• Friedlander positive phase with extended Friedlander negative phase (equation 1

extended to t = ∞)

• Friedlander positive phase with extended Friedlander negative phase using the Teich

[7] reflection coefficient (equation 10).

The linear negative phase was not modelled in this analysis. The linear expression will

have the same peak negative phase pressure and impulse as the cubic expression for any

scaled distance, and will therefore have little difference on target response for impulse-driven

analyses. For dynamic and quasi-static analyses, however, the pulse shape has been shown

to have an influence on the response of structures to blast loads [22, 31, 32], and it is

therefore recommended that the cubic expression should be used in analysis, on account of

it better matching the experimental pressure waveform seen in Figure 5. For the purpose of

this article, however, it is more important to highlight the difference between the cubic

expression, extended Friedlander expressions and neglecting the negative phase altogether,

rather than focussing on the importance of pulse shape, and therefore the linear

simplification of the negative phase as a bilinear pulse is not considered further.

The time ratio, td/T , where T is the fundamental natural period of the system, gives an

indication of the response time of the structure with respect to the duration of the loading.

Separate equivalent systems were analysed with time ratios of 1.00, 0.10 and 0.01 – these

time ratios indicate structures whose response time is in the static, dynamic and impulsive

regimes respectively. Figures 8, 9 and 10 show the normalised displacement-time histories

of the equivalent SDOF systems.

From Figure 8, it is clear that the negative phase has very little effect on the peak response

of flexible systems near the static regime. The system reaches peak displacement at ∼ 0.5td,
before the negative phase starts, hence there is little appreciable difference in the response
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for the different load cases – the difference in first peak response is caused only by the

difference in pulse shape between the linear and exponential positive phases and not the

negative phase itself.

For more flexible systems, the negative phase has a more pronounced effect, and it is for

systems such as these where modelling the negative phase becomes crucial. For td /T = 0.1

(Figure 9), the system begins to rebound shortly after the positive phase. If the negative

phase is modelled using the cubic expression, the peak rebound displacement is similar to the

peak inward displacement of the system under the linear load. If the negative phase is

modelled as an extended Friedlander, the rebound effect is much more pronounced. For 
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td/T = 0.01 (Figure 10), the system responds relatively slowly compared to the application

of the load. Again, modelling the negative phase as the cubic expression gives excellent

results when compared to the SDOF system under the experimental load. If the system were

analysed using only the linear positive phase, the peak displacement would be over-predicted

in the inward direction. If the system were analysed using the extended Friedlander

approaches, the outward displacement would be grossly over-predicted, particularly if the

Teich reflection coefficient is used.

The displacement ratio is given as the peak displacement of the SDOF system divided by

the peak displacement of the SDOF system under the linear load [7], i.e. zmax/zmax,lin, and is

a quantitative indicator of the influence of the negative phase on dynamic response. Values

of displacement ratio for the systems analysed are summarised in Table 2.

Figure 11 shows the relationship between displacement ratio and time ratio for Z = 14.9

m/kg1/3, i.e. the response spectra for elastic SDOF systems under the experimental, cubic

negative and extended Friedlander load cases. For the whole range of time ratios, modelling

the negative phase using the cubic approximation gives values of peak displacement that are

in excellent agreement compared to the peak displacements of the SDOF system under the
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Table 2. Peak normalised SDOF displacements

Load approximation Displacement ratio, z
max

/z
max, lin

Time ratio, t
d

/T

1.00 0.10 0.01

Experimental 1.01 1.14 0.17

Cubic negative 0.93 1.13 0.19

Extended Friedlander 0.93 1.85 1.10

Extended Friedlander (Teich C−
r

) 0.93 3.16 3.81
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Figure 11. Elastic SDOF response spectra under different negative
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experimental load. The cubic negative phase accurately models the increase in peak

displacement at td /T ∼ 0.25 as a result of elastic rebound coinciding with negative phase

pressures, as well as being able to capture the beneficial aspects of including the negative

phase for impulsive loading. Modelling using either of the extended Friedlander expressions

does not give acceptable results, particularly at the impulsive end of the spectrum.

Referring back to Figure 7, it is clear that the peak normalised elastic displacement of the

SDOF system for impulsive loads (td /T < 0.01) is directly proportional to the normalised net

impulse. At Z = 14.9 m/kg1/3, the normalised net impulses for the cubic, extended

Friedlander and Teich extended Friedlander are −0.2, −1.0 and −4.0 respectively, which are

exactly the normalised peak displacements at the impulsive end of the response spectra. The

difference in net impulse increases further when Z > 14.9 m/kg1/3, which leads to the

conclusion that it is vital to model the negative phase correctly at larger scaled distances.

5.2. THE INFUENCE OF THE NEGATIVE PHASE ON SYSTEMS WITH MATERIAL
FAILURE
To further highlight the impact of the negative phase loading assumptions, a series of

numerical analyses were performed using the explicit FE code LS-DYNA [33]. Simply

supported, one-way spanning, 1 m square, 8 mm thick panels were discretised into a grid of

100×100 Belytschko-Tsay shell elements with four integration points through the thickness

of the shell.

The plates were modelled as elastic-perfectly plastic using the *MAT_PLASTIC
_KINEMATIC material model with Young’s modulus, E = 70 GPa, density ρ = 2500 kg/m3,

Poisson’s ratio, ν = 0.25 and zero tangent modulus. A yield strength of 70 MPa was selected

for the panels, which is within the range of values for structural glass given in [5]. The

material properties are summarised in Table 3, and were selected to be indicative of a typical

glazing panel.

Pressure loading was applied at nodal points as force-time histories – the models were

analysed under the loading from an 8 kg hemispherical TNT surface burst at 20 m stand-off,

with separate models run for the following load cases; linear positive with no negative,

Friedlander positive with cubic negative, extended Friedlander and extended Friedlander

with Teich reflection coefficient.

Failure strain was specified as multiples of the elastic strain limit (εe= σy /E), set at 2, 4, 10

and 20εe to represent increasing levels of ductile failure. If any of the elements within the plate

failed, the analysis was terminated and the direction in which the panel failed was recorded.

With large displacements, fluid-structure interaction (FSI) may serve to dampen the blast
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Table 3. Material properties of the plates analysed

Parameter Symbol  Value (unit)

Young’s modulus E 70 (GPa)

Density ρ 2500 (kg/m3)

Poisson’s ratio ν 0.25 (−)

Span L 1 (m)

Thickness d 8 (mm)

Yield strength σ
y

70 (MPa)

Elastic strain limit ε
e

0.01 (−)

Failure strain ε
f 

2–20ε
e

(−)



pressure and result in lower values of displacement. Subramaniam et al. [34] used the ratio

of the peak particle velocity to peak plate velocity to quantify the influence of FSI. In this

numerical study, a peak particle velocity of 88.5 m/s (from ConWep) compared to a

maximum plate velocity of ∼6 m/s gives a ratio of 0.07, at which the influence of FSI is still

second order. Therefore the use of non-FSI empirical loads can be considered valid for this

case.

Table 4 presents the results of the parametric study in terms of pass/fail, where ‘-’

indicates no material failure was present, ‘Fi’ indicates that the panel failed in the inward

direction and ‘Fo’ indicates that the panel failed in the outward direction, i.e. towards the

direction of the blast.

With the exception of the most brittle case, where failure occurs in the inward direction

under all four load cases, there is no other instance where all four models agree on the failure

of the glazing panel. From the evidence provided earlier in this article, it can be said that the

cubic negative phase represents ‘correct’ treatment of the negative phase, with the other load

cases representing ‘incorrect’ treatment. Neglecting the negative phase, therefore, is shown

to be under conservative for εf = 4εe yet conservative for εf = 10εe, whereas modelling it as

an extended Friedlander may falsely predict material failure for ductile systems.

66..  SSUUMMMMAARRYY  AANNDD  CCOONNCCLLUUSSIIOONNSS
Following the positive phase of a blast comes a period where the pressure falls below

atmospheric pressure known as the negative phase. Whilst the positive phase of the blast is

well understood, validation of the negative phase is rare in the literature, and as such it is

often incorrectly treated or neglected altogether.

This paper reviews current methods in the literature for representing the negative phase,

and provides experimental validation for comparison. Of the different methods for modelling

the negative phase, the cubic expression of Granström [20] gives the best approximation both

qualitatively and quantitatively.

Elastic single-degree-of-freedom systems are analysed under the different loading

approximations to give an idea of the magnitude of the differences in displacement that will

be seen when using the different load models. Finite element analyses are undertaken on

elastic-plastic panels with material failure to further highlight the lack of agreement between

the results given by the different loading models.

With so many parameters influencing whether the negative phase is conservative, non-
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Table 4. Material failure for a 1 m × 1 m panel subjected to an 8 kg
hemispherical TNT burst at 20 m (Z = 10.0 m/kg1/3) under different
negative phase approximations. ‘–’ indicates no material failure
whereas ‘Fi’ and ‘Fo’ indicate material failure in the inward and outward
direction respectively

Load approximation Panel failure

ε
f
=

2ε
e

4ε
e

10ε
e

20ε
e

Linear, no negative phase Fi Fi – –

Cubic negative Fi Fo Fo –

Extended Friedlander Fi Fo Fo Fo

Extended Friedlander (Teich C−
r

) Fi Fo Fo Fo



conservative or has no effect, it is both difficult and impractical to definitively say when the

negative phase can be neglected or not. In fact, because of this it can be argued that the

negative phase should not be neglected at any stage until the engineer is confident that its

effects are understood.

The numerical cases shown in this study are for a limited number of structural

arrangements under a limited number of blast events and are by no means an attempt at an

exhaustive quantification of the influence of the form of the negative phase. Instead, the

examples shown, for both the ‘real-life’ glazing panels and the equivalent elastic systems,

should serve as a reminder that the negative phase is both important and often the effect of

the negative phase is underestimated. The evidence provided in this paper should provide the

research community with guidance on how to model the negative phase.
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