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The Neglect of Monotone Comparative Statics Methods

Carol Horton Tremblay and Victor J. Tremblay

Monotone methods enable comparative static analysis without the restrictive assumptions of the
implicit-function theorem. Ease of use and flexibility in solving comparative static and game-theory
problems have made monotone methods popular in the economics literature and in graduate courses,
but they are still absent from undergraduate mathematical economics courses and textbooks. In this
article, the authors illustrate the generality of monotone comparative statics relative to the implicit
function approach. For example, to sign the effect of a discrete policy shift on a choice variable,
the marginal returns will increase with the policy parameter. They also apply monotone methods in
game theory settings. As mathematical economics courses and majors gain popularity, incorporating
monotone methods into curriculum and textbooks would provide a modern treatment of comparative
static analysis.
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The use of mathematics has become widely accepted in economics research (Allen 2000). In fact,
E. Roy Weintraub (2002) contended that the mathematization of economics is one of the most
important developments in the history of the discipline in the last century. Following this trend,
more and more economics departments are integrating mathematics into their undergraduate
curricula. In 2008, 54 percent of the leading 50 universities and 44 percent of leading 50 liberal
arts colleges offered courses in mathematical economics.1 In addition, undergraduate degrees in
mathematical economics are offered by 22 percent of the top 50 universities and 32 percent of the
top 50 liberal arts colleges.2 Given this trend, it is becoming increasingly important for courses
and textbooks in mathematical economics to be up to date.

Comparative statics, a cornerstone of economic analysis, enables prediction and understanding
of economic effects by comparing equilibria before and after a change in a policy, exogenous
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factor, or parameter. In mathematical economics courses, the classic approach to comparative
static analysis, which is discussed in all undergraduate textbooks on mathematical economics, is
to apply the implicit-function theorem to equilibrium conditions or the first-order conditions of an
optimization problem.3 To effectively apply the implicit-function theorem, however, derivatives
of relevant functions must be continuous, objective functions must be concave, and the stability
conditions must be determined. In addition, the implicit-function theorem is only valid for an
infinitesimally small change in a policy or exogenous variable.

More recent research in the area of monotone comparative statics demonstrates, however,
that comparative static analysis can be conducted without many of the restrictions required by
the implicit-function theorem (Milgrom and Shannon 1994; Shannon 1995; Edlin and Shannon
1998).4 One advantage of this new approach is that objective functions need not be continuous
or concave. Another is that it works for discrete changes as well as infinitesimally small changes
in a policy or exogenous variable. It also has the appeal of ease of use relative to the implicit-
function theorem. The drawback of this approach is that monotone comparative statics tell only
the direction of change but not the magnitude of change in models with explicit functional forms.
This gives no real advantage to the implicit-function approach over monotone methods, however,
as we can always use analytic or computational methods to derive comparative static results in
models with explicit functions.

The classic method is also difficult to apply in game theoretic settings. With many players and
choice variables, the curse of dimensionality is a problem: it becomes increasingly tedious if not
impossible to calculate a definitive comparative static result. Multiple equilibria are also common
in many games, making it difficult to apply the implicit-function theorem. Monotone methods,
however, are tractable in this setting. Recent work shows that unambiguous comparative static
results can emerge when a game exhibits increasing monotonic best-reply functions, which occur
when all strategic variables are complementary. That is, each player’s own choice variables are
complementary, and all strategic variables across players are strategic complements. A game with
this structure is called a supermodular game or a game with strategic complementarities (Bulow,
Geankoplos, and Klemperer 1985; Milgrom and Roberts 1990; Vives 1999).

Although these modern methods are more than a decade old, they are ignored in undergraduate
textbooks in mathematical economics.5 This is unfortunate because they are relatively easy to
apply and are more general than traditional methods. Our goal is to describe these methods
and show how they can be applied to problems commonly found in undergraduate courses in
economics. In the next section, we provide an example that allows us to compare methods and to
show that the implicit-function method is a special case of the monotone method. We then show
how monotone methods can be used to do comparative statics in noncooperative games, even
when the classic method is intractable.

MONOTONE COMPARATIVE STATICS

The main advantage of monotone comparative statics is that it dispenses with irrelevant as-
sumptions that are required to use the implicit-function theorem. These include differentiability,
concavity of the objective function, and convexity of constraint sets.

In the case of differentiability, the function in question must be smooth in the neighborhood
around the point being evaluated to use the implicit-function theorem. This is particularly prob-
lematic in policy analysis, where a particular policy has a discrete nature. For example, the U.S.
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Broadcast Advertising Ban of 1971 made it illegal for cigarette companies to use television and
radio advertising to market tobacco products. Likewise, a pollution abatement policy may com-
pletely ban the use of a polluting input, and many occupational safety regulations are either in
effect or not. These binary types of regulations are likely to cause a discrete jump in a firm’s profit
function, making it impossible to use the implicit-function theorem. With monotone methods,
differentiability and convexity are not required to perform comparative static analysis.

To illustrate the advantages of the modern approach, we investigate the comparative statics of a
monopoly firm whose goal is to maximize profit with respect to output. We first investigate the sim-
ple case where the firm faces explicit demand and cost functions and show that comparative static
analysis can be performed without the use of the implicit-function theorem or monotone meth-
ods. Second, we consider a more general specification where the profit function is concave
and differentiable, a case where one can use the implicit-function theorem (as well as mono-
tone methods) to perform comparative static analysis. Third, we investigate the case where
the profit function is no longer differentiable. Although the implicit-function approach fails,
we show how monotone methods can be used to perform comparative static analysis. We also
show that the implicit-function theorem is a special case of the strict monotonicity method,
present the weak-monotonicity theorem, and discuss the case where the firm has multiple choice
variables.

We begin with the most restrictive case where the monopolist faces simple linear demand and
cost functions. Let the firm’s inverse demand be p = a − bq, where q is output, p is price, and
parameters a and b are positive. The firm’s total cost function (TC) is linear and depends on a
regulatory policy (R), such that TC = cq + R and c > 0. In this example, the government imposes
a per-unit subsidy to encourage monopoly production: R = –sq, s > 0. Thus, the firm’s profit
equals π = (a − bq − c + s)q. To ensure that profits are nonnegative in equilibrium, we assume
that a > c − s. Our goal is to determine how a change in s will affect the firm’s profit-maximizing
output.

In this simple model, comparative static analysis can be derived directly from the solution to
the monopoly problem.6 The firm’s first- and second-order conditions are

∂π

∂q
= a − c + s − 2bq = 0,

d2π

dq2
= −2b < 0.

From the first-order condition, the firm’s profit-maximizing output (q∗) is

q∗ = a − c + s

2b
.

Thus, for a marginal change in s, ∂q∗/∂s = 1/(2b) > 0. For a discrete increase in s from s1 to
s2, the change in q∗ is (s2 − s1)/(2b) > 0. With explicit functions, both the sign and magnitude
of change can be obtained, and nothing is gained from using the implicit-function theorem or
monotone methods.

This brute-force method of deriving a comparative statics result from a solution to a problem
with explicit functions cannot be used with general functional forms, however. For example,
assume that the firm faces a general inverse-demand function p = p(q), which is twice continuously
differentiable, is strictly decreasing in q, and is not too convex. The firm’s total cost function,
TC = C(q) − sq, is twice continuously differentiable, convex, and strictly increasing in q. In this
case, the profit equation, π (q, s) = p(q)q − C(q) + sq, is strictly concave.7 The firm’s first- and
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second-order conditions are

∂π

∂q
= p + dp

dq
q − dC

dq
+ s = 0,

∂2π

∂q2
= 2

dp

dq
+ d2p

dq2
q − d2C

dq2
< 0.

The optimal value of q is embedded in the first-order condition but cannot be derived explicitly
when functions are general. In cases in which the brute-force method fails, the implicit-function
theorem can be used to do comparative static analysis if we assume an infinitesimally small
change in s. From the implicit-function theorem:

dq∗

ds
= −∂2π/∂q∂s

∂2π/∂q2
.

Because the numerator on the right-hand side of the equality above equals 1 and the denominator
is negative, an increase in the subsidy will increase q∗. This shows how differentiability and
concavity of the objective function in the neighborhood of q∗ are important when one is using
the implicit-function theorem to perform comparative static analysis.

An important limitation of the implicit function theorem is that it cannot be used when there
is a discrete change in a policy variable.8 To perform comparative static analysis in this case, we
must use Aaron Edlin and Chris Shannon’s (1998, 205) strict-monotonicity theorem. We describe
the theorem generally, where f (x, α∗) is the objective function, x is the choice variable, and α is
the policy parameter that can take on two discrete values α∗ and α′.

Strict Monotonicity Theorem: Let f : R → R, S ⊂ R, x∗ = argmaxxεs f (x, a∗), and x ′ =
argmaxxεs f (x, a′). Suppose that x∗ is a unique interior solution and that ∂f /∂x is continuous and
has strictly increasing marginal returns with respect to the parameter α. Then x∗ > x′ if α∗> α′.9

The intuition behind the proof hinges on the assumption of strictly increasing marginal returns,
which means that ∂f/∂x is increasing in α.10 With strictly increasing marginal returns, an increase
in α from α′ to α

∗
causes f (x, α) to increase, implying that f (x, α∗) > f (x, α′). Because x′ is the

unique argmax at α′, ∂f /∂x (x′, α′) = 0. Given this and the fact that f (x, α) is increasing in α,
∂f /∂x(x′, α

∗
) > 0. Therefore, the unique argmax at α∗ (x∗) must be greater than x′.11

Before returning to our monopoly problem, we illustrate the intuition behind the theorem with
a simple example. Suppose the objective function is f (x, α) = g(α)x − x2, and the parameter
α can take on two discrete values, such that g(α′) = 2 and g(α∗) = 3. These two functions
are illustrated in figure 1 and are labeled f′ and f∗. Because the function takes a discrete jump
when α increases, we cannot use the implicit-function theorem to perform comparative static
analysis. The strict monotonicity theorem applies, however, because the function exhibits strictly
increasing marginal returns in α: the slope of the tangent to the objective function increases as α

increases from α′ to α∗. In other words, ∂f∗/∂x > ∂f ′/∂x as shown in figure 2. Thus, by the strict
monotonicity theorem, the argmax of f (x, α) increases as we increase α (i.e., x increases from 1
to 1.5), implying that x and α are complements. This highlights the role of first-order conditions
and illustrates how to apply the theorem: essentially all that needs to be checked is whether or
not the function exhibits strictly increasing marginal returns with respect to the parameter in
question.

We now have the tool needed to determine how a discrete change in s will affect the mo-
nopolist’s optimal level of output when demand and cost functions are general.12 Assume that s
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FIGURE 1 A differentiable objective function and a discrete policy change.

increases from s′ to s∗, q′ is the unique argmax of π (q, s′), and q∗ is the unique argmax of π (q, s∗).
The firm’s total revenue (TR) is p(q)q, and its total cost (TC) is C(q) − sq. Under these condi-
tions, the profit equation exhibits increasing marginal returns with respect to q and α because the

FIGURE 2 Marginal returns that are continuous for a discrete policy change.
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following difference in marginal profits is positive.

∂π (s∗)

∂q
− ∂π (s ′)

∂q
=

(
∂TR

∂q
− ∂TC(s∗)

∂q

)
−

(
∂TR

∂q
− ∂TC(s ′)

∂q

)

= −∂TC(s∗)

∂q
+ ∂TC(s ′)

∂q

= s∗ − s ′ > 0.

This inequality holds because the marginal cost under regime s∗ is lower than the marginal cost
under regime s′ by definition. Thus, by the strict monotonicity theorem, q∗ > q′. This demonstrates
that the monopolist’s profit-maximizing level of output will increase with a government policy
that reduces marginal cost.

We can use this example to show that the implicit-function theorem is a special case of the strict
monotonicity theorem because the strict monotonicity theorem applies to continuous changes as
well as discrete changes. Assume that the policy parameter s is a continuous variable. There
are strictly increasing marginal returns to s, because ∂2π/∂q∂s =−∂2TC/∂q∂s = 1 > 0. Thus,
the strict monotonicity theorem implies that a marginal increase as well as a discrete increase
in s will cause an increase in the firm’s profit-maximizing output level. Alternatively, by the
implicit-function theorem,

∂q∗

∂s
= ∂2π/∂q∂s

∂2π/∂q2
.

To sign this derivative requires additional information, the sign of ∂2π/∂q2. If the profit
function is concave and twice continuously differentiable, then the second-order condition of
profit maximization ensures that ∂2π/∂q2 < 0, which implies that ∂q∗/∂a > 0. This illustrates
how easy it is to use the monotone method and shows that the implicit-function approach is
a special case of monotone methods. This example also shows that once it is established that
there are increasing marginal returns, the other assumptions needed to use the implicit-function
theorem are not necessary to sign comparative static expressions.

The monotonicity theorem is weaker, however, when the objective function is not smooth in
the choice variable. A classic economics example is where output must be produced in discrete
batches of 100 units (i.e., 0, 100, 200, 300, . . . ), where revenue, cost, and profit are defined as
distinct values for each batch of output and are undefined otherwise.13 In this case, Paul Milgrom
and Chris Shannon’s (1994) weak-monotonicity theorem applies, where f (x, α∗) is the objective
function and x represents one or more choice variables.

Weak-Monotonicity Theorem: Let X be a lattice, S ⊂ Rm, A be a partially ordered set, and f :
X × A → R. If f (x, α) has increasing differences in x and α and is supermodular in x, then x∗ =
argmaxxεs f (x, α) is nondecreasing in α.

We illustrate the important features of the theorem by example.14 First, we consider the case with
only one choice variable, a case where supermodularity does not apply. Figure 3 and figure 4
provide an example in which the objective function is not smooth and not strictly concave but
the optimal value of x increases. In this case, f (x, α) exhibits increasing differences in α, which
represent a weaker discrete version of increasing marginal returns. That is, f (x, α) has increasing
differences in x and α when for all x′ > x, f (x′, α) − f (x, α) is nondecreasing in α. We must
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FIGURE 3 A nondifferentiable objective function and a discrete policy change.

now analyze discrete changes because the objective function is no longer differentiable. Figure 5
provides a similar example, this time where the objective function is not concave. Figure 6
illustrates the case in which the equality holds: an increase in α has no effect on the optimal
value of x, even though the objective function exhibits increasing differences in α. Given that the
objective function is not differentiable at the optimum, this weaker monotonicity theorem implies
that an increase in α will have a nonnegative effect on x∗. This illustrates why differentiability

FIGURE 4 Marginal returns that are discontinuous for a discrete policy change.
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FIGURE 5 A nonconcave objective function and a discrete policy change.

FIGURE 6 The case in which the policy parameter has no effect on the optimum when the objective function is
nondifferentiable.
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with respect to x is required for the strict-monotonicity theorem to hold when there is just one
choice variable. Nevertheless, in this setting the implicit-function theorem cannot be used at
all, whereas the weak-monotonicity theorem demonstrates that an increase in a complementary
parameter will have a nonnegative effect on the optimal value of the choice variable.

Monotone methods are more complicated when there are multiple choice variables. With
a single choice variable, checking for increasing marginal returns or increasing differences
is essentially all that is required to do monotone comparative static analysis. With multiple
choice variables, the problem is complicated by interaction effects. In this case, the monotonicity
theorems also require that all choice variables be complementary.15 In the continuous case in
which the objective function is f (x1, x2, α), complementarity of choice variables means that
∂2f/∂x1∂x2 ≥ 0. When this condition holds for all choice variables, the objective function is said
to be supermodular. Thus, the application of monotone comparative static analysis when there
are multiple choice variables requires that one check for both supermodularity and increasing
marginal returns (or increasing differences).16 The concept of supermodularity will be especially
important in the next section, involving comparative static analysis in game theoretic settings.

MONOTONE METHODS AND GAME THEORY

This class [of games, called supermodular games,] turns out to encompass many of the most important
economic applications of noncooperative game theory. (Milgrom and Roberts 1990, 1255)

Game theory has become increasingly important in economics, but comparative static analysis
is complicated in game theoretic settings because both optimization and equilibrium concepts
are required. Monotone methods simplify this type of analysis, however. The most widely used
equilibrium concept in noncooperative game theory is the Nash equilibrium, and it will be our
focus here. Augustin Cournot (1838) derived what came to be known as the Nash equilibrium in
a duopoly when firms choose output, and Joseph Bertrand (1883) derived the Nash equilibrium
when firms choose price.

Because price competition is more common than output competition, we use the Bertrand
model to compare and contrast classic methods with monotone methods of comparative statics.
We assume that two firms (1 and 2) produce differentiated products in a single market and compete
by simultaneously choosing price. In this example, our goal is to analyze how an increase in an
excise tax (t) will affect Nash equilibrium prices.

As in the previous section, we demonstrate the advantages of monotone methods by considering
progressively more general specifications. We begin by assuming simple linear demand and cost
functions. This allows us to illustrate the brute-force method of doing comparative static analysis
in a duopoly game. Let firm i’s respective demand and total cost functions be qi = a − bpi + dqj

and TCi = (c + t) qi, where a, b, d, and c are positive constants. With this notation, subscript
i refers to firm 1 or 2 and j refers to the other firm. Throughout this duopoly example, we
assume that firm demand is sufficient to assure firm participation (i.e., Nash equilibrium output is
positive); this requires that a > (c − t)(b − d) and b > d/2. Firm interdependence is revealed in
the demand functions as a price increase by one firm raises the demand of the other firm, ceteris
paribus. The firm’s profit equation is π = (pi − c − t)(a − bpi + dpj). Information is perfect and
complete, meaning that each firm knows all of this information.
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Notice that the problem is symmetric, and the respective first and second derivatives of firm
i’s profit equation are

πi = a − 2bpi + dpj + b(c + t),

πii = πjj = −2b,

πij = πji = d ,

πit = b.

With this notation, π i ≡ ∂π/∂pi, π ii ≡ ∂2π/∂pi
2, π ij ≡ ∂2π/∂pi∂pj, and π it ≡ ∂2π/∂pi∂t for

firm i. Solving the first-order condition for pi gives firm i’s best-reply function:

pBR
i (pj ) = a + dpj + b(c + t)

2b
.

This identifies the optimal pi for a given value of pj. The Nash equilibrium satisfies the best-reply
functions for both firms simultaneously. In this model, the Nash price for firm i (p∗

i ) is:

p∗
i = a + b(c + t)

2b − d
.

For a marginal change, ∂p∗
i /∂t = b/(2b − d), which is positive given that b > d/2 > 0. For a

discrete increase in t from t1 to t2, the change in p∗
i is [b(t2 − t1)]/(2b − d) > 0.

Next, we consider a duopoly model that is too general to use the brute-force method but
meets the conditions needed to use the implicit-function theorem. In this case, firm i’s demand
function, qi(pi, pj), is twice continuously differentiable, and has a negative slope (∂qi/∂pi < 0);
and, because goods are substitutes, ∂qi/∂pj > 0. The total revenue of firm i is TRi(pi, pj) = pi

qi(pi, pj). Firm i’s total cost is TC(qi, t) = C(qi) + t qi, with C(qi) having the same properties as
in the monopoly case. Given these definitions, firm i’s profit equation is π i(pi, pj, t) = TRi(pi, pj)
− TCi[qi(pi, pj), t], which is concave and twice continuously differentiable. The information set
is the same as above, and our goal is to determine how a change in t will affect Nash equilibrium
prices.

Before performing comparative static analysis, we first summarize the properties of the model.
Respective first- and second-order conditions of profit maximization for firm i are:

∂π

∂pi

= ∂TR

∂pi

− ∂TC

∂pi

= 0,

∂2π

∂p2
i

= ∂2TR

∂p2
i

− ∂2TC

∂p2
i

< 0.

For convenience, subscripts are suppressed on profit, total revenue, and total cost. Because an
increase in t increases marginal cost, an increase in t will raise firm i’s marginal returns of raising
price for a negatively sloped demand function (i.e., ∂(∂π/∂pi)/∂t ≡ π it > 0).17

The best-reply function for firm i is determined by solving the firm’s first-order condition for
pi: pBR

i (pj) = p∗
i . We cannot derive this explicitly, but the optimal value of pi is embedded in

firm i’s first-order condition, which is identically equal to zero at p∗
i . Thus, we can apply the

implicit-function theorem to firm i’s first-order condition to determine the slope of its best-reply
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function.

∂p∗
i

∂pj

= −πij

πii

.

Regarding notation, π ij is defined as the second derivative of firm i’s profit with respect to pi

and pj, and π ii is the second derivative of firm i’s profit function with respect to pi. The slope
of the best reply for each firm will be positive if prices are strategic complements (i.e., π ij > 0)
and the second-order condition holds (i.e., π ii < 0).18 At the Nash equilibrium, both best-reply
functions are satisfied simultaneously: p∗

1 = pBR
1 (p∗

2) and p∗
2 = pBR

2 (p∗
1). We assume a unique

and stable Nash equilibrium. Uniqueness requires that the absolute value of the slope of the
best-reply function for each firm is less than one (Kreps and Scheinkman 1983, 328–29), and
stability requires that π ii π jj − π ij π ji > 0. (The proof is provided in appendix.)

Now we can determine the effect of an increase in parameter t on Nash prices. Substituting the
optimal prices into the first-order conditions of each firm and differentiating them with respect to
t yields the system of equations:

π11
∂p1

∂t
+ π12

∂p2

∂t
+ π1t

∂t

∂t
≡ 0,

π21
∂p2

∂t
+ π22

∂p2

∂t
+ π2t

∂t

∂t
≡ 0.

This linear system can be written in matrix form as

(
π11 π12

π21 π22

) ⎛
⎜⎝

∂p∗
1

∂t
∂p∗

2

∂t

⎞
⎟⎠ ≡

(−π1t

−π2t

)
.

Applying Cramer’s rule, in which � is the 2 × 2 matrix of second derivatives of profits (i.e., the
first matrix in the previous equation),

∂p∗
1

∂t
=

∣∣∣∣−π1t π12

−π2t π22

∣∣∣∣
|�| .

Assuming stability, the determinant of � is positive (i.e., π11 π22 − π12 π21 > 0). Given that
π ii < 0, π ij > 0, and π it > 0 (i.e., –π1t π22 + π2t π12 > 0), an increase in t will cause p∗

1 to
increase. Because the problem is symmetric, p∗

2 will also increase with t. This example shows
how both stability conditions and second-order (concavity) conditions can be important when
applying classic comparative static methods to game theoretic problems where both optimization
and equilibrium concepts are important.

There are two main weaknesses with the classic approach. First, it suffers from the so-called
curse of dimensionality, as finding the solution becomes increasingly difficult or impossible
as the number of firms and the number of choice variables (e.g., price, advertising, product
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FIGURE 7 Best-reply functions, Nash equilibria, and an excise tax increase on firm 1.

quality) increase. In addition, this technique cannot be used when the relevant functions are not
differentiable or when the policy variable takes a discrete change.

Fortunately, comparative static results can still be derived using monotone methods. What is
required is that the game be supermodular. Because the main ideas are the same in the differentiable
and nondifferentiable cases, and because we have considered the problem of nondifferentiability
in the previous section, we will focus on problems associated with the curse of dimensionality, not
that of differentiability.19 These are called smooth supermodular games. To illustrate the power
of this approach, we extend the Bertrand model further by assuming that n firms (1 < n < ∞)
compete in two choice variables: price and marketing expenditures (M). Formal requirements of
the game are subsequently described.

SUPERMODULAR GAMES

In a smooth supermodular game with n firms, the following assumptions hold for each firm i and
each rival j (Milgrom and Roberts 1990, 1264).20

1. Differentiability: The profit equation is twice continuously differentiable with respect to
pi and Mi.

2. Complementary strategies (of each firm’s own strategic variables): ∂2π i/∂pi ∂Mi ≥ 0.
3. Strategic complements (for strategic variables between firms): ∂2π i/∂pi∂pj ≥ 0,

∂2π i/∂pi ∂Mj ≥ 0, ∂2π i/∂Mi ∂pj ≥ 0, and ∂2π i/∂Mi ∂Mj ≥ 0.
4. Complementary policy parameter: ∂2π i/∂pi ∂t ≥ 0 and ∂2π i/∂Mi ∂t ≥ 0.
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FIGURE 8 Best-reply functions, Nash equilibria, and an excise tax increase on firms 1 and 2.

One can think of this as a game of supercomplementarity, which implies that there is comple-
mentarity among all strategies and the policy parameter (Fudenberg and Tirole 1992, 491).21 That
is, all choice variables for each firm are complements (2), all choice variables between different
firms are complements (3), and the policy parameter is a complement with all choice variables
of each firm (4). Examples of such a policy would include an increase in an excise tax that raises
the marginal returns to a price increase or a marketing subsidy that raises the marginal returns
to a marketing increase. The important thing to notice is that this specification implies that there
are increasing marginal returns between all possible pairs of choice variables and the policy
parameter.

Under these conditions and assuming a unique Nash equilibrium,22 the following comparative
static results hold for all firms (Milgrom and Roberts 1990, Theorem 6 and its Corollary):

∂p∗
i

∂t
≥ 0;

∂M∗
i

∂t
≥ 0.

That is, when assumptions 1–4 hold, an increase in t will have a nonnegative effect on the Nash
prices and marketing expenditures.23

Thus, all that is required to apply the theorem is to verify the validity of the assumptions of the
Theorem. The critical assumptions are 2 and 3. Differentiability is not required but assumed here
for convenience (1). Assumption 4, which implies that there are increasing differences between
t and each choice variable, can generally be met by properly defining the policy variable or
parameter. So, to apply the theorem, each firm’s own strategic variables are complementary (3),
and the objective function is supermodular in choice variables: all strategic variables across firms
are strategic complements (4).

The proof of this result requires the use of lattice theory, so it will not be presented here. The
main idea is intuitive, however. The driving force behind the proof in the case of a strict inequality
is the supercomplementarity assumption. That is, any increase in a policy parameter that exhibits
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increasing marginal returns will cause p∗
i (M∗

i ) to increase (assumption 4). This in turn causes
M∗

i (p∗
i ) to rise because own-choice variables are complements (assumption 2), and it also causes

p∗
j and M∗

j to rise for all j because rival choice variables are strategic complements (assumption 3).
Finally, this causes a chain of feedback effects that reinforce these increases. That is, the resulting
increases in p∗

j and M∗
j cause further increases in p∗

i and M∗
i , and so on. In terms of best-reply

functions, this means that the policy change causes one or more of the best-reply functions for
each choice variable to shift away from the origin. Examples are given in figure 7 and figure 8,
where the parameter change causes a change in equilibrium from A to B, assuming that there
are two firms and that the choice variable is x = p or M. Thus, the Nash equilibrium, where the
best-reply functions intersect, will support higher optimal values of the strategic variables for an
increase in t.

CONCLUSION

A strong foundation in mathematics has become increasingly important to understanding and con-
ducting economics research. In response, minimum math requirements needed to enter graduate
programs in economics have risen. To better prepare students for graduate study in economics, and
as valuable content in its own right, more and more undergraduate programs encourage students
to take courses in mathematical economics and advanced mathematics. Some have added degrees
in mathematical economics. For these reasons, it is important that undergraduate textbooks in
mathematical economics be updated.

One area where this has not occurred is in the coverage of comparative static analysis.
In nonstrategic settings, the strict monotonicity theorem provides a more general method of
performing comparative static analysis and demonstrates that many of the assumptions required
to use the implicit-function theorem are superfluous. In a game theoretic setting with many players
and strategic options, using the implicit-function theorem to do comparative statics suffers from
the curse of dimensionality. Fortunately, when the game is supermodular, comparative static
analysis can be done with ease by using monotone methods. Although these newer methods have
been developed since the early 1990s and are easy to use, they are ignored in the textbooks. We
hope that this article will encourage instructors to bring monotone methods into the classroom and
will convince textbook writers to include them in future editions of their books on mathematical
economics.

NOTES

1. This is based on institutional rankings as defined by U.S. News and World Report (2008) and our survey
of Web sites. (A table of these data is available upon request from the authors.) In general, those that
did not offer courses in mathematical economics required their students to take advanced courses in
mathematics and statistics—especially students interested in graduate school. An excellent example of
such advice is written by Johnson (2008).

2. Examples of colleges and universities outside the top tiers that offer such degrees include the University
of Kentucky, Marquette University, Pacific Lutheran University, Reed College, and Temple University.

3. Most undergraduate textbooks in mathematical economics cover this topic—including those of Simon
and Blume (1994), Sydsaeter and Hammond (1995), Hands (2004), Baldani, Bradfield, and Turner
(2005), and Chiang and Wainwright (2005). Here, we are referring to the part of the theorem that gives
us the derivatives of the function when in implicit form. This is part c of the theorem in Simon and
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Blume (1994, 341). Chiang and Wainwright (2005, 196) refer to this portion of the theorem as the
implicit-function rule.

4. For a discussion of monotone comparative static methods in constrained optimization problems, see
Quah (2007).

5. However, these topics are covered in graduate textbooks, including those of Sundaram (1996) and
Carter (2001). For a review of the many uses of these monotone methods, see Amir’s (2005) and Vives’
(2005a, 2005b) works. For recent applications to the economics of advertising, see Isariyawongse,
Kudo, and Tremblay (2007) and Iwasaki et al. (2008).

6. Because the profit function is strictly concave and twice continuously differentiable in q, a unique
optimum exists.

7. From the assumptions of the model, ∂p/∂q < 0 and ∂2C/∂q2 > 0. Thus, the second-order condition
holds only if the demand function is not too convex (i.e., ∂2p/∂q2 is sufficiently small). This guarantees a
strictly concave profit function. For example, this condition holds for a linear demand function, because
∂2p/∂q2 = 0.

8. This normally pertains to small changes in taxes and subsidies, but discrete changes are common.
For example, the last increase in the federal excise tax on beer was in 1991, when the rate increased
from $9 to $18 per (31-gallon) barrel. Alternatively, one could consider s to be a form of government
deregulation, where an increase in s leads to a discrete fall in marginal cost.

9. Similarly, x∗ < x′ if α∗ < α′. Note that R represents a set of real numbers.
10. In the continuous case, strictly increasing marginal returns means that the parameter and the choice

variable are complements. That is, ∂2f/∂x∂α > 0.
11. According to Sundaram (1996), when uniqueness is relaxed, the theorem still applies to the greatest

element and the least element of the argmax set. We wish to thank an anonymous referee for pointing
this out to us.

12. To consider a policy (α) that exhibits decreasing marginal returns, such as an excise tax (t) in our
monopoly example, simply redefine the policy variable to equal –α. For example, one can analyze an
excise tax by defining it as a per-unit subsidy: s = –t. Although t exhibits decreasing marginal returns,
–t = s exhibits increasing marginal returns.

13. A problem such as this is described in the intermediate microeconomics textbook by Bernheim and
Whinston (2008, 297–98). Discrete choice problems are also discussed in Varian’s (2006) intermediate
microeconomics textbook.

14. Proofs are not discussed here, because they require a knowledge of lattices, which goes beyond the
scope of this article. A lattice is a partially ordered binary set that contains its greatest upper bound,
infimum, and its greatest lower bound, infimum (Vives 1999, 17–18). For further discussion of lattice
theory, see Milgrom and Roberts (1990), Milgrom and Shannon (1994), and Topkis (1998).

15. Again, proofs are not discussed here, because they require the use of lattice theory. For further discussion,
see Milgrom and Shannon (1994), Edlin and Shannon (1998), and Vives (1999).

16. Theorem 10.12 in Sundaram (1996) demonstrates that supermodularity and increasing differences are
essentially the same. We thank an anonymous referee for pointing this out. The only distinction is
that supermodularity applies to complementarity between two different choice variables and increasing
differences applies to complementarity between a parameter and a choice variable (Milgrom and
Shannon 1994, 164).

17. The reverse is true for output. That is, ∂(∂π/∂qi)/∂t < 0. Thus, comparative static results will show
that an increase in t will lead to higher prices and lower output.

18. Best-reply functions normally have a negative slope when firms compete in output (Cournot 1838) and
a positive slope when they compete in price (Bertrand 1883). Although exceptions are possible, Amir
and Grilo (1999) called this the “typical geometry” for Cournot and Bertrand models. For the remainder
of our discussion, we assume this typical geometry.

19. This implies that best-reply functions are differentiable. To assume otherwise would require the use of
lattice theory. If we were to assume that best replies are complete lattices instead of smooth functions,
the main conclusions of the article would remain the same.

20. The model also assumes bounds on the choice variables. In our case, it is natural to assume that prices
and marketing expenditures are nonnegative and are less than infinity.
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21. For a discussion of monotone comparative static methods when strategies are strategic substitutes
instead of complements, see Roy and Sabarwal (2005).

22. The theorem is actually more general than this. The strategy space need not be compact and convex
(Fudenberg and Tirole 1992, 489–490). In addition, the theorem also applies to models with multiple
equilibria. In that case, the largest and smallest pure-strategy Nash equilibria are nondecreasing in the
policy parameter. We thank an anonymous referee for pointing this out.

23. A strict inequality will hold if the best-reply functions have a positive slope, and if an increase in t
shifts the best-reply functions away from the origin.
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APPENDIX

STABILITY OF THE BERTRAND-NASH EQUILIBRIUM

Consistent with the duopoly model that we presented, assume smooth best-reply functions and a
unique interior Nash equilibrium. For a discussion of stability conditions in the Cournot model,
see Fudenberg and Tirole (1992, 23–25). The graph of the best-reply functions assumes that p2

is on the vertical axis and that p1 is on the horizontal axis, as in figure 8. Stability requires that
for any disequilibrium set of prices in the neighborhood of the Nash equilibrium, the dynamic
(myopic) adjustment process causes firms to adjust prices in the direction of Nash prices. This
occurs when firm 1’s best-reply function is steeper than firm 2’s best-reply function. This is
easy to verify by starting at a disequilibrium point and showing that prices will converge to the
equilibrium in figure 6.

As demonstrated previously, the slopes of the best-reply functions for firm 1 (BR′
1) and firm 2

(BR′
2) are positive. Recall that these slopes are

BR
′
1 = −π12

π11
; BR

′
2 = −π12

π22

Because we are interested in solving each best-reply function for p2 (i.e., p2 is on the vertical axis),
the slope of firm 1’s best reply when p2 is on the vertical axis is 1/BR′

1. Thus, the Bertrand-Nash
equilibrium will be stable if and only if 1/BR′

1 > BR′
2. Thus,

−π11

π12
>

−π21

π22
,

π11

π12
<

π21

π22
.

This becomes

π11 π22 > π12 π21,

because π12 > 0 and π22 < 0.
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