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1. INTRODUCTION

In 1949, L. Onsager [21] proposed a statistical theory for a system of elon-

gated molecules interacting via repulsive short-range forces, based on an explicit

computation of the first few Mayer’s coefficients for the pressure. Onsager’s the-

ory predicted the existence at intermediate densities of a nematic liquid crystal

phase, that is a phase in which the distribution of orientations of the particles is

anisotropic, while the distribution of the particles in space is homogeneous and

does not exhibit the periodic variation of densities that characterizes solid crys-

tals (periodicity in all space dimensions) or smectic liquid crystals (periodicity in

one dimension).

From a microscopic point of view, the most natural lattice model describing

elongated molecules with short-range repulsive forces is a system of rods of length

k and thickness 1 at fixed density ρ (here ρ = average number of rods per unit

volume), arranged on a cubic lattice (say a large squared box portion of Z
2)

and interacting via a purely hard core potential. Even though very natural, this

model is not easy to treat and its phase diagram in the plane (ρ, k) is still not

understood in many physically relevant parameters’ ranges. Of course, for all

k’s, at very small density there is a unique isotropic Gibbs state, invariant under
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translations and under discrete rotations of 90o (this can be proved by standard

cluster expansion methods). If k = 2, it is known [10] that the state is analytic

(and, therefore, there is no phase transition) for all densities but, possibly, at the

close packing density (i.e., at the maximal possible density ρmax = 1/k). If k is

sufficiently large (k ≥ 7 should be enough [8]) there is numerical evidence [8, 18]

for two phase transitions as ρ is increased from zero to the maximal density. The

first (isotropic to nematic) seems to take place at a ρ
(1)
c ≃ C1/k

2, while the second

(nematic to isotropic) seems to take place at ρ
(2)
c ≃ ρmax−C2/k

3. These findings

renovated the interest of the condensed matter community in the phase diagram

of long hard rod systems and stimulated more systematic numerical studies of

the nature of the critical points at ρ
(1)
c and ρ

(2)
c [4, 5, 16, 17, 19, 20].

From a mathematical point of view there is no rigorous proof of any of these be-

haviors yet, with the exception of the “trivial” case of very low densities: namely,

there is neither a proof of nematic order at intermediate densities, nor a proof of

the absence of orientational order at very high densities, nor a rigorous under-

standing of the nature of the transitions. In this work we give a rigorous proof

to some of the conjectures stated above on the nature of the phase diagram of

long hard rods systems. More precisely, we show that well inside the interval

(ρ
(1)
c , ρ

(2)
c ), the system is in a nematic phase, i.e., in a phase characterized by

two distinguished Gibbs states, with different orientational order (horizontal or

vertical) but with no translational order.

To the best of our knowledge, this is the first proof of the existence of a

nematic phase in a microscopic model with molecules of fixed finite length and

finite thickness, interacting via a purely repulsive potential. Important previous

results, which our proof builds on, include the following: proof of nematic order

in a continuum system of infinitely thin rods with two orientations [2, 23]; proof

of an isotropic to nematic transition in an integrable model of polydisperse long

rods in Z
2 [13] (a very nice result, obtained by mapping the partition function

of the polydisperse hard rods gas into that of the nearest neighbor 2D Ising

model); proof of orientational order in (reflection positive) lattice models with

both repulsive and attractive interactions [11]. There are several other related

models where the existence of orientational order was proved; however, in many

cases, orientational comes together with translational order [9, 12, 15], which is

not the case in a nematic phase.

Of course, our proof leaves many questions about the phase diagram of long

hard rod systems open, the most urgent being, we believe, the question about

the nature of the densely packed phase at ρ ≥ ρ
(2)
c : can one prove the absence

of orientational order, at least at close packing? Is the densely packed phase

characterized by some “hidden” (striped-like) order? Progress on these problems

would be important for the understanding of the emergence of hidden order in
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more complicated systems than elongated molecules with purely hard core inter-

actions, in which short range repulsion competes with attractive forces acting on

much longer length scales.

The rest of the paper is organized as follows. In Section 2 we “informally”

introduce the model, state the main results and explain the key ideas involved

in the proof. In Section 3 we define the model and state the main theorem

(Theorem 1 below) in a mathematically precise form. In the following sections we

prove Theorem 1: in Section 4 we rewrite the partition function with q boundary

conditions in terms of a sum over contours’ configurations, where the contours

are defined in a way suitable for later application of a Pirogov-Sinai argument. In

Section 5 we prove the convergence of the cluster expansion for the pressure, under

the assumption that the activity of the contours is small and decays sufficiently

fast in the contour’s size. In Section 6 we complete the proof of convergence of

the cluster expansion for the pressure, by inductively proving the desired bound

on the activity of the contours. Finally, in Section 7 we adapt our expansion to

the computation of correlation functions and we prove Theorem 1.

2. THE MODEL

We consider a finite square box Λ ⊂ Z
2 of side L, to be eventually sent to

infinity. We fix k and the average density ρ ∈ (0, 1/k). The finite volume Gibbs

measure at activity z gives weight zn to every allowed configuration of n rods:

we say that a configuration is allowed if no pair of rods overlaps. Of course, one

also needs to specify boundary conditions: we consider, say, periodic boundary

conditions, open boundary conditions, horizontal or vertical boundary conditions,

the latter meaning that all the rods within a distance ∼ k from the boundary of

Λ are horizontal or vertical – see below for a more precise definition. The grand

canonical partition function is:

ZΛ(z) =
∑

n≥0

znwΛ
n , (2.1)

where wΛ
n is the number of allowed configurations of n rods in the box Λ, in

the presence of the prescribed boundary conditions. Note that wΛ
n = 0 for all

n ≥ |Λ|/k, which shows that ZΛ(z) is a finite (and, therefore, well defined) sum

for all finite Λ’s. The activity z is fixed in such a way that

lim
|Λ|→∞

〈n〉Λ
|Λ| = lim

|Λ|→∞

1

|Λ|

∑

n≥0 nz
nwΛ

n

ZΛ(z)
= ρ . (2.2)

The goal is to understand the properties of the partition function and of the

associated Gibbs state in the limit |Λ| → ∞ at fixed ρ. An informal statement
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of our main result is the following.

Main result. For k large enough, if k−2 ≪ ρ ≪ k−1, the system admits two

distinct infinite volume Gibbs states, characterized by long range orientational

order (either horizontal or vertical) and no translational order, selected by the

boundary conditions.

Sketch of the proof. The idea is to coarse grain Λ in squares of side ℓ ≃ k/2.

Each square is large, since in average it contains many (∼ ρk2 ≫ 1) rods. On

the other hand, its side ℓ is small enough to ensure that only rods of the same

orientation are allowed to have centers in the same square. This means that the

partition function restricted to a single square contains only sums over vertical

or horizontal configurations. Let us consider the case where the rods are all

horizontal (vertical is treated in the same way). A typical horizontal configuration

consists of many (∼ ρk2) horizontal rods with centers distributed approximately

uniformly (Poisson-like) in the square, since their interaction, once we prescribe

their direction, is very weak: they “just” have a hard core repulsion that prevents

two rods to occupy the same row, an event that is very rare, since the density

of occupied rows (∼ ρk2/k) is very small, thanks to the condition that ρ ≪ 1/k.

Because of this small density of occupied rows, we are able to quantify via cluster

expansion methods how close to Poissonian is the distribution of the centers in

the given square (once we condition with respect to a prescribed orientation of

the rods).

To control the interaction between different squares we use a Pirogov-Sinai

argument. Each square can be of three types: (i) either it is of type +1, if it

contains only horizontal rods, (ii) or it is of type −1, if it contains only vertical

rods, (iii) or it is of type 0, if it is empty. The values −1, 0,+1 associated to each

square play the role of spin values associated to the coarse grained system. The

interaction between the spins is only finite range and squares with vertical (+1)

and horizontal (−1) spin have a strong repulsive interaction, due to the hard core

constraint. On the other hand, the vacuum configurations (the spins equal to 0)

are very unlikely, since the probability of having a large deviation event such that

a square of side ℓ is empty is expected to be exponentially small ∼ exp{−cρk2},
for a suitable constant c.

Therefore the typical spin configurations consist of big connected clusters of

“uniformly magnetized spins”, either of type +1 or of type −1 separated by

boundary layers (the contours), which contain zeros or pairs of neighboring op-

posite spins. These contours can be shown to satisfy a Peierls’ condition. The

contour theory is not symmetric under spin flip and, therefore, we are forced

to study it by the (non-trivial although standard) methods first introduced by

Pirogov and Sinai [22].
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Before we move to discuss the details of our proof, let us state our main results

in a mathematically more sound form.

3. MAIN RESULTS

Definitions. For any region X ⊆ Z
2 we call ΩX the set of rod configurations

R = (r1, . . . , rn) where all the rods belong to the region X. A rod r “belongs

to” a region X if the center of the rod is inside the region, in which case we

write r ∈ X. Here each rod is identified with a sequence of k adjacent sites

of Z2 in the horizontal or vertical direction. If k is odd, the center of the rod

belongs to the lattice Z2 itself and, therefore, the notion of “rod belonging to X”

is unambiguously defined. On the contrary, if k is even, the geometrical center

of the rod does not belong to the original lattice Z
2; however, for what follows,

it is convenient to pick one of the sites belonging to r and elect it to the role of

“center of the rod”: if r is horizontal (vertical), we decide that the “center of r”

is the site of r that is closest to its geometrical center from the left (bottom).

We shall also say that: a rod r “touches” a region X, if r ∩ X 6= ∅; a rod r “is

contained in” a region X, if r ∩Xc = ∅, in which case we write r ⊂ X.

The rod configurations in ΩX can contain overlapping and even coinciding

rods; we denote by R(r) the multiplicity of r in R ∈ ΩX and by supp(R) the

support of R, i.e., the set of rods that are in R, each counted without taking

multiplicity into account. The grand canonical partition function in X with open

boundary conditions is

Z0(X) =
∑

R∈ΩX

z|R|ϕ(R) (3.1)

where |R| := ∑

r∈supp(R) R(r) and ϕ(R) implements the hard core interaction:

ϕ(R) =
∏

r,r′∈R

ϕ(r, r′), ϕ(r, r′) =

{

1 if r ∩ r′ = ∅
0 if r ∩ r′ 6= ∅. (3.2)

Let ℓ := ⌈k/2⌉ and assume that Λ ⊆ Z
2 is a square box of side divisible by 4ℓ.

We pave Λ by squares of side ℓ, called “tiles”, and by squares of side 4ℓ, called

“smoothing squares”. The lattice of the tiles’ centers is a coarse grained lattice

of mesh ℓ, called Λ′; similarly, the lattice of the smoothing squares’ centers is

a coarse grained lattice of mesh 4ℓ, called Λ′′. Given ξ ∈ Λ′, the tile centered

at ξ is denoted by ∆ξ; given a ∈ Λ′′, the smoothing square centered at a is

denoted by Sa. Given two sets X, Y ⊆ Λ, we indicate their (euclidean) distance

by dist(X, Y ) = minx∈X,y∈Y |x − y|. If X and Y are union of tiles, we shall

also indicate by X ′, Y ′ ⊂ Λ′ the coarse versions of X and Y , i.e., the sets of
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sites in Λ′ such that X = ∪ξ∈X′∆ξ and Y = ∪ξ∈Y ′∆ξ. The distance between X ′

and Y ′ is denoted by dist(X ′, Y ′) and their rescaled distance by dist′(X ′, Y ′) :=

ℓ−1dist(X ′, Y ′); with these conventions, if ξ and η are nearest neighbor sites on

Λ′, then dist(ξ, η) = |ξ − η| = ℓ and dist′(ξ, η) = 1. The complement of Λ is

denoted by Λc := Z
2 \ Λ and its coarse version by Λ′

c, with obvious meaning.

The size of the tiles is small enough to ensure that if one vertical (horizontal)

rod belongs to a given tile, then all other rods belonging to the same tile and

respecting the hard core repulsion condition must be vertical (horizontal). If a

tile is empty, i.e., no rod belongs to it, then we assign it an extra (fictitious) label,

which can take three possible values, either 0 or + or −. A rod configuration

R ∈ ΩΛ (combined with an assignment of these extra fictitious labels) induces a

spin configuration σ = {σξ}ξ∈Λ′ on Λ′, σξ ∈ {−1, 0,+1}, via the following rules:

- σξ = +1, if all rods belonging to ∆ξ are horizontal or if the tile is empty

with the extra label equal to +,

- σξ = −1, if all rods belonging to ∆ξ are vertical or if the tile is empty with

the extra label equal to −,

- σξ = 0, if ∆ξ is empty with the extra label equal to 0.

The corresponding set of rod configurations in the tile ∆ξ is denoted by Ω
σξ

∆ξ
:

Ω+
∆ξ

(Ω−
∆ξ
) is the set of rod configurations in ∆ξ consisting either of horizontal

(vertical) rods or of the empty configuration; similarly, Ω0
∆ξ

consists only of the

empty configuration.

Note that the grand canonical partition function in Λ with open boundary

conditions can be rewritten as

Z0(Λ) =
∑

σ∈ΘΛ′

∑

R∈ΩΛ(σ)

ϕ̄(R) , (3.3)

where ΘΛ′ := {−1, 0,+1}Λ′

and ΩΛ(σ) := ∪ξ∈Λ′Ω
σξ

∆ξ
. Moreover,

ϕ̄(R) :=
[

∏

ξ∈Λ′

ζ(ξ)
]

ϕ(R) , (3.4)

where the activity of a tile is defined as

ζ(ξ) =

{

z|Rξ| if σξ = ±1

−1 if σξ = 0.
(3.5)

The sign −1 is necessary to avoid over-counting of the empty configurations. Note

that ϕ̄(R) depends both on σ and on R; however, in order not to overwhelm the

notation, we shall drop the label σ.
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The partition function with q boundary conditions, q = ±, denoted by Z(Λ|q),
can be defined in a similar fashion:

Z(Λ|q) =
∑

σ∈Θq

Λ′

∑

R∈ΩΛ(σ)

ϕ̄(R) (3.6)

where Θq
Λ′ ⊂ ΘΛ′ is the set of spin configurations such that dist′(ξ,Λ′

c) ≤ 5 ⇒
σξ = q. Correspondingly, the ensemble 〈·〉qΛ with q boundary conditions is defined

by

〈AX〉qΛ =
1

Z(Λ|q)
∑

σ∈Θq

Λ′

∑

R∈ΩΛ(σ)

ϕ̄(R)AX(R) , (3.7)

where AX is a local observable, depending only on the restriction RX of the rod

configuration R to a given finite subset X ⊂ Λ. The infinite volume states 〈·〉q
with q boundary conditions are defined by

〈AX〉q = lim
|Λ|→∞

〈AX〉qΛ , (3.8)

if the limit exists for all local observables AX , X ⊂ Z
2. Our main results can be

stated as follows.

Theorem 1 If zk and (zk2)−1 are small enough, then the two infinite volume

states 〈·〉q, q = ±, exist. They are translationally invariant and are different

among each other. In particular, if χσ
ξ0
is the projection onto the rod configurations

such that Rξ0 ∈ Ωσ
∆ξ0

, then

〈χ−q
ξ0
〉q ≤ e−czk2 , (3.9)

for a suitable constant c. Moreover, if nx0 is the indicator function equal to 1 if

a rod touches x0 ∈ Z
2 and 0 otherwise, then

ρ = 〈nx0〉+ = 〈nx0〉− = z(1 +O(zk, e−czk2)) (3.10)

and

ρ(x− y) = 〈nxny〉+ = 〈nxny〉− = ρ2
(

1 +O(e−c|x−y|/k)
)

, (3.11)

for a suitable c > 0.

Eq.(3.9) proves the existence of orientational order in the system. Eqs.(3.10)-

(3.11) prove the absence of translational symmetry breaking. These two behavior

together prove that the system is in a nematic liquid crystal phase, as announced

in the introduction. The rest of the paper is devoted to the proof of Theorem

1, which is based on a two-scales cluster expansion. As it will be clear from the

discussion in the next sections, our construction proves much more than what is

explicitly stated in Theorem 1, namely it allows us to compute the averages of

all the local observables in terms of an explicit exponentially convergent series.
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4. THE CONTOUR THEORY.

The proof of the Theorem 1 will be split in several steps. We start by develop-

ing a representation of the partition function Z(Λ|q) with q boundary conditions

in terms of a set of interacting contours. Later, we will adapt the contour expan-

sion to the computation of the correlations. The contour theory can be studied by

an adaptation of Pirogov-Sinai’s method to the present context. See [22] for the

original version of this method and [1, 14, 25, 26] for several alternative simpli-

fied versions of it. In the following we will try to be as self-consistent as possible

and to keep things simple, by avoiding as much as we can general and abstract

settings. We first need some more definitions.

Definition 1: sampling squares. Given a spin configuration σ ∈ Θq
Λ′ , this

induces a partition of Λ′ into regions where the spins are “uniformly magnetized

up or down” (i.e., regions where the spins are constantly equal to +1 or to −1)

and boundary regions separating the “uniformly magnetized regions” among each

other, which can possibly contain spins equal to zero. To make this more precise

we introduce the notion of “sampling squares”, defined as follows: given ξ ∈ Λ′,

the sampling square associated to ξ is defined as Sξ = ∪η∈Λ′ : 0≤ηi−ξi≤ℓ∆η, where

ηi and ηi, i = 1, 2, are the coordinates of ξ, η ∈ Λ′. Note that if dist′(ξ,Λ′
c) > 1,

then Sξ contains exactly 4 tiles. We say that a sampling square is

• good if the spins inside Sξ are all equal either to +1 or to −1. Each good

sampling square comes with a magnetization m = ±1.

• bad otherwise; note that each bad sampling square is such that either it

contains at least one spin equal to zero, or it contains at least one pair of

neighboring spins with opposite values, +1 and −1.

Definition 2: connectedness, good and bad regions. Given a configuration

σ ∈ ΘΛ′ , we call

B(σ) = ∪ ξ∈Λ′:
Sξ is bad

Sξ (4.1)

the union of all bad sampling squares. The “smoothening” of B(σ) on scale 4ℓ is

defined as:

B(σ) = ∪ a∈Λ′′:
Sa∩B(σ) 6=∅

Sa , (4.2)

where the lattice Λ′′ and the smoothing squares Sa were defined after Eq.(3.2).

Let X ⊂ Λ be a union of tiles: we say that X is connected if, given any pair

of points x, y ∈ X, there exists a sequence (x0 = x, x1, . . . , xn−1, xn = y) such

that xi ∈ X and |xi − xi−1| = 1, for all i = 1, . . . , n. We also say that X is D-

connected (with the prefix “D” meaning “diagonal”) if, given any pair of points

x, y ∈ X, there exists a sequence (x0 = x, x1, . . . , xn−1, xn = y) such that xi ∈ X
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and |xi − xi−1| ≤
√
2, for all i = 1, . . . , n (here |x − y| is the euclidean distance

between x and y).

The maximal D-connected components of B(σ) are denoted by Γj and are the

geometric supports of the contours that we will introduce below. The complement

of the bad region,

G(σ) := Λ \B(σ) , (4.3)

can be split into uniformly magnetized disconnected regions, each of which is a

union of tiles; these are denoted by Yj and mj are the corresponding magnetiza-

tions.

Remarks.

1. Note that distinct D-disconnected regions, Γj(σ),Γj′(σ) with j 6= j′, do

not interact directly; i.e., ϕ(Rξ, Rη) = 1 for all ξ ∈ Γj, η ∈ Γj′ . This is

because Γj(σ) and Γj′(σ) are separated by at least one smoothing square.

Similarly, distinct uniformly magnetized disconnected regions, Yj(σ), Yj′(σ)

with j 6= j′ and magnetizations mj, mj′ , do not interact directly; i.e.,

ϕ(Rξ, Rη) = 1 for all ξ ∈ Yj, η ∈ Yj′ and all Rξ ∈ Ω
mj

ξ , Rη ∈ Ω
mj′

η . In fact,

given ξ ∈ Yj, η ∈ Yj′ , then: either |ξi − ηi| ≥ 2ℓ for some i ∈ {1, 2}, in
which case the rods in Rξ are so far from those in Rη that they certainly

do not interact, whatever is their orientation; or |ξ1 − η1| = |ξ2 − η2| = 1,

in which case necessarily mj = mj′ , so that the rods in Rξ have the same

orientation as those in Rη, while their centers belong to different rows and

columns and, therefore, do not interact.

2. In terms of the definitions above, the set Θq
Λ′ ⊂ ΘΛ′ of spin configurations

with q boundary conditions can be thought as the set of spin configurations

such that all the contours’ supports Γj ⊂ B(σ) are D-disconnected from Λc

and separated from it by at least one smoothing square.

Definition 3: contours. Given a spin configuration with q boundary conditions

σ ∈ Θq
Λ′ and a rod configuration R ∈ ΩΛ compatible with it, let Γ be one of the

maximal connected components of B(σ). By construction, the complement of Γ,

Λ \ Γ, consists of one or more connected components: one of these components

touches Λc and is naturally identified as the exterior of Γ; it is denoted by Ext Γ.

If Γ is simply connected this is the only connected component of Λ \ Γ; if not,

i.e., if Γ has hΓ ≥ 1 holes, then there are other connected components of Λ \ Γ,
to be called the interiors of Γ and denoted by IntjΓ, j = 1, . . . , hΓ. The interior

of Γ is then IntΓ = ∪jIntjΓ. For what follows, it is also convenient to introduce

the 1-tile-thick peel of Γ:

PΓ = ∪ ξ∈Λ′:
dist′(ξ,Γ′)=1

∆ξ . (4.4)
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Note that, since distinct D-disconnected regions are separated by at least one

smoothing square, then also the peels associated to distinct Γ’s are mutually D-

disconnected. The contour γ associated to the support Γ = supp(γ) is defined as

the collection:

γ = (Γ, σγ , Rγ ,mext,mint) (4.5)

where

• σγ is the restriction of the spin configuration σ to Γ;

• Rγ is the restriction of the rod configuration R to Γ;

• mext is the magnetization of P ext
Γ := Ext Γ ∩ PΓ;

• mint = {m1
int, . . . ,m

hΓ
int}, with mj

int the magnetization of IntjΓ∩PΓ; if hΓ =

0, then mint is the empty set. In the following we shall also denote by

P int
Γ := IntΓ ∩ PΓ the internal peel of Γ.

If mext = q, then we say that γ is a q-contour.

Remark. The set γ must satisfy a number of constraints. In particular,

given mext and mint, σγ must be compatible with the conditions that: (i) all the

sampling squares touching PΓ are good; (ii) each smoothing square contained in

Γ has non zero interesection with at least one bad sampling square. Moreover,

Rγ must be compatible with σγ itself.

In the following we want to write an expression for Z(Λ|q) purely in terms of

contours. Roughly speaking, given a contour configuration contributing to the

r.h.s. of Eq.(3.6), we first want to freeze the rods inside the supports of the

contours, next sum over all the rod configurations in the good regions and show

that the resulting effective theory is a contour theory treatable by the Pirogov-

Sinai method. The resummation of the configurations within the good regions

can be performed by standard cluster expansion methods, as explained in the

following digression.

Partition function restricted to a good region. Given a set X ⊆ Λ

consisting of a union of tiles, let Ωq
X = ∪ξ∈X′Ωq

∆ξ
, q = ±. The restricted theory

of the “uniformly q-magnetized” region X (with open boundary conditions) is

associated to the partition function:

Zq(X) =
∑

R∈Ωq
X

z|R|ϕ(R) , (4.6)

which can be easily computed by standard cluster expansion methods. In partic-

ular,

logZq(X) =
∑

R∈Ωq
X

z|R|ϕT (R) = z|X|(1 +O(zk)) (4.7)
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where ϕT are the Mayer’s coefficients, which admit the following explicit repre-

sentation. Given the rod configuration R = (r1, . . . , rn), consider the graph G
with n nodes, labelled by 1, . . . , n, with edges connecting all pairs i, j such that

ri, rj overlap (G is sometimes called the connectivity graph of R). Then one has

ϕT (∅) = 0, ϕT (r) = 1 and, for |R| > 1:

ϕT (R) =
1

R!

∗
∑

C⊆G

(−1)number of edges in C , (4.8)

where R! =
∏

r∈supp(R) R(r)! and the sum runs over all the connected subgraphs C

of G that visit all the n points 1, . . . , n. In particular, if |R| > 1, then ϕT (R) = 0

unless R is connected.

The sum in the r.h.s. of Eq.(4.7) is exponentially convergent for zk ≪ 1; in

particular, if x0 ∈ Λ, then

∑

R∈Ωq
Λ:

R∋x0, diam(R)≥d

|z||R||ϕT (R)| ≤ (const.)(zk)d/(ℓ−1) , (4.9)

uniformly in Λ, where R ∋ x0 means that R contains at least one rod with center

in x0 and diam(R) is the diameter of the union of the rods r ∈ R (thought of

as a subset of Λ). Moreover, the sum
∑

R∈Ω+
Λ :R∋x0

z|R|ϕT (R) is analytic in zk,

uniformly in Λ, for zk small enough and its limit as Λ ր Z
2 is analytic, too.

Similarly, all the correlation functions can be computed in terms of convergent

series, as long as zk is small enough. This result is classical, see [24] or, e.g.,

[3, 6, 7]. The restricted theory is applied to the computation of the sums over

the rod configurations in the good regions, as described in the following.

Contour representation of the partition function. Given a contour γ,

let Zγ(IntjΓ|mj
int) be the partition function on the j-th interior of Γ with the

boundary conditions created by the presence of the “frozen” rods Rγ. Moreover,

if ξ ∈ P ′
Γ, let

Aγ(∆ξ) = ∪η∈aγ(ξ)∆η , Cγ(∆ξ) = ∪ η∈Γ′:
dist′(η,ξ)≤2

∆η , (4.10)

where

aγ(ξ) := {ξ} ∪ {η ∈ Λ′ : dist′(η, ξ) = 1, dist′1(η,Γ
′) = 2, ηj(−q) = ξj(−q)} , (4.11)
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with dist′1(·, ·) the rescaled (“coarse”) L1 distance on Λ′ and j(+) = 1, j(−) = 2.

Finally, given ∆ ⊆ PΓ, let f∆ and g∆ be the following characteristic functions:

f∆(R) =











1 if R has at least one rod belonging to Aγ(∆)

and one belonging to Cγ(∆) ,

0 otherwise ,

(4.12)

g∆(R) =











1 if R ∩Rγ 6= ∅, R has at least one rod belonging to Aγ(∆)

and Rγ has at least one rod belonging Cγ(∆) ,

0 otherwise .

(4.13)

Pictorially speaking, f∆ is the characteristic function of the event “R crosses

the boundary of Γ at ∆”, while g∆ is the characteristic function of the event

“R intersects Rγ across ∆”. Note that, by construction, given two distinct tiles

∆1 ⊆ PΓ1 and ∆2 ⊆ PΓ2 , then Aγ1(∆1) ∩ Aγ2(∆2) = ∅.
In terms of these definitions, the following contours’ representation for Z(Λ|q)

is valid.

Lemma 1 The conditioned partition function Z(Λ|q), q = ±1, can be written as

Z(Λ|q) = Zq(Λ)
∑

∂∈C(Λ,q)

[

∏

γ∈∂

ζq(γ)
]

e−W (∂) , (4.14)

where:

• C(Λ, q) is the set of all the D-disconnected q-contour configurations in Λ;

• ζq(γ) is the activity of γ:

ζq(γ) = ζ0q (γ) exp
{

−
∑

R∈Ωq
Λ

ϕT (R)z|R|
∑

∆⊆PΓ

F∆(R)
}

, (4.15)

where

ζ0q (γ) =
ϕ̄(Rγ)

Zq(Γ)

hΓ
∏

j=1

Zγ(IntjΓ|mj
int)

Z(IntjΓ|q)
(4.16)

and F∆ = f∆ if ∆ ⊆ P int
Γ while F∆ = f∆ + g∆(1− f∆) if ∆ ⊆ P ext

Γ .

• W (∂) is the interaction between the contours in ∂:

W (∂) =
∑

R∈Ωq
Λ

ϕT (R)z|R|
∑

n≥2

(−1)n+1

∗
∑

∆1<···<∆n

F∆1(R) · · ·F∆n
(R) , (4.17)

where the ∗ on the sum indicates the constraint that ∆1, . . . ,∆n are all

contained in the peel of some contour of ∂ and their centers ξ1, . . . ξn all
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belong to the same row (if q = +) or column (if q = −) of Λ′, namely

ξ1,j(−q) = · · · = ξn,j(−q). Moreover, by writing ∆1 < · · · < ∆n, we mean that

ξ1,j(q) < · · · < ξn,j(q). Finally, F∆ = f∆ if ∆ is contained in the internal

peel of some contour in ∂ or F∆ = f∆+ g∆(1− f∆) if ∆ is contained in the

external peel of some contour in ∂.

Remarks.

1. The contour configurations {γ1, . . . , γn} ∈ C(Λ, q) consist of n-ples of q-

contours whose geometric supports Γ1, . . . ,Γn are D-disconnected. Note,

however, that their external and internal magnetizations are not neces-

sarily compatible among each other: for instance, Γ1 may have one hole

surrounding Γ2, and the internal magnetization of Γ1 may be different from

the external magnetization of Γ2 (which is q). It is actually an impor-

tant point of the representation Eq.(4.14) that we can forget about the

compatibility conditions among the internal and external magnetizations

of different contours. There exist different (and even more straightforward)

contour representation of Z(Λ|q) where the internal and external contours’

magnetizations satisfy natural but non-trivial constraints (e.g., in the ex-

ample above, the natural constraint is that the internal magnetization of Γ1

is the same as the external magnetization of Γ2). However, the magnetiza-

tion constraints are not suitable to apply cluster expansion methods to the

resulting contour theory. Therefore, it is convenient to eliminate such con-

straints, at the price of adding the extra factors Zγ(IntjΓ|mj
int)/Z(IntjΓ|q)

in the definition of the contours’ activities, see Eq.(4.16).

2. The interest of the representation Eq.(4.14) is that the contour activities

and the multi-contour interaction satisfy suitable bounds, allowing us to

study the r.h.s. Eq.(4.14) by cluster expansion methods. In particular,

sup∗
σγ

∑

Rγ∈ΩΓ(σγ)
|ζq(γ)| ≤ exp{−(const.)zk2|Γ′|}, where the ∗ on the sup

reminds the constraint that all the smoothing squares in Γ must have a non-

zero intersection with at least one bad sampling square. Moreover, W (∂)

is a quasi-one-dimensional potential, exponentially decaying to zero in the

mutual distance between the supports of the contours in ∂. The proofs of

these claims will be postponed to the next sections.

Proof. Given σ ∈ Θq
Λ′ a spin configuration with q boundary conditions con-

sider the corresponding set of contours {γ1, . . . , γn}. Some of them are external, in

the sense that they are not surrounded by any other contour in {γ1, . . . , γn}. By
construction, these external contours are all q-contours. We denote by Cext(Λ, q)
the set of external q-contour configurations. Given ∂ ∈ Cext(Λ, q), there is a com-

mon external region to all the contours in ∂, which we denote by Ext(∂). Besides
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this, there are several internal regions within each contour γ ∈ ∂. For each exter-

nal contour γ ∈ ∂, we freeze the corresponding rod configuration Rγ and sum over

the rod configurations inside all the internal regions IntjΓ, j = 1, . . . , hΓ. In this

way, for each such interior, we reconstruct the partition function Zγ(IntjΓ|mj
int).

On the other hand, by construction all rods inside Ext(∂) are either horizon-

tal or vertical, according to the value of q. Therefore, if we sum over all the

allowed rod configurations inside this region we get the restricted partition func-

tion Zq
∂(Ext(∂)), where the subscript ∂ reminds the fact that the rods R∂ create

an excluded volume for the rods in Ext(∂). Using these definitions, we can rewrite

Z(Λ|q) =
∑

∂∈Cext(Λ,q)

Zq
∂(Ext(∂))

∏

γ∈∂

[

ϕ̄(Rγ)

hΓ
∏

j=1

Zγ(IntjΓ|mj
int)

]

. (4.18)

Note that here we used the fact that the exterior and the interior(s) of ∂ do not

interact directly (i.e., they only interact through Rγ). Using the definition of

ζ0q (γ), Eq.(4.16), we can rewrite Z(Λ|q) as

Z(Λ|q)
Zq(Λ)

=
∑

∂∈Cext(Λ,q)

∏

γ∈∂

[

ζ0q (γ)

hΓ
∏

j=1

Z(IntjΓ|q)
Zq(IntjΓ)

]

e−W ext
0 (∂) , (4.19)

where

e−W ext
0 (∂) =

Zq
∂(Ext(∂))

∏

γ∈∂

[

Zq(Γ)
∏hΓ

j=1 Z
q(IntjΓ)

]

Zq(Λ)
. (4.20)

The factors
Z(IntjΓ|q)
Zq(IntjΓ)

have the same form as the l.h.s. of Eq.(4.19) itself, with Λ

replaced by IntjΓ: therefore, the equation can be iterated until the interior of all

the contours is so small that it cannot contain other contours. The result of the

iteration is
Z(Λ|q)
Zq(Λ)

=
∑

∂∈C(Λ,q)

[

∏

γ∈∂

ζ0q (γ)
]

e−W0(∂) , (4.21)

where

e−W0(∂) =
Zq

∂(Λ(∂))
∏

γ∈∂ Z
q(Γ)

Zq(Λ)
, (4.22)

Λ(∂) = Λ\ ∪γ∈∂ Γ is the complement of the contours’ supports and Zq
∂(Λ(∂)) is

the restricted partition function with magnetization q in the volume Λ(∂) and in

the presence of the hard rod constraint generated by the frozen rods Rγ in the

region ∪γ∈∂ ∪∆⊆P ext
Γ

Aγ(∆).

We now use Eq.(4.7) and the analogous expression for Zq
∂(Λ(∂)), i.e.,

logZq
∂(Λ(∂)) =

R
ext
∩ R∂=∅
∑

R∈Ωq

Λ(∂)

z|R|ϕT (R) , (4.23)
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where R
ext∩R∂ = ∅ means that R does not intersect R∂ from the outside, namely:

R
ext∩R∂ = ∅ def⇔

∏

γ∈∂

∏

∆⊆P ext
Γ

(1− g∆(R)) = 1 , (4.24)

where g∆ was defined in Eq.(4.13). Then we can rewrite:

e−W0(∂) =
Zq(Λ(∂))

∏

γ∈∂ Z
q(Γ)

Zq(Λ)
· Z

q
∂(Λ(∂))

Zq(Λ(∂))
, (4.25)

= exp
{

−
R

∂
 2
∑

R∈Ωq
Λ

z|R|ϕT (R)
}

· exp
{

−
R∩Rext

∂ 6=∅
∑

R∈Ωq

Λ(∂)

z|R|ϕT (R)
}

,

where R
∂
 2 means that R must touch at least two distinct elements of the par-

tition P(∂) of Λ induced by the contours in ∂; i.e., R must touch either two

disconnected components of Λ(∂), or two different contours’ supports, or one

contour’s support and one of the components of Λ(∂). Using the definitions of

the characteristic functions f∆ and g∆ defined in Eqs.(4.12)-(4.13), the two ex-

ponential in the r.h.s. of Eq.(4.25) can be written as

R
∂
 2
∑

R∈Ωq(Λ)

z|R|ϕT (R) =
∑

R∈Ωq
Λ

z|R|ϕT (R)
[

1−
∏

γ∈∂

∏

∆⊆PΓ

(1− f∆(R))
]

, (4.26)

R∩Rext
∂ 6=∅

∑

R∈Ωq

Λ(∂)

z|R|ϕT (R) =
∑

R∈Ωq
Λ

z|R|ϕT (R)
[

1−
∏

γ∈∂

∏

∆⊆P ext
Γ

(1− g∆(R))
]

· (4.27)

·
[

∏

γ∈∂

∏

∆⊆PΓ

(1− f∆(R))
]

.

Using the representations Eqs.(4.25), (4.26), (4.27) into Eq.(4.21), we find

Z(Λ|q)
Zq(Λ)

=
∑

∂∈C(Λ,q)

[

∏

γ∈∂

ζ0q (γ)
]

exp
{

−
∑

R∈Ωq
Λ

z|R|ϕT (R) · (4.28)

·
[

1−
(

∏

γ∈∂

∏

∆⊆P ext
Γ

(1− g∆(R))
)

·
(

∏

γ∈∂

∏

∆⊆PΓ

(1− f∆(R))
)]}

.

Note that the expression in square brackets in the second line can be conveniently

rewritten as

1−
∏

γ∈∂

(

∏

∆⊆P ext
Γ

(1− g∆(R))(1− f∆(R))
)

·
(

∏

∆⊆P int
Γ

(1− f∆(R))
)

≡

≡ 1−
∏

γ∈∂

∏

∆⊆PΓ

(1− F∆) , (4.29)
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where F∆ was defined in the statement of Lemma 1. Plugging Eq.(4.29) into

Eq.(4.28) gives

Z(Λ|q)
Zq(Λ)

=
∑

∂∈C(Λ,q)

[

∏

γ∈∂

ζ0q (γ)
]

exp
{

−
∑

R∈Ωq
Λ

z|R|ϕT (R) · (4.30)

·
[

∑

∆⊆P∂

F∆(R) +
∑

n≥2

(−1)n+1
∑

{∆1,...,∆n}

F∆1(R) · · ·F∆n
(R)

]

,

where the sum
∑

{∆1,...,∆n}
runs over collections of distinct tiles ∆i ⊆ P∂ , with

P∂ := ∪γ∈∂PΓ. Finally, using the fact that ϕT (R) forces R to be connected and,

therefore, to live on a single row or column, depending on whether q is + or −, we

find that the only non-vanishing contributions in the latter sum come from n-ples

of tiles all living on the same row or column. This proves the desired result.

5. CONVERGENCE OF THE CONTOURS’ EXPANSION

In this and in the next section we prove the convergence of the cluster ex-

pansion for the logarithm of the partition function with q boundary conditions,

starting from Eq.(4.14). The proof will be split in two main steps: first, in this

section, we prove convergence under the assumption that the activities ζq(γ) sat-

isfy suitable decay bounds in the size of |Γ|. Then, in the next section, we prove

the validity of such a decay bound via an induction in the size of |Γ|. From now

on, C,C ′, . . . and c, c′, . . ., indicate universal positive constants (to be thought of

as “big” and “small”, respectively), whose specific values may change from line

to line.

Lemma 2 Let zk and (zk2)−1 be small enough and assume that for a suitable

constant c > 0

sup
σγ

∗
∑

Rγ∈ΩΓ(σγ)

|ζq(γ)| ≤ e−c zk2|Γ′| , (5.1)

where the ∗ on the sup reminds the constraint that all the smoothing squares in

Γ must have a non-zero intersection with at least one bad sampling square. Then

the logarithm of the partition function admits a convergent cluster expansion

logZ(Λ|q) =
∑

R∈Ωq
Λ

z|R|ϕT (R) +
∑

X⊆Λ

[

∏

X∈X

K(Λ)
q (X)

]

ϕT (X ) , (5.2)

where X = {X1, . . . , Xn} is a polymers’ configuration (possibly, some of the

Xi’s can coincide), each polymer X being a connected subset of Λ consist-

ing of a union of tiles. The polymers’ activities K
(Λ)
q (X) satisfy |K(Λ)

q (X)| ≤
Ce−c′zk2|X′|(zk)c

′δ′(X′), where δ′(X ′) is the rescaled tree length of the (coarse) set

X ′ ⊂ Λ′, i.e., it is the number of nearest neighbor edges of the smallest tree on

Λ′ that covers X ′.
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Remark. The function ϕT (X ) in Eq.(5.2) is the Mayer’s coefficient of X ,

defined as in Eq.(4.8), with R replaced by X , ri by Xi, and the notion of “ri
overlaps with rj” replaced by “Xi is D-connected to Xj”.

Proof. Given ∂, let Y be a collection of n ≥ 2 distinct tiles, all contained

in the peel of some contour γ ∈ ∂ and all belonging to the same row or column,

depending on whether q = + or q = −; we shall write Y = {∆1, . . . ,∆n}, with
∆1 < · · · < ∆n, and supp(Y ) = ∪n

i=1∆i. Moreover, we shall indicate by γ(∆i) the

contour, which ∆i belongs to the peel of. Eqs.(4.14)-(4.17) can be equivalently

rewritten as
Z(Λ|q)
Zq(Λ)

=
∑

∂∈C(Λ,q)

[

∏

γ∈∂

ζq(γ)
]

∏

Y

eF(Y ) , (5.3)

where, if Y = {∆1, . . . ,∆n},

F(Y ) := (−1)n
∑

R∈Ωq
Λ

z|R|ϕT (R)F∆1(R) · · ·F∆n
(R) . (5.4)

Note that Eq.(5.4) is at least of order n (with n ≥ 2) in z, by the very definition

of the characteristic function F∆. In fact, F∆(R) is either equal to f∆ or to

f∆ + g∆(1− f∆); therefore, using the definitions of f∆ and g∆, Eqs.(4.12)-(4.13),

we see that F∆(R) is different from zero only if R contains a rod belonging to

Aγ(∆)(∆). Now recall that, as already observed after Eq.(4.13), distinct tiles ∆1 6=
∆2 correspond to distinct sets Aγ(∆1)(∆1) and Aγ(∆2)(∆2), such that Aγ(∆1)(∆1)∩
Aγ(∆2)(∆2) = ∅; therefore, the r.h.s. of Eq.(5.4) is non zero only if R contains at

least n distinct rods.

Using Eq.(4.9), we find that

|F(Y )| ≤ C ′zk2(zk)max{|Y |−1, c′·diam′(Y )} , (5.5)

where, if Y = {∆ξ1 , . . . ,∆ξn} with ∆ξ1 < · · · < ∆ξn , then diam′(Y ) = (ξn − ξ1)/ℓ

is the rescaled diameter of the set ∪∆∈Y∆.

Let us now add and subtract 1 to each of the factors eF(Y ) in Eq.(5.4): in this

way we turn each factor into a binomial 1 + (eF(Y ) − 1). If Y = {∆1, . . . ,∆m}
with ∆1 < · · · < ∆m, we associate the quantity (eF(Y ) − 1) with the region Y

consisting of the union of all the tiles between ∆1 and ∆m. Similarly, we associate

the activities ζ(γ) with the region Γ. Then we develop the binomials 1+(eF(Y )−1)

and collect together the contribution corresponding to the maximally D-connected

regions, obtained as unions of Γi’s and Y j’s. The result is:

Z(Λ|q)
Zq(Λ)

= 1 +
∑

m≥1

∑

{X1,...,Xm}

K(Λ)
q (X1) · · ·K(Λ)

q (Xm)ϕ(X1, . . . , Xm) , (5.6)
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where ϕ implements the hard core interaction, i.e., ϕ(X1, . . . , Xm) is equal to 1

if the Xi’s are all mutually D-disconnected and 0 otherwise, and

K(Λ)
q (X) =

∑

n≥1, p≥0

∗
∑

{γ1,...,γn}
{Y1,...,Yp}

{∪iΓi}∪{∪jY j}=X

ζq(γ1) · · · ζq(γn)(eF(Y1) − 1) · · · (eF(Yp) − 1) ,

(5.7)

where the ∗ on the sum reminds the constraint that the contours γi must all be

well-separated among each other and from the boundary of Λ; i.e., they must be

separated among each other and from Λc by at least one smoothing square. As

we will prove below, the assumption Eq.(5.1) on the contours’ activities, together

with Eq.(5.5), implies that

|K(Λ)
q (X)| ≤ ε1ε

|X′| , ε1 := e−c′′zk2 , ε := max{ε1, (zk)c
′′} , (5.8)

for some c′′ > 0. This decay bound on K(Y ) is sufficient to apply the standard

cluster expansion strategy for computing the logarithm of Eq.(5.6) and put it in

the form of the exponentially convergent sum Eq.(5.2); see, e.g., [7, Proposition

7.1.1]. The result is

log
Z(Λ|q)
Zq(Λ)

=
∑

X⊆Λ

[

∏

X∈X

K(Λ)
q (X)

]

ϕT (X ) . (5.9)

Combing this equation with Eq.(4.7) gives Eq.(5.2).

We are left with proving Eq.(5.8). Using the bound Eq.(5.1 on the contours

activities, the bound Eq.(5.5) on F(Y ) and the fact that |ex − 1| ≤ |x|e|x|, we
find:

|K(Λ)
q (X)| ≤

∑

n≥1

Cn

∗
∑

{Γ1,...,Γn}:
∪iΓi=X0⊆X

6|X
′

0|e−c·zk2|X′

0|
∑

X1⊂X:
X0∪X1=X

∑

Q⊆X1

∑

p≥0

∑

{Y1,...,Yp}
∪isupp(Yi)=Q

∪iY i=X1

p
∏

j=1

[

C ′zk2(zk)c
′·diam′(Yj) exp

{

C ′zk2(zk)c
′·diam′(Yj)

}

]

, (5.10)

where, again, the ∗ on the sum over the Γi’s indicates the constraint that the

contours’ supports must be separated among each other and from Λc by at least

one smoothing square. Moreover, the factor 6|X
′

0| bounds the sums over σγ and

mint at Γ fixed.

Now, note that: (i)
∑p

j=1 diam
′(Yj) ≥ |X ′

1|; (ii) |X ′
0| ≥ |Q′|, because every

element of ∪jYj belongs to the peel of some contour;

(iii)

p
∑

j=1

(zk)c
′·diam′(Yj) ≤

∑

ξ∈Q′

∑

Y
′

∋ξ

(zk)c
′|Y

′

| ≤ C ′′|Q′|(zk)c′ .
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Plugging these estimates into Eq.(5.10) we find

|K(Λ)
q (X)| ≤

∗
∑

∅6=X0⊆X

(6Ce−
c
2
·zk2)|X

′

0|
∑

X1⊂X:
X0∪X1=X

(zk)
c′

2
|X′

1| · (5.11)

·
∑

Q⊆X1

e−zk2|Q′|( c
2
−C′C′′(zk)c

′

)
∑

p≥0

∑

{Y1,...,Yp}
∪isupp(Yi)=Q

∪iY i=X1

p
∏

j=1

[

C ′zk2(zk)
c′

2
diam′(Yj)

]

,

which can be further bounded by:

|K(Λ)
q (X)| ≤

∗
∑

∅6=X0⊆X

e−
c
3
zk2|X′

0|
∑

X1⊂X:
X0∪X1=X

(zk)
c′

2
|X′

1| · (5.12)

·
∑

Q⊆X1

e−
c
3
zk2|Q′|

∑

p≥0

1

p!

[

C ′zk2
∑

A∩Q 6=∅

(zk)
c′

2
δ′(A′)

]p

,

where in the last sum A is a generic subset of Λ consisting of a union of tiles, and

δ′(A′) is its rescaled tree length. The expression in square brackets in the second

line is bounded above by C ′′zk2|Q′|(zk) c′

2 , so that

|K(Λ)
q (X)| ≤

∗
∑

∅6=X0⊆X

e−
c
3
zk2|X′

0|
∑

X1⊂X:
X0∪X1=X

(zk)
c′

2
|X′

1|
∑

Q⊆X1

e−zk2|Q′|( c
3
−C′′(zk)

c′

2 )

≤
∗

∑

∅6=X0⊆X

e−
c
3
zk2|X′

0|
∑

X1⊂X:
X0∪X1=X

(zk)
c′

2
|X′

1|
∑

Q⊆X1

e−
c
4
zk2|Q′| . (5.13)

The last sum can be bounded as
∑

Q⊆X1
e−

c
4
zk2|Q′| ≤ (1 + e−

c
4
zk2)|X

′

1|, so that,

defining ε̃1 := e−
c
3
zk2 , ε̃2 := (zk)

c′

2 and ε̃ := max{ε̃1, ε̃2}:

|K(Λ)
q (X)| ≤

∗
∑

∅6=X0⊆X

ε̃
|X′

0|
1

∑

X1⊂X:
X0∪X1=X

(

(1 + e−
c
4
zk2)ε̃2

)|X′

1|

≤
√

ε̃1

[

2
√
ε̃(1 + e−

c
4
zk2)

]|X′|

, (5.14)

which is the desired estimate on K(X). This concludes the proof of the lemma.

Remark. The dependence of the activities K
(Λ)
q (X) on Λ is inherited from

the constraint that X must be separated from Λc by at least one smoothing

square, and by the fact that the quantities ζ(γ) and F(Y ) themselves are Λ-

dependent, simply because their definitions involve sums over rods collections in

Ωq
Λ. However, this dependence is very weak: in fact, if Kq(X) is the infinite

volume limit of K
(Λ)
q (X), we have:
∣

∣K(Λ)
q (X)−Kq(X)

∣

∣ ≤
√

ε1ε|X
′| εc·dist

′(X,Λc) , (5.15)
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for some c > 0. The proof of Eq.(5.15) proceeds along the same lines used to

prove Eq.(5.8) and, therefore, we will not belabor the details of this computation.

6. THE ACTIVITY OF THE CONTOURS

In this section we prove the assumption Eq.(5.1) used in the proof of Lemma

2. Let us first remind, for the reader’s convenience, the definition of ζq(γ):

ζq(γ) = ζ0q (γ) exp
{

−
∑

R∈Ωq
Λ

ϕT (R)z|R|
∑

∆⊆PΓ

F∆(R)
}

, (6.1)

where

ζ0q (γ) =
ϕ̄(Rγ)

Zq(Γ)

hΓ
∏

j=1

Zγ(IntjΓ|mj
int)

Z(IntjΓ|q)
. (6.2)

By using the same considerations used to get the bound Eq.(5.5), we see that the

expression in braces in the r.h.s. of Eq.(6.1) is equal to a contribution of order one

in z plus a rest, which is bounded in absolute value by Czk2|Γ′|(zk)c. On the other

hand, the contribution of order one in z is equal to−z
∑

R∈Ωq
Λ: |R|=1

∑

∆⊆PΓ
F∆(R),

which is negative, simply because F∆ ≥ 0. Therefore,

|ζq(γ)| ≤ |ζ0q (γ)|eCzk2|Γ′|(zk)c , (6.3)

which makes apparent that, in order to prove Eq.(5.1), we need to prove an

analogous bound for ζ0q (γ). By definition, Zγ(X|m) ≤ Z(X|m), so that

|ζ0q (γ)| ≤ |ζ0q(γ)|
hΓ
∏

j=1

max
{

1,
Z(IntjΓ| − q)

Z(IntjΓ|q)
}

, ζ
0

q(γ) :=
ϕ̄(Rγ)

Zq(Γ)
. (6.4)

The estimate that we need on the quantities ζ
0

q(γ) and
Z(IntjΓ|−q)

Z(IntjΓ|q)
is summarized

in the following two lemmas.

Lemma 3 Let zk and (zk2)−1 be small enough. Then, for a suitable constant

α > 0,

sup
σγ

∗
∑

Rγ∈ΩΓ(σγ)

|ζ0q(γ)| ≤ e−α zk2|Γ′| , (6.5)

where the ∗ on the sup reminds the constraint that all the smoothing squares in

Γ must have a non-zero intersection with at least one bad sampling square.

Lemma 4 Let zk and (zk2)−1 be small enough. Then there exist two positive

constants C, c > 0 such that, for any simply connected region X ⊂ Z
2 consisting

of a union of smoothing squares,

e−|P ′

X |(Czk2(zk)+εc) ≤ Z(X|+)

Z(X|−)
≤ e|P

′

X |(Czk2(zk)+εc) , (6.6)

where ε was defined in Eq.(5.8) and PX is the 1-tile-thick peel of X.
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These two estimates combined with Eq.(6.3) prove Eq.(5.1) under the only

assumptions that zk and (zk2)−1 are small enough. Therefore, these two lemmas

imply the convergence of the cluster expansion Eq.(5.2), which completes the

computation of the partition function of our hard rod system with q boundary

conditions. A computation of the correlation functions based on a similar expan-

sion will be discussed in the next section. The rest of this section is devoted to

the proofs of Lemma 3 and 4.

Proof of Lemma 3. Let σγ be a spin configuration compatible with the

fact that γ is a contour. In particular, let us recall that every smoothing square

contained in Γ has a non zero intersection with at least one bad sampling square;

moreover, by its very definition, each such bad square must contain either one tile

with magnetization equal to 0, or one pair of neighboring tiles with magnetizations

+ and −, respectively. Therefore, given σγ, it is possible to exhibit a partition P
of Γ such that: (i) all the elements of the partition consist either of a single tile or

of a pair of neighboring tiles with opposite magnetizations + and − (we shall call

such pairs “domino tiles”); (ii) ifN0 is the number of tiles in P with magnetization

equal to 0 and Nd is the number of domino tiles in P , then N0 +Nd ≥ |Γ′|/64.
The factor 64 comes from the consideration that in Γ, by definition, we have at

least one bad square every four smoothing squares, and by the fact that four

smoothing squares contain 64 tiles.

By the definition of ϕ̄(Rγ), we have: ϕ̄(Rγ) ≤
∏

P∈P ϕ̄(RP ). Moreover, using

the standard cluster expansion described after Eq.(4.6), we find that Zq(Γ) ≥
∏

P∈P Zq(P )e−Czk2(zk)|Γ′|. By combining these two bounds we get

∑

Rγ∈ΩΓ(σγ)

|ζ0q(γ)| ≤ eCzk2(zk)|Γ′|
∏

P∈P

∣

∣

∣

∑

RP

ϕ̄(RP )

Zq(P )

∣

∣

∣
, (6.7)

where the sum over RP runs over rods configurations in ΩP (∪ξ∈P ′σξ). Now, if P

is a single tile with magnetization either + or −, then
∑

RP

ϕ̄(RP )
Zq(P )

= 1. Moreover,

if P is a single tile with magnetization equal to 0, then
∑

RP

ϕ̄(RP )
Zq(P )

= − 1
Zq(P )

=

−e−zℓ2(1+O(zk)).

Finally, let us consider the case that P is a domino tile. We assume without

loss of generality that P = {∆ξ1 ,∆ξ2}, with ξ2− ξ1 = (ℓ, 0), and σξ1 = −σξ2 = +.

Since the rods interact via a hard core, ϕ̄(Rξ1 , Rξ2) is different from zero only if

at least one of the two rod configurations Rξ1 and Rξ2 is untypical: here we say

that Rξ1 is untypical if it does not contain any rod in the right half of ∆ξ1 and,

similarly, that Rξ2 is untypical if it does not contain any rod in the left half of



22

∆ξ2 . Therefore,

∑

RP

ϕ̄(RP )

Zq(P )
≤ eCzk2(zk)

[

∑

Rξ1
∈Ω+

∆ξ1
:

Rξ1
untypical

ϕ̄(Rξ1)

Z+(∆ξ1)
+

∑

Rξ2
∈Ω−

∆ξ2
:

Rξ2
untypical

ϕ̄(Rξ2)

Z−(∆ξ2)

]

, (6.8)

where we used that
∑

R∈Ωq
∆
ϕ̄(R) = Zq(∆). Eq.(6.8) can be rewritten and esti-

mated (defining ∆L
ξ1

to be the left half of ∆ξ1) as

∑

RP

ϕ̄(RP )

Zq(P )
≤ 2eCzk2(zk)

Z+(∆L
ξ1
)

Z+(∆ξ1)
≤ 2eC

′zk2(zk)e−zℓ2/2 . (6.9)

Plugging the bounds on
∑

RP

ϕ̄(RP )
Zq(P )

into Eq.(6.7) gives:

∑

Rγ∈ΩΓ(σγ)

|ζ0q(γ)| ≤ eCzk2(zk)|Γ′|e−zℓ2(1−Czk)(N0+
1
2
Nd)

≤ e−zℓ2(1−C′zk)|Γ′|/128 , (6.10)

where in the last line we used the bound N0 + Nd ≥ |Γ′|/64. Eq.(6.10) is the

desired bound, so the proof of the lemma is complete.

Proof of Lemma 4. We proceed by induction on the size of X. If X is so

small that it cannot contain contours D-disconnected from Xc, then

Z(X|+)

Z(X|−)
=

Z+(X)

Z−(X)
= exp

{

∑

R∈Ω+
X

ϕT (R)z|R| −
∑

R∈Ω−

X

ϕT (R)z|R|
}

. (6.11)

Let V (R) be the union of the centers of the rods in R. Then

∑

R∈Ωq
X

ϕT (R)z|R| =
∑

x∈X

∑

R∈Ωq
X

V (R)∋x

ϕT (R)z|R|

|V (R)| (6.12)

=
∑

x∈X

∑

R∈Ωq

Z2

V (R)∋x

ϕT (R)z|R|

|V (R)| +
∑

x∈X

∑

R∈Ωq

Z2
\Ωq

X

V (R)∋x

ϕT (R)z|R|

|V (R)| .

The first sum in the second line is equal to

∑

x∈X

∑

R∈Ωq

Z2

V (R)∋x

ϕT (R)z|R|

|V (R)| = |X|s(z) , (6.13)

where

s(z) :=
∑

R∈Ωq

Z2

V (R)∋x

ϕT (R)z|R|

|V (R)| (6.14)
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is an analytic function of z, of the form s(z) = z(1 + O(zk)), independent of q

and x. The second sum in the second line of Eq.(6.12) involves rod configurations

containing at least one rod belonging to X and one belonging to Xc. Therefore,

it is of order at least 2 in z and scales like the boundary of X:

∣

∣

∣

∑

x∈X

∑

R∈Ωq

Z2
\Ωq

X

V (R)∋x

ϕT (R)z|R|

|V (R)|
∣

∣

∣
≤ C1zk

2(zk)|P ′
X | , (6.15)

for a suitable constant C1 > 0, independent of q. Plugging Eqs.(6.12)–(6.15) into

Eq.(6.11) gives:

Z(X|+)

Z(X|−)
= exp

{

∑

x∈X

∑

R∈Ω+

Z2
\Ω+

X

V (R)∋x

ϕT (R)z|R|

|V (R)| −
∑

x∈X

∑

R∈Ω−

Z2
\Ω−

X

V (R)∋x

ϕT (R)z|R|

|V (R)|
}

, (6.16)

which is bounded from above and below by e2C1zk2(zk)|P ′

X | and e−2C1zk2(zk)|P ′

X |,

respectively. This proves the inductive hypothesis Eq.(6.6) at the first step, i.e.,

for regions X small enough, provided that C ≥ 2C1.

Let us now assume the validity of Eq.(6.6) for all the regions of size strictly

smaller than Λ0, and let us prove it for Λ0. As explained in Section 5, Z(Λ0|q) ad-
mits the cluster expansion Eq.(5.2) involving polymersX that are D-disconnected

from Λc
0, whose activities are defined in Eq.(5.7). In particular, the cluster ex-

pansion is convergent provided that ζq(γ) is bounded as in Eq.(5.1). Now, note

that the interiors of the contours γi involved in the cluster expansion for Z(X0|q)
via Eqs.(5.2) and (5.7) have all sizes strictly smaller than Λ0. Therefore, us-

ing the inductive hypothesis, the product max
{

1,
Z(IntjΓ|−q)

Z(IntjΓ|q)

}

in Eq.(6.4) can be

bounded from above by e|Γ
′|(Czk2(zk)+εc) that, if combined with Eqs.(6.3), (6.5),

implies Eq.(5.1) with c = α/2, for all the the contours γi involved in the cluster

expansion for Z(X0|q). We can then write:

Z(Λ0|+)

Z(Λ0|−)
=

Z+(Λ0)

Z−(Λ0)
exp

{

∑

X⊆Λ0

[

K
(Λ0)
+ (X )−K

(Λ0)
− (X )

]

ϕT (X )
}

, (6.17)

where K
(Λ0)
q (X ) =

∏

X∈X K
(Λ0)
q (X) and K

(Λ0)
q (X) admits the bound Eq.(5.8).

The first factor in the r.h.s. of Eq.(6.17) is rewritten as in Eq.(6.16) and is

bounded from above and below by e2C1zk2(zk)|P ′

Λ0
| and e−2C1zk2(zk)|P ′

Λ0
|, respectively,

exactly in the same way as Eq.(6.17) itself.
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The second factor in the r.h.s. of Eq.(6.17) can be bounded as follows. We

rewrite

exp
{

∑

X⊆Λ0

[

K
(Λ0)
+ (X )−K

(Λ0)
− (X )

]

ϕT (X )
}

= (6.18)

= exp
{

∑

X⊆Λ0
q=±

qKq(X )ϕT (X )
}

· exp
{

∑

X⊆Λ0
q=±

q
[

K(Λ0)
q (X )−Kq(X )

]

ϕT (X )
}

,

where Kq(X ) =
∏

X∈X Kq(X) and, using Eq.(5.15),

|K(Λ0)
q (X )−Kq(X )| ≤ εc1dist

′(X ,Λc
0)

∏

X∈X

εc1|X
′| , (6.19)

for a suitable constant c1 > 0. Therefore, the second factor in the second line

of Eq.(6.18) can be bounded from above and below by eε
c2 |P ′

Λ0
| and e−εc2 |P ′

Λ0
|,

respectively. We are left with the first factor in the second line of Eq.(6.18),

which involves the partition sum

∑

X⊆Λ0

Kq(X )ϕT (X ) =
∑

ξ∈Λ′

0

∑

X⊇∆ξ

X⊆Λ0

Kq(X )ϕT (X )

|X ′| , (6.20)

where |X ′| is number of tiles in ∪X∈XX. Eq.(6.20) can be further rewritten as

∑

X⊆Λ0

Kq(X )ϕT (X ) = |Λ′
0|S +

∑

ξ∈Λ′

0

∑

X⊇∆ξ

X∩Λc
0 6=∅

Kq(X )ϕT (X )

|X ′| , (6.21)

where

S :=
∑

X⊇∆ξ

X⊆Z
2

Kq(X )ϕT (X )

|X ′| , (6.22)

is independent of q and ξ. The second term in the r.h.s. of Eq.(6.21) is bounded

in absolute value from above by |P ′
Λ0
|εc3 for a suitable c3 > 0; therefore,

exp
{

∑

X⊆Λ0
q=±

qKq(X )ϕT (X )
}

= exp
{

∑

ξ∈Λ′

0
q=±

∑

X⊇∆ξ

X∩Λc
0 6=∅

q
Kq(X )ϕT (X )

|X ′|
}

≤ e
2|PΛ′

0
|εc3

(6.23)

and is bounded from below by e
−2|PΛ′

0
|εc3

. This completes the inductive proof of

Eq.(6.6), provided that εc ≥ εc2 + 2εc3 .

7. EXISTENCE OF NEMATIC ORDER

In this section we prove Theorem 1. We start by proving Eq.(3.9). The

probability that the tile centered at ξ0 has magnetization −q in the presence of
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boundary conditions q can be written as

〈χ−q
ξ0
〉q
Λ
=

∂

∂z0
logZz0(Λ|q)

∣

∣

∣

z0=1
, (7.1)

where Zz0(Λ|q) is defined in a way completely analogous to Eqs.(3.4)-(3.6), with

the only difference that the activity ζ(ξ) in Eq.(3.4) is replaced by ζ̃(ξ), where

ζ̃(ξ) = ζ(ξ) if ξ 6= ξ0, while

ζ̃(ξ0) =











z|Rξ| if σξ = q

z0z
|Rξ| if σξ = −q

−1 if σξ = 0.

(7.2)

The change of ζ(ξ) into ζ̃(ξ) induces a corresponding change of ζq(γ) andK
(Λ)
q (X)

into ζ̃q(γ) and K̃
(Λ)
q (X), respectively. The activity K̃

(Λ)
q (X) admits the same

bound Eq.(5.8) (possibly with a slightly different constant c′′), uniformly in z0
for z0 close to 1, and it depends explicitly on z0 only if X ⊇ ∆ξ0 . In such a case,

the derivative of K̃
(Λ)
q (X) with respect to z0 is bounded by

√

ε1ε|X
′|, uniformly

in z0 for z0 close to 1.

The logarithm of the modified partition function admits a convergent cluster

expansion analogous to Eq.(5.2):

log
Zz0(Λ|q)
Zq(Λ)

=
∑

X⊆Λ

K̃(Λ)
q (X )ϕT (X ) , (7.3)

so that

〈χ−q
ξ0
〉q
Λ
=

∑

X⊆Λ

∂z0K̃
(Λ)
q (X )ϕT (X )

∣

∣

∣

z0=1
. (7.4)

The sum in the r.h.s. of Eq.(7.4) is exponentially convergent for ε small enough,

and it only involves polymer configurations containing ∆ξ0 , simply because

K̃
(Λ)
q (X) is independent of z0 whenever ∆ξ0 ∩X = ∅. Therefore,

〈χ−q
ξ0
〉q
Λ
≤

∑

X⊆Λ

|ϕT (X )| · |∂z0K̃(Λ)
q (X )|z0=1 ≤

√
ε1

∑

X⊇∆ξ0

|ϕT (X )|
∏

X∈X

ε
1
2
|X′|

≤ (const.)
√
ε1ε , (7.5)

which proves Eq.(3.9).

In order to compute the density-density correlation functions we proceed in a

similar fashion. We replace the activity z of a rod r centered at x by zx and we

define Z̃
z
(Λ|q) to be the modified partition function with boundary conditions q

and variable rod activities z = {zx}x∈Λ. Correspondingly, we rewrite:

〈nx〉qΛ = z∂zx log Z̃z
(Λ|q)

∣

∣

∣

z=z
,

〈nxny〉qΛ − 〈nx〉qΛ〈ny〉qΛ = z2∂zx∂zy log Z̃z
(Λ|q)

∣

∣

∣

z=z
, (7.6)
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where z = z means that zx = z, ∀x ∈ Λ; the higher order density correlation

functions have a similar representation. Once again, log Z̃
z
(Λ|q) admits a cluster

expansion completely analogous to logZ(Λ|q):

log Z̃
z
(Λ|q) =

∑

R∈Ωq
Λ

[

∏

r∈R

zx(r)
]

ϕT (R) +
∑

X⊆Λ

K̃(Λ)
q,z (X )ϕT (X )

∣

∣

∣

z=z
, (7.7)

where x(r) is the center of r. Moreover, K̃
(Λ)
q,z (X), together with its derivatives

with respect to zx and/or zy, admit the same bound Eq.(5.8), possibly with a

different constant c′′; the derivative of K̃
(Λ)
q,z (X) with respect to zx and/or zy is

different from zero only if X ∋ x and/or X ∋ y. Therefore,

〈nx〉qΛ =
∑

R∈Ωq
Λ

z|R|R(r(x))ϕT (R) +
∑

X⊆Λ

∂zxK̃
(Λ)
q,z (X )ϕT (X )

∣

∣

∣

z=z
,

〈nxny〉qΛ − 〈nx〉qΛ〈ny〉qΛ = (7.8)

=
∑

R∈Ωq
Λ

z|R|R(r(x))R(r(y))ϕT (R) +
∑

X⊆Λ

∂2
zx zyK̃

(Λ)
q,z (X )ϕT (X )

∣

∣

∣

z=z
,

where R(r) is the multiplicity of r in R. The sums in the first line involve

connected rod or polymer configurations containing at least one rod centered

at x; similarly, the sums in the second line involve connected rod or polymer

configurations containing at least one rod centered at x and one rod centered at

y. All the sums are exponentially convergent and their evaluation finally leads to

the finite volume analogues of Eqs.(3.10)-(3.11). The infinite volume counterparts

are obtained simply by replacing all the finite volume activities with their infinite

volume counterparts and by dropping the constraints that the polymers should be

contained in Λ. The infinite volume limit is reached exponentially fast and all the

observables share the same invariance properties as the infinite volume activities

themselves. In particular, the infinite volume Gibbs measures 〈·〉q are translation
invariant, and the averages 〈χ−q

ξ0
〉q and 〈∏j nxj

〉q are all independent of q. We

will not belabor the proofs of these claims, since they are all straightforward

consequences of the cluster expansion described in the previous sections, in the

same sense as the representations for 〈χ−q
ξ0
〉q, 〈nx〉q and 〈nxny〉q and the proof of

their convergence, discussed in this section, are a consequence of the bounds of

sections 4 and 5. This concludes the proof of the main theorem.
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