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We have established a multi-constraint, data-driven process to digitally reconstruct, and simulate
prototypical neocortical microcircuitry, using sparse experimental data. We applied this process
to reconstruct the microcircuitry of the somatosensory cortex in juvenile rat at the cellular and
synaptic levels. The resulting reconstruction is broadly consistent with current knowledge about
the neocortical microcircuit and provides an array of predictions on its structure and function.
To engage the community in exploring, challenging, and refining the reconstruction, we have
developed a collaborative, internet-accessible facility—the Neocortical Microcircuit Collaboration
portal (NMC portal; https://bbp.epfl.ch/nmc-portal). The NMC portal allows users to access the
experimental data used in the reconstruction process, download cellular and synaptic models, and
analyze the predicted properties of the microcircuit: six layers,∼31,000 neurons, 55 morphological
types, 11 electrical types, 207 morpho-electrical types, 1941 unique synaptic connection types
between neurons of specific morphological types, predicted properties for the anatomy and
physiology of ∼40 million intrinsic synapses. It also provides data supporting comparison of
the anatomy and physiology of the reconstructed microcircuit against results in the literature.
The portal aims to catalyze consensus on the cellular and synaptic organization of neocortical
microcircuitry (ion channel, neuron and synapse types and distributions, connectivity, etc.).
Community feedback will contribute to refined versions of the reconstruction to be released
periodically. We consider that the reconstructions and the simulations they enable represent a
major step in the development of in silico neuroscience.

Introduction

The Blue Brain Project has developed a unifying process for the pragmatic integration of
available data and knowledge into in silico reconstructions of neuronal microcircuits. We have
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used this process to reconstruct the microcircuitry of developing
rat [postnatal days (P) 13–16] somatosensory cortex from sparse
data on its cellular and synaptic organization (Markram et al.,
2015). The resulting reconstruction is made up of component
data covering multiple levels of detail: ion channels, synapses,
neurons, and the entire microcircuit. The reconstruction evolves
in successive cycles of reconstruction-validation-experiment-
reconstruction, and will continuously integrate new properties
and principles as they become available.

The anatomy and physiology of the reconstruction can be
studied in the same way as those of a block of neocortical tissue.
To enable such studies, we have developed an internet-accessible
public resource—The NMC Portal. The portal provides access
to the data, literature, and models used in the reconstruction
of P13-16 rat somatosensory cortex, together with interactive
tools to browse and query its detailed anatomy and physiology.
The resource also provides means for the community to explore,
analyze, and annotate the properties of the reconstruction, to
compare them against results from the literature, and to provide
feedback for future releases.

The Reconstructed Neocortical
Microcircuit

The reconstructed microcircuit represents six cortical layers with
an overall thickness of ∼2.1mm, and a volume of ∼0.29mm3. It
is constituted by∼31,000 neurons belonging to 55morphological
types (m-types), 11 electrical types (e-types), and 207 morpho-
electrical types (me-types); ∼7.5 million connections belonging
to 1941 unique m-type specific connection types; and ∼40
million synapses belonging to six synapse types (s-types)
(Markram et al., 2015). The overall dimensions, individual layer
thicknesses, and the ratio of excitatory to inhibitory neurons
in the reconstruction are consistent with results from previous
studies of rat barrel cortex (Meyer et al., 2010, 2011; Wimmer
et al., 2010). However, the total number of neurons in the
reconstruction based on measurements in juvenile (P13-16) rat
somatosensory cortex is around 1.5 times higher than in adult
(P27) rat barrel cortex (Meyer et al., 2010).

The NMC Portal—an Overview

The portal allows users to access the experimental data used
in the reconstruction process, download cellular and synaptic
models, and analyze the predicted properties of the microcircuit.
The portal is structured into the following sections (see
Supplementary Figure 1):

Microcircuit
An interactive browser across three levels: layers, neurons, and
synapses. The layer level provides data on thickness, neuron,
and synapse densities, and the distributions of neuron and
synapse types for each of the six layers of the reconstruction.
The neuronal level describes the anatomical and physiological
properties of morphological, electrical and morpho-electrical
neuron types (m-, e-, and me-types, respectively). The synaptic

level represents the anatomical and physiological properties of
synaptic connections between specific pre-post combinations of
m-types, and the complete map of intrinsic input and output
synapses (three excitatory, and three inhibitory synaptic types),
from and to neurons of different types.

Literature Consistency
Comparisons between the morphological, molecular, electrical,
synaptic, and physiology properties of the reconstruction and its
overall circuit anatomy against the published literature.

Experimental Data
Experimental datasets used in the reconstruction process.

Videos
Animations of simulated microcircuit activity under a variety of
experimental conditions.

Images
Images illustrating key steps in the reconstruction process.

Tools
Tools for analyzing, and simulating the reconstructed
microcircuit.

Downloads
Models of neurons, ion channels, and synapses for the NEURON
simulation environment.

The Microcircuit

The microcircuit section of the portal contains data computed
during the reconstruction process, using methods described in
(Markram et al., 2015). The data is presented in fact sheets, each
representing a different level of biological organization.

The fact sheet for the whole reconstructed microcircuit
provides an integrated view of its dimensions, layer-wise
distributions and densities of neurons, total number of
morphological types (m-types), electrical types (e-types),
morpho-electrical types (me-types), and synapse types (s-
types), numbers of intrinsic, and extrinsic synaptic connections
and associated synapses, and the number of unique synaptic
connection types between neurons of specific source and target
m-types (see Figure 1).

Layers
The layer level fact sheets (see Figure 2) provide a unified picture
of the anatomical and physiological properties of each layer in the
reconstructed microcircuit as outlined below.

1. The total number of neurons in each designated layer and
for each morphological type (m-type) in a layer are given
(see Figure 2B), where the naming of m-types was based on
the most common names used in previous studies (Larkman,
1991; Kawaguchi and Kubota, 1997; DeFelipe et al., 2002;
Wang et al., 2006; Lübke, 2003; Ascoli et al., 2008; Romand
et al., 2011).
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FIGURE 1 | An overview of the reconstructed microcircuit—facts and figures. Top left: facts and figures on the neuronal anatomy of the reconstructed

microcircuit. Top right: overview of neuronal physiology. Bottom left: facts and figures on synaptic anatomy. Bottom right: overview of synaptic physiology.

2. Total axonal length and volume, total dendritic length and
volume, synapse density, total number of morphology-specific
synaptic connections are provided, and categorized into:
geometrically possible and viable pathways, excitatory and
inhibitory pathways, and intra- and inter-laminar pathways
(Thomson and Deuchars, 1997; Somogyi et al., 1998;
Feldmeyer et al., 1999, 2002; Gupta et al., 2000; Wang et al.,
2002; Silberberg and Markram, 2007).

3. The proportion of different electrical types (e-types) for
each layer is given (see Figure 2C for an example of e-type
proportions in layer 5).

4. The mapping of inhibitory m-types to the main calcium-
binding proteins [parvalbumin (PV), calbindin (CB), and
calretinin (CR)], and neuropeptides [somatostatin (SOM),
vasoactive intestinal polypeptide (VIP), neuropeptide Y
(NPY), and cholecystokinin (CCK)] they express is given
(see Figure 2D) as described previously (DeFelipe, 1993;
Gonchar and Burkhalter, 1997; Kawaguchi and Kubota, 1997;
Kawaguchi and Kondo, 2002; Toledo-Rodriguez et al., 2005;
Gonchar et al., 2008; O’Connor et al., 2009; Meyer et al., 2011;
Santana et al., 2013).

Morphological Types (m-types)
The m-type fact sheets (see Figure 3) provide an anatomical
overview of total axonal and dendritic lengths, and volumes
for individual m-types (see Figure 3B1). Previous studies have
established that neurons of particular m-types display diverse
electrical behavior (Kawaguchi and Kubota, 1997; Gupta et al.,
2000; Markram et al., 2004; Toledo-Rodriguez et al., 2004).
Therefore, the m-type fact sheets also list the different e-types
associated with the m-type (see Figure 3B2). In addition, the
fact sheets provide detailed anatomical characterizations of the
axonal and dendritic properties of neurons belonging to the m-
type. These include section bifurcation angles (Figures 3C,G),
total lengths (see Figures 3D,H), individual section lengths (see
Figures 3E,I), and volumes (Figures 3F,J).

Morpho-Electrical Types (me-types)
The me-type fact sheets provide an in-depth description of
the anatomical and physiological properties of each of the 207
individual me-types in the reconstruction, and detailed data
for five exemplar neurons of each me-type (Figure 4; see also
Figure 4E for a single exemplar): total length and volume,

Frontiers in Neural Circuits | www.frontiersin.org 3 October 2015 | Volume 9 | Article 44

https://bbp.epfl.ch/nmc-portal/microcircuit#/mtype/L5_SBC
https://bbp.epfl.ch/nmc-portal/microcircuit#/metype/L5_SBC_dNAC/details
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Ramaswamy et al. The neocortical microcircuit collaboration portal

FIGURE 2 | Layer fact sheet. (A) The pathway navigator predicting the post-synaptic target layers of all m-types in layer 5. The thickness of a connecting ribbon

indicates the number of possible pathways (connections or synapses, based on the user selection in the top left) of a given layer 5 m-type to the recipient layer.

(B) Overview of the m-type composition in layer 5, morphometrics, and synaptic anatomy. (C) Proportional composition of different e-types in layer 5. (D) Map of

commonly expressed calcium binding proteins and neuropeptides within inhibitory neurons of different m-types in layer 5. The thickness of the connecting ribbon

indicates the prevalence of specific markers.

maximal section length, maximal branch order, and soma
diameter (see Figure 4A). The physiological characterization
includes standard metrics for intrinsic membrane properties
(Connors and Gutnick, 1990; Kasper et al., 1994; Zhu, 2000):
resting potential, input resistance, and membrane time constant
(see Figure 4B). The fact sheets also provide a list of relevant
ion channels models for specific me-types, and data on the
distribution of ion channels along neuronal arbors, identified
from the literature (see Figure 4C) (Stuart and Sakmann,
1994; Korngreen and Sakmann, 2000; Kole et al., 2006). These
data make it possible to model the electrical firing patterns
of specific me-types, as shown in Figure 4D, which illustrates
modeled electrical responses to somatic step current injections
of varying intensities. The fact sheets link to the relevant model
packages, which are designed for use in the NEURON simulation
environment.

Neuronal dendrites not only funnel synaptic input toward
the axon, but also sustain action potentials (AP) back-
propagating from the axon (Stuart and Sakmann, 1994).
However, experimental data characterizing the active dendritic
properties of neocortical neurons is only available for a small
subset of me-types (Larkum et al., 2007, 2009; Nevian et al.,
2007; Ledergerber and Larkum, 2010). The reconstruction
predicts these values. The me-type fact sheets provide predictions
(movies) of dendritic back-propagating action potentials (bAP),
and the attenuation of post-synaptic potentials (PSP) for all 207
me-types (see Figures 4F,G).

Connection Types
The 55 m-types constituting the microcircuit could theoretically
form 3025 morphology-specific connection types. Consideration
of the overlap of axons and dendrites, or lack thereof, in
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FIGURE 3 | m-type fact sheet. (A) Predicted post-synaptic targets for neurons belonging to the L5_SBC m-type; (B1) anatomical fact sheet for all neurons of the

L5_SBC m-type. (B2) e-types expressed in neurons belonging to the L5_SBC m-type (C) Histogram of axonal section bifurcation angles compiled from all

reconstructed L5_SBC morphologies (N = 106). (D) Histogram of total axonal lengths. (E) Histogram of individual axonal section lengths. (F) Histogram of axonal

volumes. (G) Histogram of dendritic section bifurcation angles. (H) Histogram of total dendritic lengths. (I) Histogram of individual axonal section lengths. (J)

Histogram of dendritic volumes.

the reconstruction predicts that 1941 of these connection
types are geometrically viable. Although, only around 1% of
such connection types have been characterized experimentally
(Thomson et al., 1993; Markram et al., 1997; Reyes et al., 1998;
Feldmeyer, 2006), the reconstruction makes it possible to predict
their properties, which are presented in connection type fact
sheets. Each fact sheet shows the predicted map of synaptic
connections from neurons of one m-type to neurons of other
m-types (Supplementary Figure 2A), together with data for their
predicted anatomy, and physiology, (Supplementary Figure 2B).

The anatomical data includes total synapse count, average
connection probability, number of common neighbors (see
Perin et al., 2011), number of convergent and divergent

neurons, and the mean number of synapses per connection
(synapses/connection) for all connections between pairs of
neurons belonging to a specific connection type (Supplementary
Figure 2B). It also provides more detailed data, including a
graphical representation of an exemplar pair of synaptically
connected neurons (see Figure 5A), overlapping axo-dendritic
density clouds for all pre- post-synaptic neuron pairs that belong
to the connection type (Figure 5B), the overlaid axonal and
dendritic density clouds for individual pre-synaptic and post-
synaptic morphologies (Figures 5C,E, respectively), the axogram
for the morphology of the pre-synaptic neuron in the exemplar
pair (as shown in Figure 5A), predicting the axonal location
of synaptic contacts (Figure 5D), and the dendrogram for
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FIGURE 4 | me-type fact sheet. (A) Anatomical properties of all neuron models belonging to the L5_SBC-dNAC me-type. (B) Physiological properties of all neuron

models belonging to the L5_SBC-dNAC me-type. (C) Density distributions of ion channels used in neuron models. (D) Representative response traces in a

L5_SBC_dNAC me-type model to different intensities of somatically injected step currents. (E) 3D reconstructed morphology of an exemplar L5_SBC neuron.

(F) Predicted dendritic attenuation of EPSPs. (G) Predicted attenuation of the back-propagating AP.

the morphology of the post-synaptic neuron in the exemplar
pair, predicting the dendritic location of synaptic contacts
(Figure 5F).

Additionally, the fact sheets provide detailed statistical
distribution for the number of synapses per connection
(Figure 6A), the total number of synapses from all pre-synaptic
neurons of a given type to a post-synaptic neuron of a given
type (Figure 6B), the number of post-synaptic neurons of a
given type targeted by individual neurons of a given type (i.e.,
neuronal divergence; Figure 6C, left), the number of pre-synaptic
neurons of a given type, targeting individual post-synaptic
neurons of a given type (i.e., neuronal convergence; Figure 6C,
right), the fraction of efferent synapses from a given neuron type
targeting neurons of a specific type (i.e., synaptic divergence;
Figure 6D, left), the fraction of afferent synapses from neurons of
a specific type targeting neurons of a specific type (i.e., synaptic
convergence; Figure 6D, right), patterns of axonal and dendritic
synaptic innervation based on branch order (Figure 6E; left and
right, respectively), and path distance from the soma (Figure 6F;
left and right, respectively).

The physiological data provides predictions at the level of
single synapses and connections (Supplementary Figure 2B).
Each synapse is assigned to one of six s-types (Gupta et al.,
2000; Wang et al., 2006). Individual synapses are characterized
by their peak conductance (gsyn; in nS), neurotransmitter release
probability (U), time constant for recovery from depression (D;
in ms), time constant for recovery from facilitation (F; in ms),
and the predicted correction factor necessary to account for
dendritic filtering (space-clamp artifacts). Physiological data at
the connection level summarizes the kinetics and time course

of post-synaptic potentials (PSPs). The data provided include
onset latencies, peak amplitudes, 20–80% rise times, decay time
constants, transmission failures, and the coefficient of variation
of PSP amplitudes (c.v.; defined as the ratio of the standard
deviation to the mean of PSP amplitude) (see Ramaswamy and
Markram, 2015).

Additionally, the fact sheets provide data on the trial-to-trial
response variability of unitary PSPs for given types of post-
synaptic neurons (Figure 7A for the exemplar pair shown in
Figure 5A), synaptic response to pre-synaptic stimulation at 10,
30, 50, and 70Hz (Figure 7C, clockwise from top left), and the
relationship between the frequency of pre-synaptic stimulation
and PSP amplitude. These data illustrate the 1/f law for synapses
found in previous experimental studies [(Figure 7B); (Tsodyks
and Markram, 1997); also see (Ramaswamy and Markram,
2015)]. The fact sheets also provide data from virtual recordings
of local dendritic PSPs (Figure 7D). It is currently not possible to
obtain comparable data through experiments alone.

The fact sheets also provide detailed statistical distributions
for the kinetics and average time course of PSPs, including
mean PSP amplitude (Figure 8A), 20–80% PSP rise time
(Figure 8B), PSP onset latency (Figure 8C), PSP decay time
constant (Figure 8D), transmission failures (Figure 8E), c.v. of
PSP amplitude (Figure 8F), and the inverse relationship between
transmission failures and c.v. of PSP amplitude against mean PSP
amplitude [Figures 8G,H, respectively; also see (Markram et al.,
1997; Feldmeyer et al., 1999)].

The reconstruction makes it possible to predict the full
complement of synaptic inputs and outputs for any given neuron.
For each connection-type, a connection-type fact sheet provides
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FIGURE 5 | Overview of in silico synaptic anatomy. (A) An exemplar

in silico pair of synaptically connected L23_SBC (right, yellow) and L23_PC

(left, black) neurons. The synaptic contacts mediating the connection are

shown as yellow circles on the L23_PC. (B) Overlap of axo-dendritic density

clouds of all pre-synaptic L23_SBCs and post-synaptic L23_PCs. (C) Overlap

of axonal density clouds of all pre-synaptic L23_SBCs. (D) Axogram of the

pre-synaptic L23_SBC showing the location of synaptic contacts (red circles)

along the axon (in blue). (E) Overlap of dendritic density clouds of all

pre-synaptic L23_PCs. (F) Dendrogram of the post-synaptic L23_PC, showing

the location of synaptic contacts (blue circles) along the dendrites (in red).

predictions on the number and locations of afferent synaptic
input to and efferent synaptic output from neurons belonging
to specific m-types (see Figure 9A). These data categorize inputs
to and outputs from all m-, e-, and s-types in the reconstructed
microcircuit (see Figures 9B,C). Web links are provided to
download NEURON model packages for exemplar neurons for
each of the 55 m-types.

Literature Consistency

The literature consistency contains papers considered in the
validation process. For each paper we identified one possible
evaluation criterion. Each paper is annotated to show the
evaluation criterion, and the result of the validation (consistent,

possibly consistent, inconsistent). Where a paper was not
actually used, it is marked as not implemented, or not applicable.
Additional annotations describe the species and age of the
animals used in the study, the brain region, cortical layer, and
cell type concerned, the key finding, and other relevant results.
The PubMed ID of the publication (PubMed is a free resource
that is developed and maintained by the National Center for
Biotechnology Information, at the U.S. National Library of
Medicine, located at the National Institutes of Health), a web
link to the publication, the name of the contact author, and the
names of the persons who undertook the literature search are
also provided.

The evaluation criteria are based on the morphological,
molecular, electrical, synaptic, circuit anatomical, and
physiological properties of the reconstructed microcircuit.
For ease of presentation, papers are grouped according to the
class of properties considered in their evaluation criteria.

Morphological Properties
This sub-section presents 64 papers used for the validation of
experimentally reconstructed neuron morphologies. The papers
provide data for Sholl statistics, dendritic and axonal lengths,
dendritic and axonal volumes, soma diameters, and dendritic and
axonal segment branch order and path distance statistics. Overall,
the properties of the morphologies used in the reconstruction
were consistent with the results reported in 17 papers, possibly
consistent with 10 papers and inconsistent with nine papers. Six
papers whose data were not comparable with the reconstruction
(different species, different brain regions etc.) were excluded from
the validation process.

Molecular Properties
During the validation process, gene expression data associated
with specific neuron types was used to perform in silico staining.
This sub-section presents six papers providing the necessary data.
The papers present data on the expression of the main calcium
binding proteins and neuropeptides expressed by neurons of
different types.

Electrical Properties
This sub-section presents 77 papers describing the electrical
properties of different cortical neuron types. Data are provided
for ion channel kinetics, electrical firing patterns, and passive
membrane properties, including the resting membrane potential,
membrane time constant, and input resistance. Other data
describe electrophysiological features including AP amplitude,
AP half-width, firing frequency, inter-spike interval, and
dendritic properties including bAP and EPSP/IPSP attenuation.

Synaptic Properties
This sub-section contains 81 publications used to validate the
anatomical and physiological properties of synaptic connection
types in the reconstruction. The data provided includes spine
and bouton densities for different neuron types, as well as
data for pairs of neurons belonging to specific m-types:
synaptic innervation patterns, number of synaptic contacts
per connection, connection probabilities, transmitter release
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FIGURE 6 | Characterization of in silico synaptic anatomy. (A) Distribution of number of synapses per connection for pairs of synaptically connected L23_SBC

to L23_PC neurons. (B) Distribution of the total number of synapses from all L23_SBCs to L23_PCs. (C) Left: neuronal divergence; number of L23_PCs targeted by

individual L23_SBCs. Right: neuronal convergence - number of L23_SBCs targeting individual L23_PCs. (D) Left: synaptic divergence - fraction of all synapses

formed by L23_SBCs that target L23_PCs. Right: synaptic convergence; fraction of all synapses formed onto L23_PCs that originate from L23_SBCs. (E) Axonal (left)

and dendritic (right) innervation patterns, in terms of branch order of synaptic contacts. (F) Same as (E), but in terms of geometrical distance of synaptic contacts.

probabilities, AMPA, NMDA, kainate, metabotropic glutamate,
GABAA, and GABAB receptor peak conductances, EPSC/IPSC
properties (onset latency, amplitude, rise time, and decay time
constant), EPSP/IPSP properties (onset latency, amplitude, rise
time, and decay time constant), transmission failure rates, c.v.
of EPSP/IPSP amplitudes, short term depression and facilitation,
and tonic excitation and inhibition.

Microcircuit Anatomical Properties
This sub-section presents 43 papers used to validate the
anatomical properties of the reconstructed microcircuit.
The properties considered include microcircuit thickness,
individual layer thicknesses, layer-wise distributions and
densities of neurons, total axon and dendritic lengths, total
number of synapses and their densities, and layer-wise
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L23_SBC (for the same pair of neurons shown in Figure 5A); blue line
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(B) The 1/f rule demonstrating an inverse relationship between stationary

PSPs and the frequency of pre-synaptic stimulation; the solid line in red

shows the inverse relationship with frequency, and the cross shows the

limiting frequency. (C) Frequency dependence of synaptic transmission.

Clockwise from top left: in silico PSPs evoked in the post-synaptic

L23_PC upon stimulating the pre-synaptic L23_SBC with pulse trains at

frequencies of 10, 30, 70, and 50Hz, respectively (for the same pair of

neurons shown in Figure 5A). (D) The digital microcircuit reconstruction

enables direct in silico recordings of single synaptic contacts on

dendrites. For the synaptically connected pair (shown in Figure 5A),

post-synaptic responses were recorded directly at synaptic locations on

dendrites of the L23_PC (dendrites in black; soma in red); the

connection was mediated by nine synaptic contacts (blue circles);

dendritic recording sites are shown as light blue pipettes; corresponding

PSPs are shown in blue.

distributions of bouton densities from thalamocortical
axons.

Microcircuit Physiological Properties
This sub-section contains 47 papers used to assess the
physiological properties of the reconstructed microcircuit.
Relevant properties include the frequency of network oscillations,
patterns of propagation of electrical activity across different
cortical layers, the physiological properties of thalamocortical
synapses, and the balance of excitatory and inhibitory synaptic

conductances in different neuron types due to network
activity.

Experimental Data

Over the past two decades, Markram and colleagues have
experimentally characterized the cellular, and synaptic
microcircuitry of developing (P13-16) rat neocortex, where
the anatomical, physiological and synaptic properties are not
completely mature (Markram et al., 1997; Gupta et al., 2000;
Wang et al., 2002, 2004, 2006; Toledo-Rodriguez et al., 2005;
Silberberg and Markram, 2007; Berger et al., 2009). The portal
provides access to the data sets used in the reconstruction
process, together with descriptions of the experimental protocols
used to generate the data. They include:

1. Measurements of individual layer heights.

• Data are provided in the form of microscopy images of
NeuN (neuron-specific nuclear protein) stained coronal
slices with annotations of individual layer extents, and
spreadsheets summarizing measurements of layer heights.

2. Layer-wise distributions and densities of neurons.

• Data are given as microscopy images of NeuN stained
slices with annotations of individual layer extents, and
spreadsheets summarizing measurements of neuron counts
across different layers.

3. Molecular characterization of single neurons based on the
expression of calcium binding proteins [parvalbumin (PV),
calbindin (CB), and calretinin (CR)], and neuropeptides
[somatostatin (SOM), vasoactive intestinal polypeptide (VIP),
neuropeptide Y (NPY), and cholecystokinin (CCK)].

• Data can be obtained as text files containing the expression
patterns of calcium binding proteins, and neuropeptides for
morphologically identified neurons.

4. More than 1000 morphological reconstructions of neurons of
different m-types.

• Data are provided as text files containing 3D
representations of neuronal morphologies reconstructed
using Neurolucida (neuron tracing, reconstruction, and
analysis software).

5. More than 1500 electrical recordings fromneurons of different
e-types.

• Data are given for current stimuli (in pA), and voltage
responses (inmV) from whole-cell patch clamp recordings
in single neurons acquired using IGOR Pro (scientific
graphing, and data analysis software; WaveMetrics, Inc.,
Portland, OR, USA).

6. More than 5000 experiments from synaptically connected
neurons.

• Data are provided for post-synaptic responses obtained
from whole-cell patch clamp recordings in synaptically
connected pairs of neurons.
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FIGURE 8 | Characterization of in silico synaptic physiology. (A) Histogram of in silico PSP amplitudes for synaptically connected pairs of L23_SBC and L23_PC

neurons (n = 100 pairs, sampled at inter-somatic distances ≤ 100µm); the dashed line in black indicates the mean of the distribution; the error bar shows the

standard deviation (SD). (B) Histogram of in silico 20–80% PSP rise times. (C) Histogram of in silico PSP onset latencies. (D) Histogram of in silico PSP decay time

constants. (E) Histogram of transmission failures. (F) Histogram of the c.v. of PSP amplitudes. (G) Predicted inverse relationship between the rate of transmission

failures and PSP amplitude; the reconstructed microcircuit predicted a decrease in failure rates with increasing PSP amplitudes, consistent with a binomial model of

transmitter release. (H) Same as in (G), but for c.v. of PSP amplitudes.

Videos

The videos section provides movies of simulated spontaneous
and evoked activity in virtual cortical slices, obtained from
the reconstructed microcircuit under a variety of simulated
experimental conditions. Movies of spontaneous activity show
electrical activity in the reconstructed microcircuit at different
levels of depolarization and extracellular Ca2+. Movies of evoked
activity show electrical activity in response to the stimulation
of thalamocortical fibers at different levels of extracellular Ca2+.
Additional movies visualize the distribution of afferent synapses

for a single exemplar neuron for each of the 55 different m-types,
and predicted dendritic attenuation of EPSPs and bAPs for 5
exemplars for each of the 207 me-types.

Tools

The tools section contains three tools used for the analysis,
repair and cloning of neuronal morphologies. NeuroM provides
a range of morphometric analyses that allow a user to
quantify properties of the axonal and dendritic morphologies
of neurons, and provides features that are used in the
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FIGURE 9 | Predicted map of afferent synaptic input to, and efferent synaptic output from an exemplar L23_PC neuron. (A) Rendering of a

L23_PC, predicting the map of afferent synapses color coded by m-type. (B,C) The intrinsic synaptic input and output, respectively from and to all m-,

e-, and s-types across six layers for all L23_PCs in the reconstructed microcircuit.

classification of different neurons into one of 55 m-types.
NeuroR utilizes the results of NeuroM to identify and repair
arbors that were severed during slice preparation. NeuroC

produces clones of the neurons repaired by NeuroR, introducing
statistical variations in the arbors of each cloned neuron.
This procedure makes it possible to generate a limitless
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number of unique instances of neurons belonging to a given
m-type.

Downloads

The downloads section provides models of single neurons,
synapses, and predicted maps of input-output synapses. Models
are available either in the native format used in the reconstruction
process, based on the NEURON simulation environment, or
in the emerging NeuroML 2.0 (a model description language
for computational neuroscience based on the extensible markup
language–XML), and LEMS (Low Entropy Model Specification
language, which aims to provide a compact, minimally redundant
way of expressing models of biological systems). Models of
individual neurons (in the NEURON simulation environment)
can also be obtained from the me-type fact sheets [see
Morpho-Electrical Types (me-types)]. Model packages for
individual neurons contain a 3D reconstructed morphological
model, models of ion channels and synapses, synaptic model
parameter descriptions, and a template model of the electrical
type. Additional helper scripts for the NEURON simulation
environment are provided to instantiate a morphoelectrical
neuron model, distribute ion channel mechanisms on axonal and
dendritic arbors, and simulate electrophysiological and synaptic
experiments.

Discussion

The NMC portal was developed to serve as an online resource
for experimentalists and theoreticians, allowing them to explore,
analyze, challenge, and refine the reconstructed microcircuit and
to derive predictions to be validated against experiments. The
reconstructed microcircuit is a first draft, which will be refined
in successive cycles of reconstruction-validation-experiment-
reconstruction. The interactive environment provided by the
NMC portal will facilitate the integration of new datasets,
contributing to the refinement of the reconstruction. For
example, the total length of axons in the reconstruction falls
short of experimental estimates, possibly because of the difficulty
of reconstructing the thin terminal axonal segments of biocytin
filled neurons in vitro. The shortfall can be overcome by in silico
synthesis of axons, utilizing data from in vivo filled neurons (see
Oberlaender et al., 2011, 2012; Narayanan et al., 2015). Other
examples of data that can be used to refine the reconstruction
are profiles of the density of ion channels along neuronal arbors,
which provide constraints for the optimization of single neuron
models. Additional datasets will help to fill in biological details
that are not included in the current first draft reconstruction (e.g.,
data on gap junctions, cholinergic modulatory mechanisms, rules
for activity dependent plasticity, extrasynaptic glutamate, and
GABA receptors, kinetics of metabotropic glutamate receptors,
non-synaptic transmission, autaptic connections etc.). We are
currently developing further data integration techniques and
quality control measures, which will ensure strict compatibility
of different datasets with our own experimental data in terms
of species, age, cortical area and region, slice orientation
and thickness, composition of extracellular and intracellular

solutions, recording temperature, and technique, liquid junction
potential correction etc.

The NMC Portal is part of a broad trend toward the
development of large repositories of anatomical and
physiological data. Other examples include NeuroMorpho,
ModelDB, NeuroElectro, Open Source Brain, and the recent
Allen Brain Cell Types Database. The portal contributes to
this trend by integrating experimental data, models of single
neurons, ion channels, synapses and detailed reconstructions
of the microcircuit, and validation data in a single interactive
environment. The ultimate goal is to catalyze consensus on the
cellular and synaptic organization of neocortical microcircuitry
(ion channel, neuron and synapse types and distributions,
connectivity, etc.) and to enable community-driven refinement
of the reconstruction. Newer versions of the reconstruction will
be released periodically, consisting of data structures consistent
with the current version. We consider that these reconstructions
and the simulations they enable represent a major step in the
development of in silico neuroscience.
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