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Introduction 

Vancomycin is the drug of choice for methicillin-resistant Staphylococcus aureus (MRSA)1 but 

has been associated with significant nephrotoxicity. It remains uncertain, however, to what extent 

vancomycin is directly responsible. Herein, we critically examine relevant available data in adult 

patients. We review the pharmacokinetics/pharmacodynamics of vancomycin metabolism and discuss 

efficacy and safety data. The pathophysiology of vancomycin nephrotoxicity is considered. Risk factors 

for AKI development are enumerated, and suggestions for practice and further research are given.  

Vancomycin has been plagued with concerns about nephrotoxicity since its approval in 1958. 

Initial preparations were termed “Mississippi mud” and had significant impurities considered the major 

reason for the nephrotoxicity. Through improved purification procedures, current preparations contain 

approximately 90 to 95% vancomycin B (the active moiety). The rate of nephrotoxicity with use of 

modern preparations varies in the literature, with the incidence ranging from as low as 0% in the 

absence of concurrent nephrotoxins to over 40%2. Unfortunately, the majority of studies assessing 

nephrotoxicity are retrospective, often lacking a control group, and are typically subject to confounding 

by indication and other biases, as many of the patients are critically ill and have other potential reasons 

for kidney injury. 

Numerous potential risk factors for development of acute kidney injury (AKI) while receiving 

parenteral vancomycin therapy have been ascertained. Some factors are directly related to vancomycin 

exposure, such as total daily dose, duration of therapy, method of administration, trough level, and 

area-under-the-concentration-versus-time (AUC) curve. Others are patient related, including obesity, 

preexisting kidney disease, severity of illness, and receipt of concurrent nephrotoxins. 

Overall, there is only moderate quality evidence linking vancomycin to renal injury. Sinha Ray et 

al. performed a systematic review and meta-analysis restricted only to randomized controlled trials 
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(RCTs) and cohort studies that compared vancomycin to another non-glycopeptide antibiotic. Seven 

RCTs (6 compared to linezolid, 1 to ceftaroline) and 6 cohort studies (all compared to linezolid) were 

included, suggesting a small risk for AKI3. The relative risk for AKI in the RCTs was 2.45 (p<0.001), but 

none were considered at low risk for bias. Only 2 of 6 cohort studies showed significantly worse renal 

outcomes with vancomycin, and all studies were of moderate or high risk for bias. The strength of causal 

association was weakened as kidney injury was neither a primary endpoint nor a prespecified secondary 

outcome in any of the trials. 

By contrast, a safety analysis of a RCT comparing daptomycin with either vancomycin plus 

gentamicin or an antistaphylococcal penicillin plus gentamicin showed a similar rate of a clinically 

significant decrease in creatinine clearance with vancomycin (10 of 46, 22%) compared to penicillin (16 

of 63, 25%)4. Both of these groups together, however, had a significantly higher rate than the 

daptomycin arm, an outcome ascribed to concurrent gentamicin.  Carreno et al. reported a RCT of 100 

at-risk patients initially prescribed vancomycin in which 51 patients were randomized to continue 

vancomycin and 49 to receive alternative therapy5. No difference in nephrotoxicity was found. 

Furthermore, it has been repeatedly reported that patients with nephrotoxicity associated with 

vancomycin use may have improvement of kidney function despite continuation of vancomycin6,7. 

Hence, equipoise remains. 

Pharmacokinetics and Pharmacodynamics 

Vancomycin is approximately 50% protein bound with a volume of distribution of 0.4-1.0 L/kg 

and a β-elimination half-life of 3 to 6 hours with normal kidney function8. The drug is not metabolized 

and is eliminated unchanged in the urine. Clearance is linearly related to the glomerular filtration rate. 

Penetration into tissues is variable, especially into pulmonary epithelial lining fluid in the critically ill, 

which is of obvious concern when treating MRSA pneumonia9.  
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The bactericidal activity of vancomycin is considered time dependent but concentration 

independent10. Increasing concentrations of vancomycin are not associated with enhanced bacterial 

killing10. Rather, the ratio of the 24 hour area-under-the-concentration-versus-time curve to the 

minimum inhibitory concentration (AUC/MIC) is the pharmacokinetic/pharmacodynamic parameter best 

correlated with effectiveness8. Consensus guidelines published in 2009 by the American Society of 

Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious 

Diseases Pharmacists (herein referred to as Guidelines) recommend an AUC/MIC of >400 8. Available 

clinical evidence supports this ratio11,12. 

The 2 most common ways to determine the MIC of staphylococci are broth microdilution (BMD) 

and the Etest, with the Etest result typically 0.5 to 1.5 times higher after log conversion13. Hence, a given 

AUC will result in a lower ratio if MIC is determined by the Etest. Of note, the Guidelines were derived 

from data generated using BMD. The BMD method only allows for 2-fold dilutions, i.e. 0.5, 1, 2, 4, 8 

mg/L, etc., whereas the Etest is based on a continuous gradient and can give greater discrimination with 

half-dilution values (e.g. 1.5 mg/L)14. In 2006 the Clinical and Laboratory Standards Institute (CLSI) 

lowered the MIC breakpoint for vancomycin susceptibility from <4 mg/L to <2 mg/L by BMD owing to a 

greater chance for failure at >4 mg/L15.  

The MICs for vancomycin have been slowly increasing (“MIC creep”)16. Numerous studies have 

addressed the effectiveness of vancomycin with higher MICs within the CLSI “susceptible range” with 

variable conclusions17-19. Equipoise remains when the MIC is at the CLSI “susceptible” level of 1.5-2.0 

mg/L by Etest or 2.0 mg/L by BMD. The 2009 Guidelines recommend considering alternative therapy8, 

but the ISDA 2011 guidelines state vancomycin should be continued irrespective of the MIC unless lack 

of response occurs1.  
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Determining an AUC, and hence the AUC/MIC, is impractical under normal clinical circumstances 

due to the large number of blood draws required after a single dose. Thus, the Guidelines recommend 

measurement of trough serum levels at steady state conditions as a surrogate. A trough level <10 mg/L 

(10 µg/ml) is unlikely to represent a ratio >400 and may result in development of resistance, including 

both vancomycin intermediate S aureus (VISA) and heteroresistant VISA (hVISA, wherein a small 

subpopulation (e.g. 1 per 105) of VISA exists within an otherwise susceptible isolate)20. Hence, the 

Guidelines recommend always keeping trough levels above 10 mg/L. A trough level of 15-20 mg/L is 

recommended to insure an AUC/MIC >400 in more serious infections, such as pneumonia, bacteremia, 

endocarditis, meningitis, and osteomyelitis. This corresponds to guidelines by the American Thoracic 

Society for healthcare-associated, hospital-acquired, and ventilator-associated pneumonias21. 

Importantly, 3 more recent studies, however, showed that over 50% of patients achieving AUC/MIC 

>400 had trough levels <15mg/L22-24. Hence, trough levels at best imperfectly predict AUC/MIC ratios. 

The use of peak levels has not been shown to increase the predictive ability to identify efficacy or 

toxicity25, and is not advocated by the Guidelines. When administered as a continuous infusion, a steady 

state level of 25-30 mg/L obtained 18 or more hours after dosage adjustment is recommended. 

Over 15 cohort studies have compared the effectiveness of trough levels >15mg/L versus <15 

mg/L. A meta-analysis of these trials found no significant benefit of higher trough concentration on 

mortality or treatment failure, but there was a higher rate of microbiologic failure in the low trough 

group26. Another meta-analysis evaluated only trials involving patients with documented MRSA 

infections: 9 studies compared troughs >15 mg/L versus <15 mg/L with regard to clinical success, and 11 

studies compared such troughs to mortality27. There was no significant difference with levels >15 mg/L 

in clinical success (OR 1.07 95% CI 0.68-1.68) or mortality (OR 1.09 95% CI 0.75-1.60), unless accounting 

for publication bias by the trim-and-fill method for clinical success (OR 1.71 95% CI 1.04-2.81).  Similarly, 

post hoc analysis of 2 trials comparing vancomycin with telavancin for nosocomial pneumonia showed 
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no difference in cure rate or mortality based on trough levels >15 mg/L28. Although attainment of 

Guideline-recommended trough levels for serious infections (>15 mg/L) correlates only weakly with 

efficacy, there is a much stronger correlation with nephrotoxicity. 

Standard vancomycin dosing as approved by the FDA is 1 gram q12 hour, a dose unlikely to give 

a ratio >400 unless the MIC is <0.5 mg/L. Hence, the Guidelines recommend weight based dosing (using 

actual body weight) at 15-20 mg/kg (not to exceed 2 g/dose) q12 hours, with TDM (trough levels 

checked at steady state prior to 4th dose if normal renal function). With serious infections a loading dose 

of 25-30 mg/kg may be considered. A meta-analysis confirmed a benefit to TDM with significantly higher 

rates of clinical efficacy and significantly reduced nephrotoxicity compared to no TDM29. The available 

evidence for attaining a trough >15 mg/L (vs <15 mg/L) may be questionable in terms of predicting an 

AUC/MIC >400 as well as for clinical efficacy, but values <10 mg/L should be avoided to prevent 

resistance and to attain the target AUC/MIC24. TDM is especially necessary in ICU patients. Many have 

decreased kidney function, but others have augmented renal clearance with lower than expected trough 

levels30.  

Alternative methods to guide vancomycin dosing by intermittent infusion have been published. 

One nomogram is based on population pharmacokinetics and is aimed at targeting a trough level of 15-

20 mg/L31. Based on a priori methodology, individual patient data are not required, although one must 

be careful that a particular patient matches those used to generate the nomogram. Other nomograms 

are available. Linear regression analysis applying individual patient parameters (a posteriori) has been 

used but does require at least 2 measured serum concentrations and a log linear calculator32. Bayesian 

estimation methodology combines a priori population-based data with a posteriori individual patient 

data (which may be limited to just a trough level23) to calculate dose and interval most accurately32, and 

has higher predicative ability to achieve a specific AUC/MIC33. Bayesian methodology may be the fastest 
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way to achieve therapeutic targets, but requires specific computer software and specialized 

practitioners and has had limited implementation. 

Appropriate dosing is especially problematic in patients receiving renal replacement therapy 

(RRT), whether by standard thrice-weekly intermittent hemodialysis (IHD)34, short daily IHD35, or 

continuous RRT (CRRT) in the ICU36. On the one hand, underdosing may foster resistance. In this regard, 

vancomycin resistant enterococci, vancomycin-intermediate S aureus (VISA), and vancomycin-resistant S 

aureus (VRSA) were all first isolated from hemodialysis patients.  On the other hand, many patients 

receiving hemodialysis have significant residual renal function that contributes to their well-being and 

should not be glibly sacrificed by overdosing.  

Other factors besides residual renal function contribute to the variability of vancomycin 

pharmacokinetics during RRT. There may be a prolonged distribution phase, a rebound effect following 

termination of dialysis, and non-renal clearance37. Using standard low-flux dialysis membranes, there is 

minimal dialytic clearance, and once-weekly dosing suffices34. Many patients, however, are now dialyzed 

on synthetic, high-flux dialyzers using membranes that have a much larger pore size and do have 

significant vancomycin clearance38. These patients require supplemental doses following each dialysis. 

Vancomycin is often administered during the final hour of a dialysis session, which will result in 

additional clearance compared to pure post-dialytic administration. Larger doses are required with this 

method of administration. In contrast, many patients are dialyzed on re-used dialyzers, often up to 15 or 

more treatments. Such reprocessing results in reduced vancomycin clearance that could result in 

overdosing34. Finally, measurement of vancomycin levels with severe renal failure is problematic 

depending on the method used. Inactive crystalline degredation products may accumulate and can be 

measured with the polyclonal fluorescence polarization immunoassay34. 
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Various modalities of CRRT are available in the ICU setting, including continuous veno-venous 

hemodialysis (CVVHD), hemofiltration (CVVHF), and hemodiafiltration (CVVHDF). All use synthetic 

membranes with significant vancomycin clearance determined primarily by the volume of effluent36. 

Clearances of 15 to 30 ml/min are possible with effluent volumes approaching 3000 ml/hour. A 

comprehensive discussion of the pharmacokinetics of vancomycin metabolism in various types of 

intermittent and continuous RRT is beyond the scope of this paper. Suggestions for dosing with both IHD 

and continuous procedures are provided in Table 1.  

Pathophysiology of Vancomycin Nephrotoxicity 

In older studies vancomycin was shown to be lethal in experimental animals given exorbitant i.v. 

doses, and variably showed nephrotoxicity at lower doses39. Vancomycin can alter mitochondrial 

function and induce dose dependent proliferation of proximal tubular cells (PTC) in vitro40. Multiple 

studies have focused on oxidative stress as a potential mechanism of nephrotoxicity, especially involving 

the proximal tubule. Hence, antioxidants may be protective41. In various experimental models, 

numerous antioxidants have been shown to be protective, including modified superoxide dismutase42; 

the antioxidants erdosteine,43 α-lipoic acid, Ginkgo biloba extract, and melatonin 44; and, thymoquinone, 

caffeic acid phenylethyl esther, vitamin C, vitamin E, N-acetylcysteine, curcumin, tempol, and 

isoquinelinediol41. Most recently, Sakamoto et al. demonstrated that vancomycin induced apoptosis in 

porcine PTCs via mitochondrial production of reactive oxygen species with peroxidation of the 

mitochondrial phospholipid cardiolipin45. Interestingly, this toxicity could be inhibited by the lipophilic 

antioxidants vitamin E and mitoTEMPO, but not by water-soluble ones such as vitamin C, n-acetyl 

cysteine, or glutathione.  

Other studies in experimental animals found that agents capable of enhancing renal excretion 

reduced nephrotoxicity, including cilastatin, imipenem-cilastatin, and fosfomycin41. Cilastatin can block 
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the proximal tubular receptor protein megalin-mediated uptake of vancomycin and inhibit 

nephrotoxicity in mice46. Hence, agents inhibiting oxidative stress and/or reducing renal accumulation 

may be protective, although human data are lacking and use in patients cannot be endorsed at this time. 

In contrast, a study of 9 patients with VANT undergoing kidney biopsy demonstrated intratubular casts 

composed of vancomycin nanospheric aggregates complexed with uromodulin. Notably, these findings 

were reproduced in mice given large doses of vancomycin47. The specific cellular origin of these casts 

remains to be determined. 

Clinical Vancomycin Nephrotoxicity 

The Guidelines define nephrotoxicity as a rise in serum creatinine of 0.5 mg/dl or 50% above 

baseline on 2 consecutive measurements after several days of vancomycin and with no other apparent 

cause. This is the definition used most frequently, although other studies use the more sensitive risk-

injury-failure-loss-ESRD (RIFLE)48,49 or AKI network (AKIN)50 criteria for AKI (see Table 2). Herein, 

vancomycin-associated nephrotoxicity (VANT) refers to the Guideline-based definition of nephrotoxicity 

and AKI to either the RIFLE or AKIN criteria. Studies using these latter criteria have found most cases to 

be of lower stages based on creatinine criteria. In one study using AKIN criteria, 92% reached stage 150, 

whereas in 2 studies using RIFLE criteria, 50%48 and 71%51 reached only R. No study has specified VANT 

or AKI stage based purely on urine output criteria. Older studies showed mean increases of serum 

creatinine from baseline of approximately 1 to 1.5 mg/dl52.  

Various novel blood and urine biomarkers have been studied for their ability to detect 

impending AKI prior to the standard measures, i.e. serum creatinine and urine output (see Table 3). 

These include neutrophil gelatinase-associated lipocalin, kidney injury molecule-1, insulin-like growth 

factor-binding protein 7, and tissue inhibitor of metalloproteinases-2, among others53. A number of 

these have been qualified by the FDA and European Medicine Agency for non-clinical animal toxicology 
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evaluation of new drug entities (see https://c-path.org/programs/pstc/pstc-tools/). No studies have 

specifically addressed the utility of any biomarkers for the early detection of vancomycin nephrotoxicity 

in humans, although limited pre-clinical data exist54. An in-depth discussion of biomarkers is beyond the 

scope of this paper. 

The onset of VANT typically occurs after about 4 to 8 days of therapy. A systematic review by 

van Hal et al. found a mean range of nephrotoxicity occurrence of 4.3 to 17 days after initiation of 

vancomycin55. Onset as early as 256 to 357 days of therapy has been reported. In general, about three-

quarters of patients will have improvement or resolution by time of discharge2,58,59, often within a week 

or less, including patients remaining on vancomycin after onset of nephrotoxicity. Dialysis has been 

rarely necessary in any study, with an overall incidence of 3% in the van Hal review. As expected, 

however, VANT is associated with increased mortality50 and length of stay in the ICU60 and hospital50,61. 

The vast majority of patients with VANT do not undergo kidney biopsy. It is presumed that the 

underlying pathophysiology is toxicity to proximal tubular cells, with or without frank necrosis (ATN). In 

support, several case reports have documented ATN based on clinical evaluation or by renal biopsy62. 

Similarly, acute interstitial nephritis (AIN) has been clinically diagnosed or documented by biopsy63. 

Occasionally, both lesions have been found on biopsy64. Various skin lesions have been reported in cases 

of vancomycin associated AIN, including maculopapular rash, erythema multiforme63, toxic epidermal 

necrolysis63, and the Drug Rash with Eosinophilia and Systemic Symptoms (DRESS) syndrome65. 

Infectious glomerulonephritis would also be a consideration when supported by the urinalysis. If there is 

clinical uncertainty, biopsy is indicated. 

Risk Factors 

Numerous risk factors have been defined for developing VANT or AKI in patients receiving 

vancomycin (see Table 4). Various measures of vancomycin exposure have been studied, including use 

https://c-path.org/programs/pstc/pstc-tools/
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of a loading dose, maximal dose, duration of therapy, method of administration (intermittent versus 

continuous infusion), AUC, and trough level. Other risk factors include demographic features, associated 

medical conditions, severity of illness, pre-existing kidney disease, and concurrent nephrotoxins.  

Loading Dose 

The Guidelines recommend consideration a loading dose of 25 – 30 mg/kg actual body weight 

for serious infections. Rosini et al. retrospectively evaluated 1330 patients receiving vancomycin in the 

Emergency Department (ED) , of which 851 received high doses (>20 mg/kg). VANT occurred in 7.7% 

with no difference in the high dose group (5.8%) versus the low dose group (11.1%, p<0.001)66. Results 

were unchanged using a cutoff of >25 mg/kg. An RCT compared 49 patients receiving a 15 mg/kg initial 

dose to 50 patients receiving 30 mg/kg in the ED and found no difference in the secondary endpoint of 

VANT, which overall occurred in only 5% of patients67. To date, there is no evidence that a loading dose 

is associated with increased nephrotoxicity. 

High Daily Doses 

One retrospective cohort study assessed the nephrotoxicity of high dose vancomycin. Lodise et 

al. compared 26 patients receiving >4 g/day vancomycin to 220 patients receiving <4 g/day and 45 

patients receiving linezolid and found nephrotoxicity rates of 35%, 11%, and 7%, respectively 

(p=0.001)68.There was no difference in time to nephrotoxicity between the low dose vancomycin group 

and the linezolid group. By multivariate analyses, the high dose regimen had an odds ratio of 4.4 

(p=0.003) for occurrence of nephrotoxicity and a hazard ratio 4.37 (p<0.001) for time to its occurrence.  

Vancomycin AUC 

Several studies compared the relationship between vancomycin exposure as indicated by the 

AUC and nephrotoxicity. Using a classification and regression tree (CART) analysis in a retrospective 
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study of 166 patients, Lodise et al. found a significant breakpoint of 1300 mg x h/L with nephrotoxicity 

rates of 26% and 10% above and below this level (p=0.05)58. By multivariable analysis, AUC was no 

longer a significant predictor of nephrotoxicity, while the trough level was. In contrast, a breakpoint of 

563 mg x h/L was determined by CART analysis in a recent retrospective study of 127 patients, with 

significance confirmed by multivariable analysis69. Trough levels were not independently predictive in 

this study. In a smaller study of 31 patients, an AUC of approximately 700 (by visual inspection of a 

figure) associated with nephrotoxicity compared to about 500 in those without (p=0.014), but a specific 

breakpoint was not established25.  Comparison of AUC and VANT has not been widely studied.  

Vancomycin Trough Levels 

Many studies have assessed the relationship between trough levels as a measure of exposure 

and VANT. In general, there is a major issue with reverse causation, in that reduced kidney function from 

any cause will lead to an elevated trough level. In an effort to reduce this bias, some studies consider 

only the initial trough level. Even that, however, does not obviate kidney injury from another cause. 

Some studies consider mean trough levels, others maximal troughs.  

A dose response relationship has been shown repeatedly. Lodise et al. found a 5% rate of 

nephrotoxicity if the initial trough was <10 mg/L compared to rates of 21% for troughs of 10-15 mg/L, 

20% for 15-20 mg/L, and 33% for >20 mg/L (p<0.05)58. For each mg/L increase, the odds ratio for 

nephrotoxicity increased by 13%. Horey et al. found nephrotoxicity rates of 5%, 3%, 11%, 24%, and 82% 

for maximal troughs of 5-10 mg/L, 10.1-15, 15.1-20, 20.1-35, and >35, respectively48. Similarly, Barriere 

et al. showed that renal adverse events occurred in 0% of patients with median trough levels <10 mg/L 

compared to 3% if 10-<15 and 17% if >15 (p<0.01)28. Cano et al. found that nephrotoxicity increased 

from 7% at initial trough <10 mg/L, but increased up to 34% at >20 mg/L (p=0.0003 for trend)60. 

Wunderink et al. noted 18% nephrotoxicity with day 3 trough <15 mg/L versus 22% at 15-20mg/L versus 
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37% if >20 mg/L (significance not assessed)70. In contrast, Kullar et al. found no more significant 

nephrotoxicity with troughs of 15-20 mg/L (13%) compared to 10-15 mg/L (17%)  and <10 mg/L (15%), 

although the rate was significantly higher if >20 mg/L (27%, p=0.032)61. The question remains as to 

whether higher exposure as reflected in higher troughs causes VANT or whether trough levels rise as a 

result of its occurrence.   

As noted above, various guidelines recommend trough levels of >15 mg/L to 20 mg/L, although 

minimal evidence supporting efficacy exists. In contrast, numerous studies have assessed the safety of 

this recommendation by comparing nephrotoxicity rates above and below 15 mg/L. At least 2 meta-

analyses analyzed these studies. Van Hal et al. identified 15 studies and found an odds ratio of 2.67 (95% 

CI 1.95-3.65) for nephrotoxicity with troughs >15 mg/L. This finding persisted if restricted to studies 

evaluating only initial troughs17. More recently, Tongsai and Koomanachai analyzed 10 studies involving 

only patients with MRSA infection and found an OR of 2.14 (95% CI 1.42-3.23) for nephrotoxicity with 

troughs >15 mg/L and an adjusted OR of 3.33 (95% CI 1.91-5.79) in 3 studies providing sufficient data for 

combining adjusted ORs27. Hence, the evidence for potential harm with attaining troughs >15 mg/L is 

more compelling than the evidence for potential benefit. 

Duration of Vancomycin 

Some studies find no significant relation of nephrotoxicity to duration of therapy48,50,71,72, but 

more often a positive result is found2,51,59,60,73-75. Significantly positive durations include >7 days57,59, >14 

days2, and >15 days75. One study found a significant 12% increase in OR for each additional day of 

therapy60, and another study found a 4% increased OR for each additional day76. Based on available 

evidence, it is improbable that less than 48-72 hours of vancomycin exposure is sufficient to cause 

nephrotoxicity. Hence, we feel it is safe to include vancomycin in initial broad spectrum coverage, with 

consideration of continuation based on severity of illness, risk, and culture results. 
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Method of Administration 

The Guidelines recommend intermittent infusion as the preferred method of administration. 

Others advocate continuous infusion77. Several observational studies and 2 RCTs assessed the 

nephrotoxicity of continuous infusion versus intermittent infusion. An earlier meta-analysis of 1 RCT and 

5 observational studies found a relative risk of 0.6 (95% CI 0.4-0.9, p=0.02) for nephrotoxicity with 

continuous infusion78. Subsequently, an observational study of 1430 ICU patients by Hanrahan et al. 

found an adjusted OR for nephrotoxicity of 8.2 (p<0.001) with intermittent infusion, although 

nephrotoxicity was higher with continuous infusion in unadjusted analyses76. A 2014 meta-analysis 

added this study, as well as another small trial of 55 patients, to the prior studies and found a trend for 

reduced nephrotoxicity with continuous infusion (risk ratio 0.8, p=0.3), although only the unadjusted 

analysis of the Hanrahan study was used for consistency79. There was no mortality benefit to continuous 

infusion. A more recent meta-analysis did not include the Hanrahan study but did include 5 additional 

studies and found a risk ratio of 0.61 (95% CI 0.47-0.80, p<0.001) with continuous infusion, with no 

difference in treatment failure or mortality80. The optimal method of administration remains uncertain, 

and the guideline endorsed approach of intermittent infusion remains the clinical standard. 

Demographics 

The demographic features of age, race, and sex have generally not been found to be significantly 

associated with nephrotoxicity in patients receiving vancomycin with occasional exceptions for older 

age75 and black race74. The one notable demographic feature is obesity, which remains problematic.  The 

Guidelines recommend doses based on actual body weight, not ideal body weight. In addition to a 

greater volume of distribution, clearance is significantly increased relative to non-obese patients, at 

least with normal renal function81. Despite increased clearance, however, dosing based actual body 

weight may result in higher trough levels, even with doses caped at 2,000 mg/dose. Richardson et al. 
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found a significantly higher incidence of trough levels > 20 mg/L with BMI > 30 (19% versus 4%)82. 

Obesity has also been significantly associated with nephrotoxicity in some studies, although not all. In a 

retrospective analysis of 337 patients, 23% developed nephrotoxicity 75. Weight above 100 kg was a 

significant predictor by multivariate analysis (OR 2.74). In a study of 246 patients receiving vancomycin, 

nephrotoxicity was significantly associated with TBW > 101.4 kg by multivariable analysis68. In another 

study of 270 veterans, the risk for nephrotoxicity increased by 1.02 for every 1 kg increase in body 

weight48. In contrast, a study of 530 patients found that obesity was not associated by multivariable 

analysis with nephrotoxicity 49. Based on available evidence, we feel obesity is a risk factor. We 

recommend a loading dose and subsequent dosing based on actual body weight. TDM is necessary, with 

trough levels closely followed starting with the third or fourth dose. 

Severity of Illness 

Severity of illness impacts development of AKI in patients receiving vancomycin. In less sick 

patients, VANT is uncommon (<5%). For example, in prospective RCTs restricted to vancomycin use for 

complicated skin and skin structure infections, adverse renal event rates of 2.7%83 and 3.8%84 were 

reported, although criteria of renal injury were not specified. In the critically ill, other causes of AKI 

besides vancomycin use frequently coexist, such as sepsis, hemodynamic stress, contrast exposure, and 

concurrent nephrotoxic medications, and AKI may develop in a quarter to a half of such patients. In 

observational studies of VANT, severity of illness, as assessed by Acute Physiology and Chronic Health 

Evaluation (APACHE) II score49,85, Charlson Comorbidity Index72, Sequential Organ Failure Assesment76, or 

by residence in the ICU50,58,68, was found by multivariable analysis to be an independent risk factor for 

kidney dysfunction. Other comorbid conditions significantly associated with nephrotoxicity include 

hypotension48,72 heart failure74, cancer50,73,74, impaired kidney function50,58, and prior AKI50. 
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It remains uncertain to what degree vancomycin is directly responsible in any individual case 

when multiple factors are involved. The only RCT to date with a primary renal endpoint included 100 

patients initially prescribed vancomycin with >2 risk factors for AKI who were randomized to either 

continue therapy as planned or use an alternative agent5. There was no difference between groups in 

either the Guideline based nephrotoxicity definition or AKIN defined AKI. Furthermore, equipoise 

remains as to whether a critically ill patient receiving vancomycin who develops AKI can continue 

therapy with TDM or should be switched to an alternative agent. More data are clearly needed to 

provide guidance in the critically ill.  

Concurrent Nephrotoxins 

Multiple other agents capable of decreasing kidney function are often administered to patients 

receiving vancomycin, especially ICU patients. Potential toxins include aminoglycosides, amphotericin, 

acyclovir, calcineurin inhibitors, chemotherapy, and intravenous contrast. Other agents capable of 

affecting kidney function include vasopressors, loop diuretics, and renin-angiotensin system blockers. In 

some studies, these agents are lumped together as concurrent nephrotoxin exposure73, other times they 

are considered individually in multivariable analyses. Dose and duration are rarely provided. The 

individual agents most extensively studied include aminoglycosides and piperacillin-tazobactam. 

Both preclinical studies and human data support the potential synergistic nephrotoxicity of 

vancomycin and aminoglycosides. Wold and Turnipseed found no evidence of nephrotoxicity after 

administering either 150 mg/kg of vancomycin or 60 mg/kg of tobramycin alone to rats, but significant 

nephrotoxicity occurred with the combination39. Wood et al. in an animal model found no 

nephrotoxicity of vancomycin alone, but the combination of vancomycin and tobramycin resulted in 

higher serum creatinine and greater histologic damage than tobramycin alone86. 
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Initial studies in humans were performed decades ago and were generally not controlled for 

confounding factors. Farber and Moellering found nephrotoxicity in 12 of 34 (35%) patients receiving 

concomitant vancomycin and aminoglycosides compared to only 5% of 60 patients receiving vancomycin 

without aminoglycosides87. Of note, 2 patients with nephrotoxicity on vancomycin alone had high trough 

levels and were able to continue the drug after dosage adjustment with improvement of renal function. 

Sorrell and Collignon showed nephrotoxicity in in 4 of 28 patients receiving vancomycin and 

aminoglycosides compared to 0 of 25 not on the latter; 2 of the 4 had improvement of kidney function 

with cessation of aminoglycosides despite continuation of vancomycin88. Ryback et al. compared 

nephrotoxicity in 168 patients receiving vancomycin alone, 63 receiving vancomycin together with an 

aminoglycoside, and 103 receiving aminoglycosides alone (with or without a beta-lactam)89. 

Nephrotoxicity occurred in 5%, 22%, and 11%, respectively, a highly significant difference. Recently, 

Hanrahan et al. studied 158 critically ill patients receiving vancomycin and noted AKI by RIFLE criteria in 

14 (8.9%)90. By multivariable analysis, concurrent use of aminoglycosides was highly associated with 

development of AKI (OR 18.9, p=0.002),   although, a separate group receiving aminoglycosides in the 

absence of vancomycin was not compared.  

By contrast, several earlier studies reported no significant increase in nephrotoxicity comparing 

the vancomycin/aminoglycoside combination with either agent alone. When these positive and negative 

studies were combined in a 1993 meta-analysis, combination therapy did have a significant 13% 

(p<0.01) higher rate of nephrotoxicity than vancomycin alone and a 4% (p<0.05) higher rate than 

aminoglycosides alone91. A more recent study found no difference in nephrotoxicity with addition of 

gentamycin to vancomycin by multivariate analysis68. As noted earlier, in an RCT of patients with 

staphylococcal bacteremia, vancomycin plus gentamicin was no more nephrotoxic than a penicillin plus 

gentamicin, but both regimens were significantly more toxic than daptomycin without an 

aminoglycoside4. It remains uncertain whether the enhanced rate of nephrotoxicity reported with 
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vancomycin use in combination with aminoglycosides is the result of severity of underlying illness, the 

nephrotoxicity of aminoglycosides per se, or a true nephrotoxic synergy between the agents. 

The combination of piperacillin-tazobactam (PTZ) with vancomycin was first noted to potentially 

result in enhanced nephrotoxicity compared to vancomycin without PTZ in several abstracts published in 

2011. Subsequent studies have been conflicting. For example, Meaney et al. found a significant adjusted 

OR of 5.36 of AKI when PTZ was added to vancomycin therapy in 125 adult patients72. Gomes et al. 

studied 224 adults receiving vancomycin and found a significantly higher AKI incidence when PTZ was 

added (35% vs 13%, P<0.0001)92. Propensity score matching confirmed this significance (p=0.003). Kim 

et al. showed a significantly reduced OR (0.14) of vancomycin monotherapy compared to combination 

with PTZ by multivariable analysis in 228 adult patients that was confirmed in a propensity score analysis 

(OR=0.17)93. Fodero et al. studied 453 veterans receiving vancomycin and noted a significant OR (3.21) 

for nephrotoxicity with concomitant PTZ by multivariable analysis94.  

By contrast, Moenster et al. could not find a significant difference for AKI by multiple logistic 

regression analysis with the addition to vancomycin of either PTZ or cefepime in 139 diabetic patients 

with osteomyelitis95. Likewise, Hammond et al. compared vancomycin-TZB with vancomycin-cefepime in 

122 critically ill patients and found no significant difference in AKI incidence, AKI duration, or need for 

dialysis 96.  

Two recent meta-analyses addressed this issue. Giuliano et al. evaluated 6 studies published 

only in abstract form and the 9 studies outlined above97. There was overall OR of 3.65 (95% CI 2.16-6.17, 

p<0.001, I2=83.5%) for development of nephrotoxicity or AKI with vancomycin and PTZ compared to 

vancomycin +/- β-lactam. This remained significant after removal of either abstracts or low quality 

studies. The increased risk remained significant in studies compared to vancomycin alone (OR 3.98, 95% 

CI 2.75-5.76) but not in studies compared to vancomycin plus a β-lactam (OR 3.0, 95% CI 0.9-9.73). 
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Hammond et al. evaluated 14 published studies, including 11 in adults98.  The combination of 

vancomycin with PTZ again had an adjusted OR for nephrotoxicity or AKI of 3.11 (95% CI 1.77-5.47). By 

contrast to the findings of Giuliano et al., the OR was not significant when the combination was 

compared to vancomycin alone, but was significant when compared to vancomycin + a β-lactam.  

Subsequently, the 2 largest single center series were published. Navelkele et al. compared 279 

propensity-matched patients receiving vancomycin + PTZ to 279 receiving vancomycin plus cefipime and 

found AKI rates of 29% and 11%, respectively (p<0.0001)56. By multivariable analysis, the group receiving 

PTZ had a hazard ratio for AKI of 4.27 (95% CI 2.73-6.68). Rutter et al. propensity matched 1,633 patients 

receiving vancomycin + PTZ to 578 receiving vancomycin + cefipime and found AKI rates of 21.4% and 

12.5%, respectively (p<0.0001)57. By multivariable analysis, the OR for the PTZ group was 2.18 (95% CI 

1.64-2.94).  

The potential mechanism of enhanced toxicity of this combination remains uncertain. 

Piperacillin-tazobactam is not considered to be a nephrotoxin, but support for potential nephrotoxicity 

comes from post hoc analysis of a randomized controlled trial of 1200 critically ill patients which showed 

receipt of PTZ was associated with impaired renal recovery 99.  Acute interstitial nephritis has been 

reported with PTZ in case reports. It is possible that an AIN induced by PTZ could complicate toxic 

proximal tubulopathy or AIN induced by vancomycin.  

In our opinion, the enhanced nephrotoxicity of this combination appears real. This regimen 

should be used carefully and only under the guidance of an antimicrobial stewardship program with 

TDM. In support, a recent retrospective study of 320 patients receiving vancomycin-PTZ found an 

alarming 33% incidence of AKI100. Associated factors that were significantly associated with AKI and were 

potentially modifiable by antimicrobial stewardship included a vancomycin loading dose, longer 

duration of dual therapy, and concomitant nephrotoxins. 
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Conclusion 

Vancomycin used at currently recommended doses is minimally nephrotoxic when used in non-

critically ill patients with less serious infections. In sicker patients with multiple risk factors for AKI, VANT 

occurs much more commonly, but it remains uncertain to what degree vancomycin is directly 

responsible. In our opinion, it is safe to initiate therapy with vancomycin in critically ill patients with 

multiple risk factors for AKI pending culture results with use of TDM and antibiotic stewardship (see 

Table 5). Trough levels should be obtained within 48 to 72 hours by which time initial culture results 

should be available. Decisions regarding continuation of vancomycin therapy can be individualized, 

based on culture result, MIC (if staphylococci are isolated), AKI risk, and side-effect profile of alternative 

agents. Loading doses are safe. Trough levels with intermittent dosing should always be >10 mg/L to 

prevent resistance. It remains uncertain whether Guideline based trough levels of 15 – 20 mg/L are 

more efficacious than 10 – 15 mg/L in serious infections. Trough levels of 15 – 20 mg/L, however, are 

clearly associated with greater VANT than levels <15 mg/L, but it remains uncertain whether these levels 

are the cause or the result of the nephrotoxicity. Combination with PTZ should be avoided or duration 

minimized. In patients receiving vancomycin who develop AKI that is not easily correctible with fluid 

resuscitation or discontinuation of other agents, cessation of vancomycin should be considered. This 

very important issue clearly warrants a large, multicenter RCT to answer definitively. Further issues need 

research as well, preferably with RCTs (see Table 6). 
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Table 1   
Suggestions for Vancomycin Dosing During RRT 

Modality Recommendation Comments 

Thrice Weekly Intermittent 
Hemodialysis – Low Flux 
membrane 

Standard LD (20 – 25 mg/kg) 
based on actual body weight 
MD: Approximately 15 – 20 
mg/kg qweek  

Follow trough levels, especially with 
serious infections 

Thrice Weekly Intermittent 
Hemodialysis – High Flux 
Membrane 

Standard LD  as above 
MD: 10 mg/kg in last hour of 
each dialysis  

Add an additional 250 mg to end of 
week MD 
Follow trough levels 

Short Daily Dialysis – High 
Flux Membrane 

Standard LD as above 
MD: 10 mg/kg after every other 
dialysis 

Validated for MIC < 1 mg/L; above that , 
use alternative agent 

Continuous RRT Standard LD as above 
MD: Consider 500 – 750 mg/q12 
hour or 15 – 20 mg/kg when 
random level  at desired trough 

Consider residual renal function 
Follow trough level 

LD: loading dose; MD: maintenance dose; RRT: renal replacement therapy. 
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Table 2 
Current Criteria for Diagnosing and Staging Acute Kidney Injury 

RIFLE Criteria Stage Creatinine-Based Criteria Urine Output-Based 
Criteria 

R Rise of serum creatinine of > 50% within 7 
days or GFR decrease by 25% 

<0.5 ccs/kg/hr for 6 
consecutive hours 

I Rise of serum creatinine of >100% or GFR 
decrease by 50% 

<0.5 ccs/kg/hr for 12 
consecutive hours 

F Rise of serum creatinine of >200% or GFR 
decrease by 75% or renal replacement therapy 

<0.3 ccs/kg/hr for 24 hours 
or anuria for 12 hours 

L Complete loss of function for more than 4 weeks 

E End  stage renal disease 

AKIN Criteria 1 Rise of serum creatinine of > 50% or increase 
of >0.3 mg/dl in <48 hours 

<0.5 ccs/kg/hr for 6 
consecutive hours 

2 Rise of serum creatinine of >100% <0.5 ccs/kg/hr for 12 
consecutive hours 

3 Rise of serum creatinine of >200% or renal 
replacement therapy 

<0.3 ccs/kg/hr for 24 hours 
or anuria for 12 hours 

Note: Satisfaction of either creatinine-based criteria or urine output-based criteria is sufficient for 
diagnosis and staging. Both are not required. 
RIFLE: Risk, Injury, Failure, Loss, End-Stage-Renal-Disease49: AKIN: Acute Kidney Injury Network52: GFR: 
glomerular filtration rate 
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Table 3  
Novel Biomarkers 

Blood Cysatatin-C 

Neutrophil gelatinase associated lipocalin-2 

Retinol binding protein 

IL-18 

TNF-receptor-1 

Urine Neutrophil gelatinase associated lipocalin-2 

Kidney injury molecule-1 

Liver type fatty acid binding protein 

n-acetyl-β-d-glucosaminidase 

Tissue inhibitor of metalloproteinases-2 

IFG-binding protein-7 

Glutathione-S-transferase 

IL-18 
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Table 4 
Potential Risk Factors for Vancomycin Nephrotoxicity 

Vancomycin Exposure Variables Loading Dose 
Total Daily Dose 
AUC 
Trough Level 
Duration 
Continuous vs Intermittent Infusion 

Patient Specific Factors Obesity 
Severity of Illness 
ICU Residence 
Chronic Kidney Disease 
Concurrent Nephrotoxin Exposure 
Concurrent Aminoglycosides 
Concurrent Piperacillin-Tazobactam 
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Table 5 

Approaches to Reduce Vancomycin Nephrotoxicity 

Recommendation Comment 

Weight based dosing of 15-20 mg/kg Use actual body weight and combine with 
therapeutic drug monitoring. Consider nomograms in 
patients with renal insufficiency 

Consider a loading dose of 25 – 30 mg/kg for 
severe infections (bacteremia, endocarditis, 
pneumonia, osteomyelitis, meningitis)  

There is no evidence of increased nephrotoxicity with 
a loading dose 

Use intermittent rather than continuous 
administration 

Continuous infusion has limited evidence for reducing 
toxicity and is cumbersome to use. 

Do not obtain peak vancomycin 
concentrations 

Peak concentrations do not predict efficacy or toxicity 

Maintain trough concentration 10-15 mg/L 
for non-severe infections 

>15 mg/L correlates weakly with improved efficacy, 
but at the expense of a clear association with toxicity.  

Maintain tough concentrations 15-20 mg/L 
for serious infections 

Increased potential toxicity balanced against severity 
of infection 

Consider cessation of vancomycin should AKI 
develop after at least 2 days of therapy 
 

Effective but not nephrotoxic alternatives exist e.g. 
daptomycin for MRSA bacteremia/endocarditis or 
linezolid for MRSA pneumonia 

Tailor duration of therapy to efficacy and not 
to prevent nephrotoxicity 

Duration of therapy should be directed to 
microbiologic control. Toxicity may increase with 
prolonged therapy, but evidence base is weak. 

Concomitant use with piperacillin-
tazobactam or an aminoglycoside should be 
paired with TDM and ongoing assessment of 
need for concurrent therapy 

There is moderate evidence of synergistic toxicity to 
be balanced against potential need for efficacy 

TDM should be used in patients at high risk 
for toxicity, prolonged therapy or impaired 
renal function 

Toxicity in patients with limited comorbidities treated 
for less than 10 days is very uncommon 

Obtain TDM before the fourth dose after 
starting or adjusting therapy if stable renal 
function 

Assumptions linking trough levels to AUC are based 
upon a steady state concentration 
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Table 6 
Areas for Further Research 

1.) Comparison of vancomycin to alternative therapy in the critically ill with a primary renal 
endpoint of AKI. Urine output criteria should be incorporated as well as creatinine criteria.  

2.) The role of serum and/or urine biomarkers for earlier diagnosis of nephrotoxicity 
3.) Continuation of vancomycin with TDM versus discontinuation should AKI develop. 
4.) Dosing based on Baysean methodology. 
5.) The optimal trough for serious infections. 
6.) The optimal dosing strategy: continuous versus intermittent infusion. 
7.) The optimal dosing strategy for the morbidly obese. 
8.) Comparison of vancomycin/piperacillin-tazobactam with vancomycin/cefepime (or alternative 

regimens). 
9.) Antioxidants for nephroprotection. 
10.) Cilastatin for nephroprotection. 
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