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NEST is a simulator for spiking neuronal networks that commits to a general purpose

approach: It allows for high flexibility in the design of network models, and its

applications range from small-scale simulations on laptops to brain-scale simulations

on supercomputers. Hence, developers need to test their code for various use cases

and ensure that changes to code do not impair scalability. However, running a full set of

benchmarks on a supercomputer takes up precious compute-time resources and can

entail long queuing times. Here, we present the NEST dry-run mode, which enables

comprehensive dynamic code analysis without requiring access to high-performance

computing facilities. A dry-run simulation is carried out by a single process, which

performs all simulation steps except communication as if it was part of a parallel

environment with many processes. We show that measurements of memory usage and

runtime of neuronal network simulations closely match the corresponding dry-run data.

Furthermore, we demonstrate the successful application of the dry-run mode in the areas

of profiling and performance modeling.

Keywords: profiling, performance analysis, memory footprint, high-performance computing, supercomputer,

large-scale simulation, spiking neuronal networks

1. INTRODUCTION

The neuronal network simulator NEST (Gewaltig and Diesmann, 2007) has an active and growing
community of developers and users. Advances in computer hardware on the one hand and the
requirements of novel computational models on the other hand push the development of new
simulation technology and have made NEST a tool for a broad spectrum of applications. It enables
simulations of spiking neuronal networks that differ greatly in size and complexity, and depending
on the requirements of the models researchers can run the simulations on their laptops or they can
make use of high-performance computing (HPC) facilities.

A simulation with NEST consists of two main phases. During the build phase (or setup phase)
NEST creates neuron and synapse objects and the data structures to access these objects. Afterwards
the actual simulation phase starts, in which the main simulation loop is repeated iteratively. Each
iteration comprises the update of synapses and neurons, the exchange of recent spikes between
MPI ranks and the delivery of these spikes to their local targets. A description of the fundamental
data structures and the main simulation loop of NEST follows in Section 2.1.
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The software-development framework around NEST is
becoming ever more comprehensive. A testsuite (Eppler et al.,
2009b) and continuous integration technology (Zaytsev and
Morrison, 2012) help to ensure code quality; models of memory
usage (Kunkel et al., 2012) and runtime (Adinets et al., 2015;
Schenck et al., 2014) enable the structured analysis of existing
code and the design of new, more scalable data structures and
algorithms. However, in order to confirm the model predictions
and to check for errors that occur only in the supercomputing
regime, NEST developers still need to carry out actual simulations
on supercomputers that may employ hundred thousands of
MPI processes. Running such tests and benchmarks takes up
compute-time resources and slows down the code-development
process due to long queuing times.

In this manuscript, we present a method, where only one MPI
process carries out its part of a distributed simulation with NEST.
In the build phase, the process sets up all local data structures as
if it took part in a parallel simulation with many processes, and in
the simulation phase, it creates fake spikes to represent input from
other MPI ranks. We refer to this method as the dry-run mode of
NEST and to the actual distributed neuronal network simulation
that corresponds to a specific dry run as real run. Furthermore,
we distinguish between static and dynamic dry-run mode. In the
static mode, the MPI process creates fake spikes according to a
predefined firing rate while in the dynamic mode the process uses
the spikes of its local neurons to invent the fake remote spikes. In
Section 2.2, we provide details on the implementation of the dry-
run mode and also an example script that shows how the mode
can be enabled.

In computer science, the term “dry run” often refers to
hardware tests under controlled conditions, but it is also used
in the context of software development to refer to the static
analysis of an algorithm by mentally evaluating each step. The
NEST dry-run mode enables dynamic code analysis and hence
differs from the latter definition. A NEST dry run corresponds
more to a hardware dry run: Simulation code is executed in the
controlled environment of a single MPI process such that failure
cannot cause any severe damage as the simulation does not use
any allocated HPC resources.

The definition of the term “dry run” is rather vague as
the concept is rather uncommon. Examples of programs that
provide a dry-run option are among others the rsync utility
(Tridgell, 1999) and the GPAW project (Enkovaara et al., 2010).
The command-line tool rsync enables file synchronization and
transfer; a dry run produces an output of the potential changes,
which the user can check before performing a real run. GPAW
enables electronic structure calculations; a dry run allows the user
to estimate the memory usage and to inspect the parallelization
settings for a given number of MPI processes. In this way, the
dry-run mode of GPAW is conceptually similar to the dry-run
mode of NEST concerning the build phase. However, we are not
aware of any simulation software which is able to perform a dry
run of the simulation dynamics.

The dry-run mode of NEST allows developers to investigate
the performance of different parts of the code without consuming
precious computing time. This requires, however, that dry run
and real run exhibit similar memory-access patterns, which may

seem questionable given that in dry-runmodemost spikes do not
originate from real network dynamics. Hence, in Section 3.1 we
compare spiking activity, memory usage, and runtime of dry-run
and real-run simulations for different network sizes and number
of processes.

Within the software-development framework of NEST, the
dry-run mode complements the previously developed models of
memory usage and runtime as it is an economical way to obtain
a realistic performance estimate of a distributed simulation.
Kunkel et al. (2012) used a preliminary version of the dry-run
mode to verify the predictions of the memory-usage model and
in Helias et al. (2012) and Kunkel et al. (2014) the network sizes
for the maximum-filling benchmarks were determined using
the preliminary dry-run mode, which saved a lot of time and
HPC resources. Dry-run simulations are also compatible with
established profiling tools (see e.g., Schenck et al., 2014) because it
is one and the same NEST binary which is used for conventional
NEST operation and for dry runs. Besides, because the dry-run
mode only requires a single compute node, developers can debug
their NEST code for different regimes of number of processes
without requiring access to HPC facilities—a single workstation
is sufficient. Dry-run simulations can also help NEST users to
estimate the HPC resources that they need to request for planned
simulations. In order to demonstrate the usefulness of the dry-
run mode we give several sample use cases in Section 3.2.

The conceptual and algorithmic work described here is a
module in our long-term collaborative project to provide the
technology for neural systems simulations (http://www.nest-
initiative.org). We devised the dry-run mode as a software-
development method for NEST. However, the concepts that we
present here are transferable to other simulators.

2. MATERIALS AND METHODS

2.1. Neuronal Simulator NEST
NEST is a simulation software for spiking neuronal networks
of single- and few-compartment neuron models (Gewaltig and
Diesmann, 2007; Kunkel et al., 2017). The simulator supports a
hybrid parallelization strategy with at least one MPI process per
compute node and multi-threading based on OpenMP within
each process (Eppler et al., 2007; Plesser et al., 2007). Simulations
with NEST can be controlled through the built-in scripting
facility SLI or the Python-based user interface PyNEST (Eppler
et al., 2009a; Zaytsev and Morrison, 2014).

The development of NEST is coordinated by the NEST
Initiative (http://www.nest-initiative.org). NEST is under
the GNU General Public License. It can be cloned or
forked on GitHub (https://github.com/nest/nest-simulator).
Documentation, examples, and releases are available on the
website of the NEST Simulator (http://www.nest-simulator.org).

NEST creates most of the required data structures during
the build phase (or setup phase), where each MPI rank operates
independently of the other ranks (see Figure 1). Nodes are
created and connected according to the user-specified simulation
script and each node is assigned a global identifier (GID).
Typically, nodes are neurons but they can also be devices such
as spike detectors. NEST distributes neurons across MPI ranks
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FIGURE 1 | Major steps of build and simulation phase of NEST. The vertical

black arrow on the left indicates single-threading and multi-threading (single

and multiple lines, respectively), MPI communication (squares with bidirectional

arrows), and the repetition of the main simulation cycle (dashed upward

pointing arrow). Colored and dark gray text highlighting corresponds to the

data structures shown in Figures 2, 3, respectively; they indicate when the

data structures are created, changed or accessed.

and OpenMP threads in a round-robin fashion according to
their GIDs, which balances the computational load. Devices,
however, are duplicated on each thread. Synapses are represented

FIGURE 2 | Fundamental data structures in NEST. Data structures on MPI

rank 0 for (A) an example network of eight neurons with ring-like connectivity,

which is simulated using two MPI processes and three threads per process.

For simplicity, devices are omitted. (B) Neuron infrastructure. For each local

neuron (blue squares) the SparseNodeArray local_nodes (dark green)

stores a struct of a pointer to the neuron and the neuron’s GID. The

two-dimensional vector nodes_vec (light green) stores a pointer to the

local neurons sorted by thread. (C) Connection infrastructure. Each synapse is

represented on the thread of its target neuron. Each thread owns a

sparsetable (dark orange), which stores a pointer to a Connector

(orange) for every source neuron that has targets on the thread. The

Connectors hold the local synapses (pink) sorted by type (here only one

static_synapse per Connector).

on the same thread as their post-synaptic neurons. Moreover,
each thread owns data structures that enable efficient access to
its local neurons and synapses (see Figure 2).

The call to Simulate in the user script triggers the actual
simulation phase. NEST first prepares the data structures for the
simulation and then enters the simulation loop, which iterates
through simulation cycles until the requested simulation time
elapses (see Figure 1). Every simulation cycle starts with the
delivery of the spikes that occurred during the last cycle. Each
thread reads the global spike buffer (see Figure 3C) and directs
the relevant spikes to the local target synapses, which pass them
on to the local target neurons. The delivery step comprises also
the update of plastic synapses.

The second step in every simulation cycle is the threaded
update of all neurons and devices. When an update is triggered,
neurons typically propagate their dynamics in submillisecond
steps according to the globally defined simulation resolution; we
refer to these integration steps as h-steps. Thread-specific spike
registers (see Figure 3A) collect all spikes that the local neurons
emit during the current update sorted by h-step.

Every simulation cycle terminates with a gather step, which
is the communication of the newly generated spikes using
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FIGURE 3 | Spike buffers in NEST. Example spike buffers for a simulation cycle with four neuronal update steps and for a network of eight neurons, which is simulated

using two MPI processes and three threads per process. (A) During neuronal updates the three-dimensional vector spike_register stores the GIDs of the local

neurons that spike (dark gray squares) sorted by thread and update step. (B) Before MPI communication each rank collocates its send buffer based on the entries in

its spike_register. Communication markers (light gray squares) define update step and thread. Buffers may not be completely filled (white squares). (C) After MPI

communication using MPI_Allgather each rank holds the complete spike data in its receive buffer (global spike buffer), which is the concatenation of the send

buffers of all ranks. (D) Filling of the global spike buffer in dynamic dry-run mode. The section that belongs to MPI rank 0 is copied to the section that belongs to fake

rank 1. The GIDs in the section of rank 1 are then replaced with randomly chosen GIDs of neurons that would be local on rank 1 in the corresponding real-run

simulation; the assignment of local neurons to threads 0, 1, and 2 is also respected.

MPI_Allgather. To this end spikes need to be transferred
from the spike registers to the local MPI send buffers (see
Figure 3B), where markers indicate the sections for different h-
steps and threads. The send buffers are equally sized on all ranks;
their size depends on the maximum number of spikes per rank
which was emitted so far during the course of the simulation
within one simulation cycle. After the communication, each rank
holds the recent spikes from all ranks in its MPI receive buffer,
which is the global spike buffer that is processed in the next
delivery step.

The minimum synaptic transmission delay in the network
defines the interval at which MPI processes need to exchange
spikes in order to maintain causality (Morrison and Diesmann,
2008). Hence, the min-delay interval or communication interval
defines also the time interval of the simulation cycle.

2.2. Implementation of the Dry-Run Mode
In dry-run mode, NEST is executed only by MPI rank 0 but
this rank behaves as if it was part of a distributed simulation
with many MPI processes; we refer to all MPI ranks except
rank 0 as fake ranks as they exist only conceptually but are not
instantiated. In the build phase the dry-run process needs to take
into account the total number of MPI processes when creating

the local data structures, and in the simulation phase the dry-
run process needs to generate fake spikes that represent the input
from the fake ranks. We describe this in more detail in the
following Sections 2.2.1, 2.2.2, respectively.

In order to implement the dry-run mode we used the NEST-
kernel parameter num_processes, which is initialized to
MPI_Comm_size and then used as reference for the total
number of MPI processes throughout the simulation. Typically,
NEST users can only inspect num_processes but they cannot
manipulate it. In dry-run mode, however, the parameter is
unlocked and can be set to the desired number of MPI processes
(see Section 2.3) even though the simulation runs only on one
MPI process, which is MPI rank 0.

2.2.1. Build Phase
AsMPI processes operate independently of each other during the
build phase (see Figure 1), MPI rank 0 does exactly the same in a
dry-run simulation as in the corresponding real simulation. The
implementation of the dry-run mode for the build phase did not
require any changes to code except for making it possible to set
the NEST-kernel parameter num_processes at the beginning
of a simulation.
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As neurons are distributed in a round-robin fashion according
to their GIDs, MPI rank 0 creates the neurons whose GIDs
modulo the total number of MPI processes equals 0. Hence, the
rank does not require any information from the fake ranks but
it just needs to know the number of MPI processes, which is
provided by the parameter num_processes.

Connecting two neurons also does not require any interaction
with the fake ranks. As synapses are represented on the sameMPI
rank as their target neurons, rank 0 just needs to check whether
the target neuron of a particular synapse is local in order to
decide whether it should create the synapse. In real simulations,
NEST uses MPI_Allgather to communicate spikes such that
the spikes of each neuron will reach every MPI rank regardless
of the existence of local targets. Therefore, the MPI rank of the
source neuron does not need to be notified of a newly created
connection.

As in real simulations rank 0 registers the rank-local neurons
and synapses with the local neuron and connection infrastructure
(see Figure 2).

2.2.2. Simulation Phase
While the implementation of the dry-run mode for the build
phase required virtually no changes to the NEST code base, the
extension of the dry-run principle to the simulation phase needs
to address the problem that a major part of the neuronal network
is missing. There are no remote neurons that send spikes to the
dry-run process in every simulation cycle.

Therefore, NEST omits the MPI communication of the
gather step in dry-run simulations; there is only one process
running anyway. Instead, rank 0 fills the global spike buffer (see
Figure 3C) with fake spikes. In real simulations, the buffer holds
the GIDs of all neurons that spiked in the previous simulation
cycle (see Section 2.1). In dry-run simulations, rank 0 generates
the GIDs at random but it needs to comply with the structure
of the global spike buffer in order to create a similar instruction
flow as in a real simulation. As every rank has its own section in
the global spike buffer and every thread has its own subsection,
the dry-run process needs to make sure that every part of the
buffer contains only the GIDs of neurons that are local on the
corresponding rank and thread. We can assume a round-robin
distribution of neurons such that gid % num_processes

defines the rank and gid % (num_processes *
local_num_threads) / num_processes defines
the thread, where local_num_threads is the NEST-kernel
parameter for the number of threads that run on each MPI
process.

During the gather step of both dry runs and real runs eachMPI
rank collocates the MPI send buffer based on the spike-register
entries (see Figures 3A,B, respectively). After this, in real runs
the MPI communication of the buffers is triggered, whereas in
dry-run mode each rank fills the global spike buffer with fake
spikes using multiple threads.

It is not possible to obtain estimates of communication
times from dry-run simulations. However, the NEST kernel
variable send_buffer_size provides a good approximation
for the send-buffer size of the corresponding real run. Based
on this value realistic estimates of communication times can be
obtained from MPI communication benchmarks. Generally, the

communication time in real runs is very short compared to the
overall runtime of the simulation phase (percentages in the lower
single-digit range as shown in Section 3.1.3) so that the dry-run
mode covers most part of the simulation phase anyhow.

The local_spike_counter is another kernel variable
that is especially useful for benchmarking purposes. The variable
keeps track of the number of spikes that the local neurons emit
and hence enables the calculation of firing rates without using a
spike detector.

We developed two versions of the dry-run mode: the static
and the dynamic mode. The two modes differ in the way they
determine the number of fake spikes in each simulation cycle.

2.2.2.1. Static dry-run mode
The static mode does not aim on mimicking the dynamics
of a real simulation, but it allows for direct control of the
frequency of the spikes that enter the delivery step within every
simulation cycle. This can be useful for very specific profiling
needs. Therefore, in static mode the firing rate is a parameter
controlled by the user. In each simulation cycle the entire global
spike buffer including the part which belongs to rank 0 is filled
with as many fake spikes as necessary to approximate the target
firing rate. An exact match is hardly possible because the global
spike buffer is at the lowest level subdivided in parts which
correspond to a single h-step and thread, and because the number
of spikes in such a part has to be an integer number. To obtain
a close approximation even for low firing rates, the number of
spikes per h-step and thread is varied between buffer parts such
that the average firing rate is close to the target firing rate.

Please note that the firing rates of the neurons on MPI rank 0
are not directly affected by this procedure and can deviate from
the target firing rate. However, as these spikes are ignored in
further processing, this has negligible influence on the runtime
of the simulation phase. One could argue that ignoring the spikes
generated by rank 0 gives away important information. However,
it belongs to the core concept of the static dry-run mode to have
full external control over the number of incoming spikes. As we
will see in the next section, the concept of preserving information
is in contrast fully realized in the dynamic dry-run mode.

2.2.2.2. Dynamic dry-run mode
The main objective of the dynamic dry-run mode is to mimic
the spike dynamics of the corresponding real simulation as
closely as possible on the single dry-run process. In simulated
neuronal networks firing rates vary over time. In particular,
neuronal populations with many recurrent connections show
synchronization behavior, which means that the neurons of the
same population tend to fire together and pause together. Thus,
the number of spikes generated by a subset of the population
is an indicator of the overall number of spikes generated by
the entire population at a specific point in time. We use this
as a principle for the dynamic dry-run mode: The number of
fake spikes per fake rank is always equal to the number of
spikes generated by the neurons on the dry-run process (MPI
rank 0).

In dynamic dry-run mode the spikes of the neurons on rank 0
are not discarded but transferred to the global spike buffer.
Hence, rank 0 needs to fill only the sections of the global spike
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buffer that belong to the fake ranks. To this end the MPI rank
copies its own section of the buffer to the section of every
fake rank; this may require increasing the buffer size first. Then
every GID in the sections of the fake ranks is replaced with
a randomly drawn GID that matches rank and thread of the
currently processed part of the buffer (see Figure 3D). This is
carried out using multiple threads.

2.3. User Interface
In order to enable the dry-run mode, NEST users need to adapt
their simulation scripts only marginally, which is demonstrated
in the following PyNEST example. The simulation script creates
a balanced random network (Brunel, 2000) of 100, 000 neurons
with 10, 000 incoming synapses per neuron (80% excitatory, 20%
inhibitory). Each neuron receives Poisson input of 5, 000 spikes
per second.

1 import n e s t
2
3 n e s t . EnableDryrun ( )
4
5 n e s t . S e t K e r n e l S t a t u s ( { ’ num_proces ses ’ : 24 ,
6 ’ d r y r u n _ t a r g e t _ r a t e ’ : 0 . 0 } )
7
8 # c r e a t e n eu ron s and d e v i c e s
9 nr = n e s t . C r e a t e ( ’ i a f _n eu r on ’ , 100000)
10 pg = n e s t . C r e a t e ( ’ p o i s s o n _ g e n e r a t o r ’ ,
11 params ={ ’ r a t e ’ : 5 0 0 0 . 0 } )
12 sd = n e s t . C r e a t e ( ’ s p i k e _ d e t e c t o r ’ ,
13 params ={ ’ t o _ f i l e ’ : True } )
14
15 # e x c i t a t o r y c o n n e c t i o n s
16 n e s t . Connect ( nr [ : 8 0 0 0 0 ] , nr ,
17 { ’ r u l e ’ : ’ f i x e d _ i n d e g r e e ’ ,
18 ’ i n d e g r e e ’ : 8 0 00 } ,
19 { ’ we i gh t ’ : 4 0 . 0 } )
20
21 # i n h i b i t o r y c o n n e c t i o n s
22 n e s t . Connect ( nr [ 8 0 0 0 0 : ] , nr ,
23 { ’ r u l e ’ : ’ f i x e d _ i n d e g r e e ’ ,
24 ’ i n d e g r e e ’ : 2 0 00 } ,
25 { ’ we i gh t ’ : −200 .0 } )
26
27 # P o i s s o n i n pu t t o a l l n eu ron s
28 n e s t . Connect ( pg , nr ,
29 s yn_ spe c ={ ’ we i gh t ’ : 4 0 . 0 } )
30
31 # r e c o r d s p i k e s from a l l n eu ron s
32 n e s t . Connect ( nr , sd )
33
34 # s imu l a t e ne twork f o r 10 s
35 n e s t . S imu l a t e ( 1 0 0 0 0 . 0 )

The call to EnableDryrun at the beginning of the script
initiates the dry-run mode and unlocks the dry-run parameters
in the kernel dictionary. If the dry-run mode is enabled, the user
can set the NEST-kernel parameter num_processes, which is
otherwise not possible. In the above example num_processes
is set to 24 such that the dry-run process behaves as if it was
part of a simulation with 24 MPI processes. The parameter
dryrun_target_rate defines the target firing rate of fake
neurons in staticmode. Any value greater than 0 enables the static
mode whereas setting dryrun_target_rate to 0 enables the
dynamic mode. Figure 4 shows the spikes of the neurons onMPI
rank 0 in the first 500 ms of the simulation for the two dry-run
versions and for the corresponding real run.

The dry-run mode can only be enabled in simulations that use
one process (i.e., num_processes is initialized to one). Once
it is enabled, the dry-run mode can only be disabled by a reset.
Currently the method is not compatible with precise spike times
(Hanuschkin et al., 2010; Morrison et al., 2007b), gap junctions
(Hahne et al., 2015), or structural plasticity (Diaz-Pier et al.,
2016); see Section 4.2.

The PyNEST command GetKernelStatus allows
NEST users to inspect all kernel parameters such as
num_processes. All dry-run parameters are tagged by a
dryrun_ prefix. The kernel status dictionary also contains the
local_spike_counter and the send_buffer_size.

3. RESULTS

3.1. Validation of Dry-Run Mode
In this section, we address the question if performance
measurements (memory footprint, timings) that are carried out
in dry-run mode are close to the values observed in real runs.
This is important for proving the usefulness of the dry-runmode.
As the number of processed spikes has a strong impact on NEST
performance (see Section 3.1.2), special emphasis is given to
the comparison of spike frequencies and patterns in dynamic
dry-run mode. The testbed for benchmarking is a balanced
random network (Brunel, 2000) with plastic synapses (Morrison

FIGURE 4 | Spike output of the example script. Spikes of all neurons on rank 0 in the first 500 ms of a 10 s simulation (A) in static dry-run mode with a target firing

rate of 5 Hz (average firing rate of 4.97 Hz), (B) in dynamic dry-run mode (average firing rate of 4.82 Hz), and (C) in the corresponding real run (average firing rate of

5.91 Hz) using 24 MPI processes.
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et al., 2007a), which consists of two populations of integrate-
and-fire neurons (80% excitatory, 20% inhibitory), where all
excitatory-excitatory connections exhibit STDP (Zhang et al.,
1998; Markram et al., 1997) and all other connections are static.
The network is driven by random spikes emitted by a Poisson
generator whose output frequency is scaled via the parameter
η. The size of a single integration step (h-step) is set to 0.1 ms,
the min-delay interval amounts to 1.5 ms. It is discussed in
Section 4.2 why balanced random networks were chosen for
validation.

As described before, in static dry-runmode there are two spike
frequencies: The symbol F denotes the frequency of fake spikes
and is a control parameter of the static mode; the symbol Freal is
used for the frequency of the spikes generated by the neurons on
the dry-run process (MPI rank 0). In dynamic dry-run mode, F
is chosen as F = Freal in every simulation cycle, therefore only
the symbol F is used when discussing the dynamic mode. The
same holds for real runs, where the distinction between F and
Freal is meaningless. An overview of additional important NEST
application parameters is given in Table 1.

3.1.1. Dynamics of the Balanced Random Network
The goal of the dynamic dry-run mode is to generate spiking
dynamics similar to real runs. As a first step in the validation
process, spike raster plots are compared qualitatively for varying
sizes of a balanced random network (strict weak scaling design:
The number of ranks M is varied, the number of neurons per
rank is set to NM = 5 500; the number of neurons in the
whole network amounts to N = NMM; the number of incoming
connections per neuron is set to a constant value of K = KS ·

11 250, KS = 1.0). The results are depicted in Figures 5, 6 for
different values ofM; the top row of the plots shows the real runs
(blue), the bottom row the dry runs (red; spike times and statistics
of fake spikes). For small simulations with M = 2, strong
synchronization patterns can be observed in the raster plots in
Figure 5, which are similar between real and dry runs. Moving
up toM = 8, synchronization is much weaker but still existent—
both for real and dry runs. At M = 32 synchronization is no
longer visible. This observation is confirmed by the distributions
of population activity in Figure 6A: ForM = 2 the distribution is
scattered with many intervals of high activity and with a peak at
extremely low activity, whereas forM = 8 andM = 32 the main
body of the distribution is centered around 7.5–8.0 spikes per

TABLE 1 | Relevant NEST application parameters.

Symbol Explanation

N Number of neurons in the overall network

NM Number of neurons per MPI rank

K Number of incoming connections per neuron

KS Scaling factor for the computation of K: K = KS · 11250

M Number of (fake) MPI ranks

T Number of threads per MPI rank

F Mean spike frequency over simulation period

η Scaling factor for the random input which drives the network

second. The distributions of coefficient of variation of interspike
intervals for the dry-run simulations are also in good agreement
with the results of the real runs (see Figure 6B); however, due to
the short recording period of 500ms these histograms should be
taken with a grain of salt. In summary, the spike patterns of real
runs are very closely mimicked by dynamic dry runs over a large
range of network sizes.

After having confirmed the qualitative match between real
runs and dynamic dry runs, the next step is to compare spike
frequencies systematically. In this experiment, the simulation
size, the fan-in, and the parameter η are varied (M ∈ {2, 8, 32};
KS ∈ {0.25, 1.0}; η ∈ {1.0, . . . , 2.05}). The dependent variable
is the spike frequency F over 500 ms of simulated biological
time (additional settings: NM = 5 500, N = NMM, K =

KS · 11 250). In Figure 7, F is plotted against η for the different
experimental conditions (real runs: blues curves; dry runs: red
curves). For a small network with high connectivity (lower left
subplot), the curve for the real runs is erratic with large variance.
This is to be expected, since N = 11 000 neurons are simulated
with K = 11, 250 synapses per neuron, resulting in strong
recurrence and highly unstable dynamics. This specific behavior
is not well captured by the dry-run results. However, this is a
minor shortcoming, because the real simulation has onlyM = 2
ranks, which is not a typical use case for the dry-run mode. As
soon as we reduce the connectivity (upper left subplot), real and
dry runs match very well over the whole η range with F being
an approximately linear function of η. Increasing the number
of ranks (subplots in the middle and right column of Figure 7)
illustrates that F barely depends on network size, but strongly on
network connectivity—the spike frequencies are much larger for
KS = 0.25 compared to KS = 1.0. In addition, it becomes visible
that the dry runs overestimate the spike frequency of the real
runs systematically. However, the gap is not large and can easily
be reduced by choosing a smaller η value for the dry runs. For
the balanced random network model, a reduction of η between
5 and 10% can be derived from these curves as a reasonable rule
of thumb to arrive at dry-run spike frequencies which are close
enough to real runs to be perfectly usable for profiling and related
purposes.

In contrast to the dynamic dry-run mode, the static dry-
run mode produces always a homogeneous pattern of incoming
spikes without any synchronization patterns. This is clearly
visible in Figure 4 and a direct consequence of the underlying
mechanism of fake spike generation (see Section 2.2.2).

3.1.2. Runtimes and Memory Consumption
So far, we have looked at spike frequencies in the dynamic
dry-run mode and at rather small simulation sizes. In this
subsection, runtimes and memory consumption are included in
the comparison, both for the static and the dynamic version
of the dry-run mode. Furthermore, a wide range of simulation
sizes is covered. Data was collected on the supercomputer
JUQUEEN1 at Forschungszentrum Jülich. NEST was used in

1Each compute node of JUQUEEN is equipped with a 16-core PowerPC-A2 CPU

and 4-fold SMT (64 hardware threads) and 16 GB of RAM. The max. number of

usable compute nodes amounts to 28, 672.
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FIGURE 5 | Spike raster plots for dynamic dry runs and real runs with different sizes of a balanced random network. Network size N is directly proportional to the

number of ranks M (weak scaling design with approximately 5, 500 neurons per rank). The spikes of the first 500 neurons are shown over a simulated time of 500 ms.

η values are slightly different for real and dry runs to enable better matching spike frequencies.

revision 10694 from the codebase in the main NEST SVN
repository2, supplemented by the code for dry-run functionality
at revision 11501.

In a factorial experiment, the number of ranks
M was varied between 32 and 28 672 (M ∈

{32, 128, 512, 2048, 4096, 8192, 16 384, 28 672})3, the number
of threads T per rank between 4 and 64 (T ∈ {4, 8, 16, 32, 64}),
and the number of neurons per rank between a half-fill and a
full-fill setting. At the latter setting, nearly the whole available
main memory in each compute node was consumed by NEST
data structures, in the former setting only half of it. Due to a
limited amount of available computing time, only 71 of the 80
experimental conditions of the full factorial design were included
in the experiment. In each condition, a real run, a static dry run,
and two dynamic dry runs were executed. The η value in the
real runs was set to η = 1.685, resulting in a spike frequency of
approximately 7 Hz. Therefore, F was also set to F = 7 Hz in the
static dry runs. The two dynamic dry runs differed with regard
to the parameter η. One was carried out with η = 1.685 like in
the real runs, one with η = 1.56 to match the spike frequency
F of the real runs (according to the rule of thumb suggested in
Section 3.1.1).

2URL: https://trac.nest-initiative.org.
3The settingM = 28, 672 corresponds to using full JUQUEEN; each compute node

of JUQUEEN hosted exactly one MPI rank in all experiments.

The results of this study are shown in Figure 8. Each boxplot
depicts the distribution of the relative differences between the
real runs and the dry runs over all experimental conditions
for the different variations of the dry-run mode (left: static;
middle: dynamic with η = 1.685; right: dynamic with η =

1.56) and for different measures (A: Memory consumption; B:
Mean real spike frequency per rank Freal; C: Build time; D:
Simulation time excl. gather step). Boxplot B reveals that the
mean spike frequency Freal is very well matched between real
runs and the dynamic dry-run mode with η = 1.56. For
η = 1.685, the median of the relative differences in spike
frequencies amounts to approximately 12%, and for the static
dry-run mode to approximately 60% (although F = 7 Hz
like in the real runs; thus, in static mode we observe F 6=

Freal).
The differences in spike frequency have a direct impact on

simulation times (measurements exclude the gather step which is
considered separately in Section 3.1.3). For the dynamic dry-run
mode with η = 1.56, the median of the relative differences to the
real runs is close to 0%; deviations are mostly within the range
[−5%;5%]. This shows clearly that the dynamic dry-run mode
with adjusted η value can faithfully generate time measurements
which are representative for real large-scale simulations. Even
with a non-adjusted η value (η = 1.685), the median of the
relative differences amounts only to approximately 11% with
rather small variability. However, static dry runs take about
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FIGURE 6 | Statistical properties of the spike data shown in Figure 5. The six

panels in (A,B) correspond to the six panels in Figure 5. Vertical lines and

dashed lines indicate mean and standard deviation relative to mean,

respectively. (A) Distribution of population activity. For successive time intervals

of 2.5ms the spikes of the recorded neurons were taken into account in order

to determine the instantaneous population activity. Mean values are

12.0, 7.6, 7.5, 9.2, 7.8, 8.0 and standard deviations are

20.1, 6.2, 3.8, 17.9, 7.2, 4.0 spikes per second from left to right and top to

bottom panel. (B) Distribution of coefficient of variation (CV) of inter-spike

intervals (ISIs). The CV of ISIs was calculated for every neuron of the recorded

population that spiked at least three times in the 500ms interval; a percentage

of 97, 77, 76, 89, 78, 79% (left to right, top to bottom) of the neurons fulfilled

this requirement. Mean values are 0.62, 0.54, 0.57, 0.56, 0.57, 0.58 and

standard deviations are 0.23, 0.26, 0.25, 0.23, 0.27, 0.26 from left to right

and top to bottom panel.

15% more simulation time4. This is combined with rather high
variability in the range [3%;25%]. Thus, the static dry-run mode
is not as well suited as the dynamic dry-run mode for the
estimation of the overall simulation time of real runs.

Regarding memory consumption (boxplot A), the dynamic
dry-run mode comes very close to real simulations. Both for
η = 1.56 and η = 1.685 the median of the relative differences
amounts to approx. 0%; variability is approximately restricted to
the range [−0.7%;1.2%]. In static mode, differences are slightly

4The explanation for this increase in simulation time is as follows: In static dry-

run mode, the dynamics of the neurons on the single existing rank are quite

different to the real simulation. They produce actually more outgoing spikes than

in a real simulation as shown in Figure 8B. This entails that more spikes need

to be processed when updating STDP synapses; therefore the increase by 15% is

observed.

larger with a maximum of over 2%. These results show that dry
runs provide a realistic assessment of the memory consumption
of real simulations.

The same holds for build times (boxplot C). In the build phase
of NEST (creation of neurons and network wiring), exactly the
same code path is executed in dry runs and real runs. Therefore,
the expected runtime difference is 0%; the observed median of
the relative runtime differences amounts to approximately 1% in
all dry-run variations. The variability is mostly confined to the
range [−5%;5%]. This seems to be the normal variation range on
JUQUEEN when exactly the same code is executed at different
points in time. Therefore, we conclude that the simulation time
measurements with the dynamic dry-run mode and adjusted η

are already as close to real runs as achievable in practice.

3.1.3. Runtime of the Gather Step
From a single-compute-node perspective, the substantial
difference between a dry run and a real run is what happens
during the gather step in each simulation cycle: Fake spike
generation in dry runs, MPI communication in real runs. For
users of the dry-run mode, it would be unfavorable if fake spike
generation required a lot more time than MPI communication.
Figure 9 supports the claim that this is not the case, at least not
for typical simulation settings and assumptions using JUQUEEN.

The plot in Figure 9A shows how the runtime of the gather
step (accumulated over all simulation cycles) depends on the
number of (fake/real) MPI ranks M. Four curves are depicted,
the blue ones for real runs, the red ones for dynamic dry runs.
The dotted lines are for T = 8 threads per rank, the solid ones
for T = 32 threads per rank. These curves were generated with
semi-empirical performance models (Hoefler et al., 2011) of the
runtime of the gather step (a separate model for dry runs and real
runs). These models depend in turn on model-based estimations
of the send buffer size. The models were fitted to a subset of
the data from the experiments described in Section 3.1.2 (real
runs with η = 1.685 and dry runs with η = 1.56, resulting
in approximately the same mean spike frequency of F = 7 Hz;
T ≤ 32). The model fit was very good with the coefficients
of determination being in the range between R2 = 97.9% and
R2 = 99.7%. Thus, the shown curves are representative for
experimental data collected on JUQUEEN. It can be observed
that the dry-run mode is faster for T = 32, and will continue
to be so even beyond the shown limit of M = 8192 ranks. In
contrast, for T = 8 real runs are faster if the number of ranks is
larger thanM ≈ 2, 500.

As supplementary information, Figure 9B shows the runtime
of the gather step in relation to the overall runtime of the
whole simulation phase. To estimate the runtime of the whole
simulation phase, an additional performance model for the steps
“deliver events” and “update nodes” within the simulation phase
is required. Such a model was presented in Schenck et al. (2014)
and is re-used here in slightly modified form, resulting in a model
fit of R2 > 99.8% for both real and dry runs. The percentages
in Figure 9B are in the single-digit range. The largest values can
be observed for real runs with M = 8192/T = 32: For this
setting, the runtime of the gather step converges to about 7% of
the overall simulation time.
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FIGURE 7 | Each subplot shows how the spike frequency in a balanced random network depends on η (the parameter which scales the random input to the

network), comparing dynamic dry runs (red) and real runs (blue). There were 10 repetitions with different random master seeds in each experimental condition, the

error bars show the resulting standard deviations. Between subplots, M is varied as in Figure 5, and in addition the number of incoming synapses per neuron

(according to the scaling factor KS; the number of incoming synapses per neuron amounts to K = KS ∗ 11250).

The data proves in summary that the runtime of the gather
step is in the same order of magnitude for real runs and
dynamic dry runs, and that the generation of fake spikes does
not cause any systematic and considerable performance penalty.
Furthermore, the gather step contributes only by a small part to
the overall simulation time and can therefore be ignored in dry-
run measurements without the fear to miss an important piece of
information.

3.2. Use Cases
As outlined in the introduction, the development of the dry-run
mode was motivated by several use cases. Generally speaking,
the dry-run mode allows to estimate the memory footprint
and the runtime of a NEST simulation—the former very
precisely, because the memory footprint depends mainly on the
number and type of neurons and connections and the respective
infrastructure which is created in exactly the same way during
the build phase of real runs and dry runs—the latter with good
accuracy as described in Section 3.1.2.

From the perspective of a NEST user, these capabilities of the
dry-run mode are useful in the areas of cluster computing and
supercomputing for specifying simulation parameters in advance
without the need for test runs on the full machine. As NEST
simulations on supercomputers are more limited by the available
memory than they are compute-bound, the challenge for a NEST

user is to squeeze as many nodes and connections on a single
node as possible. Although a memory model for NEST exists
(Kunkel et al., 2012), adjustments are necessary in practice to get
the absolute maximum. To reach this maximum, the network size
has to be increased in an iterative way over several NEST runs,
but these runs can be dry runs, which saves a large amount of
core hours and effort.

A similar argument holds for the following use cases which
rely on estimating the runtime in advance. It is common practice
at computing centers that users only have a limited amount of
computing time at their disposal, and that it is necessary to
specify in advance how long a compute job will run on a system
at maximum. Very often, the maximum runtime can only be
guessed if new scaling sizes or simulation parameter settings
are explored. However, with the help of the dry-run mode it is
possible to get a very good estimate in advance without the need
for full-scale test runs. This is a considerable advantage from the
user perspective and helps tomanage the granted computing time
in a better way. In addition to this, measurements that are carried
out with the dry-run mode can be used to collect data for scaling
plots when writing computing time applications.

So far, use cases from the user perspective were considered.
However, estimating the memory footprint and the runtime is
also a highly valuable tool for NEST developers. The collection
of profiling data is carried out rarely at large scale because
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FIGURE 8 | Dry-run performance relative to corresponding real simulations. The relative difference between real and dry runs is computed by (ddry − dreal)/dreal with

d being the measured value.

FIGURE 9 | Runtime required for the gather step, accumulated over all simulation cycles. (A) Absolute values. (B) Relative values: Gather runtime as percentage of

the overall simulation time (incl. deliver events, update nodes, and gather events). For more details see text.

of the associated computational costs and effort—although it
is common wisdom in the HPC community that the behavior
of parallel codes depends strongly on simulation size and
the number of compute nodes involved. Some optimizations
may be very useful at small scale but cause a performance

bottleneck at large scale. The dry-run mode enables the
developers to investigate the behavior of their code at different
scales at low cost. In the following, two specific applications
of the dry-run mode from the developer perspective are
presented.
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3.2.1. Identifying Inefficiencies at Large-scale
Many performance problems in HPC applications only show up
in large-scale simulations because the resources wasted by minor
inefficiencies grow disproportionately high with simulation size.
Thus, they are barely noticeable when running on a small
number of MPI ranks, but take up a considerable amount of
computing time when running full scale on a supercomputer.
Unfortunately, profiling of large simulation runs is rarely done
because of the accompanying costs in terms of core hours and
queueing time. In this respect, the dry-run mode is of great help
because it allows the creation of performance profiles for large-
scale simulations on a single rank (excl. MPI communication).
Hence, the dry-run mode facilitates systematic profiling as
it shortens turn-around times and requires fewer data to be
processed. This shortens the development cycles for scalable
NEST code.

Already during development of the dry-run mode we
identified an inefficiency in the NEST code base that occurs only
at large scale. NEST uses a Time class to store time stamps as
Time objects. These objects allow simple conversion between
different units of time. In small-scale runs up to 32 MPI ranks,
the amount of computing time spent in the Time class was
completely negligible and never considered a problem. However,
when inspecting profiles and trace data5 which was created
with a dry run of a large simulation with several thousands
of (fake) MPI ranks, it turned out that operations on Time

objects used up a considerable amount of the computing time
during the simulation phase of NEST. By fixing this inefficiency
through changes to the Time class itself and by improving
the handling of these objects6, the required computation time
was reduced by more than 25% as shown in Figure 10. This

5Generated with HPCToolKit (Adhianto et al., 2010) via statistical profiling.
6Credit for the code changes goes to Alex Peyser from the SimLab Neuroscience at

Forschungszentrum Jülich and to WS (Peyser and Schenck, 2015).

example demonstrates the usefulness of the dry-run mode for the
development of highly scalable code.

3.2.2. Performance Modeling
The goal of performance modeling is to develop quantitative
models which predict the runtime or other performance
characteristics of an application depending on simulation
parameters and scaling size. Performance models allow
predictions for any simulation size, enable predictions
of the consequences of algorithmic changes, and can
guide code development for a large parameter and scaling
range. Robust models with good generalization ability
result from the semi-empirical approach in which the
model itself is based on algorithmic complexities which
are derived from source code or become effective during
runtime (Hoefler et al., 2011). Free model parameters are
determined by fitting the model to experimental data,
i.e., measurements obtained from simulation runs. Such a
model was developed in Schenck et al. (2014) for the runtime
of the simulation phase of NEST, based on experimental data
from JUQUEEN for a scaling size of up to 16,384 compute
nodes. Because at that time, in 2014, the dry-run mode for
the simulation phase did not yet exist, data collection for the
performance model was very expensive in terms of required
core-hours.

With the help of the dry-run mode as it is available now,
data collection for performance modeling is rather effortless and
cheap in comparison. Recently, a performance model for the
runtime of the simulation phase of NEST was created which
considerably extends the work by Schenck et al. (2014). In a full
experimental design, comprising six factors, one of them being
code variations of NEST, data for more than 5000 experimental
conditions were collected on JUQUEEN, even going beyond the
actually available maximum scaling size. Valuable insights could
be gained from the resulting performance model about future

FIGURE 10 | Performance gain for the simulation phase of NEST by changes to the Time class and to the handling of Time objects in the NEST code base. T

denotes the number of threads per MPI rank. The number of MPI ranks is varied along the x-axis. The percental changes are reported relative to the original code

version. Performance data was collected on the supercomputer JUQUEEN with a pre-release version of NEST 2.4.0, combined with an early implementation of the

dry-run mode and (conceptually) one compute node per MPI rank. A balanced random network was used as test bed in a close to maximum memory filling setting.
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code development directions7. Without the dry-run mode, such
an endeavor would not have been feasible.

4. DISCUSSION

4.1. General Remarks
We presented the dry-run mode for NEST, by which it is
possible to mimic the behavior of large-scale simulations on a
single compute node. The results show that the generated data,
such as spike patterns, memory consumption, and runtimes,
is similar to corresponding real runs, at least for the dynamic
version of the dry-run mode. Furthermore, two use cases for
developers were explained in detail: With the help of the dry-
run mode, large amounts of data for profiling and performance
modeling can be collected without the need to employ more
than one compute node for each data point. This saves huge
amounts of core hours on large clusters or supercomputers
and shortens development cycles. Furthermore, new algorithms
can be tried out without wasting precious supercomputer
resources, and the suite of automated software tests for NEST
(Eppler et al., 2009b) can be extended to cover also large-scale
simulations.

In a similar vein, users of NEST can use the dry-run mode
to estimate in advance the required memory consumption
and runtime of large-scale simulations. This helps to make
better use of the available computing resources by saving
core hours on test runs, by running full simulations with
optimal parameter settings, and by enabling users to generate
scaling data for compute-time proposals in an inexpensive
way.

It is important to note that the same cannot be achieved
by just running small simulations instead of large simulations.
The connection infrastructure generated during the build phase
of NEST differs considerably depending on simulation size,
partly qualitatively, and of course quantitatively. The subsequent
simulation phase uses these data structures for processing and
shows therefore also different runtime behavior depending on
overall simulation size.

4.2. Restrictions of the Dry-Run Mode
The dry-run mode in its current form has two restrictions.
The first restriction belongs inherently to the concept: the
non-consideration of MPI communication and synchronization,
i.e., in NEST terms the non-consideration of the gather step
during the simulation phase. This restriction is not severe as
we have shown in the results section. Generally, the gather step
is very short in real runs. In the data from the supercomputer
JUQUEEN reported in Section 3.1.2, it consumes between 1 and
8% of the overall simulation runtime. In case it is desired to
estimate the time required for the gather step as well in advance,
the dry-run mode helps at least insofar as it also predicts the
size of the send buffers used for MPI operations. In combination
with benchmarks of the MPI_Allgather operation on the
respective cluster, the time required for MPI communication can
be calculated.

7A publication about this study is in preparation.

The second restriction concerns the current focus on
balanced random networks where the inhibitory and the
excitatory subpopulation show the same firing rates and spike
characteristics (especially the same synchronization patterns).
Such network models are good-natured because their overall
spike patterns are invariant with regard to network size if
the neurons are sparsely connected (Brunel, 2000). These are
important reasons why dynamic dry runs exhibit very similar
spike patterns and frequencies as the corresponding real runs.
For NEST developers and their typical use cases the confinement
to balanced random networks is unproblematic because these
networks can be parameterized in various ways to cover most
base scenarios relevant for profiling and performance modeling
(e.g., low vs. high connectivity, low vs. high spike rate, or with
vs. without plastic synapses). However, NEST users may want
to simulate networks with rich internal structure, consisting
of many different subpopulations with varying characteristics,
resulting in complex spike patterns. For such networks it is
less clear whether a dry run will yield a simulation runtime
similar to a real run. In any case, operations during the build
phase are exactly the same between dry and real runs, and since
nearly all of the required memory is allocated during network
wiring, at least the estimation of the memory usage and of the
runtime of the build phase will be quite accurate even for complex
networks.

To get reliable estimates of simulation runtimes even for
complex structured networks via the dynamic dry-run mode, it
will be necessary to identify each subpopulation in the network
and to extrapolate the spiking activity of each subpopulation on
the single existing rank to the whole network. This is a topic
of ongoing research. Furthermore, it is planned to investigate
how the dry-run mode could be extended to cover very recent
and advanced NEST features like structural plasticity (Diaz-Pier
et al., 2016) and gap junctions (Hahne et al., 2015), which require
MPI communication outside the standard spike-communication
framework.

4.3. Applicability of the Dry-Run Concept
In conclusion, the dry-run mode is an important contribution
to the software-development framework of NEST. It facilitates
the maintenance and further development of NEST as an
open source project with a general-purpose orientation and
extreme scalability. Furthermore, the basic idea of the (dynamic)
dry-run mode is applicable to other parallel applications
in a straightforward way if the following preconditions are
fulfilled:

• The buildup of basic data structures on each rank does not
depend on actions on other ranks.

• Statistical properties of the data that is generated during the
simulation can be inferred from the single existing rank in dry-
run mode. Especially, this needs to be true for those properties
which are relevant for the simulation runtime, and which are
employed to generate fake data in place of real data.

• The replacement of real data by fake data does not change the
overall simulation dynamics in a way that considerably affects
simulation runtimes or memory consumption.
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These preconditions hold in principle for parallel
implementations of Monte Carlo methods in which each
compute node carries out an equally sized set of random
experiments which is large enough to be representative for the
whole simulated sample, or in which the impact of random events
is computed in parallel (e.g., Carvalho et al., 2000). Furthermore,
simulation algorithms based on spatial decomposition are
candidates for a dry-run mode, at least if work is distributed
equally over all compute nodes and stays (nearly) constant
throughout the simulation (e.g., during the simulation of the
dynamics of homogeneously distributed molecules with software
like “ls1 mardyn”; Niethammer et al., 2014). And last but not
least, simulators used in neuroscience like NEURON (Carnevale
and Hines, 2006; Migliore et al., 2006) or NCS (“NeoCortical
Simulator”) (Tanna, 2014) could profit from a dry-run mode
similar to the one in NEST because the basic challenges are very
similar (i.e., neurons distributed over MPI ranks, spike exchange
via MPI communication).
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