The Nested Context Model for
Hyperdocuments

Marco A. Casanova, Luiz Tucherman

Centro Cientifico Rio

IBM Brasil

P.O. Box 4624

20.001, Rio de Janeiro, RJ - Brasil
casanova@riovmsc.vnet.ibm.com

Maria Julia D. Lima, Jose L. Rangel Netto, Noemi Rodriguez,
Luiz F.G. Soares

Departamento de Informatica
Pontificia Universidade Catolica do RJ
R. Marques de S. Vicente, 225
22.453, Rio de Janeiro, RJ - Brasil

ABSTRACT

This paper describes the nested context model, a conceptual framework for the definition,
presentation and browsing of documents. The model carefully combines hypertext links
with the concept of context nodes, used to group together sets of nodes. Context nodes
can be nested to any depth and, thus, generalize the classical hierarchical organization of
documents. The nested context model also defines an abstract and flexible application
program interface that captures the idea that different applications may observe the same
node in different ways. Finally, the model offers a rich set of operations to explore the
double structure of a hyperdocument - that defined by the links and that induced by the
nesting of context nodes.

1. INTRODUCTION

We describe in this paper a conceptual framework, called the nested context model, for the
definition, presentation and browsing of documents. The definition submodel introduces
the basic concepts used to structure documents, which are that of node and link, as in the
familiar hypertext systems [4,8]. The model carefully combines hypertext links with a
special type of node, called context nodes, used to group together sets of nodes, including
context nodes. Context nodes can be nested to any depth and, thus, generalize the classical
hierarchical organization of documents [4].

The presentation and navigation submodels define an abstract and flexible application
program interface. The presentation submodel introduces the concept of the presentation
of a document node, that in some sense captures the idea that different applications may
observe the same node in different ways. It also defines the concept of state, that roughly
corresponds to a model for a set of partially retrieved documents.

Finally, the navigation submodel, as the name implies, defines the navigation primitives
and the higher-order navigation operations. It offers a rich set of operations to explore the

Hypertext '91 Proceedings 193 December 1991

double structure of a hyperdocument - that defined by the links and that induced by the
nesting of context nodes.

The concept of context node generalizes the homonym concept introduced in the Neptune
system [5], which was in turn based on some ideas from PIE [7]. However, contexts in
Neptune cannot be nested. It also generalizes Intermedia’s webs [11] and Notecard's
fileboxes [9]. Indeed, it is quite easy to implement these concepts using the context nodes
we propose here. Moreover, context nodes have their own semantics defined within the
model (in the same line as {6]).

This paper is organized as follows. Sections 2 to 4 respectively introduce the definition,
presentation and navigation submodels. Finally, section 5 contains the conclusions.

2. THE DEFINITION SUBMODEL

The definition of hyperdocuments in the nested concept model is based on two familiar
concepts, node and links. Nodes are fragments of information and /inks interconnect nodes
into networks of related nodes.

The model goes further and distinguishes two basic classes of nodes, called terminal and
context nodes, the latter being the central concept of the model. Intuitively, a terminal
node contains data whose internal structure, if any, is application dependent and will not
be part of the model. The class of terminal nodes may be specialized into other classes
(text, voice, image, etc.) as required by the applications. The class of the node determines

its attributes”, that contain user-defined information or implementation dependent
information. Independently of the class, every node N must have an attribute contents,
that describes the data associated with the node, and an attribute Id that assigns a unique
node identifier to the node. The values of these attributes will be referred to simply as the
contents and the id of the node.

A context node groups together sets of terminal or context nodes, recursively. The
concept of context node therefore permits organizing, hierarchically or not, sets of nodes
and offers a mechanism to define different views of the same document, tuned to different
applications or classes of users.

The reader is referred to section 4.1 for examples of the concepts introduced by the
following definitions.

More precisely, if N is a context node, then its contents must define a pair (N,L), where
N is a set of nodes and L is a set of links (see below for this concept) whose end nodes
belong to N. We say that N contains a node M iff M is in N and that N contains a link /
iff 1 is in L. It should be clear that a node M may be contained by more than one context
node, but every change to any of the attribute values of M will become visible through
all context nodes that contain M. However, a link is internal to a context node, that is,
links are not shared by context nodes. We also say that N recursively contains a node M
iff N contains M or N contains a context node that recursively contains M.

A context node defines a hyperdocument in our model and a hyperbase is a set of nodes H
such that, for any context node N in H, if N contains a node M, then M is in H. The
hyperbase is consistent iff no two nodes have the same id. The process of adding a
hyperdocument to a hyperbase H then consists of adding a context node H to H and,
recursively, adding to H all nodes recursively contained in H that are not already present
in H.

1
Attribute and operation names will be overloaded, that is, two classes may have the
same attribute name or operation name.

Hypertext '91 Proceedings 194 December 1991

A link basically connects two nodes. But, since the contents of a node has an internal
structure, that may be quite complex, a link also indicates, for each end node, a region
where the link is "anchored". For example, for a text node, the region can simply be a
string of characters within the text, for a 2-D image node, it can be a rectangle determined
by two pairs of coordinates.

More precisely, an anchor is a pair A=(N,s) such that N is a node and s is either:
- the null offset Null; or

- a displacement within the contents of N, if N is a terminal node, where the exact notion
of displacement depends on the class of N; or

- an anchor (M,r) such that N contains M, if N is a context node.

We call s the offser and N the base of A. We also say that a node M is present in an
anchor (V,s) iff M=N or N is a context node and M is present in s.

A link is a pair (S,D) of anchors, where S is the source anchor and D is the destination
anchor of the link. The end nodes of a link are the bases of its anchors. Thus, by defining
anchors recursively, an application may possibly traverse a link in various stages, each
one covering the next node in the offset anchor, until reaching a terminal node or a null
offset.

As previously mentioned, a link belongs to the context node that contains its end nodes.
For example, let A be a context node that contains another context node B that in turn
contains two nodes, C and D. A link connecting C and D may, in principle, be defined in
B as ((C,Null),(D ,Null)) since B contains its end nodes, C and D. This means that any
other context node A’ that also contains B will also implicitly contain the link. If one
wants this situation, he must redefine the link in A as ((B,(CNull)),(B (D Null))).

The nested context model allows different context nodes to contain the same node and
context nodes to be nested to any depth. Thus, we need a way of identifying through
which sequence of nested context nodes a given node is being observed and which links
actually touch the node from that nesting. This is captured by the notion of perspective of
a node and the notion of links visible by a node from a perspective.

A perspective for a node N is a sequence P=(N 7 ,...,Nm), with m>=1, such that ¥]=N and
Ni is contained in Ni+ 7 for i in [1,m]. Since N is implicitly given by P, we will refer to
P simply as a perspective. We say that a node M is present in P=(N I""’Nm) iff M=Ni’
for some 7 in [1,m].

Finally, we say that a link ! is visible by N from a perspective P for N iff there is a

context node M such that M is present in P, M contains / and N is present in one of the
anchors of /. We denote the set of links visible by N from P by V(P).

3. THE PRESENTATION SUBMODEL

We discuss in this section how to present a hyperdocument, which is based on the notion
of representation of a node and the notion of state, covered in two separated subsections.

3.1 THE NOTION OF REPRESENTATION

The representation of a node N reflects the values of the attributes N according to the
needs of a given application. For example, a voice node may have its contents edited
using a waveform representation or may have its contents output through an audio

Hypenrtext '91 Proceedings 195 December 1991

interface using a second representation. The act of navigation is then the way the
application traverses the nodes of a hyperdocument, creating new representations that
permit exhibiting or manipulating in any other way the attribute values of these nodes.

A representation class RC for a node class NC in general defines the attributes of the
representations in RC and the operations allowed on these representations. The minimal
requirements the core model imposes on RC are the following. First, RC must have an
operation Conv that maps NC into RC and an attribute Id, such that for any node N in
NC, if R=Conv(N) then Id(R)=Id(N). Second, R must have a second attribute, R/d, that
acts as the internal identifier of the representations. Finally, if NC is a class of terminal
nodes, RC must have an operation, ConvDispl, that converts displacements that may
occur in links. This is necessary because the value of displacements depend on NC. The
inverses of Conv and ConvDispl are not required in this paper since we will not consider
updates on representations.

The core model does, however, include a canonical representation class CC for context
nodes that defines two attributes, NodeSet and LinkSet, in addition to Id and RId. For
class CC, the mapping Conv is such that, for any context node N, Conv(N)=R iff

-Id(R) = Id(N)
- NodeSet(R) = {Id(M) / N contains M}

- LinkSet(R) = {((il,(...(ip,d)...)), (il,(...(iq,e)...))) / N contains a link
(0],(...(Mp,d)...)),(N] ,(...(Nq,e)...)) such that ik=1d(M k) for each & in [1,p], and
jk=1d(N k) for each kin [1,q]}

Thus, NodeSet(R) and LinkSet(R) represent the set of nodes and links contained in N
simply by replacing nodes by their ids. The definition of LinkSet must be revised when
more than one representation for each perspective of a node is allowed (see [3]).

The model permits defining default representation classes for the nodes in various ways:

- anode may directly indicate an associated default representation class;

- a link may have a default representation class for each node present in its anchors;

- a context node may define a default representation class for the nodes it contains;

- finally, a node class must be associated with a default representation class.

When the application selects a node, it may specify which representation class to use. If
the application does not specify any representation class, the navigation operations first
try to use that specified with the node, if any, and then the default representation class
associated with the node class. The other forms of indicating default representation classes

exist just to offer a basic selection from which the application may choose from. This is
further discussed in section 4.2.

3.2 THE NOTION OF STATE

The navigation primitives produce a set of representations with a certain structure that we
capture with the help of the notions of state and consistent state. The definitions that
follow are relative to a given hyperbase H.

Hypertext '91 Proceedings 196 December 1991

A state is a pair s=(G,P) where G is an acyclic digraph whose nodes are representations
and P is a path from a node to a sink in G. We say that P is the current perspective of s
and that the first element of P is the current representation of s.

If (R,S) is an edge of G, we say that S is a parent of R and that R is a child of S. A node
S dominates a node R in G iff there is a path from R to § in G. By carefully indicating
when the context is that of a graph or that of a hyperdocument, the double use of the term
"node" should cause no confusion.

A state s=(G,P) is consistent iff
C1. no two representations which are nodes of G have the same internal id;

C2. for every edge (R,S) in G, § must be a representation of a context node that contains
the node that R represents;

C3. for every pair of edges (R,S) and (R’,S") in G, if §=S' then R and R’ must not be
representations of the same node.

Let s=(G.,P) be a consistent state in what follows. Condition C2 implies that each path
from a representation R] in G of a node N] to a representation Rm in G of a node Nm
induces a perspective of N 1 ending on Nm' Indeed, let (R] ,...,Rm) be a path from R] to
Rm in G and define P1=(N 1""’Nm)’ where N . is the node that R . represents, for j in
[1,m]. By C2, Nj is contained in Nj+]’ for j in [1,m-1]. Hence, P

N]'

1 is a perspective of

Condition C3, together with the fact that the collection of nodes contained in a context
node is in fact a set, in turn implies that, once a representation R in G of a context node
Nm is chosen, any perspective P1= N 1""’Nm) of anode N] ending on Nm is associated
with at most one representation in G. This is easily proved by induction on m using C2

and C3. This property is justified since it simplifies the handling of links as the
navigation operations construct new representations.

Finally, let s=(G,P) be a consistent state, and R and S be representations in G. Suppose
that R represents a node N. We say that [is in LinkSet(S) is visible by R in s iff there is
a path from R to S in G and Id(N) occurs in one of the anchors of /. Suppose that the
current perspective is P=(R 7 ,...,Rm). The set of links currently visible in s (or the set of

links visible by the current representation R 1) is the set of links / in LinkSet(Rl.) visible
by R]

R] represents, from the perspective induced by P,

in s, with { is in (1,m]. This set corresponds to the links visible by N 7 the node

4. THE NAVIGATION SUBMODEL

The non-linear structure of hyperdocuments requires facilities to traverse the links, descent
through the context nodes, or explore the structure in some other form. We then address
in this section the navigation submodel, beginning with an informal example in section
4.1. Then, we define in section 4.2 the navigation primitives and discuss in section 4.3
more complex navigation operations.

4.1 AN EXAMPLE OF NAVIGATION

Consider a hyperbase H={A,B,C,D ,E}, where A and B are context nodes and C, D and E
are terminal nodes. Node A contains B and C and a link f=((B,(D,d)),(C,c)). Node B

Hypertext '91 Proceedings 197 December 1991

contains D and E and a link g=((D,Null),(E,e)). Hence, d, ¢ and e are displacements within
D, C and E, respectively. The following sequence of operations is a valid navigation over
H:

1. selection of A from the hyperbase H and creation of a representation Ra for A;

2. selection of B from the set of nodes contained in A and creation of a representation R
for B;

b

3. selection of D from the set of nodes contained in B and creation of a representation R
for D;

d

4. traversal of the link f from D to C, since f is visible from R & and creation of a
representation RC for C;

5. reversed traversal of the link f to B, using the representation R, already created;

b

6. traversal of the offset of the link ft0 D, using the representation R | already created;

d

7. traversal of the link g from D to E, since g is visible from R d and creation of a

representation Re for E.

4.2 NAVIGATION PRIMITIVES

All navigation primitives implicitly receive a state as input and, in some cases, produce a
state as output, also implicitly; when they fail, they return FALSE, otherwise they return
TRUE. A brief description of the primitives follows:

AddRepr(NODE REPRCLASS)->BOOL

This requires indicating the node (NODE) to be represented, and, optionally, the
representation class (REPRCLASS) of R. If the class is not specified, it is taken as the
default class associated with the node or with the node class, with this priority.

The current representation P is the parent of the new representation R. The new current
perspective is the old one with R concatenated to the front. If P is not a representation of
a context node that contains NODE, or if P already contains a child which is a
representation of NODE, the operation fails because it will create an inconsistent state.

CreateRepr(NODE,REPRCLASS)->BOOL

Creates a new state exactly as AddRepr, except that the new representation R is not
connected to any other representation and the new current perspective becomes the
sequence (R). The operation always succeeds.

This operation exists to create a new representation for the first node of a hyperdocument
brought into memory.

ConnectRepr(REPR)->BOOL
Creates a new state by adding the arc (REPR,C) to the current graph, where C is the

current perspective. The new current perspective is the old one with REPR concatenated
to the front. If C is not a representation of a context node that contains the node N that

Hypertext '91 Proceedings

198 December 1991

REPR represents, or if C already contains a child which is a representation of N, the
operation fails.

DeleteRepr(REPR)->BOOL

Creates a new state by deleting the representation (REPR). If REPR is connected to any
other representation or occurs in the current perspective, the operation fails.

DisconnectRepr(REPR)->BOOL

Creates a new state by deleting the arc (REPR,C), where C is the current perspective. If
no such arc exists, the operation fails.

MoveUp(REPR)->BOOL

Creates a new state that maintains the same representations as the current state, but whose
current perspective is the old one with the prefix up to, but excluding REPR, dropped.
That is, REPR becomes the current representation. If REPR does not occur in the current
perspective, the operation fails.

MoveUpOne->BOOL

Creates a new state that maintains the same representations as the current state, but whose
current perspective is the old one with the first element deleted. If the current
representation has just one element, the operation fails.

MoveToChildINODE)->BOOL

Creates a new state that maintains the same representations as the current state, but whose
current perspective is the old one with R concatenated to the front, where R is the (only
one) representation of NODE that is a child of the current representation. If R does not
exist, the operation fails.

ObtainVisibleLinks->MARKEDVISIBLELINKSSET

Returns all pairs (S,/) such that ! is in LinkSet(S) is currently visible, that is, visible by
the current representation.

SavePerspective->RIDLIST

Returns the sequence RIDLIST of internal ids of the representations that form the current
perspective.

ChangePerspective(RIDLIST)->BOOL
Creates a new state that maintains the same representations as the current state, but whose

current perspective is the sequence of representations whose internal ids form the sequence
RIDLIST.

4.3 HIGHER-LEVEL NAVIGATION MECHANISMS
The primitives describes in section 4.1 permit the definition of several higher-level

navigation mechanisms. We exemplify in this section two mechanisms that are intrinsic
to our model.

Hypertext '91 Proceedings 199 December 1991

Ascending and Descending Navigation

The nested structure of context nodes permits two forms of navigation, that we call
descending and ascending.

Ascending navigation consists of moving from a representation C of a node to a
representation of the node that contains it, within the current perspective. Assuming that
C is always the current representation, this can be achieved simply of executing
MoveOneUp.

Descending navigation is to move from a representation C of a context node M to a
representation of a node N that M contains. The operation described below assumes that C
is always the current representation.

The first step of descending navigation is to obtain the set S of nodes contained in the
context node represented by C. This is performed by calling an operation of the class to
which C belongs, as discussed in section 3. After selecting a node N from S, there are
three alternatives. The first alternative is to create new representation R for N, whose
parent is C, by calling AddRepr(N.f), where f specifies a representation class for N, or is
a null value. Then R becomes the current representation. The class f may be chosen
among the default representation associated with N, in particular that defined in the
context node that C represents. The second alternative is to set the current representation
of the state to be the representation for N that is a child of C, if one exists. This requires
executing the primitive MoveToChild(N). The third alternative is to set one of the
existing representations R of N as a child of C. This is achieved by executing
ConnectRepr(R), after selecting R, via some query mechanism, from the representations
in the current state.

Link Traversal

Link traversal is the most typical navigation in hypertext systems and requires no
preliminary comments. Using the navigation primitives, link traversal is performed as
follows.

The first step is to obtain the set of links visible by the current representation C by
invoking the primitive ObtainVisibleLinks. Recall that this operation actually returns
pairs (F f) such that fis in LinkSet(F), F is a context node in the current perspective and
the id of the node C represents occurs in one of the anchors of f. The next step is to select
one such pair (M,]) and obtain the destination anchor, (N,s) of /. By definition of link, N
must be contained in the node M represents. Once this is completed, M is set as the
current representation by calling MoveUp(M). The final step, to define a representation
for N, is exactly as that described for descending navigation. If N is a terminal node, the
displacement s is adjusted to the representation chosen by calling ConvDispl at this
point.

We conclude by observing that these two operations just illustrate how to use the
navigation primitives and by no means exhaust the list of navigation mechanisms.

5. CONCLUSIONS

We described in this paper the nested context model, which introduces a framework for the
definition, presentation and browsing of hyperdocuments. The model features context
nodes, that help overcome the disorientation problem in hypertext systems by introducing
a structuring facility for hyperdocuments which is orthogonal to links. In another
direction, the notions of representation and state offered an abstraction for the presentation
of hyperdocuments to an application. Finally, the navigation primitives capture the
essential actions for the gradual reading and browsing of hyperdocuments.

Hypertext "91 Proceedings 200 December 1991

We are currently working on an extension of the model to cover node versions and other
necessary facilities [3], and on a prototype implementation of a hypermedia system that
supports the nested context model.

REFERENCES

[1] Ahuja, S.R., Ensor, J.R. and Hom, D.N., "The Rapport Multimedia Conferencing
System", ACM SIGOIS Bulletin Vol.9, N.2/3 (April/June 1988), 1-8.

[2] Campbell, B. and Goodman, J.M., "HAM: A General Purpose Hypertext Abstract
Machine", Communications of the ACM, Vol.31, No.7 (July 1988), 856-
861.

[3] Casanova, M.A. et alli, "Version Control in the Nested Context Model for
Hyperdocuments”, Rio Scientific Center, IBM Brazil (technical report in

preparation),

[4] Conklin, J., "Hypertext: An Introduction and Survey", IEEE Computer, Vol.20, N.9
(Sept. 1987), 17-41.

[5] Delisle, N. and Schwartz, M., "Neptune: A Hypertext System for CAD
Applications”, Proc. ACM SIGMOD ‘86, Washigton, D.C. (May 1986),
132-142.

[6] Feiner, S., "Seeing the Forest for the Trees: Hierarchical Display of Hypertext
Structure”, Proc. of the Conf. on Information Systems, ACM, New York
(1988), 205-212.

[7]1 Goldstein, 1. and Bobrow, D., "A Layered Approach to Software Design”, in
Interactive Programming Environments, D, Barstow, H. Shrobe and E.
Sandewall (Eds.), McGraw-Hill, New York (1987), 387-413.

[8] Halasz, F.G., "Reflections on Notecards: Seven Issues for the Next Generation of
Hypermedia Systems”, Communications of the ACM, Vol.31, No.7 (July
1988), 836-852.

[9] Halasz, F.G., Moran, T.P. and Trigg, R.H., "Notecards in a Nutshell", Proc. of the
1987 ACM Conf. of Human Factors in Computing, Toronto, Ontario
(April 1987), 45-52.

[10] Halasz, F.G. and Schwartz, M., "The Dexter Hypertext Reference Model”, in Proc.
of the NIST Hypertext Standardization Workshop, J. Moline, D. Benigni
and J. Baronas (Eds.), (Feb. 1990), 95-133.

[11] Meyrowitz, N., "Intermedia: The architecture and construction of an object-oriented
hypermedia system and applications framework", Proc. of the Conf. on
Object-Oriented Programming Systems, Languages and Applications,
Portland, Oregon (Sept. 1986), 186-201.

[12] Poggio, A. et allii "CCWS: A Computer-Based Multimedia Information System",
IEEE Computer, Vol.18, N.10 (Oct. 1985), 92-103.

[13] Tompa, F.WM. "A Data Model for Flexible Hypertext Database Systems”, ACM
Transactions on Information Systems, Vol.7, N.1 (Jan. 1989), 85-100.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice Is given

that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1991 ACM 0-89791-461-9/91/0012/0201...$1.50

Hypertext '91 Proceedings

201 December 1991

