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Review

The Net Effect of Functional Traits on Fitness

Daniel C. Laughlin,1,*,@ Jennifer R. Gremer,2 Peter B. Adler,3 Rachel M. Mitchell,4 and Margaret M. Moore5

Generalizing the effect of traits on performance across speciesmay be achievable

if traits explain variation in population fitness. However, testing relationships

between traits and vital rates to infer effects on fitness can be misleading.

Demographic trade-offs can generate variation in vital rates that yield equal

population growth rates, thereby obscuring the net effect of traits on fitness.

To address this problem, we describe a diversity of approaches to quantify intrinsic

growth rates of plant populations, including experiments beyond range boundaries,

density-dependent population models built from long-term demographic data,

theoretical models, and methods that leverage widely available monitoring data.

Linking plant traits directly to intrinsic growth rates is a fundamental step toward

rigorous predictions of population dynamics and community assembly.

Demographic Trade-offs and Population Fitness

The alluring prospect that functional traits (see Glossary) can explain variation in species perfor-

mance has invigorated comparative functional ecology, yet identifying the traits that determine

fitness remains an important empirical challenge [1–6]. Inspired by classic evolutionary theory

that linked morphology to performance and fitness [7], ecologists have recently intensified their

search for relationships between functional traits and vital rates, but have avoided the more

challenging links to fitness [8–15]. Analyzing components of fitness in isolation is an important

step, but testing relationships between traits and vital rates to infer effects on fitness can be

misleading without considering demographic trade-offs [16–18].

We focus our discussion at the population level and define population fitness (λ) as the

growth rate of a population [19,20]. This differs from the evolutionary focus on individual-

level fitness [7,21–24], but is analogous since we aim to compare growth rates across popula-

tions as one would compare growth rates across genotypes or phenotypes in evolutionary

biology. The comparison of traits and fitness across species, not within species, is explicitly

directed at ecological rather than evolutionary scales and processes. It has been argued that

population growth rates are not the ideal performance currency to test trait-based theory,

partly because they are difficult to measure [25]. However, we focus on population growth

rates for three reasons: (i) we aim to understand the process of environmental filtering in

community assembly where it is populations that persist or go extinct in a given environment

[26,27]; (ii) recent theory suggests that traits have stronger impacts at the population level

because individual lifetime reproductive success is governed by random variation, that is,

‘luck’ [28]; and (iii) measuring lifetime reproductive success of individuals is difficult or impossible

for most long-lived species.

Functional ecologists can advance community ecology by embracing population demography

[2,4,29]. However, failure to account for trade-offs among vital rates has left a significant gap in

our understanding of the adaptive value of functional traits (Figure 1). Filling this knowledge gap

is a fundamental step toward understanding the fundamental niche of species, and forecasting

species and community responses to a rapidly changing world [1,30,31]. Our discussion draws

primarily from examples of plant demography, but the core principles apply more broadly given
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Glossary

Community assembly: process by

which species arrive, establish, persist,

increase, or decrease in abundance over

time, and go extinct within and across

environmental gradients.

Components of fitness: measures of

individual performance including survival,

growth, and reproduction; also referred to

as vital rates. The integration of fitness

components yields an estimate of total

fitness and integration of vital rates yields

an estimate of population growth rate.

Demographic trade-offs: negative

correlations between two or more vital

rates.

Dynamic adaptive landscape:

ecological framework that quantifies

how the effects of traits on population

fitness within and across species

changes across environmental

gradients. This framework extends

evolutionary models of fitness

landscapes where fitness is a function of

traits in a fixed environment.

Evolutionarily stable strategies:

strategies in a given environment that

cannot be invaded by an alternative

strategies.

Fitness: growth rate of a population,

genotype, or phenotype. We focus on

population growth rate as a measure of

the fitness of a population.

Fitness landscape: conceptual or

mathematical representation of

individual or population-level fitness as a

function of one or more phenotypic traits

or genes.

Functional traits: morphological,

physiological, or phenological attributes

of species that impact fitness indirectly

through their effects on individual

survival, growth, and reproduction.

Fundamental niche: the

environmental conditions and availability

of resources where a species can

maintain a viable population. In the

presence of competitors, the species is

further restricted to its realized niche.

Individual growth rate: rate of

expansion or contraction in size of an

individual organism over time.

Intrinsic growth rate: population

growth rate at low density, in the

absence of either intraspecific density-

dependent effects or interspecific

competition.

Invasion growth rates: population

growth rate of the focal species at low

density when growing with competing

species that are at their stochastic

equilibrium abundances.
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that birth, growth, and death are affected by phenotypic variation and environmental contexts

across the Tree of Life. In this review, we (i) illustrate how individual vital rates can be misleading

proxies for fitness, (ii) describe a diversity of approaches to quantify intrinsic growth rates as a

measure of population fitness, and (iii) explain how to empirically identify the functional traits and

environmental conditions that drive variation in population fitness.

Vital Rates Can Be Misleading Proxies for Fitness

Individual vital rates can be misleading proxies for fitness without considering demographic

trade-offs. For example, species with fast individual growth rates may exhibit low rates of

survival. If the growth–survival trade-off can generate covariation in individual growth rates

and survival rates that yield equal fitness, all else being equal (e.g., equal reproduction

rates), then individual growth rates tell us little about fitness [32,33] (Figure 1). Similarly, populations

with high survival and low reproduction could have the same fitness as populations with low

survival and high reproduction [17,34]. Consequently, if a trait is negatively related to survival,

then it may be positively related to individual growth or reproduction [21,35–37]. For example,

wood density negatively affects individual growth rates but positively affects survival rates because

faster tree diameter growth can be achieved by constructing low density wood, but this comeswith

a higher risk of damage and death frommultiple causes [11,15,38]. Consequently, the net effect of

traits on fitness is obscuredwhen one vital rate is analyzed in isolation [21]. This knowledge gap can

only be resolved by quantifying the net effect of traits on fitness (Figure 1).

Fitness is challenging to measure. Annual plant communities have long been used as model

systems for studying fitness in relation to traits because lifetime fitness and multiple generations

are relatively easy to observe in annual plants. Physiological differences among annual species

determine their fitness in response to interannual climatic variation [39–42], but concrete evidence

that functional traits predict fitness differences among long-lived species is still lacking [24,31]. It is

far more challenging to quantify fitness for long-lived species, but the effort is justified given that

they are the dominant life form on the planet.

There are several challenges posed by long-lived species. Fitness in long-lived species is driven

by rates of individual growth, survival, and reproduction throughout the entire life cycle. These

vital rates do not have equal effects on fitness and the relative importance of each may vary

across environmental conditions [43–45]. Long-lived species may rely on rare recruitment events

[46] and capturing these events can be challenging. However, fitness is often more sensitive to

variation in survival and growth than in fecundity in many long-lived species [47–49]. Individuals

of long-lived species may experience strong variation in conditions over their lifetime, whereas

annual species deal with environmental variation across generations. Trait effects on vital rates

may also change with size [50] or ontogeny [2,11,51,52]. Vital rate sensitivities quantify the

contribution of each vital rate to population growth rate [16,53] and can indicate the components

of fitness on which natural selection can act (or has acted) the strongest [49,54]. Some studies

have focused on linking traits to the most important vital rate. For example, relating traits to

survival rates for long-lived perennial plants [12] may be close to estimating effects on fitness

because survival is the most important vital rate for perennials [8,17]. But the hard truth of the

matter is that we do not know unless fitness is measured directly (Figure 1).

Population fitness (λ): finite rate of

increase of the population. This can be

directly quantified for a single time step

as Nt+1/Nt, where ‘N’ is number of

individuals and ‘t’ is time. It can also be

estimated using population models as

the average or asymptotic population

growth rate by computing the dominant

eigenvalue of the transition matrix. In this

paper, we emphasize the importance of

quantifying intrinsic growth rates to

standardize themeasure of fitness at low

densities to control for the confounding

effects of competition.

Sensitivities: partial derivatives that

quantify how vital rates affect population

growth rate. Sensitivities can be

relativized, which are called elasticities,

to reflect proportional effects on fitness.

Vital rates: rates of birth, death, and

growth of individuals, also called

demographic rates and components of

fitness.

Figure 1. Relationships Between Traits and Vital Rates Can Be Misleading Proxies for Estimating the Effect of

Traits on Fitness Without Considering Demographic Trade-offs [11,16,17,21,32,43]. Different colored symbols

represent species that exemplify different life histories: red triangles typify species such as annual plants that rely on high

reproduction rates, blue circles typify species such as short-lived perennials that rely on rapid individual growth rates, and

purple squares typify long-lived perennials that rely on high survival rates.
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A further well-known complication is that any effect of traits on fitness will depend on the environ-

mental context because variation in traits is underpinned by ecological trade-offs [21,23,29,55,56].

As a result, relationships between traits and fitness change along environmental gradients

[13,14,22,39,41,57,58]. Ignoring variation in trait-fitness relationships across environments has

hindered progress toward using traits to make general predictions about how species respond

to environmental change.

Quantify Intrinsic Growth Rates

Theory predicts that species are sorted along environmental gradients because species only occur

in sites (i) to which they can disperse, (ii) where their traits are adapted to the local conditions, and

(iii) where they maintain competitive advantage in multispecies communities [26]. We are focused

on the second step in this review, and so our emphasis is on the difficult task of quantifying the

fundamental niche. Many statistical approaches test if traits predict species occurrences and

abundances in a given environment [59–61], but analyses of observational abundance data cannot

control for the confounding effects of competition [27,40,42].

The ideal metric of population response to the environment alone is estimated when the focal

species is growing by itself at low density, which we define as the intrinsic growth rate, because

it is least affected by either intraspecific negative density dependence or interspecific competition.

Modern coexistence theory emphasizes a similar but distinct quantity, the invasion growth rate

[62–65], which is the population growth rate when competing species are at their equilibrium

abundances. Invasion growth rates will ultimately be needed to integrate species interactions

into predictions of community dynamics, but invasion growth rates are less practical to meet

our objectives because they are computed using either (i) empirical multispecies models that

are difficult to parameterize, or (ii) experiments that run long enough for establishment of a

resident community at equilibrium abundances, which could take many generations. Here we

focus on the intrinsic growth rate as a key first step to identify the net effect of traits on fitness.

We have identified several approaches to quantify population fitness that span a trade-off of

empirical rigor and logistical ease (Figure 2). Confronting trait-based theory with empirical

demographic data will yield the most transformative results. But, as pragmatists, we describe

a variety of approaches that vary in the difficulty of data collection and the precision of empirically

estimating intrinsic growth rates to galvanize progress in this field.

First, intrinsic growth rates can be observed experimentally (Figure 2A). Multiple species can be

introduced to multiple vacant sites across an environmental gradient. Demographic monitoring

of these long-lived species over time can precisely estimate intrinsic growth rates because com-

petition is experimentally controlled. Population models do not need extra parameters to account

for density dependence; it is intrinsic to the data. Models of perennial plants will still require

adequate annual transitions across the range of stages, which could be alleviated by planting a

range of ages and stages (e.g., seeds, seedlings, vegetative plants, flowering plants) from the

beginning of the experiment to start multiple cohorts simultaneously. Planting species beyond

their range boundaries provides especially robust assessments of the effects of traits on popula-

tion fitness across environmental gradients [5,66,67] because it tests whether a species can

recruit, grow, and survive outside its current range of environmental conditions. Importantly,

syntheses of transplant studies beyond the range concluded that integrative measures of fitness

were superior to individual vital rates at detecting reductions in performance beyond species

ranges [67]. Forestry, in particular, has a long tradition of common garden experiments where

multiple provenances of tree species are planted to evaluate genetic and environmental effects

on species performance [68,69]. Such common gardens are perhaps the gold standard
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[40,42,70,71], yet they are often prohibitively expensive in both time and money. We recommend

that funding agencies develop international collaborative opportunities to fund the difficult work of

establishing common gardens beyond range boundaries.

Second, intrinsic growth rates can be estimated using population models parameterized from

observational data on individuals over time (Figure 2B). Most published population models report

asymptotic population growth rates, which ignore density-dependence [53,72]. However,

density-dependent models of vital rates that incorporate the effects of population size can be

used to calculate intrinsic growth rates [53,73,74]. Integral projection models (IPMs) can be espe-

cially powerful in this context because they harness the strength of regression analysis to build

models of vital rates as functions of organism size and any other covariate, including the density

of neighbors [75]. This method requires that adequate variation in neighborhood density is

observed. Once vital rate regression models are parameterized, intrinsic growth rates can be

estimated by setting neighborhood density in the vital rate regressions to a fixed low value. This

technique statistically controls for the effects of competition [12,15], but it assumes that neighbor

density is a good proxy for resource competition [76]. Moreover, observational datasets often

lackmeasurements of population declines outside their natural range of environmental conditions

precisely because the species cannot live in those conditions. Experiments are required to identify

the environments in which populations decline. Demographic models of plants and animals have

been synthesized for widespread use [77], but we encourage new demographic datasets to be

measured across multiple species across environmental gradients.

Third, theoretical demographic models explore the consequences of ecophysiological and

demographic theory on trait optimization (Figure 2C). Game-theoretic models of fitness

landscapes implicitly account for density dependence to identify functional trait combinations

TrendsTrends inin EcologyEcology & EvolutionEvolution

Strengths

Weaknesses

Figure 2. Four Approaches to Estimate Population Fitness Span a Trade-off of Empirical Rigor and Logistical Ease, and Each Approach Exhibits

Different Strengths and Weaknesses. (A) Illustration of experimental common gardens where each species is planted and monitored in its home range and in two

additional sites beyond its range. This is the best way to observe population declines in ill-suited environments. (B) Integral Projection Models can incorporate density

dependence by using population size as a covariate in the vital rate regression models. (C) Fitness landscape resulting from an individual-based model of forest

dynamics where multiple combinations of height and leaf mass per area can stably coexist. Warm colors in this fitness landscape represent evolutionarily stable

strategies [79] (reproduced with permission). (D) Hypothetical time series of population-level data (e.g., counts, cover, or biomass) can be used to account for density de-

pendence by regressing log(Covert+1/Covert) on log(Covert), which can be used to estimate population growth rate at low density (see blue dotted arrow). (E) Multiple spe-

cies distribution models can be used simultaneously to analyze how trait-by-environment interactions affect occurrence or abundance at global scales. This method does

not analyze fitness, but it can be used to generate hypotheses about which traits are most important at global scales.
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that are evolutionarily stable strategies in a given environment. Game theory offers a rather

different approach since the relationships between traits and vital rates are embedded in the

model. Individual-based demographic models of competition for resources have been used to

predict the coexistence of dominant functional strategies in forests [78,79], and demographic

models are also being integrated into global-scale dynamic vegetation models to improve trait-

based predictions of ecosystem states and fluxes of carbon dioxide [80,81]. These computationally

rigorous approaches are located toward the middle of our trade-off of empirical rigor and logistical

ease because they are neither empirical nor easy. Theoretical demographic models do not empir-

ically estimate intrinsic growth rates of real species in real environments, but they generate testable

hypotheses and demonstrate the relevance of demography in forest assembly and global scale

vegetation dynamics.

Fourth, intrinsic growth rates can be estimated using widely available monitoring data (Figure 2D).

Rather than integrating vital rates across individuals, one can compute the annual growth rate of a

population by dividing population size in 1 year by size in the previous year (i.e., λ =Nt+1/Nt). When

studying organisms where individual genets are rarely counted, as is often the case when moni-

toring plant or coral reef communities, then cover or biomass of the population could be

substituted for population counts (i.e., λ = Covert+1/Covert). Quantifying the ratio of cover in

successive years to estimate λ has been applied to model dynamics of multiple coexisting spe-

cies [82], and this population-level data can be used to estimate density dependence and project

population growth rates at low densities [83]. Negative relationships that are fit to empirical mea-

surements of log(Covert+1/Covert) and density [i.e., log(Covert)] are indicative of negative density

dependence [48]. Intrinsic growth rate can be computed as the exponentiated value of log(λ)

when total density is low (Figure 2C). We urge caution when using this method for three reasons.

First, this approach does not account for age or size structure, which are important drivers of

population dynamics. Second, comparisons of population growth rates across species using

changes in total cover may be affected by the fact that species vary in maximum size. Third,

statistical artifacts can affect the estimates of density dependence given that Covert is in the denom-

inator of λ, and so it is important to account for census error when using this approach [76,84].

The fifth method is distinct from the others because it ignores the dynamics of populations and

examines the occurrence or abundance of species across environmental gradients (Figure 2E).

Occurrence is not fitness. Indeed, the link between intrinsic growth rate and probability of occurrence

is not even strictly positive [85,86]. Populationsmay be present at a site but theymay be experiencing

negative population growth rates, and absences of a population from a site could be driven by

dispersal limitation or competition rather than abiotic environmental filtering [27]. However, we

include the analysis of occurrence and abundance data here because we stand to gain tremen-

dous insight by analyzing large datasets of thousands of species spanning global environmen-

tal gradients. In contrast, fitness data will be limited to local and landscape scales for the

foreseeable future. Ecologists have been modeling species occurrence data for decades, but

model-based frameworks can provide strong tests to determine if trait–environment interac-

tions explain species occurrences beyond what the environment explains by itself [60,87].

Moreover, this approach can generate hypotheses that can be empirically tested in common

gardens and can potentially identify the most important traits to use in models of fitness. One

drawback is that this approach cannot account for density dependence. New techniques

that estimate metrics of colonization and survival from repeated measurements of occupancy

along transects hold promise for leveraging long-term monitoring data to estimate demo-

graphic rates [88–90]. Modeling species occurrences will without a doubt continue to be a

widely used method, but we especially encourage their application to large spatial scales

that surpass those that are currently possible for demographic models.
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Identify the Traits That Drive Intrinsic Growth Rates

The next step is to model fitness as a function of trait-by-environment interactions

[12,55,91]. This tests the dynamic adaptive landscape model to determine how the

effects of traits on population fitness across species depends on the environment [92].

The question is not whether population fitness among species varies along environmental

gradients; this has been known for centuries (Figure 3A). The question is whether traits

explain variation in population fitness (or occurrence) among species through an interaction

with the environment (Figure 3B). One can compare the empirical support for a model where

population fitness of multiple species is a function of the environment only, versus a second

model that adds traits and a trait-by-environment interaction. The strongest ecological

trade-offs will be seen when two conditions are met: the trait-by-environment interaction is

both statistically supported and the effect of the environment on fitness changes sign along

the range of the trait [12,60,87]. Computing the first partial derivative of fitness with respect

to the environment isolates the fitness response to an environmental condition as a function

of traits (Figure 3C). This model can then be used to test predictions experimentally by using

new species outside the training dataset, which is a necessary and powerful way to test the

generality of traits.

TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure 3. Identifying the Functional Traits That Drive Environmental Effects on Population FitnessWill Advance Community Ecology. (A) In this example of

five hypothetical species, the red species is adapted to the high end of the environmental gradient. But why? (B) The trait-by-environment interaction across multiple

species illustrates that the red species is adapted to the high end of the gradient because it has a low trait value. The grid of points on the horizontal surface of the 3D

figure illustrates that each species has a different trait value and that each species was measured across the full range of environmental conditions. This rigorous

sampling of species across the environmental gradient can only be perfectly accomplished in common garden experiments because species can be planted beyond

their natural range. The unimodal fitness response is shown here to reflect the classic fitness function, but linear models are often used in practice given their greater

simplicity for model estimation [12,91]. (C) The first partial derivative of fitness with respect to the environment illustrates how species with different trait values respond

to the environment differently. Note that because the trait-by-environment fitness function is unimodal in panel B, the fitness response will depend on both the trait and

the environment [12], but the general relationship would still be negative overall in this example. The horizontal error bars reflect that species exhibit random trait

variation among populations. To test whether traits can generalize to other species, this model can predict the fitness response for a ‘new species’ (represented by the

diamond) that was not included in the original model. For example, if this new species had a high trait value, the model would predict a negative response to the

environmental gradient, implying that, unlike the red species, it would exhibit high fitness at the low end of the environmental gradient.
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This model often assumes that observed traits in a given environment reflect (i) adaptation to local

conditions and (ii) the existence of an optimum trait value. Ideally, intraspecific trait variation is

measured to account for local adaptation rather than using only an average trait value

[6,29,58]. However, it is important to be aware that many processes can influence the observed

phenotype, perhaps even resulting in a maladapted phenotype. Rapidly changing environments

could cause lags in the ability of a phenotype to adapt, leading to negative consequences for

some fitness components. In these cases, the adaptive value of a trait can be over overestimated

when focusing on single fitness components [6]. Moreover, multiple trait optimums may exist in

environments where multiple functional strategies maintain species coexistence or where the

trait distribution is multimodal [93]. Comparing models that include interactions with more than

one trait to determine whether the effects of a trait on fitness in a given environment depends

on other traits is a promising line of enquiry [14,55,92].

We have focused on the three core vital rates (individual growth, survival, and reproduction) as

fundamental fitness components, though many other vital rates in the life cycle influence these

components. For example, dispersal and germination rates influence reproduction, and dispersal

limitation is a key constraint in community assembly. Traits such as seedmass and height are pre-

dictors of seed production and dispersal distance [94], which have been suggested to influence

population persistence and species ranges by constraining geographic distributions but extend-

ing elevational limits [67,95]. Greater understanding of the importance of immigration will improve

our estimates of intrinsic growth rates and the links between traits and fitness, particularly across

spatial environmental gradients (see Outstanding Questions).

Discovering how traits affect different vital rates and how these combine to drive fitness is a grand

challenge in community ecology that bridges the fields of ecophysiology and evolutionary biology

[7,23,24]. We anticipate that ecophysiological traits, such as embolism vulnerability, leaf turgor

loss point, or chlorophyll-a florescence, will exhibit the strongest mechanistic links to vital rates

given their direct link to resource use [96–98]. Determining the physiological mechanisms that

drive demographic trade-offs is an important outstanding question. We can decompose popula-

tion fitness into contributions from underlying traits by calculating vital rate elasticities as functions

of lower level parameters [99], which would allow us to quantify the extent to which demographic

trade-offs obscure the indirect effect of traits on intrinsic growth rate [7]. This synthesis would

lead to substantially new understanding of how functional traits affect survival, growth, and repro-

duction at the scale of individuals, and how these coalesce and propagate into net effects on

population fitness [11,20].

More work is needed to discover the physiological mechanisms that drive demographic trade-

offs among species. For example, seed mass is positively related to seedling establishment

but negatively related to seed production [11]. Specific leaf area is related to the ‘fast–slow’

continuum of life history strategies, where short-lived species construct cheap leaves and exhibit

fast rates of photosynthesis [100]. Two independent demographic trade-offs among tropical

forest trees were recently identified: the ‘growth–survival’ and ‘stature–recruitment’ trade-offs.

The growth–survival trade-off was related to variation in wood density and leaf economics traits,

whereas the stature–recruitment trade-off was related to height, seed mass, and leaf area [37].

Not only do traits explain demographic trade-offs, these demographic trade-offs can predict

tropical forest dynamics [101].

We have emphasized the importance of quantifying intrinsic growth rates in the absence of

competition, which is a necessary step for defining the species pool that can tolerate a given

environment and for quantifying the fundamental niche of species. There is also an urgent need
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to develop frameworks for predicting interaction networks among species using functional traits

(see Outstanding Questions). Traits can explain niche and fitness differences among interacting

annual plant species [40,42], but understanding how traits relate to invasion growth rates

among long-lived species to quantify the realized niche of species is a research frontier [62–64].

Developing mathematical links between traits and interaction coefficients to predict coexistence

dynamics for communities across environmental gradients will complement the research program

proposed here.

Concluding Remarks

Predicting fates of populations and communities using traits has often been called the ‘holy grail’ of

ecology [1,102], yet we often lack clear evidence that functional traits live up to the hype [24]. To

advance this important research agenda, we encourage studies that link traits directly to intrinsic

growth rates to test the generality of traits for predicting species performance. The complexity of

population dynamics may have hindered an earlier integration of population demography into

trait-based community ecology, but the time is right to bridge the divide. Demographic data are

increasingly available [77,103] and alternative methods for measuring population dynamics can

leverage widely available monitoring data [82,83]. Pursuing answers to these outstanding ques-

tions will advance our conceptual understanding of how the contours of fitness landscapes across

multiple species shift along environmental gradients [92]. In closing, we hearken back to an analo-

gous call for evolutionary biologists to become demographers [104]; we hope this review provokes

more functional community ecologists to become demographers to test the faculty of functional

traits.
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