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Abstract
Fungal infections represent a major global health problem that affects over a billion people and kills more
than 1.5 million individuals annually. Here we employed an integrative approach to unravel the landscape
of the human immune responses to Candida spp. by performing a meta-analysis of microarray, bulk, and
single-cell RNA-sequencing (RNASeq) of blood transcriptome data. We identi�ed across these different
studies a consistent interconnected network interplay of signaling molecules involved in both toll-like
receptor (TLR) and interferon (IFN) signaling cascades that is activated in response to different Candida
species (C. albicans, C. auris, C. glabrata, C. parapsilosis, and C. tropicalis). Among these molecules, there
are several types I IFN, indicating an overlap with the anti-viral immune responses. scRNAseq data
con�rmed that genes commonly identi�ed by the three transcriptomic methods present a cell-type
speci�c expression patterns across innate and adaptive immune cells. Thus, these data shed new lights
on the anti-candida immune response, providing putative molecular pathways for therapeutic
intervention.

Introduction
Fungal infections, including the emergence of new fungal pathogens highly resistant to antifungal drugs,
represent a major global health issue1–5. Fungal infections affect over a billion people worldwide and kill
more than 1.5 million individuals annually. Among them, invasive candidiasis (IC) is the most common
fungal disease, affecting approximately 250,000 people annually and causing more than 50,000
deaths6,7. The increasing number of patients with malignancies, inborn errors of immunity (IEI),
autoimmune diseases (receiving immunosuppressive treatment), and hematopoietic stem cell or organ
transplant recipients contributes to this high frequency of individuals susceptible to these life-threatening
fungal pathogens8,9. Thus, demanding a better understanding of molecular pathways that can be further
explored to develop new therapies to reduce morbidity and mortality caused by Candida infections10,11.

Linear and mechanistic approaches have elegantly demonstrated that the anti-fungal immune response
involves the appropriate recognition of pathogen-associated molecular patterns (PAMPs) by different
pattern recognition receptors (PRRs) expressed on the cell membrane such as C-type lectin receptors
(CLRs: dectin-1, dectin-2, and CD209), scavenger receptors (CD36), and toll-like receptors (TLRs), e.g.,
TLR2 and 4. Intracellular PRRs including RIG-I-like receptors (RLRs: melanoma differentiation-associated
protein 5 or MDA5), TLRs (e.g., TLR3 and TLR9), and NOD-like receptors (NLRs: nucleotide-binding
oligomerization domain-containing protein or NOD1/2, NOD-, LRR- and pyrin domain-containing 3 or
NLRP3) are also relevant and expressed by antigen-presenting cells and phagocytes, which bind to well-
known ligands12–14. Activation of PRRs induces several signaling events such as the canonical Nuclear
factor (NF)-κB pathway15 that trigger effector anti-fungal mechanisms such as phagocytosis, production
of reactive oxygen species (ROS)16, degranulation, and neutrophil extracellular traps (NETs)17,18.
Simultaneously,  PRRs promote the production of key in�ammatory cytokines such as tumor necrosis
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factor (TNF)-α, Interleukin (IL)-1β, IL-6, IL-17, type I Interferons (IFNs [IFN-α/β]), and the IL-12/IFN-γ
axis11,14,19,20, which shape and instruct immune cells14. 

However, the landscape of anti-fungal molecules in a holistic and integrative way remains to be provided.
To reach this goal, we performed a meta-analysis of blood transcriptome data of microarray, bulk, and
single-cell RNA-sequencing (scRNAseq) to unravel the landscape of the human immune responses to
Candida spp..  This integrative approach revealed a previous unnoted network interplay of type 1
interferon and toll-like receptor signaling in the anti-candida immune response.

Results
Multi-layered conservation of TLR and IFN signaling pathways in response to C. albicans. We surveyed
published RNAseq datasets and found a total of 8 datasets related to the human immune response to
Candida spp., being 5 of microarray, 2 bulk RNAseq, and one scRNAseq (further details in the Methods
section).  First, we explored the scRNAseq by performing over representation analysis (ORA) of
differentially expressed genes (DEGs) from innate immune (monocytes, natural killer, and plasmacytoid
dendritic cells) and adaptive cells (CD4+, CD8+, and CD19+ lymphocytes), which were assigned to
clusters as previously described21 (Fig. 1a) in resting and C. albicans conditions (Fig. 1b-c).  A total of
6722 DEGs (Suppl. Table S1) were present in these clusters when comparing C. albicans-activated to
resting cells. Enriched pathways associated with the immune response to C. albicans are shown in Fig.
1d while all enriched categories are present in Suppl. Table S2.  Among them, there are 72 and 99 DEGs
belonging to TLR and IFN (both type I and type II) signaling cascades. Among them, 62 DEGs are involved
in both TLR and IFN signaling cascades based on our enrichment analysis or as previously reported in
the literature (Suppl. Table S3).

We next asked whether the interplay between TLR and IFN signaling cascades is also induced at a
topological level. To address this issue,   performed modular gene co-expression analysis22, using the
microarray dataset from Smeekens et al11. This is the unique public dataset available containing more
than 15 samples per group (30 resting and 24 C. albicans-activated samples), required to obtain
biologically meaningful modular networks23. Modular gene co-expression analysis using CEMiTool24

identi�ed thirteen enriched co-expression modules from the total expressed genes by PBMCs (which
contain lymphocyte subpopulations, monocytes, and dendritic cells). Among these modules, 12 were
signi�cantly enriched (9 downregulated and 3 upregulated) in response to C. albicans infection (Fig. 1e).
Of note, modules M1 and M2 indicate gene co-expression and upregulation of IFN and interleukin
signaling with TLR cascades (Fig. 1f-i).

Based on the results obtained by the modular co-expression analysis, we dissected the signi�cantly
enriched pathways from differentially expressed genes (DEGs) induced by C. albicans11. In agreement
with the topological results obtained using CEMiTool, ORA of DEGs using the ClusterPro�ler tool25

pinpointed different clusters related to the activation of the TLR and IFN signaling cascades (Suppl. Fig.
1a-b). The relationship between the 30 most enriched pathways and their associated genes is shown in a
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network view (Suppl. Fig. 1c) while the entire list of all enriched pathways is summarized in Suppl. Table
S4. Type I IFN signaling was the most signi�cant pathway modulated by C. albicans, as previously
reported by Smeekens et al.11 and as recently characterized by Bruno et al. (2021)26. Furthermore, C.
albicans activation signi�cantly enriched several TLR signaling events such as TLR4, TLR3, TLR7/8, and
TLR9 as well as MyD88/TIR-domain-containing adapter-inducing interferon-β (TRIF)/TIR Domain
Containing Adaptor Protein (TIRAP) cascades, and TRAF6-mediated NF-κB activation. ORA also indicated
that C. albicans activates chemokine (G protein-coupled receptors [GPCR] ligand binding) and cytokine
signaling pathways (IL-10, IL-3 and IL4), IFN-α/β signaling, Interferon-stimulated gene 15 (ISG15) antiviral
mechanism, TNF Receptor Associated Factor 3 (TRAF3)-dependent IRF activation, DExD/H-Box Helicase
58 (DDX58)/Interferon Induced with Helicase C Domain 1 (IFIH1)-mediated induction of IFN-α/β, and
regulation of type I and II IFN among the IFN signaling events (Suppl. Fig 1a and c; Suppl. Table S4). This
observation agrees with the studies performed by Jaeger et al.27, which characterized in detail the
relevance of IFIH1 (MDA5) in the anti-candida immune response.

C. albicans infection activates common TLR- and IFN-associated genes in peripheral blood leukocytes 

We further investigated which DEGs and signaling pathways are consistently activated by C. albicans in
peripheral blood leukocytes such as PBMCs (studies from  Smeekens et al.11 and Bruno et al.28) and
peripheral whole blood cells (WBCs, studies from Dix et al.29 and Sieber & Kämmer et al.30,31) throughout
all publicly available datasets. WBCs contain PBMCs (lymphocytes 20-45% and monocytes 2-10%) and
granulocytes (neutrophils: 50-70%; basophils: 0-1%; and eosinophils: 1-5%)32. A meta-analysis of WBCs
and PBMCs gene expression datasets using the P-value combination method revealed 44 commonly
activated DEGs (40 upregulated and 4 downregulated) (Fig 2a, Suppl. Table S5). According to the cell
population, these DEGs form well-de�ned hierarchical clusters, i.e., PBMCs datasets present a closer
expression pattern among them and WBCs datasets, when we compare both regulation and signi�cance
(Fig 2b). Enrichment analyses using EnrichR of these 44 genes revealed 87 signi�cantly affected
pathways (Suppl. Table S6), including TLR and IFN-α/β signaling pathways (Fig. 2c). Furthermore, these
44 DEGs also enrich other related interleukin signaling pathways such as JAK-STAT, IL-12, IL-17, IL-23,
TNF, and chemokines (GPCR ligand binding) and PRRs, including RIG-I like receptor and NOD signaling.
Multi-study Factor Analysis of eligible33 datasets (WBCs: Dix et al.29 and PBMCs: Smeekens et al.11);
those with the minimal number of samples required for this analysis) identi�ed two common latent
factors with high loadings, while speci�c latent factors showed low loadings across these studies. Thus,
strengthening the biological relevance of these 44 common genes (Fig. 2d, Suppl. Table S7).

C. albicans activates common TLR and IFN signaling pathways across different layers of immunity

Subsequently, we added monocyte-derived dendritic cells (moDCs) studies (Dix et al., Rizzetto et al., and
Rizzetto et al.)34–36 into our integrative analysis. moDCs are known to be essential players of anti-fungal
immunity, bridging the immune system's innate and adaptive arms. We searched for genes commonly
regulated by C. albicans in transcriptomes of WBCs, PBMCs, and moDCs, in resting or C. albicans
activation conditions. Intersection analyses performed according to cell population identi�ed 123, 223,
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and 57 common DEGs among WBCs, PBMCs, and moDCs datasets, respectively (Fig. 3a-c). Except for 5
genes (RIN2, RGL1, MARCKS, FNIP2, and TLR7) commonly differentially expressed among the PBMC
studies, which were upregulated in the dataset from Smeekens et al.11 and downregulated in the Bruno et
al.28 dataset, all other common DEGs were consistently up- or down-regulated across the studies
investigating the same cell population (Suppl. Table S9).

However, only 2 common DEGs were present across all seven datasets (Fig. 3d), which by themselves do
not signi�cantly enrich signaling pathways. We then asked if DEGs from each dataset enrich common
signaling biological processes among all studies. Gene Ontology (GO) analysis using ClusterPro�ler
analysis revealed 173 common biological processes (Suppl. Table S8). We found several
molecules/pathways essential for the anti-fungal immune response12.  Among them is a cluster of IFN-γ,
and NF-kB signaling, and a previously described overlap with the immune response to virus11 (Fig. 3e).
This latter has been mechanistically characterized by Bourgeois et al.37. Additional ORA of DEGs involved
in this cluster found signi�cant enrichment of signaling cascades of single TLRs (TLR2, TLR3, TLR4,
TLR5, TLR9, TLR9, and TLR10), TLR heterodimers (TLR1/TLR2, TLR2/TLR6, TLR7/8), and TLR adapter
molecules (MyD88/TIRAP, TRAF6, TRIF) as well as several interleukin signaling pathways such as IL-1, IL-
4/IL-13, IL-6, IL-10, IL-17, and IFN-α/β (Fig. 3f). We found 1096 DEGs (Suppl. Table S11) affecting
common biological processes among WBCs, PBMCs and moDCs. Fig. 3g shows the interactome
obtained from some of these 1096 DEGs and enriched signaling cascades (Suppl. Table S12), thus
highlighting the association of TLR- and IFN-signaling cascades that were consistently enriched during
our analyses. These 1096 DEGs also enrich other PRR and Interleukin signaling pathways such as CLRs
(dectin-1), NLRs (NOD1/2), pro- (IL-1, IL6, IL-17, IL-12), anti-in�ammatory (IL-10), and T helper 2 (IL-4 and
IL-13) cytokines. This immunological balance between a pro-and anti-in�ammatory event is crucial for
properly controlling fungal infections while maintaining immune homeostasis38,39.

C. albicans infection increases the correlation between TLR- and IFN-associated genes

After verifying TLR and type I and II IFN signaling cascades' consistency, we assessed the degree of
association between these two variables during the immune response to C. albicans. Due to the minimum
sample size requirement40, we selected TLR and IFN-associated genes present in the PBMCs
transcriptome data from Smeekens et al.11. This dataset contains 45 and 14 TLR- and IFN-associated
DEGs modulated by C. albicans compared to the resting group. C. albicans infection increased mainly
positive correlations between TLR- and IFN-associated DEGs (Fig. 4a-b). We performed Canonical
Correlation Analysis (CCA) to further assess the association's strength between TLR and IFN DEGs. CCA
is a generic parametric model used to quantify relationships between two groups of interrelated and
interdependent variables41. This approach unveiled a pair of canonical variates (x-CV1 and y-CV1),
highlighting the strong association between most of TLR - and IFN -associated DEGs in both resting and
C. albicans-infected PBMCs (Fig. 4c), although they are able to stratify these conditions (Fig. 4d-e).
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The interplay between TLR and IFN signaling pathways is conserved in response to non-albicans candida
species

We asked if only C. albicans induces the association between TLR- and IFN-associated genes or other
non-albicans candida species, such as C. glabrata, C. parapsilosis, C. tropicalis, and also the multidrug-
resistant C. auris28,42. To address this issue, we used the public dataset from Sieber & Kämmer et al.30,31.
Intersection analyses performed with TLR- and IFN-associated DEGs from this dataset revealed 12 and
19 common DEGs, respectively, upon activation by the different Candida species. Furthermore, these
DEGs are involved in several pathways related to both TLR and IFN signaling pathways (Fig. 5a-b, Suppl.
Table S13).

We also asked whether this interplay between TLR and IFN signaling pathways is also involved in
response to the multidrug-resistant  C. auris. Thus, we explored the  unique publicly available dataset
analyzing the immune response to C. auris and C. albicans (Bruno et al.28). Similar to C. albicans
activation, ORA of DEGs induced by C. auris included TLR and IFN signaling cascades among the 30
most enriched pathways (Suppl. Fig. 2a-b). C. albicans and C. auris similarly modulated DEGs' levels
involved in TLR signaling, including NF-κB1, NF-κB2, JUN, and DUSP4, as well as IFN signaling such as
IRFs, GBPs, SOCS1, ISG20, TRIM, and IFIT3 (Fig. 5c). When we compared the DEGs induced by C. auris
with those enriching common pathways among all datasets (1096 DEGs, Suppl. Table S11) assessing
the immune response to C. albicans, we identi�ed 237 common DEGs (Fig. 5d). ORA of these common
DEGs indicates that the interplay between TLR and IFN signaling cascades is a consistent immunologic
feature in response to these two Candida species (Fig. 5e).

Inborn errors of immunity (IEI) corroborate the interplay between TLR and IFN signaling cascades 

Finally, we aimed to evaluate the potential clinical and translational relevance of the TLR- and IFN-
associated genes and molecular pathways consistently modulated by Candida. Therefore, we searched
for IEI associated genes that are known to increase human susceptibility to both systemic and
mucocutaneous candidiasis as described by Tangye et al.43. For this analysis we only include mutations,
but not single-nucleotide polymorphisms (SNPs) associated with susceptibility to candida infections.
Hence, despite Jaeger et al.27 have characterized that SNPs in MDA5 are associated with candida,
mutation in this gene have been so far reported as an inborn error of immunity associated with increased
susceptibility to recurrent viral infections43. Nonetheless, this fact reinforces type I interferon’s consistent
role in the anti-candida immune response, indicating that patients with increase susceptibility to Candida
spp. need to be screened for mutations in MDA5.

So far, mutations in 100 genes known to beassociated with IEI have been identi�ed to increased
susceptibility to candidiasis and often other clinical manifestations (Suppl. Table S16). We compared
them with the 1096 genes (Suppl. Table S11, i.e., those enriching the common biological processes
activated by C. albicans (Fig. 3e). These 1096 genes encode molecules present in different compartments
such as extracellular regions, organelles, and nuclei, forming macromolecular complexes.  Together, they
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form a highly interconnected physical protein-protein interaction network (Fig. 6a), which contains several
hubs44 (Fig. 6b), de�ned as those having more than or equal to 200 interaction partners. Of note, 34
genes associated with IEI are also present across the studies. Meanwhile, although 66 genes associated
with IEI are not identi�ed in the datasets, these genes are highly connected with the other DEGs in this
network. Furthermore, the 1096 DEGs mostly contain Type I and II IFN- associated genes, 868 in total (Fig.
6c, Suppl. Table S14).

The 34 IEI associated genes present in this network underly 7 groups of IEI including congenital defects
of phagocytes, defects of intrinsic and innate immunity, predominantly antibody de�ciencies, and
diseases of immune dysregulation, as de�ned by the International Union of Immunological Societies
Expert Committee(IUIS)43 (Suppl. Fig. 3a). Notably, among the hubs are STAT1, STAT3, NFKBIA (IκBa),
and NFKB1, which are well known to be associated with TLR and IFN signaling pathways45–50. ORA of
these 34 genes indicates that in addition to dectin-151 and NLRs signaling, they mostly enrich both type I
and II IFN and several TLR signaling pathways (TLR1/2, TLR2/6, MyD88, and TRAF6-mediated NF-κB
activation) (Suppl. Fig. 3b-c).

Common TLR-and IFN-associated DEGs and signaling pathways across microarray, bulk, and single-cell
RNA-seq datasets

Finally, we revisited the scRNAseq data and found that 11 TLR- and 23 IFN-associated DEGs are
also among those WBCs, PBMCs and moDCs DEGs identi�ed by microarray and bulk RNAseq
datasets (Suppl. Table S15). Thus, indicating that the network interplay of TLR- and IFN-associated DEGs
are not a particular feature of a speci�c leukocyte cell population since C. albicans systemically activated
this network throughout the different innate (monocytes, natural killer, and plasmacytoid dendritic cells)
and adaptive cells (CD4+, CD8+, and CD19+ lymphocytes) identi�ed by the scRNAseq dataset. Fig. 7a-b
illustrate these 34 common genes across the leukocytes subpopulations and those present in the WBCs,
PBMCs, and moDCs datasets (Fig. 2a-c). Hierarchical clustering of common enriched pathways across
the cell subpopulations identi�ed by scRNAseq showed a similar up-regulation pattern of TLR- and IFN-
associated signaling pathways, forming clusters (Fig. 7c), as seen by microarray and bulk RNAseq. Taken
together, these data strongly support the immunobiological relevance of the interplay between TLR and
IFN signaling cascades, as previously described in the literature50,103–109(Fig. 8).

Discussion
The association between PRR activation and cytokine production by immune cells is crucial for an
adequate immune response against pathogens and has been abundantly investigated by linear
approaches or strategies designed to identify the anti-fungal transcriptomic signature11,28,52,53. For
instance, several immunologic molecules and pathways such as those triggered by TLR and IFN, which
induce the generation of T cell subpopulations (e.g., T helper 1 [Th1], Th17, and T regulatory [T reg] cells)
have been successfully characterized by individual studies and mechanistic approaches14. Our systems
immunology approach integrates dispersed transcriptomic studies that investigated the anti-candida
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immune response, highlighting the consistency of the crosstalk between PRRs (e.g., CLRs, TLRs, and
NLRs) and type I and type II interferons as well as cytokine (e.g., TNF, and IL-10) cascades previously
reported37,54–60. Besides, we show a consistent overlap between the antiviral and antifungal immune
responses, which supports the previously reported pivotal role of IFN type I in the immune response
against C. albicans11.

Of note, recent reports suggest that the Candida-speci�c induction of type I IFN responses is not only
limited to professional immune cells since in vivo studies con�rm the role of type I IFN in epithelial host
defense against C. albicans61,62. In agreement, a transcriptional pro�ling study shows that the type I IFN
response is also induced by vaginal epithelial cells in response to a variety of candida species63.
However, while the type I IFN response showed a protective role at the early stages of infection, opposite
effects (tissue damage) were observed at the later stages. This aligns with several studies showing that
IFNs may play bene�cial or detrimental roles in the host defense against candidiasis. I.e., while these
cytokines are essential to control the development of severe candida infections by promoting the
in�ammatory action of phagocytic cells (monocytes and neutrophils), the uncontrol activation of these
cells by IFNs during sepsis may contribute to fatal tissue damage64–67. Therefore, understanding the
TLR-IFN network during different timepoints of candida infection will provide valuable insights for the
clinical management of patients.

It has been suggested that different TLRs synergistically activate immune cells to, for instance, induce
the expression of several proin�ammatory molecules through the cooperation of NF-κB, IRF, STAT, MAPK,
ITAM, and PI3K signaling pathways68–70. On the one hand, TLR-induced NF-κB signaling promotes the
production of several key cytokines including IFNs that activate the STAT1-mediated signaling
pathway71. On the other hand, IFN-γ increases the expression of genes encoding TLRs72–75. IFNs also
potentiate TLR-induced gene transcription by creating a primed chromatin environment by histone
acetylation that allows sustained occupancy of the` transcription factors STAT1 and IRF-1 at promotors
and enhancers at the TNF, IL-6, and IL12B loci53. Thus, our phenomenological study con�rms these
previously reported mechanistic studies and provides new insights into the molecular network of TLR and
IFN signaling pathways in anti-Candida immune response. These networks also need to be investigated
in other mycoses (paracoccidioidomycosis, histoplasmosis, and cryptococcosis) and other neglected
diseases (Dengue, Zika, leishmaniasis, and Chagas disease) occurring in developing countries76. The
TLR and IFN interactome involve more complex events than previously thought, demanding further
bottom-up and top-down systems immunology investigations.

Our conclusions are based on the integration of publicly available human transcriptomes that identi�ed
common DEGs, and biological processes and signaling pathways consistently modulated across several
leukocyte subpopulations in response to fungal pathogens (Candida spp.). Among these DEGs, we
highlight those involved in IFN-α/β (e.g., ISGs, IRFs, SOCS, and GBPs), TLR3,4,7/8,9, and TRAF-mediated
NF-κB signaling cascades. The correlation levels of DEGs involved in these signature clusters increased
upon stimulation with C. albicans. Of note, among the consistently identi�ed DEGs are those previously
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associated with IEI that increase the host susceptibility to fungal infections such as those causing
chronic mucocutaneous candidiasis. Furthermore, these DEGs are also involved with immunological
pathways related to the development of IEI phenocopies such as those targeted by anti-IL-17 or anti-
IL17RA autoantibodies,resulting in increased susceptibility to Candida spp. infections. Because the
outcome of fungal infections depends primarily on the host immune response, it is most relevant to
review those IEIs that predispose to Candida infections14,52. IEIs represent an essential research �eld that
has been most useful for investigating  human susceptibility models to infection, often revealing the non-
redundant role of genes involved in immunologic homeostasis77–79. Of the 416 molecular de�ned IEI
recently summarized by the expert committee of the IUIS, more than 20 syndromes were recognized to be
associated with susceptibility to fungal infections43. This list of genes associated with increased risk of
fungal infections includes genes regulating signaling via the IL-2 receptor, NF-kB activation, IFN induced
signaling, activation of STATs, and TLR signaling. Thus, these observations support the relevance of
the interactome and interplay events characterized by our analysis, increasing the understanding of
consistent immunologic pathways essential for the immune response to Candida infections.

However, our manuscript has some limitations that need to be considered. For instance, the studies did
not use the same C. albicans strains, timepoint of in vitro stimulation, multiplicity of infection (MOI), heat-
killed/inactivated or alive organism, and form. Thus, these factors may differently affect the host
immune response80,81, such as in the case of dataset GSE15491128, which uses a different C. albicans
strain (CWZ10061110) that only induced a robust transcriptional change after 24 hours of stimulation. It
will be important that future studies address the impact of these factors on transcriptional dynamics in
response to Candida pathogens. On the other hand, the fact that we found the activation of a network
between interferon and toll-like receptor signaling across several datasets indicates that these
interactions re�ect an important crosstalk mechanism during the anti-candida immune response.
Furthermore, only a few datasets related to Candida spp. are available compared with the large amount
of data investigating other pathogens, which reinforces the need for more studies related to fungal
infections.

Altogether, our work provides a systems immunology view of the interactome of anti-fungal molecules,
revealing a consistent network interplay between TLR and IFN signaling pathways in response to Candida
spp.. This study also indicates new biomarkers and provides novel insights into the systemic
immunological mechanism against fungal infections. Future investigations dissecting this interplay will
pave the way for new immunotherapy approaches to reduce the high mortalitycaused by fungal
infections. Finally, our study indicates that the exploration of functional genomic approaches by applying
systems immunology methods to investigate IEI will provide new opportunities to further understand the
immune system in natura.

Online Methods
METHODS 
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Datasets and curation

We performed an integrative analysis by searching on NCBI GEO database82 and ArrayExpress
database83, to identify publicly available gene expression data of infection by C. albicans, C. auris, C.
glabrata, C. parapsilosis, and C. tropicalis in whole blood, PBMCs, and moDCs. This search comprised
studies published between March 2010 and July 2020. Since transcriptome datasets from patients with
candidiasis were not publicly available we consider as criteria for inclusion: (1) gene expression data of
whole blood, PBMCs, and moDCs of in vitro infection with C. albicans; (2) studies composed of at least 2
samples per group; (3) the inclusion of control groups for comparison; (4) all gene expression analysis
platforms were considered; and (5) only studies that have provided the transcriptome data were included
for the integrative analyses. Our exclusion criteria were (1) non-human samples, (2) treatment before
molecular genetic analysis, and (3) review studies. RNAseq and MicroArray studies were included in our
integrative analysis, �ve studies were retrieved from the NCBI GEO database82 (GSE6508829 and
GSE11418030, GSE4260611, GSE15491128, and  GSE7796934) and two from ArrayExpress database83 (E-
MTAB-13535, E-MTAB-75136). Also, a single-cell RNAseq study was included84. Information about
samples identi�cation and information can be found on Suppl. Table S17 and S18.

Single-cell RNASeq analysis

We obtained the Seurat Object containing the scRNAseq data from De Vries et al. (2020)84, which was
deposited in the single-cell eQTLGen Consortium database (https://eqtlgen.org/candida.html). We
followed the default Seurat pipeline (https://satijalab.org/seurat/articles/pbmc3k_tutorial.html) as
previously described by Stuart et al.85 to perform differential expression analysis and data visualization
(UMAP, dotplot, and heatmap).

Differential Expression Analysis of bulk RNAseq and microarray data

To characterize the immunological signature from the global transcriptional pro�les in infection by C.
albicans, read counts of each RNAseq study were transformed (log2 count per million), and
NetworkAnalyst 3.0 webtool (https://www.networkanalyst.ca/)86 was used to perform differential
expression analysis, applying DESeq2 pipeline. The microarray studies were analyzed through GEO2R
web application87, available at http://www.ncbi.nlm.nih.gov/geo/geo2r/, using limma-voom pipeline88.
To select the up and downregulated genes between C. albicans infection and the normal group, we used
the statistical cutoffs of log2 fold-change > 1 (upregulated) or < -1 (downregulated) and adjusted p-value
< 0.05.

Analysis of Gene Co-Expression Modules

We selected the dataset GSE42606 to analyze the gene co-expression modules with the R-package
CEMiTool 1.12.2 using default parameters24.

Enrichment Analysis and Data Visualization     

https://eqtlgen.org/candida.html
https://www.networkanalyst.ca/
http://www.ncbi.nlm.nih.gov/geo/geo2r/
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We used the differentially expressed genes (DEGs) to identify enriched ontology terms. The pathways and
the biological processes were identi�ed through an Over-representation Analysis (ORA) and EnrichR89,
and the signi�cant enriched immunological terms were generated according to adjusted p-value < 0.05.
The Upset and Venn Graphs demonstrating the intersections and comparisons between common DEGs
among the datasets were generated through the webtool Intervene90 and Bioinformatics & Evolutionary
Genomics (http://bioinformatics.psb.ugent.be/webtools/Venn/). We plotted the set of genes shared
between the dataset in bubble-based heat maps, applying One minus cosine similarity through the
webtool Morpheus (https://software.broadinstitute.org/morpheus/)91. We used ClusterPro�ler25 to obtain
dot plots of enriched terms associated with Candida spp.. ClusterPro�ler and ORA, were performed on R
software version 4.0.2 (https://www.r-project.org/index.html), through the packages DOSE, enrichplot,
reactomePA, and clusterpro�ler25. The GOplot was plotted using the R packages unikn, circlize, and
GOplot92. The statistical graphs were constructed using the functionalities of the ggplot2 package93. We
represented the shared DEGs between different fungal infections (C. albicans and C. auris) through
circular heatmaps, using the R packages circlize and ComplexHeatmap94.

Correlation Analysis 

We used the GSE42606 dataset to perform the correlation analysis between genes associated with TLRs
as well as Type I and II IFN signaling cascades. The correlation matrices were generated with the webtool
Intervene90 (https://intervene.readthedocs.io/en/latest/index.html), using Pearson coe�cient. The
Canonical Correlation Analysis (CCA)95 was applied to investigate patterns of association between IFN
and TLR genes from the same dataset. The CCA was performed on R software version 4.0.2
(https://www.r-project.org/index.html), through the packages CCA, and whitening95. Principal Component
Analysis (PCA) analysis was built using R functions prcomp and princomp, through factoextra package.

Molecular Network 

Networks of related pathways to fungal infection immune responses and physical protein-protein
interaction (PPI) networks of DEGs found across all datasets were annotated, analyzed and visualized
using NAViGaTOR 3.0,1496. Node color represents Gene Ontology cellular component as per legend. DEGs
were used as input into Integrated Interactions Database (IID version 2020-05;
http://ophid.utoronto.ca/iid)97,98 to identify direct physical protein interactions. Networks were exported
in SVG �le format, and �nalized in Adobe Illustrator 2021.

Multi-study Factor Analysis (MSFA)

MSFA is a generalized version of factor analysis that allows for the joint analysis of multiple studies.
MSFA estimates shared factors common to all studies, as well as factors speci�c to individual studies.
Estimation of parameters for the MSFA model can be computed using either a frequentist or a Bayesian
approach. Compared with the frequentist analysis, the Bayesian offers two major advantages: 1- it
provides  better-de�ned factors, and 2- it chooses the dimension of the common and study-speci�c

http://bioinformatics.psb.ugent.be/webtools/Venn/
https://software.broadinstitute.org/morpheus/
https://www.r-project.org/index.html
https://intervene.readthedocs.io/en/latest/index.html
https://www.r-project.org/index.html
http://ophid.utoronto.ca/iid
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factors through a practical and useful approach. We adopt the Bayesian multi-study99, for the inferential
analysis to identify -common and study-speci�c factors14,33,100 shared by GSE65088 and GSE42606. The
Bayesian MSFA considers all data at once in an integrated approach, estimating parameters by
maximum-likelihood analysis101.

Interferome Analysis

The identi�cation of interferome genes was performed with Interferome V2.01
(http://www.interferome.org/interferome/home.jspx).

Single-cell RNA-seq differential expression analysis

Seurat package was used to obtain the DEGs between the different cell types under the conditions of
infection by C. albicans and resting cells. Enrichment of DEGs by cell group and by total DEGs was done
according to the described for ClusterPro�ler package.

Figures layout edition

The layout edition of �gures, such as proportional Venn graphs, was made using CorelDraw 2019
(https://www.coreldraw.com/br/pages/coreldraw-2019/).

Code Availability

R codes used in this work are available
athttps://github.com/ranieri131/SalgadoRC_CANDIDA_IMMUNE_RESPONSE_2021

Data availability

The published transcriptome datasets can be found in the GEO and Array Express databases (IDs.
GSE65088, GSE114180, GSE42606, GSE154911, GSE77969, E-MTAB-135, E-MTAB-751). Single-cell data
is available as Seurat Object on doi.org/10.1371/journal.ppat.1008408.
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Figure 1

Multi-layered induction of TLR and IFN signaling pathways in response to C. albicans. a, UMAP
visualization of scRNAseq pro�les colored according to cell clusters. b, c, UMAP of resting and C.
albicans-activated cells groups. DEGs, Differentially Expressed Genes; IFN, Interferon; ORA, Over
representation analysis; scRNAseq, single-cell RNA sequencing; TLR, Toll-like Receptor; UMAP, Uniform
Manifold Approximation and Projection. d, Dot plot showing pathways associated with immune response



Page 23/35

to C. albicans, obtained by ORA of DEGs. e, Co-expression modules signi�cantly enriched (M1-M11, and
M13) in PBMCs (resting n= 30; C. albicans infected n= 24; dataset GSE42606). f and g Network
representation of M1 and M2 with hubs (most connected genes) colored based on co-expression (blue
color), co-expressed and interactions (green color), or only interactions (dark-red color). h and i,
Enrichment representation obtained by modular genes co-expression in M1 and M2 showing signi�cantly
(-Log10 transformed adjusted p-value) enriched signaling pathways. IFN, Interferon; TLR, Toll-like
Receptor.
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Figure 2

C. albicans activates common TLR- and IFN-associated genes in peripheral blood leukocytes. a, The
upset plot displays the number (set size) of DEGs present in each dataset (y-axis: WBCs, GSE65088, and
GSE114180; PBMCs: GSE42606 and GSE154911) and their intersections. Black bubbles, present in the
rows, mark the dataset which refers to the amount present in the blue columns, with intersections
between two or more groups being shown. b, Hierarchical clustering of the 44 common DEGs
demonstrating gene expression patterns across the different studies. The size and color of circles
correspond to -Log10 transformed adjusted p-value and Log2 fold change (Log2FC), respectively. Blue
represents downregulated and red indicates up-regulated DEGs. The cut-off applied to identify the
down-/upregulated genes was Log2FC < -1/> 1 and adjusted p-value < 0.05. Rows and columns were
clustered based on cosine similarity between Log2FC values. c, GOplot of selected immunological
pathways and associated gene. d, Heatmap of common and speci�c latent factors across the studies.
Heatmaps contain genes presenting positive and negative loadings ranging from -1 to 1. DEGs,
Differentially Expressed Genes; PBMCs, Peripheral Blood Mononuclear Cells; WBCs, White Blood Cells.
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Figure 3

C. albicans activate common TLR and IFN signaling pathways across different leukocyte populations. a-
c, Proportional Venn diagrams displaying the number of DEGs present in each dataset grouped by cell
type and their intersections: datasets of WBCs (a), PBMCs (b), and moDCs (c). d, The intersection plot
highlights the number of common DEGs across different cell groups (Venn diagrams were created using
CorelDraw2019, available at coreldraw.com). e, Hierarchical clustering exhibiting the pathways enriching
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common biological processes across the studies (Suppl. Table S10). f, Further analysis of TLR- and IFN-
associated pathways. In both heatmaps the size of circles corresponds to adjusted p-value transformed
into -Log10 and color intensity indicates the number of genes in each biological process and pathway
across the studies, respectively. g, Network demonstrating the interactions between TLR- and IFN-
associated DEGs/signaling pathways with other molecules and signaling cascades classically
associated with the antifungal immune responses. Enrichment analysis was performed using Reactome.
Circular nodes represent pathways and their size denote the number of genes enriching the pathways.
Colored squares represent the cellular location of genes. Genes interacting with more than 5 pathways
are named. The interaction network was build using the NAViGaTOR software. DEGs, Differentially
Expressed Genes; moDCs, Monocyte-Derived Dendritic Cells; IFN, Interferon; PBMCs, Peripheral Blood
Mononuclear Cells; TLR, Toll-like Receptor; WBCs, White Blood Cells.
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Figure 4

Relationship between molecules associated with TLR and IFN signaling cascades. a,b, Correloplot of
DEGs associated with TLR and IFN signaling cascades in PBMCs (GSE42606) in the a, absence or b,
presence of C. albicans. Histograms of Pearson’s correlation coe�cient, containing negative and positive
correlation from 1 to -1, respectively. c, Estimated correlations of TLR - and IFN -associated DEGs versus
their corresponding �rst 2 canonical variates (x-CV1 and x-CV2, for IFN- associated genes; y-CV1 and y-
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CV2 for TLR-associated genes). Grey colored variables (with names omitted) are those with correlation
coe�cient ≤0.7 in its two corresponding canonical variates. Inner dotted lines limit the canonical
correlation coe�cient between -0.7 and 0.7, while outer dotted lines between -1 and 1. d, e, PCA was used
for strati�cation analysis of resting and C. albicans infected PBMCs based on TLR- and IFN-associated
DEGs. d, Of note, individuals with similar expression values for these DEGs are grouped together; e,
Variables with positive correlation are pointing to same side of the plot, contrasting with negative
correlated variables, which point to opposite sides. DEGs, Differentially Expressed Genes; IFN, Interferon;
PBMCs, Peripheral Blood Mononuclear Cells; TLR, Toll-like Receptor.
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Figure 5

Induction of the interplay between TLR and IFN signaling pathways by other Candida species. Venn
diagram showing the transcriptional overlap between a, TLR- and b, IFN-associated DEGs as well as the
signaling pathways enriched in response to non-albicans candida species (C. glabrata, C. parapsilosis,
and C. tropicalis) in comparison to C. albicans (created using CorelDraw2019, available at
coreldraw.com). c, Circular heatmaps of RNAseq expression z-scores computed for log2 transformed



Page 30/35

DEGs (p-value adj < 0.05, fold change > 1 and < -1) compares the expression of TLR- (left panels) and IFN-
(right panels) signaling pathways induced by C. albicans (green/grey heatmaps) or C. auris (yellow/grey
heatmaps) all from GSE154911. Small circular heatmaps (blue/grey) demonstrate common DEGs
modulated by C. abicans and C auris. Individuals circular heatmaps were created using R packages
circlize and ComplexHeatmap, while �gure layout was edited using CorelDraw2019. d, Venn diagram
showing the transcriptional overlap (an intersection containing 237 shared DEGs) induced by C. auris and
C. albicans (those 1096 genes found across all studies: Suppl. Table S11). e, Dotplot of enriched
signaling pathways by the 237 shared DEGs. DEGs, Differentially Expressed Genes; IFN, Interferon; ORA,
Over representation analysis; TLR, Toll-like Receptor.
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Figure 6

The interactome of DEGs enriching signaling pathways involved in the anti-candida immune response
and its association with inborn errors of immunity. a, Relationships (edges) among the 1096 DEGs
(nodes) found across all studies (Suppl. Table S11). Subnetworks (semicircles) represent genes
associated with IEI causing increased susceptibility to candidiasis, being 34 purple nodes genes shared
with the group of 1096 DEGs, while 66 green nodes represent those not found in the Candida datasets.
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Colored squares and circles represent the cell location of genes. The interaction network was build using
the NAViGaTOR software. b, Network of hubs present in a. c, Proportional venn diagram (created using
CorelDraw2019, available at coreldraw.com) of interferon types associated with the group of 1096 DEGs.
Interferome analysis revealed 868 IFN-regulated genes modulated either by IFN type I, II, and III, as in the
Venn Diagram. DEGs, Differentially Expressed Genes; IFN, Interferon; IEI, Inborn Errors of Immunity; TLR,
Toll-like Receptor.

Figure 7
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Common TLR- and IFN-associated DEGs and signaling pathways across microarray, bulk, and single-cell
RNA-seq datasets. a, Heatmap using expression value from scRNAseq of DEGs also present in microarray
and bulk studies; cell condition and group are indicated by different colors. b, Hierarchical clustering of
average expression comparing resting and C. albicans-activated cells. c, Hierarchical clustering showing
common pathways selected from Fig. 1d, across the cell groups; the size of circles corresponds to
adjusted p-value transformed into -Log10 and color intensity indicates the number of genes in each
pathway across the cell groups, respectively. DEGs, Differentially Expressed Genes; IFN, Interferon; TLR,
Toll-like Receptor; scRNAseq, single-cell RNA sequencing.
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Figure 8

Schematic view summarizing studies and the interplay between TLR and IFN signaling pathways in the
immune response to C. albicans. Pathways shown are reported in the literature50,103–109 (created using
BioRender.com). IFN, Interferon; TLR, Toll-like Receptor.
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