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Abstract

The Network of Cancer Genes (NCG) is a manually curated repository of 2372 genes whose somatic modifications

have known or predicted cancer driver roles. These genes were collected from 275 publications, including two

sources of known cancer genes and 273 cancer sequencing screens of more than 100 cancer types from 34,905

cancer donors and multiple primary sites. This represents a more than 1.5-fold content increase compared to the

previous version. NCG also annotates properties of cancer genes, such as duplicability, evolutionary origin, RNA and

protein expression, miRNA and protein interactions, and protein function and essentiality. NCG is accessible at

http://ncg.kcl.ac.uk/.
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Background
One of the main goals of cancer genomics is to find the

genes that, upon acquiring somatic alterations, play a

role in driving cancer (cancer genes). To this end, in the

last 10 years, hundreds of cancer sequencing screens

have generated mutational data from thousands of

cancer samples. These include large sequencing efforts

led by international consortia such as the International

Cancer Genome Consortium (ICGC) [1] and The

Cancer Genome Atlas (TCGA) [2]. Cancer genomes

usually acquire thousands of somatic alterations and

several methods have been developed to identify cancer

genes from the pool of all altered genes [3, 4]. These

methods have been applied to specific datasets from in-

dividual cancer types and to pooled datasets from several

cancer types. This is the case for the Pan-Cancer Atlas

project [5] and for the recent analysis of the whole set of

TCGA samples [6], which accompanied the conclusion

of the TCGA sequencing phase [7]. As more and more

studies contribute to our knowledge of cancer genes, it

becomes increasingly challenging for the research com-

munity to maintain an up-to-date overview of cancer

genes and of the cancer types to which they contribute.

The Network of Cancer Genes (NCG) is a project

launched in 2010 with the aim to gather a comprehen-

sive and curated collection of cancer genes from cancer

sequencing screens and to annotate their systems-level

properties [8–11]. These define distinctive properties of

cancer genes compared to other human genes [12] and

include gene duplicability, evolutionary origin, RNA and

protein expression, miRNA and protein interactions, and

protein function and essentiality. NCG is based on the

manual curation of experts who review studies describ-

ing cancer sequencing screens, extract the genes that

were annotated as cancer genes in the original publica-

tions, and collect and analyze the supporting evidence.

Various other databases have been developed to

analyze cancer data. Some of them focus on cancer alter-

ations rather than cancer genes (COSMIC [13], DoCM
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[14], DriverDB [15], the Cancer Genome Interpreter

[16], OncoKB [17], and cBIOPortal [18] among others).

Other databases collect only cancer genes with a strong

indication of involvement in cancer (the Cancer Gene

Census, CGC [19]) and annotate specifically oncogenes

or tumor suppressor genes (ONGene [20], TSGene [21])

or cancer genes in specific cancer types (CoReCG [22]).

NCG differs from all the above resources because it does

not focus on mutations, on particular groups of genes or

cancer types. It instead compiles a comprehensive re-

pository of mutated genes that have been proven or pre-

dicted to be the drivers of cancer. NCG is widely used

by the community. Recent examples of its use include

studies identifying and validating cancer genes [23–25]

and miRNA cancer biomarkers [26]. NCG has also been

used to investigate the effect of long noncoding RNAs

on cancer genes [27] and to find cancer-related tran-

scription factors [28].

Here, we describe the sixth release of NCG, which

contains 2372 cancer genes extracted from 275 publica-

tions consisting of two sources of known cancer genes

and 273 cancer sequencing screens. As well as muta-

tional screens of individual cancer types, the collected

publications now include four adult and two pediatric

pan-cancer studies. In addition to an update of the

systems-level properties of cancer genes already present

in previous releases (gene duplicability, evolutionary ori-

gin, protein function, protein-protein and miRNA-target

interactions, and mRNA expression in healthy tissues

and cancer cell lines), NCG now also annotates the es-

sentiality of cancer genes in human cell lines and their

expression at the protein level in human tissues. More-

over, broader functional annotations of cancer genes in

KEGG [29], Reactome [30], and BioCarta [31] are also

provided.

The expert curation of a large number of cancer

sequencing screens and the annotation of a wide var-

iety of systems-level properties make NCG a compre-

hensive and unique resource for the study of genes

that promote cancer.

Construction and content
The NCG database integrates information about genes

with a known or predicted driver role in cancer. To fa-

cilitate the broad use of NCG, we have developed a

user-friendly, interactive, and open-access web portal for

querying and visualizing the annotation of cancer genes.

User queries are processed interactively to produce re-

sults in a constant time. The front-end is connected to a

database, developed using relational database manage-

ment system principles [32] (Additional file 1: Figure

S1). The web application for the NCG database was de-

veloped using MySQL v.5.6.38 and PHP v.7.0. Raw data

for each of the systems-level properties were acquired

from heterogeneous data sources and processed as de-

scribed below. The entire content of NCG is freely avail-

able and can be downloaded from the database website.

Gene duplicability and evolutionary origin

Protein sequences from RefSeq v.85 [33] were aligned to

the human genome assembly hg38 with BLAT [34].

From the resulting genomic alignments, 19,549 unique

gene loci were identified and genes sharing at least 60%

of the original protein sequence were considered to be

duplicated [35] (Additional file 2: Table S1). Orthologous

genes for 18,486 human genes (including 2348 cancer

genes, Additional file 2: Table S1) in 2032 species were

collected from EggNOG v.4.5.1 [36] and used to trace

the gene evolutionary origin as previously described

[37]. Genes were considered to have a pre-metazoan ori-

gin if their orthologs could be found in prokaryotes, uni-

cellular eukaryotes, or opisthokonts [37].

Gene and protein expression

RNA-Seq data from healthy human tissues for 18,984

human genes (including all 2372 cancer genes, Add-

itional file 2: Table S1) were derived from the

non-redundant union of Protein Atlas v.18 [38] and

GTEx v.7 [39]. Protein Atlas reported the average tran-

scripts per million (TPM) values in 37 tissues, and genes

were considered to be expressed in a tissue if their ex-

pression value was ≥ 1 TPM. GTEx reported the distri-

bution of TPM values for individual genes in 11,688

samples across 30 tissue types. In this case, genes were

considered to be expressed if they had a median expres-

sion value ≥ 1 TPM.

Gene expression data for all 2372 cancer genes in

1561 cancer cell lines were taken from the Cancer Cell

Line Encyclopedia (CCLE, 02/2018) [40], the COSMIC

Cancer Cell Line Project (CLP, v.84) [19], and a Genen-

tech study (GNE, 06/2014) [41] (Additional file 2: Table

S1). Gene expression levels were derived directly from

the original sources, namely reads per kilobase million

(RPKM) values for CCLE and GNE, and microarray

z-scores for CLP. Genes were categorized as expressed if

their expression value was ≥ 1 RPKM in CCLE or GNE

and were annotated as over, under, or normally

expressed in CLP, as determined by COSMIC.

The current release of NCG also includes protein expres-

sion from immunohistochemistry assays of healthy human

tissues as derived from Protein Atlas v.18. Data were avail-

able for 13,001 human proteins including 1799 cancer pro-

teins (Additional file 2: Table S1). Proteins were categorized

as not detected or as having low, medium, or high expres-

sion in 44 tissues on the basis of staining intensity and frac-

tion of stained cells [38]. In Protein Atlas, expression levels

were reported in multiple cell types for each tissue. NCG
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retained the highest reported value as the expression level

for that tissue.

Gene essentiality

Gene essentiality was derived from two databases,

PICKLES (09/2017) [42] and OGEE v.2 [43], both of

which collected data from CRISPR-Cas9 knockout and

shRNA knockdown screens of human cell lines. In

PICKLES, data from primary publications have been

re-analyzed and genes were considered essential in a cell

line if their associated Bayes factor was > 3 [44]. We

therefore used this threshold to define essential genes. In

OGEE, genes were labelled as “essential” or “not essen-

tial” according to their annotation in the original publi-

cations. Consistently, we retained the same annotation.

From the non-redundant union of the two databases, es-

sentiality information was available for a total of 18,833

genes (including all 2372 cancer genes) in 178 cell lines

(Additional file 2: Table S1).

Protein-protein and miRNA-target interactions

Human protein-protein interactions were derived

from four databases (BioGRID v.3.4.157 [45], MIntAct

v.4.2.10 [46], DIP (02/2018) [47], and HPRD v.9 [48]).

Only interactions between human proteins supported

by at least one original publication were considered

[8]. The union of all interactions from the four

sources was used to derive a human protein-protein

interaction network of 16,322 proteins (including

2203 cancer proteins, Additional file 2: Table S1) and

289,368 binary interactions. To control for a possibly

higher number of studies on cancer proteins resulting

in an artificially higher number of interactions, a net-

work of 15,272 proteins and 224,258 interactions was

derived from high-throughput screens reporting more

than 100 interactions [11].

Data on human protein complexes for 8080 human

proteins (including 1414 cancer proteins; Additional

file 2: Table S1) were derived from the non-redundant

union of three primary sources, namely CORUM (07/

2017) [49], HPRD v.9 [48], and Reactome v.63 [30]. Only

human complexes supported by at least one original

publication were considered [11].

Experimentally validated interactions between human

genes and miRNAs were downloaded from miRTarBase

v.7.0 [50] and miRecords v.4.0 [51], resulting in a total of

14,649 genes (including 2034 cancer genes) and 1762

unique miRNAs (Additional file 2: Table S1). To control for

the higher number of single-gene studies focussing on can-

cer genes, a dataset of high-throughput screens testing ≥

250 different miRNAs was also derived (Additional file 2:

Table S1).

Functional annotation

Data on functional categories (pathways) were collected

from Reactome v.63 [30], KEGG v.85.1 [29], and Bio-

Carta (02/2018) [31]. Data for BioCarta were extracted

from the Cancer Genome Anatomy Project [52]. All

levels of Reactome were included, and level 1 and 2

pathways from KEGG were added separately. Overall,

functional annotations were available for 11,344 human

proteins, including 1750 cancer proteins assigned to

2318 pathways in total.

Utility and discussion
Catalogue of known and candidate cancer genes

To include new cancer genes in NCG, we applied a

modified version of our well-established curation pipe-

line [11] (Fig. 1a). We considered two main groups of

cancer genes: known cancer genes whose involvement in

cancer has additional experimental support and candi-

date cancer genes whose somatic alterations have a pre-

dicted cancer driver role but lack further experimental

support.

As sources of known cancer genes, we used 708 genes

from CGC v.84 [19] and 125 genes from a manually cu-

rated list [53]. Of the resulting 711 genes, we further an-

notated 239 as tumor suppressor genes (TSGs) and 239

as oncogenes (OGs). The remaining 233 genes could not

be unambiguously classified because either they had

conflicting annotations in the two original sources (CGC

and [53]) or they were defined as both OGs and TSGs.

Despite these two sources of known cancer genes have

been extensively curated, 49 known cancer genes are in

two lists of possible false positives [6, 54].

Next, we reviewed the literature to search for studies

that (1) described sequencing screens of human cancers

and (2) provided a list of genes considered to be the can-

cer drivers. This led to 273 original papers published be-

tween 2008 and March 2018, 98 of which were

published since the previous release of NCG [11] and 42

of which came from ICGC or TGCA (Additional file 2:

Table S2). Overall, these publications describe the se-

quencing screens of 119 cancer types from 31 primary

anatomical sites as well as six pan-cancer studies (Add-

itional file 2: Table S2). In total, this amounts to samples

from 34,905 cancer donors. Each publication was

reviewed independently by at least two experts and all

studies whose annotation differed between the experts

were further discussed. Additionally, 31 randomly se-

lected studies (11% of the total) were re-annotated

blindly by a third expert to assess consistency. The man-

ual revision of the 273 studies led to 2088 cancer genes,

of which 427 were known cancer genes and the

remaining 1661 were candidate cancer genes (Fig. 1b).

Compared to the previous release, this version of NCG

constitutes a significant increase in the number of
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cancer primary sites (1.3-fold), cancer genes (1.5-fold),

publications (1.6-fold), and analyzed donors (2.6-fold,

Fig. 1c).

Based on literature evidence [6, 54], gene length, and

function [10], 201 candidates were labelled as possible

false-positive predictions. We further investigated the

reasons why 284 known cancer genes were not identified

as drivers in any of the 273 cancer sequencing screens.

We found that these genes predispose to cancer rather

than acquiring somatic alterations, are the chimeric

product of gene fusions, are part of CGC Tier 2 (i.e., genes

with lower support for their involvement in cancer), or

were identified with different methods than sequencing.

Eleven of these 284 genes are possible false positives [6, 54].

The annotation of a large number of studies allowed

us to gain insights into how cancer genes have been

identified in the last 10 years. Of the overall 18 predic-

tion methods (Additional file 2: Table S2), the recur-

rence of a gene alteration within the cohort is the most

widely used across screens (Fig. 1d). In this case, no

Fig. 1 Manual curation of cancer genes in NCG. a Pipeline used for adding cancer genes to NCG. Two sources of known cancer genes [19, 53]

were integrated leading to 711 known cancer genes. In parallel, 273 publications describing cancer sequencing screens were reviewed to extract

2088 cancer genes. The non-redundant union of these two sets led to 2372 cancer genes currently annotated in NCG. b Intersection between

known and candidate cancer genes in NCG. c Comparison of NCG content with the previous version [11]. d Pie chart of the methods used to

identify cancer genes in the 273 publications. The total is greater than 273 because some studies used more than one method (Additional file 2:

Table S2). e Cancer genes as a function of the number of cancer donors per study. The grey inset shows a magnification of the left bottom

corner of the plot. f Number of methods used to identify cancer genes over time. PanSoftware used in one of the pan-cancer studies [6] was

considered as a single method but is in fact a combination of 26 prediction tools
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further threshold of statistical significance or correction

for the genome, gene, and cancer background mutation

rate was applied, thus leading to possible false-positive

predictions. Other frequently used prediction methods

are MutSig [55], MuSiC [56], and ad hoc pipelines devel-

oped in the same publication (referred to as ‘paper-spe-

cific’). Although they apply statistical methods to correct

for the background mutation rate and reduce false posi-

tives, all of these approaches estimate the tendency of a

gene to mutate more than expected within a cohort and

therefore they all depend on sample size. Indeed, we ob-

served an overall positive correlation between the num-

ber of cancer donors and the number of cancer genes

(Fig. 1e). This confirms that the sensitivity of the ap-

proaches currently used to predict cancer genes is higher

for large cohorts of samples. Finally, although the vast

majority of analyzed studies tend to apply only one pre-

diction method, more recent publications have started to

use a combination of two or three methods (Fig. 1f ).

Heterogeneity and specificity of cancer genes

The number of cancer genes and the relative proportion

of known and candidate cancer genes vary greatly across

cancer primary sites (Fig. 2a). More than 75% of cancer

genes in cancers of the prostate, soft tissues, bone, ovary,

cervix, thymus, and retina are known drivers. On the

contrary, more than 75% of driver genes in cancers of

the penis, testis, and vascular system are candidate can-

cer genes (Fig. 2a). This seems to be due to several fac-

tors including the sample size, the number of different

methods that have been applied to identify cancer genes

and the biology of each cancer type. For example, penis,

vascular system, and testis cancers show a high propor-

tion of candidate cancer genes. The corresponding co-

horts have a small sample size and have been analyzed

by one or two prediction methods. However, other can-

cer types showing equally high proportions of candidates

(pancreas, skin, blood) have large sample sizes and were

analyzed by several methods (Fig. 2b). Moreover, al-

though the number of cancer genes is overall positively

correlated with the number of sequenced samples

(Figs. 1e and 2c), there are marked differences across

primary sites. For example, ovary, bone, prostate, thy-

roid, and kidney cancers have substantially fewer cancer

genes compared to cancers with similar numbers of can-

cer donors such as uterine, stomach, skin, and hepato-

biliary cancers (Fig. 2c). This is likely due to variable

levels of genomic instability and heterogeneity across

cancer types of the same primary site. For example, in

seven of the nine mutational screens of skin melanoma,

a cancer type with high genomic instability [57], more

than 50% of cancer genes are study-specific (Fig. 3a).

Similarly, the 24 types of blood cancer are variable in

terms of number of cancer genes, with diffuse large

B-cell lymphoma having many more cancer genes than

other blood cancers with higher numbers of cancer do-

nors (Fig. 3b). In both cases, the use of the same method

(i.e., MutSig in Fig. 3a and MuSiC in Fig. 3b) identified

different cancer genes in different patient cohorts,

highlighting the biological heterogeneity even across do-

nors of the same cancer type.

Cancer genes, and in particular candidates, are highly

cancer-specific (Fig. 3c). Hemicentin 1 (HMCN1) is the

only candidate cancer gene to be significantly mutated

in six primary sites (blood, brain, esophagus, large intes-

tine, liver, and pancreas). A few known cancer genes are

recurrently mutated across several primary sites, includ-

ing TP53 (25), PIK3CA (21), and PTEN (20; Fig. 3c).

These are, however, exceptions, and the large majority of

known and candidate cancer genes (64% of the total) are

found only in one primary site, indicating high hetero-

geneity of cancer driver events. Similar specificity is also

observed in terms of supporting publications. The ma-

jority of cancer genes are publication-specific, again with

few exceptions including TP53 (173), PIK3CA (87) and

KRAS (86, Fig. 3d). Of note, the best-supported candi-

date gene is Titin (TTN, predicted in nine publications),

which is a well-known false positive of recurrence-based

approaches [55]. Interestingly, the scenario is different

when analyzing the number of prediction methods that

support cancer genes reported in at least two screens

(Fig. 3e). In this case, few candidate and known cancer

genes are identified by only one method, while the ma-

jority of them are supported by at least two (candidates)

and three (known cancer genes) approaches. However,

only six candidate cancer genes are supported by six

methods, and TP53 is the only cancer genes to be identi-

fied by 16 of the 18 methods (Fig. 3e).

Finally, the heterogeneity of the cancer driver land-

scape is reflected in the pan-cancer studies. Approxi-

mately 40% of the cancer genes from pan-cancer

analyses were not previously predicted as drivers (Fig. 3f ),

despite the large majority of cancer samples having been

already analyzed in the corresponding cancer-specific

study. This is yet a further confirmation that current

methods depend on the sample size and that a larger co-

hort leads to novel predictions. Only 35 cancer genes

were shared across four pan-cancer re-analyses of adult

tumors (Fig. 3g), suggesting that the prediction of cancer

genes is highly method- and cohort-dependent. This is

further confirmed by the poor overlap between cancer

genes from adult and pediatric pan-cancer studies

(Fig. 3h). In this case, however, it is also likely that differ-

ent biological mechanisms are responsible for adult and

childhood cancers.

Overall, our analysis of the cancer driver landscape

suggests that the high heterogeneity of cancer genes ob-

served across cancer types is due to a combination of
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sample size effect, prediction methods, and true bio-

logical differences across cancers.

Systems-level properties of cancer genes

In addition to collecting cancer genes from the litera-

ture, NCG also annotates the systems-level properties

that distinguish cancer genes from other genes that are

not implicated in cancer (Additional file 2: Table S1).

We therefore compared each of these properties

between cancer genes and the rest of human genes. We

considered seven distinct groups of cancer genes. The

first three were 711 known cancer genes, 1661 candidate

cancer genes, and 2372 total cancer genes. After remov-

ing 201 possible false-positive predictions [6, 54] from

the list of candidate cancer genes, we also identified two

sets of candidate cancer genes with a stronger support.

One was composed of 104 candidate cancer genes found

in at least two independent screens of the same primary

Fig. 2 Distribution of cancer genes across primary sites and cancer donors. a Number of total cancer genes and proportion of known and

candidate cancer genes across the 31 tumor primary sites analyzed in the 267 cancer-specific studies. The number of cancer donors followed by

the number of cancer genes is given in brackets for each primary site. b Proportion of candidate cancer genes over all cancer genes across the

31 tumor primary sites. The dot size is proportional to the donor cohort size. c Total number of cancer genes and cancer donors across the 31

tumor primary sites. The color scale in (b) and (c) indicates the number of screens for each primary site
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site. The other was formed of 711 candidate cancer

genes identified in large cohorts composed of at least

140 donors (top 25% of the sample size distribution

across screens). Finally, we compared the properties

between 239 TSGs and 239 OGs.

As previously reported [35], we confirmed that a sig-

nificantly lower fraction of cancer genes has duplicated

copies in the human genome due to a high proportion

of single-copied TSGs (Fig. 4a). The same trend was

observed in both known and candidate cancer genes and

is significant for the combination of the two gene sets.

Interestingly, candidate cancer genes found in ≥ 2

screens show a high proportion of duplicated cancer

genes (albeit not significant probably due to the small

size of the group, Fig. 3d). This could suggest that

several genes in this group may exert an oncogenic role.

Fig. 3 Recurrence of cancer across primary sites and publications. a Proportion of study-specific cancer genes reported by each of the seven

skin melanoma screens. b Total number of cancer genes and donors across 24 cancer types of the blood. The full list of blood cancer types is

reported in Additional file 2: Table S2. c Number of primary sites in which each known or candidate cancer gene was reported to be a driver.

d Number of publications in which each known or candidate cancer gene was reported to be a driver. e Number of methods used to predict

cancer genes for drivers found in more than one publication. f Intersection of cancer genes in the cancer-specific and pan-cancer studies.

g Venn diagram of cancer genes across the four pan-cancer studies of adult donors. h Intersection of cancer genes in pan-cancer screens of

adult and pediatric donors. In f, g, and h, the number of donors followed by the total number of cancer genes are given in brackets
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Fig. 4 Systems-level properties of cancer genes. a Percentage of genes with ≥ 1 gene duplicate covering ≥ 60% of the protein sequence. b

Proportion of genes originating in pre-metazoan species. c, d Number of human tissues in which genes (c) and proteins (d) are expressed. In

panel c, tissue types were matched between GTEx and Protein Atlas wherever possible, giving 43 unique tissues. In tissues represented in both

datasets, genes were defined as expressed if they had ≥ 1 TPM in both datasets. Only genes present in both sources were compared (Additional

file 2: Table S1). e Percentage of genes essential in ≥ 1 cell line and distribution of cell lines in which each gene is essential. Only genes with

concordant annotation between OGEE and PICKLES were compared (Additional file 2: Table S1). f Percentage of proteins involved in ≥ 1 protein

complex. g Median values of betweenness (centrality), clustering coefficient (clustering), and degree (connectivity) of human proteins in the

protein-protein interaction network. h Median values of betweenness and degree of the target genes in the miRNA-target interaction network.

The clustering coefficient is zero for all nodes, because interactions occur between miRNAs and target genes. Known, candidate, and all cancer

genes were compared to the rest of human genes, while TSGs were compared to OGs. Significance was calculated using a two-sided Fisher test

(a, b, e, f) or Wilcoxon test (c, d, g, h). *p < 0.05, **p < 0.01, ***p < 0.001. Enrichment and depletion of cancer genes in representative functional

categories taken from level 1 of Reactome (i) and level 2 of KEGG (j). Significance was calculated comparing each group of cancer genes to the

rest of human genes using a two-sided Fisher test. False discovery rates were calculated in each gene set separately. Only pathways showing

enrichment or depletion are shown. The full list of pathways is provided in Additional file 2: Table S3
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Cancer genes, and in particular candidate cancer

genes, originated earlier in evolution (Fig. 4b) [37, 58,

59]. Known cancer genes alone do not differ from the

rest due to the fact that OGs are significantly younger

than TSGs (Fig. 4b).

Known cancer genes tend to be ubiquitously expressed

at the mRNA (Fig. 4c) and protein (Fig. 4d) levels, and

TSGs are more widely expressed than OGs. This trend

is less clear when analyzing candidate cancer genes sep-

arately. Candidates with stronger support tend to resem-

ble known cancer genes; however, the overall set of

candidate cancer genes has a narrower tissue expression

pattern at the gene and protein level (Fig. 4c, d).

A similar scenario is observed when analyzing gene

essentiality. A higher fraction of cancer genes and, in

particular of known cancer genes, is essential in at least

one human cell line (Fig. 4e). Moreover, known cancer

genes tend to be essential in a higher fraction of cell

lines. Both measures of gene essentiality are higher in

TSGs as compared to OGs (Fig. 4e). Candidate cancer

genes with stronger support are again similar to known

cancer genes but, when considered together, all candi-

date cancer genes are not significantly enriched in essen-

tial genes (Fig. 4e).

Proteins encoded by cancer genes are more often in-

volved in protein complexes (Fig. 4f ). They are also

more connected (higher degree), central (higher be-

tweenness), and clustered (higher clustering coefficient)

in the protein-protein interaction network (Fig. 4g). We

verified that this trend holds true also when using only

data from high-throughput screens (Additional file 2:

Table S2), thus excluding the possibility that the distinct-

ive network properties of cancer proteins are due to

their better annotation. These trends remain significant

for all sets of cancer genes.

Cancer genes are regulated by a higher number of

miRNAs (higher degree) and occupy more central posi-

tions (higher betweenness) in the miRNA-target inter-

action network (Fig. 4h). As above, these results remain

valid also when only considering the miRNA-target net-

work from high-throughput screens (Additional file 2:

Table S2) and for any group of cancer genes considered.

Cancer genes are consistently enriched in functional

categories such as signal transduction, chromatin

reorganization, and cell cycle and depleted in others,

such as metabolism and transport (Fig. 4i, Additional

file 2: Table S3). Candidate cancer genes generally ex-

hibit weaker enrichment than the other groups, most

notably in DNA repair. Interestingly, however, extracel-

lular matrix reorganization displays a specific enrich-

ment for candidate cancer genes. Some functional

categories are selectively enriched for OGs (e.g. develop-

ment and immune system, Fig. 4j) or TSGs (e.g. DNA

repair and programmed cell death, Fig. 4i). While

annotations from Reactome and KEGG generally give

concordant results, they differ significantly for gene tran-

scription. In this case, Reactome shows a strong enrich-

ment for cancer genes, while it is not significant in

KEGG (Fig. 4i, j).

Overall our analyses confirm that cancer genes are a

distinctive group of human genes. Despite their hetero-

geneity across cancer types and donors, they share com-

mon properties. Candidate cancer genes only share

some of the properties of known cancer genes, such as

an early evolutionary origin (Fig. 4b) and higher central-

ity and connectivity in the protein-protein and

miRNA-target interaction networks (Fig. 4g, h). They do

not differ from the rest of genes for all other properties.

However, the two sets of candidate cancer genes with a

stronger support overall maintain the vast majority of

the distinctive properties of known cancer genes. This

suggests that the current set of candidate cancer genes

likely contains false positives and genes with weak sup-

port that do not resemble the properties of known can-

cer genes. This is further indicated when directly

comparing the properties of known and candidate can-

cer genes (Additional file 2: Table S4). In this case,

known cancer genes are significantly different for most

properties when compared to the whole set of candidate

cancer genes. However, these differences are reduced

when the two sets of candidates with stronger support

are used. Finally, TSGs and OGs constitute two distinct

classes of cancer genes even based on their systems-level

properties (Fig. 4).

Future directions

In the coming years, NCG will continue to collect new

cancer genes and annotate their properties, including

novel properties such as genetic interactions or epigen-

etic features for which large datasets are becoming avail-

able. So far, the cancer genomics community has

focussed mostly on the identification of protein-coding

genes with putative cancer driver activity. With the in-

creasing availability of whole-genome sequencing data

and a rising interest in non-coding alterations [27, 60],

NCG will expand to also collect non-coding cancer

drivers. Another direction for future development will

be the analysis of clinical data, including therapeutic

treatments, to link them to the altered drivers. This will

contribute to the expansion of our knowledge of cancer

driver genes in the context of their clinical relevance.

Conclusions
The present release of NCG describes a substantial ad-

vance in annotations of known and candidate cancer

driver genes as well as an update and expansion of their

systems-level properties. The extensive body of literature

evidence collected in NCG enabled a systematic analysis
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of the methods used to identify cancer genes, highlight-

ing their dependence on the number of cancer donors.

We also confirmed the high heterogeneity of cancer

genes within and across cancer types. The broad set of

systems-level properties collected in NCG shows that

cancer genes form a distinct group, different from the

rest of human genes. For some of these properties, the

differences observed for known cancer genes hold true

also for candidate cancer genes, and TSGs show more

pronounced cancer gene properties than OGs. Interest-

ingly, these properties are shared by all cancer genes,

independently of the cancer type or gene function.

Therefore, focussing on genes with similar character-

istics could be used for the identification and

prioritization of new cancer driver genes [61]. In con-

clusion, the large-scale annotation of the systems-level

properties of cancer genes in NCG is a valuable

source of information not only for the study of

individual genes, but also for the characterization of

cancer genes as a group.
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