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Abstract

I build a dynamic model of the formation of an international network of importers and
exporters. Firms can only export into markets in which they have a contact. They directly
search for new trading partners, but they can also use their existing network of contacts to
remotely search for new partners. This model explains (i) the cross-sectional distribution of the
number of foreign markets accessed by individual exporters, (ii) the cross-sectional geographic
distribution of foreign contacts, and (iii) the dynamics of firm level exports. I show that the
firm level dynamics of trade can explain the observed cross section of firm level exports. All
theoretical predictions are supported by the data.

Introduction

Individual firms differ hugely in their exposure to international trade. Most firms do not export

abroad. Of those which do, only few export to a large number of countries. This heterogeneity

in the access to foreign markets of individual firms has dramatic implications for the patterns

of international trade. Melitz (2003) shows that, in the presence of heterogeneity in the ability

of individual firms to access foreign markets, a reduction in trade barriers can induce aggregate

productivity gains. Bernard, Eaton, Jensen and Kortum (2003) and Chaney (2008) show that

with firm heterogeneity, firm level exports aggregate up to the well established gravity equation

in international trade, but that the sensitivity of trade flows with respect to trade barriers is

magnified. The source of this heterogeneity in the ability of individual firms to access foreign

markets however remains largely unexplained. Whereas Bernard, Eaton, Jensen and Kortum
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(2003) or Melitz (2003) assume that this heterogeneity is entirely driven by productivity differences,

Armenter and Koren (2009) point out that productivity differences can only account for a fraction

of the exposure to international markets.

In this paper, I offer a simple explanation for the heterogeneous ability of individual firms

to access foreign markets based on the formation of an international network of exporters and

importers. Individual exporters meet foreign importers both via direct search, and through their

network of existing foreign contacts via remote search. The cross-sectional predictions of the model

on both the distribution of the number of foreign contacts, and on the geographic distribution of

foreign contacts are supported by the data. Furthermore, this model generates novel predictions for

the dynamic evolution of trade flows. Exporters follow a history dependent path when expanding

into foreign markets. The entry of individual exporters into a given country is influenced by

changes in aggregate trade flows between third countries, in a way that is consistent with the

model and with the cross-sectional evidence on the distribution of foreign contacts.

Potential exporters meet foreign trading partners in two distinct ways. First, a firm directly

searches for foreign partners, which I model as a geographically biased random search. This is a

reduced form for the active search for foreign trading partners. Second, once a firm has acquired

a network of foreign contacts in various foreign locations, it can remotely search for new trading

partners from these locations. The possibility to use existing contacts to find new ones gives an

advantage to firms with many contacts. This generates a fat tailed distribution for the number of

foreign contacts across firms. The key parameter that shapes the cross-sectional distribution of the

number of contacts is the relative efficiency of direct and remote search. The empirical distribution

of the number of foreign contacts is well described by the theoretical model. This allows me to

estimate precisely the relative efficiency of direct and remote search. Moreover, direct evidence

on the time-series evolution of firm level trade flows confirms the assumed mechanism. I find that

the more contacts a firm has, the more likely it is to acquire additional contacts. I tie together

quantitatively the cross-sectional and time-series evidence on firm level trade.

The more novel contribution of this paper is that the dynamic formation of a network of trading

partners is embedded into geographic space. Remote search allows say a French exporter that has

a acquired a contact in Japan to radiate away from Japan as Japanese firms would. It does so by

using its Japanese contacts as a remote hub from which it can expand out of Japan. The theory

therefore predicts that as firms acquire more foreign contacts, they expand into more remote
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countries, so that their exports become geographically more distant. The speed at which the

geographic distance of exports increases depends on the relative importance of direct and remote

search. I show empirically that the geographic distance of exports increases with the number of

foreign contacts in a way that is quantitatively in line with the theory and the cross-sectional

distribution of the number of foreign contacts.

This is a theory of a network. Therefore, a shock that hits anywhere will be transmitted to all

the components in the network, with an intensity that depends on the structure of the network.

I find empirical support for these novel predictions on the dynamics of firm level trade flows. For

instance, I show that an increase in the volume of trade between country a and b will have a

positive impact on the probability that a French firm that already exports to a starts exporting

to b, but not on firms that do not export to country a yet. The magnitude of this effect is in line

qualitatively and quantitatively with the theory and the cross-sectional distribution of the number

of foreign contacts.

This paper contributes to the literature on both international trade and social networks.

There is a nascent literature in international trade and macroeconomics on the role that social

networks and informational barriers play in facilitating or hampering transactions, and in trans-

mitting shocks. In a seminal paper, Rauch (1999) conjectures that informational barriers play an

important role in hampering trade. He offers a classification of traded goods between differenti-

ated and homogeneous goods, and shows that geographic proximity is more important for trade in

differentiated goods. He argues that this is evidence for the importance of informational barriers.

While the Rauch classification has been widely used in international trade, the notion that in-

formational networks are important in overcoming informational barriers has remained relatively

under explored. I offer a formal treatment of the network that allows information to diffuse, and

show strong evidence of this network using firm level trade data. Rauch and Trindade (2002) show

that the presence of ethnic Chinese networks facilitates bilateral trade, and particularly so for trade

in differentiated goods compared to trade in homogeneous goods. They argue that these findings

are evidence for the importance of informational barriers, and that social networks mitigate those

barriers. Rauch (2001) offers a survey of the literature on networks in international trade. In

the context of intra-national trade, Combes, Lafourcade and Mayer (2005) show that social and

business networks facilitate trade between regions within France, where they use migrations and

multi-plant firms to infer a measure of social and business linkages respectively. Using a similar ap-
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proach for Spain, Garmendia, Llano, Minondo and Requena (2011) show that social and business

networks have a stronger impact on the extensive margin than on the intensive margin of trade.

Burchardi and Hassan (2010) show that West German regions that have closer social ties with

East Germany experienced faster growth and engaged in more investment into East Germany

after the German reunification. On a somewhat related topic, Hidalgo, Klinger, Barabási and

Hausmann (2007) show that the product mix of goods manufactured and exported by countries

can be described as a network, and that countries move towards more connected sectors as they

grow. Acemoglu, Carvalho, Ozdaglar and Tahbaz-Salehi (2011) describe the input-output linkages

between sectors in the U.S. as a network, and show how idiosyncratic shocks to individual sectors

have a non negligible impact on aggregate volatility. In this paper, I develop a more general model

of the formation of an international network of firms, and show how this network matters for firm

level trade patterns, over and beyond the effects analyzed in the relatively narrow special cases

studied so far.

This paper is also related to a recent literature that emphasises the importance of informational

barriers in international trade and the role of trade intermediaries in overcoming those barriers.

Casella and Rauch (2002) offer a formal model of trade with informational barriers. They assume

that there are only two types of agents, some are perfectly informed about the quality of foreign

goods, while the others are uniformed. The informed agents may chose to act as intermediaries

for international trade. I offer a more nuanced model where firms gradually learn about foreign

markets, so that there is close to a continuum of firms with a differential access to information

about foreign markets. Antràs and Costinot (2011) develop a theoretical model of trade that

relaxes the assumption of a centralized Walrasian market, and derive predictions for the welfare

gains from trade in a setting where trade is intermediated. Ahn, Khandelwal and Wei (2011)

demonstrate empirically the importance of trade intermediaries in facilitating trade, especially for

smaller exporters and for penetrating less accessible markets. I do not formally introduce trade

intermediaries, but I stress the importance of informational barriers, and show how a network can

partially overcome these barriers. The network I describe can be thought of as a formal treatment

of the way in which trade intermediaries connect importers and exporters.

This paper is complementary to models of international trade with heterogeneous firms such

as Bernard, Eaton, Jensen and Kortum (2003), Melitz (2003) and its extension in Chaney (2008).

Those models assume that differences in the ability of individual firms to enter foreign markets are

entirely driven by some exogenous productivity differences, and by the configuration of exogenous
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parameters that govern the accessibility of different foreign markets. These models successfully

replicate a series of stylized facts regarding the size distribution of individual firms in different

markets and the efficiency of firms entering different sets of countries, as shown by Eaton, Kortum

and Kramarz (2011). But they take as exogenous all the parameters that govern the entry of firms

into different markets. In other words, these models are successful at explaining the intensive

margin of trade at the firm level, but are silent about the determinants of the extensive margin

of trade. Moreover, these models are unable to match simultaneously the different stylized facts I

uncover regarding the distribution of the number and the geographic location of foreign markets

entered by different firms. By contrast, the model I develop offers a parsimonious explanation for

the extensive margin of trade at the firm level, but is mostly silent about the intensive margin of

trade. Because this model is analytically tractable, it would be easy to combine it with a Melitz-

type model, and explain both the extensive and intensive margins of trade. In that sense, this

model is complementary to the existing models of trade with heterogeneous firms.

This paper is also complementary to a recent literature on the dynamics of exports or more

generally expansion at the firm level. Albornoz, Calvo Pardo, Corcos and Ornelas (2010) and

Defever, Heid and Larch (2010) both present simple models of learning about a firm’s potential in a

foreign market. They show evidence of the sequential entry respectively of Argentine and Chinese

exporters into foreign markets, meaning that where a firm already exports influences where it

enters next. Morales, Sheu and Zahler (2011) use a moment inequality estimation procedure to

estimate a similar model of sequential export choice, and document that exports tend to be history

dependent. They stress the importance of what they call “extended gravity”, which is the fact that

if a firm exports to a particular country, it is subsequently more likely to export to other similar

countries. This corresponds to the notion of remote search in my model. In the case study of a

single firm, Jia (2008) and Holmes (2011) study the geographic expansion of Wal-mart in the US.

Both stress the importance of local complementarities. New Wal-mart outlets tend to benefit from

the proximity of its existing retail centers. While the type of local complementary are similar to

the notion of remote search in my paper, they seem to operate in the case of Wal-mart at a much

finer geographic level than in the case of exporters. But the typical expansion of this single firm is

similar to the expansion of exporters in my model. My paper is complementary to those papers, in

the sense that I incorporate these observations formally into a theoretical model of the dynamics

of entry of firms, and show how they shape both the cross-sectional distribution of exports as well

as the time series of exports at the firm level.
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Finally, this paper is related to the literature on social networks. Jackson and Rogers (2007)

propose a tractable way to combine the features of a random network and a preferential network.1

The notions of direct and remote search in my model are similar to their notion of random and

preferential attachment. The main theoretical innovation of my model is to embed this general

network into a continuous space. For the purpose of this paper, I assume that this space corre-

sponds to the physical geographic space. But it could alternatively correspond to any other space

that describes some of the attributes of the agents connected through that network. Recent mod-

els of social networks characterize the links formed by agents that differ according to a discrete

set of attributes.2 Bramoullé and Rogers (2010) consider a model with two types that are biased

against each other, while Currarini, Jackson and Pin (2011) consider an extension with more than

two types. Both papers show that over time, agents increase the diversity of their contacts, in

the sense that they get connected with different types. They derive conditions under which bias

eventually vanishes. As the notion of a bias between types is similar to the notion of geographic

distance between firms in my model, their results are similar to the gradual geographic expansion

of exports in my model. The discrete technique used in those papers is complementary to the con-

tinuous approach I use: while I can model a continuum of types, I have to impose an assumption

of symmetry that these models relax in the arguably simpler set-up of a finite number of types. I

also offer an empirical application of a network model to a data-set much larger than has typically

been used in the social network literature.

The remainder of the paper is organized as follows. In section 1, I present a simple theoretical

model of the formation of an international network of importers and exporters. In section 2,

I test empirically the main theoretical predictions of the model. I relegate to the Appendix

all mathematical proofs (Appendix A), and the description of the data and robustness checks

(Appendix B).

1 A dynamic model of exports

In this section, I develop a model of the sequential entry of a firm into foreign markets. Over

time, this firm acquires a network of customers in various foreign countries, and exports into each
1See Erdös and Rényi (1959) for a seminal description of random networks, and Barabási and Albert (1999) for

a description of preferential networks that exhibit scale-free degree distributions.
2See McPherson, Smith-Lovin and Cook (2001) for an overview of various situations where agents tend to connect

to each other according to some attributes outside of the network, which is generally described as homophily.
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country where it has some customers. Each period, this firm will both search for new customers

at random, and use its existing network of foreign customers to search remotely. In other words,

if a French exporter initially enters say Japan, it is subsequently more likely to enter a country

with close links to Japan, say Korea. Over time the network of customers of a firm will become

more complex: the firm enters foreign countries first at random, and then increasingly through

the history dependent process of radiating from existing foreign markets.

1.1 Set-up

Consider the following extension of the Krugman (1980) model with matching frictions.

There is a continuum of consumers, uniformly distributed over the real line R. A point x ∈ R

corresponds to a location. For concreteness, one can think of such a location x as a city. A country

will then be a collection of cities, or an interval of the real line. This however will be a model

of trade between cities, and national boundaries are simply arbitrary lines in the sand. I will

introduce formally national boundaries between countries only when I bring the model to the data

in Section 2. Time is discrete.

All consumers have the same iso-elastic preferences over a continuum of differentiated goods.

All firms face the same increasing returns to scale technology, characterized by a fixed cost of

entry, and a constant marginal cost of production. In this simple set-up, all firms charge the same

constant mark-up over marginal cost to any consumer that has access to their good. The amount

sold to a given consumer depends on the income of that consumer, and on which other alternative

goods this consumer has access to. Since I am only interested in the extensive margin of trade, I

will not explicitly solve for the equilibrium level of sales of each firm to each of its consumer.3

I assume that the number of firms in any location grows at a constant rate γ. Imposing a

free entry condition, characterizing the entry decision of firms, and assuming that the labor force

grows at a constant rate γ in every location, one could solve for the steady state growth path

of this economy. Instead of solving for this steady state growth path, I directly assume that the

population of firms grows at the constant rate γ.

In the absence of any friction, all firms would sell to all consumers. I depart from the Krugman

(1980) model and assume that firms face matching frictions. A firm does not have access to all

consumer, but instead can only sell to a subset of them. The matching frictions are as follows.
3I develop a simple version of this model in the online Appendix.

See http://home.uchicago.edu/tchaney/research/TradeNetworks_Appendix.pdf
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Every period, a firm located in the origin acquires new consumers in two distinct ways. First,

the firm searches for new consumers locally, meaning that the search originates from where the

firm itself is located. Second, the firm uses its existing network of consumers to search remotely,

meaning that the search originate from where the existing consumers are located. This second

remote search captures the idea of local externalities as in the case of the geographic expansion of

Wal-mart in Jia (2008) and Holmes (2011), or in the case of Chilean exporters in Morales, Sheu

and Zahler (2011). It may either correspond to the technological constraint on the expansion of

a distribution network as in Holmes (2011); to the cost of customizing a product for local tastes

and requirements as in Morales, Sheu and Zahler (2011); or more generally to the notion that

exporting entails some amount of traveling and communicating with business partners, so that a

firm that exports to a location y will acquire some partial knowledge about that location y.

Before describing the dynamic acquisition of consumers, it is useful to introduce a few notations.

A firm of age t located in the origin has a network of consumers in various locations. The total

measure of consumers is mt, and they are distributed over the real line R according to the p.d.f.

gt. The function ft (x) then describes the density of consumers in location x,

ft : R → R+ with
ˆ
R
ft (x) dx ≡ mt and gt =

ft
mt

(1)

so that the firm has a mass
´
b

a
ft (x) dx of consumers in the interval [a, b]. The function ft specifies

both the number (density) and the geographic location of all the consumers of the firm. Note that

ft is not a probability density, as it sums up to mt and not 1. The normalized gt is a p.d.f.

The distribution of consumers ft evolves as follows.

First, a firm searches locally for consumers from where it is located (the origin). The firm

randomly draws a measure γµ of consumers, where γ is the (constant) growth rate of the population

of firms, and µ is a parameter.4 The geographic location x ∈ R of these consumers is random, and

drawn from the symmetric p.d.f. g (x). The distribution g (x) is a measure of the geographical bias

of this local search technology. Note that beyond symmetry, I do not impose any restriction on

the specific shape of this distribution. While one may conjecture that contacts are more likely to

be located close-by than far-away, so that the density g (x) is expected go down as one moves away

from the origin, I do not impose any such restriction. The density g (x) may be non-monotonic,

it may have mass points, or be zero over some range.
4Expressing the measure of randomly drawn new consumers as a multiple of the population growth rate is just

a normalization, which will simplify the main results.
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Second, given that a firm already has consumers in various locations, it searches for new

consumers remotely from these locations. For each existing consumer in location y ∈ R, the firm

draws a measure γµπ of consumers with π ∈ [0, 1] a parameter. The geographic location of these

consumers is drawn from the p.d.f. g (x− y). Remote search works exactly as local search, except

that (i) it is shifted from the origin to location y, and (ii) the efficiency of this remote search is

discounted by a constant probability π.

Without loss of generality, neither does a firm lose consumers, nor do firms die. Adding a

random death process to either contacts or firms does not change any of the results below, beyond

some simple rescaling of the parameters.

The dynamic evolution of the network of consumers described above can be summarized in the

following difference equation for ft,

ft+1 (x)− ft (x) = γµg (x) + γµπ

ˆ
R
ft (y) g (x− y) dy (2)

with the initial condition f (x) = 0, ∀x ∈ R. The change in the density of consumers in location x

from time t to time t+1 can be decomposed in two terms. The first term corresponds to the local

search for new contacts. It brings a total of γµ new contacts, with a density γµg (x) of them in x.

The second term corresponds to the remote search for new contacts. Each of the existing ft (y) dy

contact in location y offers the possibility for a remote search of γµπ new contacts originating

from y; this remote search generates a total of γµπ new contacts, with a density γµπg (x− y) of

them in x; since the remote search can be intermediated via any location y, the new consumers

γµπft (y) g (x− y) dy found in x via y have to be integrated over all possible location y ∈ R.

While the recursive definition of ft in Equation (2) is complex, it always admits an analytical

solution, and it admits a closed form solution for the special cases where g is either a Gaussian or

a Cauchy distribution. In the interest of concision, I relegate these explicit solutions to Appendix

A. These solutions however allow me to derive closed-form solutions for several quantities that

can be measured in the data, thus offering a direct test of the model. In the next section, I analyze

the distribution of the total number of consumers (mt) within the population, as well as moments

of the geographic distribution of these consumers.

1.2 The number and geography of consumers

The following proposition characterizes the invariant distribution of the total number of consumers.
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Proposition 1 For short time intervals, the fraction of firms with fewer than m consumers is,

F (m) = 1−

�
1

1 + πm

� 1
µπ

Proof. See Appendix A.

Let me briefly describe the properties of the cross-sectional distribution of the number of

consumers, and provide some intuition.

First, note that geography plays no role in this distribution. This is due to the fact that the

geographically biased distribution g (·) affects the location of consumers, but not the total number

of them. Integrating Equation (2) over R, I get a simple difference equation for the total number

of a firm’s consumers,

mt+1 −mt = γµ+ γµπmt (3)

This process does not depend on any of the properties of the distribution g (·).

Second, the upper tail of the distribution asymptotes to a scale-free Pareto distribution,

whereas the lower tail is close to an exponential distribution. This dimension of the model is

very close to the model of acquisition of a network of “friends” in Jackson and Rogers (2007),

which itself is an extension of the Steindl (1965) model of the firm size distribution.5

For m large, i.e. for firms that already have many consumers, the local search component

(γµ) becomes negligible, and only the remote search component remains. Each existing consumer

allows the firm to gain a constant number (γµπ) of new consumers. The growth rate of the number

of consumers is approximately constant. This means that for m large, m grows approximately

exponentially
�
mt ≈ eγµπt

�
. Given that the population of firms grows exponentially at a rate γ,

this leads to a Pareto distribution with an exponent −1/ (µπ) in the upper tail.

For m small on the other hand, i.e. for firms with few consumers, the remote search component

becomes negligible, and only the local search component remains. Each period, an approximately

constant number (γµ) of new consumers are added. This means that for m small, m grows

approximately arithmetically (mt ≈ γµt). Given the exponential growth of the population of

firms, this leads to an exponential distribution with parameter 1/µ in the lower tail.

For intermediate values of m, the cross-sectional distribution of the number of consumers is

a mixture of the above exponential and Pareto distributions. Plotting the counter-cumulative

distribution 1 − F (m) in a log-log scale, the upper end would asymptote a straight line (the
5For more elaborate models of the dynamic evolution of size, see for instance Gabaix (1999), Luttmer (2007) or

Rossi-Hansberg and Wright (2007).
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Pareto upper tail), while the lower end would exhibit some degree of concavity (the exponential

lower tail). Both the slope of the upper tail, the range over which the distribution is concave,

and how concave it is, depend on the parameters µ and π. Observing the empirical distribution

F (m) allows to both test proposition 1 and estimate the parameters µ and π. This empirical test

is presented in Section 2.2.

The recursive characterization of the distribution of consumers ft in Equation (2) not only

allows me to solve for the cross-sectional distribution of the total number of consumers, but also

for any moment of the geographic distribution of these consumers. I define ∆ (m) as the average

(squared) distance from a firm’s consumers for a firm with m consumers. I call fm the density

of consumers for a firm with m consumers, and gm = fm/m its p.d.f. As the distribution gm is

symmetric around zero for any m, this average (squared) distance corresponds to the variance of

the p.d.f. gm,

∆ (m) ≡

ˆ
R
x2gm (x) dx (4)

The next proposition describes the relationship between the number of consumers of a firm, and

the distance from these consumers.

Proposition 2 For short time intervals, the average (squared) distance from a firm’s consumers,

∆ (m), increases with the number of consumers m,

∆ (m) =

�
1 +

1

πm

�
ln (1 + πm)∆g

with ∆g ≡
´
R x2g (x) dx the variance of the p.d.f. g (·).

Proof. See Appendix A.

Over time, not only does a firm acquire more consumers, but the geographic distance from

these consumers increases. This result is entirely due to the remote search, and can be understood

as follows. Each time a firm gains one more consumer, it searches remotely from where this

consumer is located. On average, existing consumers are some distance away from the firm, and

remote searches bring new consumers that are themselves some distance away from the existing

consumers. So each new wave of remote searches bring new consumers that tend to be further

and further away.

Formally from the difference Equation (2), the location of the new consumers acquired via

remote search is the sum of the signed distance of the existing consumers and the signed distance
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of the remote search: for each consumer at a signed distance y, if the remote search delivers a new

consumer that is herself at a signed distance (x− y) from y, the new consumer will be at a signed

distance y + (x− y) = x. In other words, the remote search process is equivalent to taking the

sum of two random variables, the first one being the variable that describes the location of existing

consumers, and the second one being the remote search. The fact that the variance of the sum

of two random variables is the sum of their variances explains why the average (squared) distance

from a firm’s consumers increases over time. This can be seen formally in Equation (2). The term´
R ft (y) g (x− y) dy is the convolution product of the functions ft (·) and g (·). In probability

theory, the convolution product is used to study the sum of random variables: the p.d.f. of the

sum of two random variables is the convolution product of their respective p.d.f.’s. This is the

essence of the proof of Proposition 2.

From the reasoning above, and as can readily be seen in Proposition 2, the fact that the average

(squared) distance from a firm’s consumers increases with the number of consumers is only driven

by the remote search process. Absent this remote search (π = 0) the average (squared) distance

from consumers is constant: ∆ (m) = ∆g, ∀m. Without remote search, a firm accumulates over

time more and more consumers from a series of independent waves of local searches. But all waves

of new consumers brought by this local search have the exact same geographic distribution. Large

firms sell more, but they have the same geographic distribution of sales as small firms. If remote

search is present (π > 0), the average (squared) distance of sales increases with the number of

consumers. Initially, for m small, the majority of new consumers come from local searches, and

∆ (m) is relatively insensitive to m: ∂∆ (m) /∂m|m=0 = 0. As the number of consumers gets large,

i.e. m large, the average (squared) distance of exports increases with the number of consumers in

a log-linear way: ∆ (m) ≈
m→∞

constant +∆g ln (m).

Note that Proposition 2 holds for any arbitrary symmetric p.d.f. g (·) with a finite variance.

This is true despite the fact that the geographic distribution of new consumers depends in a

complex non linear fashion on the entire distribution g (·), and hence on all the moments of this

p.d.f. This result, while striking at first, can easily be understood as follows. The average (squared)

distance from a firm’s consumers corresponds to the variance of the p.d.f. gt (·). The variance

of a distribution can be derived from the second derivative of the characteristic function of that

distribution evaluated at zero. The proof of Proposition 2 in the Appendix shows how to use the

difference Equation (2) to express the characteristic function of gt in terms of the characteristic

function of g. Then, for the same reason that the nth derivative of a composition of functions
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depends only on the first n derivatives of these functions, the variance of gt (the 2nd derivative

of its characteristic function) does not depend on any moment of g higher than its variance (any

derivative of its characteristic function of order above 2). The fact that the details of the geographic

bias in the local search technology g (·) do not matter for Proposition 2 will prove extremely useful

in guiding my empirical strategy. To test this proposition, I only need to estimate a single moment

of the distribution g (·), but I do not require any additional information on the distribution of the

geographic bias in local search g (·).

Using the same analytical tools, I can potentially describe all the moments of the distribution

of consumers ft. While I will not describe all these moments, I will make two observations that

help understand the process of acquiring consumers.

First, the process of acquiring a network of consumers exhibits a strong history dependence. I

have characterized above the underlying probability distributions that characterize the distribution

of a firm’s consumers. Any two firms in the same location and of the same age will have the exact

same probability distribution of consumers at any point in time. But of course, this is only a

continuous approximation of the discrete draws from such distributions. In a discrete version of

the model, if a firm initially happens to gain consumers in one particular location, it is subsequently

more likely to keep gaining consumers in the vicinity of that location. So over time, the distribution

of consumers of two initially identical firms will tend to diverge, each following its own history

dependent path. In Equation (2), the location of a firm’s new consumers at time t+1 depends on

the location of its existing consumers at time t. I use this observation to test empirically Equation

(2).

Second, over time, not only is a firm able to reach more consumers that are further away, but

the geographic dispersion of these contacts increases as well. This result is also due to the history

dependence of the search process, but this time within and not between firms. Each existing

consumer allows a firm to acquire new consumers that will tend to be geographically concentrated

around these existing consumers. Consumers tend to be clustered around each other. Time brings

new clusters of consumers that tend to be increasingly far apart from each other. I derive this

result formally and test this prediction in the online appendix.6

In this section, I have shown how to formally analyze a process of firms acquiring a network of

consumers that features two properties: first, the search for consumers tends to be geographically
6See http://home.uchicago.edu/tchaney/research/TradeNetworks_Appendix.pdf
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biased, and second, existing consumers allow a firm to remotely search for new consumers in the

vicinity of the existing ones. In the following section, I show that my results are robust to relaxing

the strong assumptions that warranted the tractability of the analysis above, and I discuss the

relationship of my model with the existing literature.

1.3 Robustness and discussion

Robustness: I make two strong simplifying assumptions in the model. First, I assume that

the world is infinite (represented by the real line R) and uniformly populated. Obviously, this

assumption is at odds with the data. The world is finite. Actual countries in that world are not

uniformly distributed: they vary in size and population density, and the world contains many

empty areas (oceans). Second, I assume that the geographically biased search function g (·) is the

same in any location. No matter where (for any y ∈ R) a firm acquires consumers, the remote

search from these locations is the same (gy (x− y) = gz (x− z) = g (x) for any (x, y, z) ∈ R3).

Obviously, this assumption is again at odds with the data. Some countries are isolated (remote

islands), so that no consumer can be found in their vicinity. Some countries are in the center

of densely populated areas (continents). And some countries are at the edges of such populated

areas, so that consumers can only be found in one direction and not the other.

While these simplifying assumptions are required to keep the model tractable and to derive an-

alytically the main propositions, I show numerically that they are inconsequential. In other words,

I show that the model under the uniformity and symmetry assumptions is a precise approximation

of a more complicated model (which I can only solve numerically) without these assumptions.

To do so, I randomly generate a discrete non-uniform population distribution over a finite

interval.7 The artificial world I simulate features areas of various sizes (islands and continents),

separated by empty spaces of various sizes (mountains, deserts and oceans), as well as a varying

population density (large and small cities). Following the literature on city sizes as in Gabaix

(1999), I assume that the population of firms in each city grows at the same constant rate γ. This

is a special case of the home market effect, whereby new firms tend to cluster in larger cities.

After a firm is born, it randomly meets consumers in other cities. I depart from the symmetry

assumption of the g (·) function, and assume instead that the search process originating from each

city is different (generically, gy (x− y) �= gz (x− z) for y �= z). Not only are the various gy (·)

7Detailed instructions for replicating this numerical simulation are given in the online appendix.
See http://home.uchicago.edu/tchaney/research/TradeNetworks_Appendix.pdf
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Figure 1: Numerical simulations of Propositions 1 and 2.
Notes: The solid red line in the left panel corresponds to the theoretical prediction from Propositions 1, and in the
right panel to the theoretical prediction from Proposition 2. The dotted lines on the right panel correspond to the
predicted 90% interval band. The blue plus signs correspond to the results from the numerical simulation.

functions different, but even their variances ∆gy differ. They are the same on average, but there

is some dispersion around this average. Finally, I consider a discrete version of the model above.

In a sense, I also test how far the law of large numbers is from applying in this discrete model.

The results of these numerical simulations for Proposition 1 and 2 are presented in Figure 1.

The numerical simulations show that the convenient assumptions that the world is unbounded, con-

tinuous and uniformly populated, and that all locations face the same distribution g are not crucial

for the main theoretical predictions of the model. On the left panel, the simulated cross-sectional

distribution of the number of consumers is close to the theoretical prediction in Proposition 1.

On the right panel, the average (squared) distance from a firm’s consumers closely matches the

theoretical prediction of Proposition 2. Among firms with many consumers, the simulated data ex-

hibits increasing noise. This is due to two forces. First, there are few firms with many consumers,

so that the average realization among these small samples has a high variance. In addition, as

discussed above, the variance of the (squared) distance from any firm’s consumers increases with

the number of consumers. Among firms with many consumers, the small sample accounts for a

quarter of the noise, and the increased variance of (squared) distances for each firm the remaining

three quarters. This pattern of the simulated data resembles the actual data on firm level exports

presented in Section 2.3.

Relation to the existing firm-level trade literature: Existing international trade models

with heterogeneous firms, such as Bernard, Eaton, Jensen and Kortum (2003) or Melitz (2003)
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and its extension in Chaney (2008) do not offer specific predictions regarding the distribution of

the number of countries reached by different firms. By comparison, the model I develop offers a

parsimonious theory for the extensive margin of international trade.

For this discussion, I assume that in my model, the number of contacts of a firm, m, is

proportional to the number of countries is exports to, M : m ∝ M . In the empirical analysis in

the next section, I discuss this approximation in details and offer a statistical correction for it.

In the original Melitz (2003) model, all trade barriers are symmetric, and any exporter ex-

ports to all foreign markets. This is obviously an artifact of the simplifying yet counter-factual

assumption that all trade barriers and country sizes are perfectly symmetric. In Chaney (2008),

I offer a simple extension of Melitz (2003) with asymmetric country sizes and fixed and variable

trade barriers. In this model, from the point of view of a given exporting country, say France,

there is a strict hierarchy of foreign markets. This means that markets can be strictly ordered in a

decreasing level of accessibility, so that if a French firm exports to the M th most accessible market,

it will necessarily export to all markets M � ≤ M . Therefore, the fraction of firms that export to

exactly M markets is simply the fraction of firms that have a productivity between the productiv-

ity threshold for exporting to market M and the threshold for exporting to market M + 1. Even

if productivities are distributed Pareto, the fraction of firms that export to exactly M markets

can take any value, depending on the distance between the thresholds for exporting to country M

and M + 1. Even if country sizes are themselves Pareto distributed, and if fixed export costs are

log-proportional to country size, there is no reason to make the counter factual assumption that

variable trade barriers are themselves log-proportional to country size. The fraction of firms that

export to exactly M markets does not even have to be decreasing in M .8

By adding to the Melitz/Chaney model firm-destination specific idiosyncratic shocks to the

entry cost and demand faced by each firm, Eaton, Kortum and Kramarz (2011) can a priori

replicate any pattern of entry in the data. Calibrating their model to the data, they need to

assume a very large amount of idiosyncratic noise, with a ratio of of the relevant combination of

fixed entry cost and local demand shocks of 1 to 13 between the 25th and the 75th percentiles.

So the productivity thresholds are essentially randomly distributed. With the assumption of this

additional noise, the fraction of firms that export to exactly M markets inherits the assumed

Pareto distribution of productivities across firms, which matches the data well. This distribution
8I develop these arguments formally and provide a calibration of the Melitz/Chaney model on the same data I

use in Section 2 in an online appendix.
See http://home.uchicago.edu/tchaney/research/TradeNetworks_Appendix.pdf.
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is directly assumed, and the fact that the model lines up with the data comes from the assumption

of a large amount of idiosyncratic noise and of Pareto distributed productivity shocks, and not

from the underlying Melitz/Chaney model.9 In contrast, the network model I develop offers a

theory of the distribution of entry into foreign markets, without the need for ad hoc assumptions

on the firms’ productivity distribution.

In the stochastic model of Bernard, Eaton, Jensen and Kortum (2003), there is no strict

hierarchy in the accessibility of foreign markets. A given exporter, even if it has a low productivity,

may still export to many foreign countries, if this exporter is lucky enough to face unproductive

foreign competitors. However, the structure of country sizes, relative productivities and labor

costs across countries, and bilateral trade barriers between countries imposes a severe restriction

on the cross-sectional distribution of the number of foreign markets entered. For a large number

of firms, or for the continuous limit developed in the model, there is no uncertainty either in the

fraction of firms entering any given market, or the distribution of the number of markets entered.

This distribution depends on the specific trade barriers and country characteristics. Even with

the assumed ad hoc and convenient Fréchet distribution of productivities, there is no reason why

any particular distribution should arise. As in the Melitz model, the fraction of firms that export

to exactly M markets does not even have to be decreasing in M . The following argument makes

this point clear. In the limit of infinitely large trade barriers, all firms only sell in their domestic

market, so that no firm sells to any M > 0 foreign markets. In the other extreme of perfectly

free trade, all firms that sell domestically also export to all countries in the world. So whereas

the fraction of firms that export to all foreign countries in the world is monotonically decreasing

from 1 to 0 with the level of trade barriers, the fraction of firms exporting to any other number of

foreign countries is not monotone. The fraction of firms exporting to exactly M markets can be

made arbitrarily small or large by simply varying bilateral trade barriers.

Finally, if trade barriers increase with distance, and if there is no systematic correlation between

country size and distance from France, both the Melitz/Chaney model and Bernard, Eaton, Jensen

and Kortum (2003) would correctly predict that the distance of exports increases with the number

of markets a firm enters. However, neither model offers any specific prediction for the shape of this

relationship. Even if a large amount of noise is added as in Eaton, Kortum and Kramarz (2011),
9Similarly, Armenter and Koren (2010) estimate from the data the distribution of the number of shipments (the

distribution of the number of “balls”) from the data, and then generate predictions for the occurrence of zeroes in
the trade data (empty “bins”). By contrast, instead of assuming this distribution to match the data, my model
offers a theory that generates such a distribution.
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the very strong tendency of firms in the Melitz/Chaney model to first enter close by markets

implies that exports are far more geographically concentrated than in the data. For instance,

among firms that export to a single foreign market, the average squared distance (in thousands of

km) between France and that country is 18 in the data, 16 in my calibrated model, but only 2 in

the calibrated Eaton, Kortum and Kramarz (2011) model.1011

To summarize, while existing firm level trade models directly make ad hoc assumptions to

match the extensive margin of trade, I develop a parsimonious model that endogenizes these

assumptions. On the other hand, my model is silent about the determinants of the intensive

margin of trade, or about the relation between a firm’s exposure to international trade and its size

in different markets, while those models make precise predictions about those. I that sense, the

proposed network model is complementary to the existing firm level trade literature.

2 Empirical evidence

In this section, I bring several the key testable predictions from the theoretical model to the data.

In Section 2.1, I describe the data on firm level exports for French firms, as well as aggregate

bilateral trade flows for the rest of the world. In Section 2.2, I test the first main prediction of

the model regarding the cross-sectional distribution of entry into different foreign markets, derived

from Proposition 1. In Section 2.3, I test the second main prediction of the model regarding the

geographic dispersion of exports across firms, derived from Proposition 2. In Section 2.4, I test

directly the assumption of the model regarding the dynamic entry of firms into foreign market,

derived from Equation (2). In doing so, I link formally the time-series and the cross-section of

firm level exports.

2.1 Data

To bring the model to the data, I use two sources of data. First, I use firm level export data

for French exporters, over the period 1986-1992. The data used come from the same source as

the data used by Eaton, Kortum and Kramarz (2011). I use information on French exporters in
10For a more intuitive interpretation of these numbers, the average distance is 3,500 km in the data versus 900

km in the calibrated Eaton, Kortum and Kramarz (2011) model.
11Of course, as in the Melitz/Chaney model, as firms eventually enter all countries, the difference between the

data and the model shrinks. Among firms that export to the maximum observed number of countries (98), the
average squared distance is 38 in the data, 43 in my calibrated model, versus 36 in the Eaton, Kortum and Kramarz
(2011) model. Those numbers however are not precisely estimated, as few firms export to that many markets.
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the years 1986 to 1992. For each firm, I know the total value (in French Francs) of its exports

over a given year, to a given country. There are between 119,000 exporters (in 1988) and 130,000

exporters (in 1987) in my sample (126,594 in 1992). Those firms export to a total of 210 different

foreign countries. French exporters export on average to between 3.8 (in 1991) and 4.2 (in 1986)

different foreign markets (3.9 in 1992).

In addition to these data on firm level exports for France, I use information on the size of

countries, their distance from France and from each other, and aggregate bilateral trade between

country pairs. The size of a country is measured as nominal GDP, collected from the Penn World

Tables. The distance between two countries is the population weighted geodesic distances between

the main cities in both countries, which come from the CEPII. Finally, I use data on aggregate

bilateral trade flows between countries, which are collected from the NBER.

2.2 Matching the distribution of export destinations

In this section, I test the first main prediction of the model, Proposition 1. The model predicts

that the distribution of the number of consumers of a given firm can be described by a mixture of

an exponential and a Pareto distribution. The only two parameters that govern this distribution

are µ, the number of new consumers acquired each period via local search (expressed in multiples

of the firm population growth rate γ), and π, the efficiency of remote search relative to local search.

As a reminder, the theory predicts that the fraction of firms that have fewer than m consumers is,

F (m) = 1−

�
1

1 + πm

� 1
µπ

There is one main complication that arises when bringing this prediction to the data: the

firm level export data only provides information on the number of foreign countries a firm exports

to, not the number of consumers it sells to. While the underlying number of contacts, m, is not

observed, the observed distribution of the number of countries, M , provides enough information

to recover the parameters that govern the distribution F (m). I follow the guidance of the theory

and ask: given that the number of contacts, m, is distributed according to the distribution F (m),

and that there are N equal sized countries, what is the distribution of the number of countries,

M , accessed by different firms? The following proposition answers this question.

Proposition 3 If there are N equal size distinct foreign countries, and the distribution of the

number of consumers across firms is given by Proposition 1, then the fraction of firms that export
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to exactly M distinct countries is,

φ (M |N) =
+∞�

m=M

1

µ

�
1

1 + πm

� 1
µπ

+1

n!S2 (m,M)

�
N
M

��
1

N

�m

with S2 (m,M) the Stirling number of the second kind.

Proof. See Appendix A.

The distribution φ (M |N) of the number M of countries firms export to depends on the same

parameters µ and π as the distribution F (m) of the number m of contacts, as well as the known

total number of countries, N = 210. It is essentially the same distribution, filtered through the

coarse grid of the 210 countries of the world. The data on firm level exports gives me as many

realizations of the distribution φ (M |N = 210) as there are firms in the sample (126,594). Using

a maximum likelihood procedure, I can estimate the parameters of interest, µ and π.

I make two strong simplifying assumptions. First, I assume that all countries have the same

size. Second, I assume that geography does not distort the mapping between the distribution of

the number of contacts, F (m), and the number of distinct countries, φ (M |N = 210), firms export

to. Note that geography (summarized in the p.d.f. g) has no impact on the distribution of the

total number of contacts, as the number of contacts evolves recursively according to Equation (3)

irrespective of geography. However, geography does affect the likelihood of a contact falling into

another distinct country. While I could in theory use the actual sizes and geographic locations of all

countries worldwide and the guidance of the model, incorporating this vast amount of information

into the estimation is numerically infeasible. Instead I simulate a discrete version of the model in a

world with asymmetric country sizes, and a complex geographic structure and show that ignoring

asymmetries in country sizes and geography is inconsequential: when I perform the maximum

likelihood estimation procedure described above on the simulated data, I recover parameters that

are close to the true parameters used to generate the data.12

The results are presented in column (1) of Table 1. The empirical cross sectional distribution

of entry into different foreign markets by French exporters suggest that µ = 2.38 and π = 0.158.

In other words, remote search is about 6 times less efficient than direct search (π = 1/6.32). Of

course, as firms acquire more contacts, remote search accounts for an increasing share of the firm’s

new contacts. For a firm with the sample mean number of 3.9 foreign contacts, direct search is only
12The details of this numerical simulation and the results from the estimation are given in the online Appendix.
See http://home.uchicago.edu/tchaney/research/TradeNetworks_Appendix.pdf.
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Table 1: Empirical fit of Proposition 3

(1) (2) (3) (4)
(MLE w. correction) (MLE) (NLLS) (MLE)

π 0.158 0.148 0.130 0
(.0017) (.0017) (.021)

µ 2.384 2.394 2.970 3.84
(.0098) (.0098) (.349) (.011)

Adj. R2/ log (likelihood.) -282,098 -282022 0.976 -296,916

likelihood ratio test: (4) vs. (2) Λ = 29, 788, p-value < .0001

Notes: This table presents the estimates of parameters µ and π using different procedures. These two parameters
govern the distribution of the number of foreign contacts in Proposition 1 and 3. Column (1) uses Proposition 3
to correct for the fact that the number of countries, M , and not of contacts, m, is observed. Columns (2)-(4) use
Proposition 1 under the simplifying assumption M = m. I use the same data on French exporters in 1992 for all
procedures. Standard errors are in parentheses. All coefficients are statistically different from zero at the 1% level
of significance.

60% more important than remote search. For a firm with 20 foreign contacts (90th percentile),

remote search dominates, and accounts for more than 75% of new contacts. On average, remote

search accounts for 21% of all new contacts.13 Since firms with many contacts are also very large

exporters in value, from a macro-economic perspective, the formation of contacts is dominated by

remote search. Figure 2 plots the empirical density of the number of foreign markets served by

French exporters and the theoretical prediction from Proposition 3 with the estimated parameters

µ and π. The fact that both random and network-based meetings coexist explains the curvature of

the empirical density in a log-log scale. The flattening out of the curve for very large observations

is due to the fact that once a firm already has contacts in most countries in the world, it becomes

less and less likely that new contacts fall into one of the few yet unaccessed countries.

For robustness, I also estimate the parameters (µ,π) through various alternative specifications.

The parameter estimates vary little across the various specifications or estimation methods. In col-

umn (2) of Table 1, I estimate the parameters through Maximum Likelihood under the simplifying

assumption that a firm that exports to exactly M distinct foreign countries has exactly M differ-
13I use a continuous approximation to circumvent integer constraints. In any period, direct search delivers

m̄direct = γµ new contacts for each firm, irrespective of their number of existing contacts. Remote search brings
γµπm new contacts for a firm with m existing contacts. Given that the contacts are distributed within the
population according to the c.d.f. F (m), the average number of new contacts brought by remote searches is
m̄remote =

´ +∞
0

γµπmdF (m) = γµ (µπ) / (1 + µπ). The fraction of new contacts delivered by remote search is
therefore m̄remote/(m̄direct + m̄remote) = µπ/ (1 + 2µπ) ≈ .21.
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Figure 2: Empirical fit of Proposition 3, φ (M) versus M .
Notes: φ (M) is the fraction of firms that export to M distinct destinations; dots: data, all French exporters in
1992; line: theory. π = .158 (.022) and µ = 2.38 (.019) are estimated through Maximum Likelihood.

ent foreign contacts. In column (3), I estimate through a Non Linear Least Square procedure the

parameters under the same simplifying assumption that one country corresponds to one contact.14

Finally, in column (4), I estimate through Maximum Likelihood a simpler benchmark model where

contacts are only acquired from direct search, again under the same simplifying assumption that

one country corresponds to one contact. I propose a likelihood-ratio test of my model against this

simpler benchmark, and reject the simpler model unambiguously. I offer further robustness checks

in the Appendix.15

The fact that the estimated parameters vary little across the different specifications is not
14Specifically, I estimate through NLLS the parameters (α, µ,π) in the following equation,

ln (fraction of firms exporting to M countries) = α−
�
1 +

1
µπ

�
ln (1 + πM) + �

where � is a normally distributed error term. This corresponds to the log of Proposition 1.
15See Table 5 in Appendix B.
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surprising. Eaton, Eslava, Krizan, Kugler and Tybout (2010) are able to identify separately

each U.S. contact of Colombian exporter. They show that 80% of Colombian firms that export

to the U.S. have a single contact (buyer) there. In the context of within country trade, using

detailed information on the input-output linkages between individual US firms, Atalay, Hortaçsu,

Roberts and Syverson (2010) report that the average number of U.S. suppliers of U.S. firms is only

marginally above 1.

Armed with an estimate for the relative importance of direct versus remote search, π, I study

the geographic dispersion of exports across firms in the next section.

2.3 Matching the geographic dispersion of exports

In this section, I test the second main prediction of the model, Proposition 2. The model predicts

the specific way in which the geographic dispersion of exports increases as firms enter more foreign

markets. This relationship only depends on the relative efficiency of remote and direct search, π.

Using data on the geographic distribution of exports among firms exporting to exactly M

foreign markets, I construct an empirical measure of the geographic dispersion of exports, ∆ (M).

To construct ∆ (M), I need to measure both the geographic distance between France and other

countries, as well as the p.d.f. gM which governs the entry of firms into different countries. For all

firms with M contacts, exports are distributed according to the p.d.f. gM . The probability that

a firm exports to country c is given by the integral of p.d.f. gM over all locations x ∈ [c, c̄] that

belong to country c,

Pr [exportsM.c > 0] =

ˆ
c̄

c
gM (x) dx

To derive an empirical measure of gM , I use two observations. First, the probability of exporting

to a country is approximately proportional to the measure of locations inside c, (c̄− c), which I

approximate by the GDP of country c.16 Second, given many observations, I use the law of large

numbers and approximate the probability that a firm with M contacts exports to country c by

the fraction of firms that do so. Calling c the center of country c, I get the following empirical

measure of gM (c),
�gM (c) ∝

�

i∈E(M)

�
1

GDPc

�
I {exportsi,c > 0} (5)

16The results below are not sensitive to removing the control for GDP , and are stable over time, as shown in the
robustness checks in Table 6 in Appendix B.
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where E (M) is the set of firms that export to M distinct countries. I can now go back to the

definition of the average (squared) distance of exports among firms with M contacts. I use the

approximation that within country distances are small relative to between country distances for

the last equality, and get,

∆ (M) ≡

ˆ
R
x2gM (x) dx =

�

c

ˆ
c̄

c
x2gM (x) dx ≈

�

c

(DistanceFr,c)
2 gM (c) (6)

Combining Equations (5) and (6) above, I define the empirical counterpart to ∆ (M) as follows,

�∆ (M) =

�
i∈E(M),c (DistanceFr,c)

2
�

1
GDPc

�
I {exporti,c > 0}

�
i∈E(M),c

�
1

GDPc

�
I {exporti,c > 0}

(7)

I can now bring Proposition 2 to the data. As a reminder, under the simplifying assumption

that the number of countries a firm exports to proxies for its number of consumers, m ≈ M , the

theory predicts the following relationship between the geographic dispersion of exports and the

number of markets a firm is able to enter,

∆ (M) =

�
1 +

1

πM

�
ln (1 + πM)×∆g

Using the cross sectional distribution of the number of export destinations across firms, I estimated

in the previous section that π ≈ .158. I only need to calibrate ∆g, which is not a unit-free measure,

to bring the theoretical prediction to the data. I use a non linear least square estimation of the

previous equation, and recover ∆g ≈ 14.860 (.109), with an R2 of 87%.17

Figure 3 plots the geographic dispersion of exports, ∆ (M), as a function of the total number

of foreign countries entered, both in the data and in the theory. Note that I only calibrate the

intercept of this relationship. I have no other degrees of freedom to calibrate the shape of this

relationship, which is entirely governed by the parameter π, estimated in the previous section on

the cross-sectional distribution of the number of foreign destinations.

The theory connects two distinct empirical observations: the distribution of the number of

foreign markets firms export to, and the geography of those exports. The same process for the

formation of a network of foreign contacts governs both. The evidence presented in this and the

previous section connects these two observations.

The next section directly tests some of the underlying assumptions of the model regarding the

dynamic process of network formation.

17Each observation is weighted by the precision of its estimation. This precision is given by the square root of
the number of observations used to estimate each second moment.
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Figure 3: Empirical fit of Proposition 2, ∆ (M) versus M .
Notes: ∆ (M) is the average squared distance to a firm’s export destinations, among firms exporting to M des-
tinations, as defined in Equation (7); distances are calculated in 1,000’s of kms; dots: data, all French exporters
in 1992; line: theory. π = .158 is taken from the estimation of Proposition 3, and ∆g=14.860 (.109) is estimated
through non linear least squares, each point weighted by the square root of the number of observations used to
compute ∆ (M).

2.4 Matching trade dynamics

In this section, I directly test the main predictions of the theoretical model regarding the time-

series of entry of individual firms into foreign markets. Firms use their existing foreign contacts

to remotely search for new contacts. This implies not only that the more foreign contacts a firm

already has, the more likely it is to enter new markets, but also that a firm follows a history

dependent path when expanding into foreign markets: if firm i exports to country c� at time t, it

is subsequently more likely to enter any country c that is closely connected to country c�.

To test those predictions, I formally bring Equation (2) to the data. The model presented in

Section 1 is a model of trade between different cities ( represented by different coordinates on the
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real line), not explicitly a model of trade between countries. To bring the model to the data, I

assume that countries form a partition of all locations in the world, with coordinates x ∈ [c, c̄]

belonging to country c. I set France as the origin country, and assign by convention all locations

inside France to the origin (x = 0). Integrating Equation (2) over all locations in the interval [c, c̄],

i.e. in country c, I get the following equation for the dynamic of entry of an individual firm i into

country c over time,
ˆ

c̄

c

fi,t+1 (x) dx = γµ

ˆ
c̄

c

g (x) dx+ γµπ
�

c�

ˆ
c̄�

y=c�
fi,t (y)

�ˆ
c̄

x=c

g (x− y) dx

�
dy +

ˆ
c̄

c

fi,t (x) dx

(8)

While I do not have direct information about exports to a particular location within a country, I

know whether a given firm exports or not to country c. I use this binary information as follows,

with I {exporti,c,t > 0} an indicator function equal to 1 if firm i exports to country c in year t,
ˆ

c̄

c

fi,t (x) dx = I {exporti,c,t > 0} (9)

Finally, I do not know a priori the exact shape of the geographically biased friction in the search

technology, summarized by the function g (·). I use two alternative proxies for this search friction.

With the first proxy, I follow a strict interpretation of the model and simply assume that this

search friction is proxied by (the log of) geographic distance. This is a strict interpretation of

the model in the sense that it assumes that the search friction is time invariant, symmetric, and

the same irrespective of the origin of the search. Formally, if location y is in country c� and all

locations x ∈ [c, c̄] are in country c, I assume,18

ˆ
c̄

c

g (x− y) dx ∝ lnDistc�,c (10)

With the second proxy, I follow a more flexible interpretation of the model and assume that the

search friction is proxied by the actual aggregate trade flows between the two countries. Since

distance is already a very good predictor of the level of trade, I use variations in trade flows as

a proxy for the contemporaneous search friction.19 Formally, if location y is in country c� and

location x is in country c, I assume,
ˆ

c̄

c

gt (x− y) dy ∝
∆Exportsc�,c,t
Exportsc�,c,t

(11)

18Note that as for the measure ∆ (M) above, I also add a control for GDPc in the main empirical specification.
19Controlling directly for the level of aggregate bilateral trade flows does not affect substantially the results

compared to simply controlling for distance.

26



Combining Equations (8), (9), (10) and (11), I estimate a Probit regression of different specifica-

tions of the following equation,

I {exporti,c,t+1 > 0} = α
�

c�

I
�
exporti,c�,t > 0

�

+ β1 lnDistFr,c + β2
�

c�

I
�
exporti,c�,t > 0

�
lnDistc�,c + β3

�

c� �=Fr

lnDistc�,c

+ γ1
�

c�

∆Exportsc�,c,t
Exportsc�,c,t

+ γ2
�

c�

I
�
exporti,c�,t > 0

� ∆Exportsc�,c,t
Exportsc�,c,t

+ δ I {exporti,c,t > 0}+ Controlsc,t + �i,c,t (12)

The coefficient α controls for the simplest version of the model, where the probability of a firm

entering a new country c is simply increasing in the number of countries this firm already exports

to. The coefficients β1 and γ1 control for the cost of direct search. The coefficients β2 and γ2

control for the cost of remote search, which originates only from the countries where a firm is

already exporting. The search cost is proxied by geographic distance for the coefficients β’s as in

Equation (10), and by aggregate trade volumes for the coefficients γ’s as in Equation (11). Finally,

the coefficient δ controls for the export status of firm i in the previous year, and the possibility

that a firm loses foreign contacts. I expect α, γ1, γ2 > 0, β1,β2 < 0 and 0 < δ < 1.

In addition, I control for country size, since it is mechanically more likely that a firm exports to

a large country than to a small one. I also add controls for the sector in which a firm operates, as

firms in different sectors may be more or less likely to export to any particular country. Removing

the sector fixed effects does not affect the results. Finally, it is likely that if country c is more

isolated from the rest of the world, in the sense that it is more distant from all other countries,

competition in c will be relatively mild, and everything else equal, it will be easier to access c.

The coefficient β3, expected to be positive, controls for this remoteness measure.

Table 2 shows the results of the Probit estimation of different specifications of Equation (12),

and Table 3 shows the marginal effects of these regressions. In every specification, all coefficients

are statistically significant (at the 1% confidence level), and of the expected signs.

More interestingly, the estimates from this panel regression are quantitatively close to the

predictions of the model calibrated on the cross-sectional distribution of the number of contacts

only. Using the marginal effect in column (1) of Table 3, the estimated increment in the probability

of exporting to a given country due to adding an extra contact is .48%. Across the different

specifications, this increment varies between .2% and .8%. Using the estimate for π from the
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estimation of the cross-sectional distribution of the number of foreign contacts across firms in

Section 2.2, I would predict this marginal effect to be equal to .46%.20 The cross-sectional estimate

(.46%) and the time-series estimate (.48%) are close.

In addition, I can match the structural parameters in Equation (8) with the estimated param-

eters in Equation (12). The model predicts that the relative efficiency of the remote search and

the direct search is measured by the parameter π. This relative efficiency is given by a simple

ratio of parameters. When I use distance as a proxy for the search technology, β1 ≈ γµ and

β2 ≈ γµπ so that π ≈ β2/β1. Similarly when I use export growth, π ≈ γ2/γ1. Intuitively, a firm is

more likely to export to a close-by country; this direct search effect is captured by the parameter

β1. But a firm is also more likely to export to a country that is close to countries where this

firm already exports; this remote search effect is captured by the parameter β2. The ratio β2/β1

measures the relative efficiency of the remote and direct search technologies. The same argument

goes for the coefficients γ1 and γ2, where distance is replaced by the growth of exports towards

countries where a firm tries to enter. Across the various specifications in columns (4), (5) and (6)

of Table 2, I estimate π between 3.2% and 3.3% when using distance (π ≈ β2/β1), and between

11.9% and 26.5% when using import growth (π ≈ γ2/γ1). While lower with the distance proxy,

with the export growth proxy, the estimated coefficient π is close to the 15.8% estimated from the

cross-sectional distribution of the number of foreign markets across firms in Section 2.2.

To confirm the results above, I perform a series of robustness checks.21 For instance, using

various lags of exports, I show that the data would not be consistent with a model where exporters

enter countries in which they have acquired a distribution network, or sell to consumers that have

a particular taste for their good, and where either the cost of a distribution network or tastes are

spatially correlated.

Finally, using only information on the number of countries accessed, I structurally estimate22

the law of motion for the number of contacts in Equation (3),

Mt+1 −Mt = γµ+ γµπMt

20Equation (3) in Section 1 gives ∆Mi,t = γµπ (1/π +Mi,t). So adding one contact increases the growth in the
number of contacts by γµπ. The average probability of entering a new country in the sample is ∆M̄ ≈ 4.7%, the
average number of contacts in the sample is M̄ ≈ 3.9, and 1/π ≈ 6.32 from estimating Proposition 3 on the cross-
sectional distribution of the number of foreign contacts. I predict that the increment in the probability of entering
a new country stemming from moving from 3.9 to 4.9 contacts is given by γµπ = ∆M̄

(1/π+M̄)
≈ 4.7%

6.32+3.9 ≈ .46%.
21See the results in Tables 7 and 8 in Appendix B.
22See the results in Table 9 in Appendix B.
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Adding a series of controls, including on the growth rate of domestic sales of those firms to control

for the growth trajectory a firm follows, does not affect those results substantially. A simple OLS

estimation of the relationship above gives �γµπ = 0.165 (.00040) and �γµ = 0.876 (.0048). This

implies π ≈ 0.188, which is close to π ≈ 0.158 estimated from the cross-sectional distribution of

the number of foreign contacts across firms.

Conclusion

I have developed a theoretical model of the dynamic entry of firms into foreign markets. Firms can

only export in countries where they have a contact. I assume that firms both directly search for

foreign trading partners, and also use their existing network of contacts to remotely search for new

partners. This dynamic model generates a stable distribution of exports across firms. The model

makes precise predictions about the cross-sectional distribution of the number of foreign contacts,

the cross-sectional distribution of the geographic distance from foreign contacts, and the dynamics

of entry of individual firms into foreign markets. All theoretical predictions are supported by the

data on firm level exports from France. Direct search is about 6 times more efficient than remote

search.

This model and the empirical findings that support it suggest several extensions and general-

izations. First, the emergence of a stable distribution of entrants into different foreign markets,

and the fact that firms that export to more countries are less affected by geographic distance, may

generate aggregate trade flows that follow the so called gravity equation. This may provide an

explanation for the stable role that geographic distance plays in explaining bilateral trade flows.

Second, I have only studied a simple symmetric case, and described its steady state properties.

A large shock to this dynamic system would generate non trivial transitional dynamics. For ex-

ample, a large disruption of trade linkages (e.g. wars or economic crises), or the rapid growth of

a large country (e.g. China) may have a long lasting impact on the world geography of trade,

since (re)building contacts is a lengthy and history dependent process. Third, whereas I have

only sketched the welfare implications of a simple economic model that would support the pro-

posed dynamics, the structure of the network lends itself to further welfare analysis. The robust

predictions of the model regarding the geographic distribution of exports may allow for precise

statements on the welfare gains from trade. I leave these questions for future research.
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APPENDIX

A Mathematical proofs

Lemma 1 The density of consumers ft is given by,

ft =
1

π

�
(δ + γµπg)∗t − δ

�

where δ is the Dirac delta function and the exponent ∗t stands for a function convoluted t times

with itself. ft admits a closed form solution in the special cases where g is a Gaussian or a Cauchy

distribution.

Proof. First note that the integral on the right hand side of Equation (2) is a convolution

product, so that the difference equation can be written in a compact form as,

ft+1 = γµg + ft + γµπg ∗ ft

where ∗ stands for the convolution product of two functions. Taking a Fourier transform of

this equation, and using the convolution theorem which states that the Fourier transform of the

convolution of distributions is the product of their Fourier transforms, I get,

f̂t+1 = γµĝ + f̂t + γµπĝf̂t

with initial condition f̂0 = 0, where I denote by f̂ the Fourier transform of the function f . This

first order linear recursive equation admits the following solution,

f̂t =
1

π

�
(1 + γµπĝ)t − 1

�

Taking the inverse Fourier transform of this equation, I get the proposed expression for ft.

To derive a closed form solution for the special cases where g is a Gaussian or a Cauchy

distribution, I manipulate this expression and get,

ft =
1

π

�
(δ + γµπg)∗t − δ

�

=
1

π

t�

s=1

(γµπ)s
�
t

s

�
g∗s
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Note that the convolution of the p.d.f.’s of t random variables is the p.d.f of their sum. As the

sum of t Gaussian (respectively Cauchy) distributed random variables is also a Gaussian (resp.

Cauchy), I derive closed form solutions. If g = φσ2 where φσ2 is the p.d.f. of a Gaussian distribution

with mean zero and variance σ2, then g∗s = φsσ2 , and I get,

ft =
1

π

t�

s=1

(γµπ)s
�
t

s

�
φsσ2

If g = ψγ where ψγ is the p.d.f. of a Cauchy distribution centered around zero and with scale

parameter γ, then g∗s = ψsγ , and I get,

ft =
1

π

t�

s=1

(γµπ)s
�
t

s

�
ψsγ

Proposition 1 (reminded) For short time intervals, the fraction of firms with fewer than m

consumers is,

F (m) = 1−

�
1

1 + πm

� 1
µπ

Proof. At any time, in any location, and therefore in the union of any set of locations (any

country), the fraction of firms with more than m contacts is the same. From the previous Lemma,

integrating the density of contacts of a firm of age t, I get the number of contacts of a firm as a

function of its age,

mt =
1

π

�
(1 + γµπ)t − 1

�

I invert the previous equation to get the age of a firm as a function of its number of contacts,

t (m) =
ln (1 + πm)

ln (1 + γµπ)

where t only takes integer values.23 The fraction of firms with more than m contacts, 1− F (m),

is the fraction of firms older than t (m). Given the exponential growth rate of the population, this

fraction is (1 + γ)−t(m). Using the above expression for t (m), I get,

1− F (m) = (1 + γ)−t(m)

= (1 + πm)− ln(1+γ)/ ln(1+γµπ)

23Note that I am not making any continuous approximation of the discrete model. The proposed formulas are
exactly correct when t is an integer. Those formulas simply extrapolate to non integer values for t.
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For short time intervals, which corresponds to γ small, the following first order approximation is

exact,

lim
γ→0

ln (1 + γ)

ln (1 + γµπ)
=

1

µπ

from which I derive the proposed expression,

F (m) = 1−

�
1

1 + πm

� 1
µπ

Proposition 2 (reminded) For short time intervals, the average (squared) distance from a firm’s

consumers, ∆ (m), increases with the number of consumers m,

∆ (m) =

�
1 +

1

πm

�
ln (1 + πm)∆g

with ∆g ≡
´
R x2g (x) dx the variance of the p.d.f. g (·).

Proof. From Proposition 1, I get an expression not only for the p.d.f. of the distribution of

contacts, gt = ft/mt, but more interestingly for its Fourier transform, ĝt = f̂t/mt,

ĝt =
(1 + γµπĝ)t − 1

(1 + γµπ)t − 1

Note that if gt is the p.d.f. of a random variable Xt, then its Fourier transform ĝt is closely related

to ϕgt (ω) = E
�
eiωXt

�
, the characteristic function of Xt,

ĝt (ω) =

ˆ
R
gt (x) e

−iωxdx = E
�
e−iωXt

�
= ϕgt (−ω)

The various moments of gt are then simply given by the various derivatives of ĝt evaluated at zero.

ĝ�t =
γµπtĝ� (1 + γµπĝ)t−1

(1 + α)t − 1

ĝt” = γµπt
ĝ” (1 + γµπ)t−1 + γµπ (t− 1) ĝ�2 (1 + γµπĝ)t−2

(1 + γµπ)t − 1

Note that since the distribution g is symmetric about zero, its first moment is zero, ĝ� (0) = 0.

The average (squared) distance of exports for a firm of age t, ∆t, is simply the variance of the

p.d.f. gt, given by the second derivative of ĝt evaluated at zero.

∆t ≡

ˆ
R
x2gt (x) dx = E

�
X2

t

�
= ĝt” (0) =

γµπt (1 + γµπ)t−1

(1 + γµπ)t − 1
∆g
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with ∆g ≡
´
R x2g (x) dx the variance of the p.d.f. g (·). Using the expression that relates a firm’s

age to the number of its contacts from the proof of the previous proposition, I get,

t (m) =
ln (1 + πm)

ln (1 + γµπ)

(1 + γµπ)t(m)
− 1 = πm

(1 + γµπ)t(m)−1 =
1 + πm

1 + γµπ

plugging those expressions into the expression for ∆t(m) = ∆ (m), I get,

∆ (m) =
γµπ

(1 + γµπ) ln (1 + γµπ)

�
1 +

1

πm

�
ln (1 + πm)∆g

For short time intervals, which corresponds to γ small, by l’Hôpital’s rule, the following first order

approximation is exact,

lim
γ→0

γµπ

(1 + γµπ) ln (1 + γµπ)
= 1

from which I derive the proposed expression,

∆ (m) =

�
1 +

1

πMm

�
ln (1 + πm)∆g

Proposition 3 (reminded) If there are N equal size distinct foreign countries, and the distribu-

tion of the number of consumers across firms is given by Proposition 1, then the fraction of firms

that export to exactly M distinct countries is,

φ (M |N) =
+∞�

m=M

1

µ

�
1

1 + πm

� 1
µπ

+1

n!S2 (m,M)

�
N
M

��
1

N

�m

with S2 (m,M) the Stirling number of the second kind.

Proof. There are N distinct countries, each populated by the same number of firms. These

firms are connected to one another by the network described in Section 1. The distribution of

the number of contacts M is therefore given by the c.d.f. F (M) in Proposition 1. Assume for

simplicity that physical geography does not matter, so that any contact is equally likely to be

located in any of the N countries, and that the location of any two contacts are independent from

one another. In other words, there is a probability 1/N that a contact is located in a given country,

and those probabilities are independent across contacts.24

24In the model, contacts are spatially correlated, so that some configurations of contacts are more likely than
others. Not accounting for this spatial correlation may induce a downward bias in the estimated number of contacts.
Despite this, I keep the assumption of equi-probable configurations for tractability. Numerical simulations suggest
that this bias is not systematically different for firms with many or few contacts, so that the estimation of the
parameters does not suffer much from this simplifying assumption.
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Consider now the following question: what is the probability, Pr (M |m), that a firm with m

contacts has contacts in M distinct countries?

For a given number of contacts m, there are Nm equi-probable distinct ways of distributing m

contacts into the N countries of the world, so that each configuration is realized with a probability
�
1
N

�m. There are
�
N

M

�
different ways of choosing M countries out of the total of N countries. Call

G (m,M) the number of distinct ways to assign each of the m contacts into M countries. The

probability that a firm with m contacts has contacts in M distinct countries is then simply,

Pr (M |m) =

�
N

M

��
1

N

�m

G(m,M)

The number G (m,M) is defined recursively as follows. There are two mutually exclusive cases.

In the first case, the first m− 1 contacts are assigned to only M − 1 countries. In that case, the

last mth contact must necessarily be assigned to the M th country. There are M equi-probable

such cases, one for each M th missing last country. There are G (m− 1,M − 1) ways to assign

M −1 countries to m−1 contacts, M candidate countries that can be missing for the last contact.

There are therefore MG (m− 1,M − 1) distinct ways of assigning M countries to m contact in

that first case. In the second case, the first m− 1 contacts are assigned to M countries. We can

then assign the last contact to any one of the M countries. There are therefore MG (m− 1,M)

distinct ways of assigning M countries to m contacts in that second case. The number G (m,M)

is defined recursively as,

G(m,M) = M [G(m− 1,M − 1) +G(m− 1,M)]

with the initial conditions G (m,m) = m! and G (m, 1) = 1. Noting that the known Stirling

number of the second kind, S2 (m,M), is defined recursively in a similar fashion,

S2(m,M) = S2(m− 1,M − 1) +MS2(m− 1,M)

with the initial conditions S2 (m,m) = 1 and S2 (m, 1) = 1, I get the following relationship between

the numbers G (m,M) and S2 (m,M),

G (m,M) = M !S2 (m,M)

I can now answer the question of interest: given that the number of contacts, m, is distributed

according to the distribution F (m), and that there are N equal sized countries, what is the

distribution of the number of countries, M , accessed by different firms?
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Obviously, a firm that has m contacts can export to at most m different countries. But for

any m > 1, the probability that two different contacts fall into the same country is positive, and

increases with m. In other words, among firms with contacts in M distinct countries, there are

firms with M, M + 1, M + 2, . . . contacts.

The fraction of firms that have exactly m contacts is simply given by the p.d.f. f (m),25

associated with the c.d.f. F (m) defined in Proposition 1. Given the distribution of the number of

countries reached by a firm with m contacts, Pr (M |m), the fraction of firms that have contacts

in exactly M distinct countries, is given by the proposed expression,

φ (M |N) =
+∞�

m=M

f (m) Pr (M |m)

=
+∞�

m=M

1

µ

�
1

1 + πm

� 1
µπ

+1

n!S2 (m,M)

�
N
M

��
1

N

�m

B Data

In this section, I describe the source of the data. I provide some descriptive statistics in addition

to what is presented in the main body of the paper. And I perform a series of robustness checks.

B.1 Data sources

Firm level export data: The data on firm level exports come from the French customs, and

are described in greater detail in Eaton, Kortum and Kramarz (2011). Until 1992, all shipments

crossing the French border are reported, either by the owner of the (exporting) firm, or by au-

thorized customs commissioners. Information about the identity of the exporting firm, the value

of the shipment, the industrial sector, and the destination country is recorded. This information

is then aggregated over a year. I use data on all French exporters (including non manufacturing

firms).26 A data point is therefore a firm, year, destination country and value of exports (in French

Francs) vector. Since I am primarily interested in the extensive margin of exports, I do not use

information on the value of exports.
25For simplicity, I use the approximation f (m) ≈ F (m+ 1)− F (m).
26Restricting the sample to manufacturing firms does not alter the results significantly.
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Table 4: Industrial sectors

Sector N100 Industries Firm-Years

Agriculture 0 – 3 302202
Mining 4 – 14 201983
Construction 15 –15 298906
Manufacturers 16 – 56 10299279
Transportation 68 – 75 161195
Wholesale 57 –59 5171218
Retail 60 – 64 1556536
F.I.R.E 78 – 81 , 88–89 148938
Services 65 – 67, 77, 82–87 905370
Public Admin. + Other 90 – 99 13390

In addition, the customs data are matched with balance sheet information collected by the

French fiscal authorities. All firms with a turnover of 1,000,000 French Francs in services, or

3,000,000 French Francs in manufacturing are mandated to report this information. Virtually all

exporters are included in this data set. In some robustness checks (Table 9), I use information on

annual sales, employment, and capital expenditure.

Finally, I use information on the primary 2-digit industrial sector of a firm. Table 4 reports

the list of 2-digit sectors, as well as the distribution of all exporters in those sectors.

For the main regressions of interest, I restrict my sample of firms to exporters only.

Distance data: I use data on bilateral distances between countries collected and constructed

by the CEPII. The distance between two countries is calculated as a weighted arithmetic average

of the geodesic distances between the main cities in these countries, where population weights are

used. Data on the location of the main cities in each country (latitude and longitude), as well as

the population of those main cities are used to compute those distances. The construction of the

data is described in further details by Mayer and Zignago (2006).

Country size data: I use as a measure of a country’s size its nominal GDP (in US$) in the

current year. The data are collected from the Penn World Tables and are described in further

detail at http://pwt.econ.upenn.edu/.

Bilateral trade flows: To proxy for the intensity of firm level contacts between countries

other than France, I use data on bilateral trade flows between countries. The data correspond to

the nominal value (in US$) of aggregate trade flows between country pairs. The data are collected
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from the NBER, and are described in further detail in Feenstra et al. (2004).

B.2 Robustness checks

Cross-section: φ (M |N) versus M

To check the robustness of the results presented in Section 2.2, I replicate the estimations in

columns (1)-(3) in Table 1 for each year, from 1986 to 1992. That is, I estimate separately for each

year the prediction from Proposition 1 regarding the cross-sectional distribution of the number of

foreign contacts using Maximum Likelihood after controlling for the fact that I observe countries

and not contacts. In addition, I estimate the parameters using Maximum Likelihood and Non

Linear Least Squares under the simplifying that firms have a single contact per country where

they export.

The results are presented in Table 5. All estimated parameters are statistically different from

zero at the 1% level of significance. Except for the year 1986 where the estimated π is somewhat

lower in the NLLS estimation, the coefficients are virtually identical across years, and do not differ

much across the different estimation procedures. This suggests first that the results are robust,

and second that the system of French exporters is in a steady state over the period considered.

Cross-section: ∆ (M) versus M

To check the robustness of the results presented in Section 2.3, I estimate the relevant parameter

∆g using different empirical measures of ∆ (M) and different years.

The results are presented in Table 6. For each year between 1986 and 1992, I separately esti-

mate the parameter ∆g. To do so, I use the formula for ∆ (M) derived in Proposition 2, imposing

the parameter π which is estimated on the cross-sectional distribution of the number of foreign

contacts in the top panel of Table 5. I estimate ∆g using non linear least squares, weighting each

observation by the precision of the empirical estimate of ∆ (M). I use two alternative empirical

measures for ∆ (M).

The top panel of Table 6 uses the same empirical measure of the second moment of the distance

from a firm’s export destinations, ∆ (M), as in Section 2.3, where I correct for differences in GDP

across countries. The formula for calculating the empirical counterpart of ∆ (M) is,

�∆ (M) =

�
i∈E(M),c (DistanceFr,c)

2
�

1
GDPc

�
I {exporti,c > 0}

�
i∈E(M),c

�
1

GDPc

�
I {exporti,c > 0}
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Table 5: Empirical fit of Proposition 3, robustness checks

Year (1986) (1987) (1988) (1989) (1990) (1991) (1992)

Maximum Likelihood Estimation with Correction of φ (M |N = 210):
π 0.165 0.164 0.156 0.156 0.153 0.153 0.158

(.0018) (.0017) (.0018) (.0017) (.0017) (.0017) (.0017)
µ 2.479 2.460 2.432 2.442 2.433 2.399 2.384

(.0105) (.0101) (.0104) (.0102) (.0103) (.0099) (.0098)
log (likelihood) -285,711 -297,839 -268,454 -280,670 -270,464 -277,844 -282,098

Maximum Likelihood Estimation of f (M):
π 0.154 0.153 0.146 0.146 0.143 0.144 0.148

(.0017) (.0017) (.0017) (.0017) (.0017) (.0019) (.0017)
µ 2.491 2.473 2.443 2.453 2.443 2.409 2.394

(.0105) (.0102) (.0104) (.0102) (.0103) (.0105) (.0098)
log (likelihood) -286653 -297774 -268388 -280602 -270395 -277770 -282022

Non Linear Least Squares Estimation of f (M):
π 0.102 0.125 0.134 0.129 0.133 0.131 0.130

(.016) (.018) (.025) (.023) (.025) (.022) (.021)
µ 3.574 3.152 2.916 2.983 2.900 2.934 2.970

(.386) (.332) (.381) (.377) (.382) (.354) (.349)
Adj. R2 0.975 0.980 0.971 0.972 0.971 0.976 0.976

Notes: This table shows the results of the Maximum Likelihood and Non Linear Least Squares estimations of the
parameters (µ,π) in Proposition 1 for French exporters in all years from 1986 to 1992. The top panel estimates
by maximum likelihood the p.d.f. φ (M |N = 210) using the statistical correction proposed in Proposition 3 for the
fact that the number of countries, M , and not contacts, m, is observed. The middle panel estimates by maximum
likelihood the p.d.f. f (M) under the simplifying assumption that the number of contacts of a firm and the number
of countries it exports to are the same, m = M . The bottom panel uses the log of the fraction of firms that
export to M markets as the dependent variable, and estimates (µ,π) using a non linear least squares estimation of
Proposition 1, under the same assumption m = M . Standard errors are reported in parentheses. All coefficients on
this table are statistically different from zero at the 1% level of significance.
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Table 6: Empirical fit of Proposition 2, robustness checks

Year (1986) (1987) (1988) (1989) (1990) (1991) (1992)

∆ (M) corrected for GDP differences:
∆g 14.434 14.325 14.602 14.850 15.01 14.819 14.860

(.124) (.121) (.118) (.117) (.103) (.085) (.109)
Adj. R2 0.859 0.888 0.872 0.881 0.887 0.924 0.871

∆ (M) not corrected for GDP differences:
∆g 14.437 14.178 14.412 14.730 14.439 14.346 14.384

(.292) (.318) (.335) (.311) (.360) (.401) (.373)
Adj. R2 0.820 0.792 0.784 0.801 0.766 0.736 0.753

Notes: This table shows the non linear least square estimate of ∆g from Proposition 2, imposing the parameter π

estimated by MLE in the top panel of Table 5. The estimation is run separately for each year from 1986 to 1992.
The top panel corrects the empirical measure of ∆ (M) for differences in GDP across countries, while the bottom
panel does not. Each point weighted by the square root of the number of observations used to compute ∆ (M).
Standard errors are in parentheses. All coefficients on this table are statistically different from zero at the 1% level
of significance.

where E (M) is the set of firms that export to M countries.

In the second panel of Table 6, I do not correct for differences in GDP across countries. The

formula for calculating ∆ (M) is as follows,

�∆ (M) =

�
i∈E(M),c (DistanceFr,c)

2 I {exporti,c > 0}
�

i∈E(M),c I {exporti,c > 0}

where E (M) is the set of firms that export to M countries.

This correction does not affect the estimated ∆g substantially. The statistical significance of

the estimated ∆g is reduced, and the R2 goes down from about 90% to 75% when I do not control

for differences in GDP. But all the coefficients remain highly significant (at the 1% confidence

level), and the coefficients themselves do not differ much across both measures. The estimated

coefficients are very stable over time. This suggests that the results presented in Section 2.3 are

robust. Moreover, given that I only allow for a single degree of freedom when estimating this

relationship, Proposition 2 finds a remarkably strong support in the data.

Time-series: PROBIT regression

To check the robustness of the results presented in Section 2.4, I run a Probit regression of
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different specifications of the following equation,

I {exporti,c,t > 0} = α× {N. contactsi,t−1}

+ β1 ×
�

c�∈Ci,t−1

∆Exportsc�,c,t
Exportsc�,c,t−1

+ β2 ×
�

c�∈Ci,t−2

∆Exportsc�,c,t
Exportsc�,c,t−2

+ . . .

+ γ1 ×
1

|Ci,t−1|

�

c�∈Ci,t−1

lnDistc�,c + γ2 ×
1

|Ci,t−2|

�

c�∈Ci,t−2

lnDistc�,c + . . .

+ µ× lnDistFr,c + ν ×
1

|{c� : c� �= Fr}|

�

c� �=Fr

lnDistc�,c

+ δ1 × I {exporti,c,t−1 > 0}+ δ2 × I {exporti,c,t−2 > 0}+ . . .

+ Controls + �i,c,t (13)

where Ci,t−k is the set of countries where firm i exports at time t− k.

Table 7 shows the results of these Probit regressions, and Table 8 the corresponding marginal

effects. With a few exceptions, all coefficients are statistically significant (at the 1% confidence

level), and of the expected signs.

The results of these regressions allow me to reject an alternative model. In this alternative

model, firms either have to acquire a local distribution network to enter foreign countries, or

sell goods to consumers with locally differentiated tastes. Moreover, the cost of expanding a

distribution network or local tastes are spatially correlated. In such an alternative model, a firm

would be more likely to enter at time t a market c that is geographically close to, or that trade a

lot with any market c� in which this firms exported at time t− 1. However, in such an alternative

model, conditional on exporting to countries that are either close or trades a lot with c at time

t − 1, the increment in the probability of entering c given that a firm exports to countries that

are close or trade a lot with c at times t − 2, t − 3,... should decrease rapidly. In my model on

the other hand, any year a firm exports to country c�, and conditional on still not exporting to c,

it has the same probability of learning about contacts in c. So controlling for the export status

in c over longer and longer lags, the increment in probability of entering c brought about by the

fact that a firm exports to countries that are close or trade a lot with c should not systematically

decrease over longer and longer lags.

As can be seen in Columns (2)-(5), there is no systematic tendency for the coefficients β1, . . . ,β5

and γ1, . . . , γ5 on these lags to fall. In Column (5) where I use the maximum number of five lags

allowed by the data, the coefficients on the lags of export growth, β’s, fall and then increase, while

the coefficients on the lags of distance, γ’s, increase, except for the fifth lag that is insignificant.
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Table 7: Time-series of exports, robustness checks (PROBIT)

Dependent Variable: I {exporti,c,t > 0}
(1) (2) (3) (4) (5)

N. contactsi,t−1 .0343*** .0293*** .0275*** .0261*** .0259***
(.0003) (.0003) (.0003) (.0003) (.0004)

�
c�∈Ci,t−1

∆Exports
c�,c,t

Exports
c�,c,t−1

.0355*** .0406*** .0560*** .0363*** .0359***
(.0028) (.0036) (.0043) (.0053) (.0067)

�
c�∈Ci,t−2

∆Exports
c�,c,t−1

Exports
c�,c,t−2

.0083*** .0001 -.0070*** -.0115***
(.0011) (.0015) (.0019) (.0027)

�
c�∈Ci,t−3

∆Exports
c�,c,t−2

Exports
c�,c,t−3

.0198*** .0111*** .0059***
(.0015) (.0019) (.0027)

�
c�∈Ci,t−4

∆Exports
c�,c,t−3

Exports
c�,c,t−4

.0237*** .0183***
(.0018) (.0024)

�
c�∈Ci,t−5

∆Exports
c�,c,t−4

Exports
c�,c,t−5

.0832***
(.0025)�

c�∈Ci,t−1
lnDist

c�,c

|Ci,t−1| -.1477*** -.955*** -.0720*** -.0509*** -.0372***
(.0032) (.0041) (.0053) (.0067) (.00086)�

c�∈Ci,t−2
lnDist

c�,c

|Ci,t−2| -.0740*** -.0582*** -.0470*** -.0432***
(.0039) (.0054) (.0067) (.00089)�

c�∈Ci,t−3
lnDist

c�,c

|Ci,t−3| -.0491*** -.0458*** -.0459***
(.0050) (.0067) (.0089)�

c�∈Ci,t−4
lnDist

c�,c

|Ci,t−4| -.0437*** -.0364***
(.0062) (.0085)�

c�∈Ci,t−5
lnDist

c�,c

|Ci,t−5| .202***
(.0083)

lnDistFr,c -.3806*** -.2923*** -.2592*** -.2449*** -.2127***
(.0031) (.0032) (.0037) (.0045) (.0055)

1
|{c�: c� �=Fr}|

�
c� �=Fr

lnDistc�,c .4397*** .3621*** .3387*** .3393*** .2714***
(.0075) (.0078) (.0091) (.0113) (.0140)

lnGDPc,t .1296*** .1154*** .1124*** .1114*** .1146***
(.0008) (.0008) (.0009) (.0010) (.0013)

Control for:
I {exporti,c,t−k > 0} and
ln

�
Domestic Salest

Domestic Salest=k

�

�
c� �=Fr

∆Exports
c�,c,t−k

Exports
c�,c,t−k

k = 1 k = 1, 2 k = 1, ..., 3 k = 1, ...4 k = 1, ...5

Constant -3.244*** -3.0227*** -3.0218*** -3.0942*** -2.7457
(.0543) (.0544) (.0616) (.0748) (.0915)

N. obs 16,565,725 12,255,332 8,898,165 5,950,983 3,689,058
N. clusters 34,588 32,589 29,745 23,149 20,488
Pseudo-R2 .5608 .5935 .6073 .6136 .6171

Notes: This table shows the results of the PROBIT estimation of Equation (13) for a panel of all French exporters
between 1986 and 1992. See the description of the variables in Section 2.4 on page 25. Standards errors are
clustered at the firm level. ∗, ∗∗, and ∗∗∗ mean statistically significant at the 10, 5 and 1% levels.
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Table 8: Time-series of exports, robustness checks (PROBIT: marginal effects)

Dep. Var.: I {exporti,c,t > 0} dy/dx
(1) (2) (3) (4) (5)

N. contactsi,t−1 .0016*** .0014*** .0013*** .0012*** .0012***
(.0000) (.0000) (.0000) (.0000) (.0000)

�
c�∈Ci,t−1

∆Exports
c�,c,t

Exports
c�,c,t−1

.0017*** .0019*** .0026*** .0016*** .0016***
(.0001) (.0002) (.0002) (.0002) (.0003)

�
c�∈Ci,t−2

∆Exports
c�,c,t−1

Exports
c�,c,t−2

.0004*** 0 -.0003*** -.0005***
(.0001) (.0001) (.0001) (.0001)

�
c�∈Ci,t−3

∆Exports
c�,c,t−2

Exports
c�,c,t−3

.0009*** .0005*** .0003***
(.0001) (.0001) (.0001)

�
c�∈Ci,t−4

∆Exports
c�,c,t−3

Exports
c�,c,t−4

.0011*** .0008***
(.0001) (.0001)

�
c�∈Ci,t−5

∆Exports
c�,c,t−4

Exports
c�,c,t−5

.0038***
(.0004)�

c�∈Ci,t−1
lnDist

c�,c

|Ci,t−1| -.0070*** -.0045*** -.0033*** -.0023*** -.0017***
(.0002) (.0002) (.0002) (.0003) (.0004)�

c�∈Ci,t−2
lnDist

c�,c

|Ci,t−2| -.0035*** -.0027*** -.0021*** -.0020***
(.0002) (.0002) (.0003) (.0004)�

c�∈Ci,t−3
lnDist

c�,c

|Ci,t−3| -.0023*** -.0021*** -.0021***
(.0002) (.0003) (.0004)�

c�∈Ci,t−4
lnDist

c�,c

|Ci,t−4| -.0020*** -.0017***
(.0003) (.0004)�

c�∈Ci,t−5
lnDist

c�,c

|Ci,t−5| .0009***
(.0001)

lnDistFr,c -.0181*** -.0136*** -.0120*** -.0110*** -.0097***
(.0001) (.0001) (.0002) (.0002) (.0003)

1
|{c�: c� �=Fr}|

�
c� �=Fr

lnDistc�,c .0209*** .0169*** .0156*** .0153*** .0124***
(.0003) (.0004) (.0004) (.0005) (.0006)

lnGDPc,t .0062*** .0054*** .0052*** .0050*** .0052***
(.0000) (.0000) (.0000) (.0000) (.0001)

Control for:
I {exporti,c,t−k > 0} and
ln

�
Domestic Salest

Domestic Salest=k

�

�
c� �=Fr

∆Exports
c�,c,t−k

Exports
c�,c,t−k

k = 1 k = 1, 2 k = 1, ..., 3 k = 1, ...4 k = 1, ...5

Notes: This table shows the marginal effects for the PROBIT estimation of Equation (13) presented in Table 7.
The marginal effect is calculated as dy/dx at the average value of each x in the sample. dy/dx is for a discrete
change from 0 to 1 when x is a dummy variable. Standards errors are clustered at the firm level. ∗, ∗∗, and ∗∗∗

mean statistically different from zero at the 10, 5 and 1% level of significance.47



It must be noted however that there is a lot of turnover in the extensive margin of trade at

the firm level, so that the systematic entry and exit of firms into different markets may obscure

some of these results.

Time-series: number of export destinations

The theoretical prediction from the model regarding the law of motion of the number of foreign

contacts is given in Equation (3). To structurally test this prediction, I estimate by Ordinary Least

Squares the following equation,

(Number of new contacts)
i,t+1 = α+ βMi,t + Controlsi,t + �i,t (14)

where the dependent variable is the number of new countries entered by firm i between year t

and t + 1, Mi,t is the number of countries where firm i exports at time t, and �i,t is a normally

distributed error term. Since I do not allow for the death of contacts in the theoretical model,

I focus my empirical analysis on the creation of new contacts. The estimation of Equation (14)

allows me to recover the structural parameter π = β

α
.

The results of this estimation are presented in Table 9. In the different specifications, I control

for various measures of a firm’s growth trajectory. The idea is that firms that grow on the

domestic market may as well expand abroad, for reasons that are orthogonal to my model of

network formation. I control for different combinations and measures of domestic sales growth,

domestic employment growth, and domestic investment growth at the firm level.

Firms whose domestic sales are increasing are more likely to enter new foreign markets. Em-

ployment growth has some limited but non robust positive impact on the entry into new foreign

markets, whereas investment growth does not seem to have any impact on the entry into foreign

markets. If anything, investment growth deters entry into foreign markets.

The estimation of the various specifications of Equation (14) give an estimate for π that ranges

between 0.5 (column (1) without any controls) to 0.176 (column (7)). The specification that is

characterized by the most significant combination of controls, column (6), gives an estimate of

0.182. Given that an entirely different set of data is used, this is surprisingly close to π ≈ 0.158

estimated from the cross-sectional distribution of the number of foreign contacts.

These findings suggest that my model of network formation is able to precisely identify the link

between the time-series and the cross-section of individual exporters’ entry into foreign markets.
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