
1 

 

The Network Zoo: a multilingual package for the inference and analysis of 
biological networks 

Marouen Ben Guebila1, Tian Wang1,2, Camila M. Lopes-Ramos1,3, Viola Fanfani1, Deborah Weighill1,4, 
Rebekka Burkholz1,5, Daniel Schlauch1,6, Joseph N. Paulson7, Michael Altenbuchinger1,8, Abhijeet 
Sonanwane3,9, James Lim10,11, Genis Calderer12, David van Ijzendoorn13,14, Daniel Morgan3,15, Alessandro 
Marin16, Cho-Yi Chen1,17,18, Alex Song3,19, Kate Shutta1,3, Dawn DeMeo3, Megha Padi10, John Platig3, 
Marieke L. Kuijjer12,13,20, Kimberly Glass1,3, John Quackenbush1,3,17 

1Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA 
2Present address: Biology Department, Boston College, Chestnut Hill, MA, USA 
3Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA 
4Present address: Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 
NC, USA 
5Present address: CISPA Helmholtz Center for Information Security, Saarbrücken, Germany 
6Present address: Genospace, LLC, Boston, MA, USA 
7Department of Biochemistry and Molecular Biology, Pennsylvania State University College of 
Medicine, Hershey, PA, USA. 
8Present address: Department of Medical Bioinformatics, University Medical Center Göttingen, 
Göttingen, Germany 
9Present address: Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular 
Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA 
10Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA 
11Present address: Monoceros Biosystems, LLC, San Diego, CA, USA 
12Center for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway 
13Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands 
14Present address: Department of Pathology, Stanford University School of Medicine, CA, USA 
15Present address: Hong Kong University, School of Biomedical Sciences, Honk Kong 
16Expert Analytics AS, Oslo, Norway 
17Dana-Farber Cancer Institute, Boston, MA, USA 
18Present address: Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, 
Taipei 112, Taiwan 
19Present address: Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA 
20Leiden Center for Computational Oncology, Leiden University, Leiden, The Netherlands 
 

 

 

 

 

 

 

 

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2022. ; https://doi.org/10.1101/2022.05.30.494077doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.30.494077
http://creativecommons.org/licenses/by/4.0/


2 

 

Abstract 
Inference and analysis of cellular biological networks requires software tools that integrate multi-omic 
data from various sources. The Network Zoo (netZoo; netzoo.github.io) is an open-source software suite 
to model biological networks, including context-specific gene regulatory networks and multi-omics 
partial correlation networks, to conduct differential analyses, estimate community structure, and model 
the transitions between biological states. The netZoo builds on our ongoing development of network 
methods, harmonizing the implementations in various computing languages (R, Python, MATLAB, and 
C) and between methods to allow a better integration of these tools into analytical pipelines. To 
demonstrate the value of this integrated toolkit, we analyzed the multi-omic data from the Cancer Cell 
Line Encyclopedia (CCLE) by inferring gene regulatory networks for each cancer cell line and 
associating network features with other phenotypic attributes such as drug sensitivity. This allowed us to 
identify transcription factors that play a critical role in both drug resistance and cancer development in 
melanoma. We also used netZoo to build a pan-cancer, multi-tiered CCLE map and used it to identify 
known metabolic hallmarks of cancer and to estimate novel context-specific elements that mediate post-
transcriptional regulation. Because the netZoo tools are open-source and there is a growing community of 
both users and developers, we built an ecosystem to support community contributions, share use cases, 
and visualize networks online. As additional data types become available and our suite of methods grows, 
we will expand “the zoo” to incorporate an increasingly sophisticated collection of tools for network 
inference and analysis. 
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Background 

Biological phenotypes are driven by a complex network of interacting elements that defines cell types and 
determines response to perturbations [1]. Defining these interactions can be modeled by assessing 
physical binding between biological elements [2], their co-expression [3], and their co-dependency [4] to 
identify functional modules that together control the emergence of a given phenotype. A particular type of 
network are gene regulatory networks (GRNs) that are comprised of regulators and their target genes. One 
type of regulators are transcription factors (TFs), regulatory proteins that bind to DNA to activate or 
repress gene transcription. TFs often form complexes that act together to regulate transcription [5-7] and 
TF activity can be further influenced by epigenetic modifications such as promoter methylation or histone 
acetylation [8]. Other regulators of gene expression include microRNAs (miRNAs) that act post-
transcriptionally, primarily to degrade and subsequently repress the expression of their mRNA target [9, 
10]. These and other factors together modulate the expression of the more than twenty-five thousand 
protein-coding genes in the genome, altering cellular processes and giving cells the potential to respond to 
various stimuli [7].  

Despite rapid advances in sequencing technologies, the size and complexity of biological networks put 
them out of reach of direct measurement [6]. Consequently, there have been many attempts to model and 
represent biological networks using computational methods [3, 6, 11-13], although not all model gene 
regulatory processes.  

Our group has developed a number of robust methods for GRN inference and analysis, each of which 
takes advantage of multiple data types available in individual studies. Each method is based on modeling 
known biological interactions and seeks consistency between a variety of input data sources. Our methods 
for reconstructing networks include PANDA [14] and OTTER [15] for modeling TF-gene regulatory 
processes, DRAGON [16] for estimation of multi-omic networks based on GGMs, and PUMA [17] which 
adds miRNA-gene post-transcriptional regulation to TF-gene interactions In addition, SPIDER [18] 
reconstructs networks by accounting for chromatin state, EGRET [19] include genotype information in 
network inference, and LIONESS [20] estimates network models for individual samples. Another set of 
methods has been developed for network analysis including CONDOR [21] for modeling and detection of 
communities in expression quantitative trait locus (eQTL) networks, ALPACA [22] and CRANE [23] for 
identifying communities within networks and how communities change between states, and MONSTER 
[24] to estimate TFs that drive the transition between network states. SAMBAR [25] allows us to group 
biological samples based on how genetic variants alter functional pathways, and, finally YARN [26] is a 
tissue-aware implementation of smooth quantile normalization for multi-tissue gene expression data.  

Many of these methods share a methodological and philosophical framework that derives from the “No 
Free Lunch Theorem”—modeling of complex systems can be improved by incorporating domain-specific 
knowledge [27]. Also, many of them use an overlapping set of standard input data types and provide 
complementary views of biological networks. As such, they have often been used together. To facilitate 
their use and integration into analytical pipelines, we gathered these into the Network Zoo (netZoo; 
netzoo.github.io), a platform that harmonizes the codebase for these tools and provides implementations 
in R, Python, MATLAB, and C. In building netZoo, we also created the Zookeeper, a tool that helps 
ensure consistency of the codebase as it is continuously updated in response to user feedback. The netZoo 
serves as a centralized resource for biological networks including GRN inference and analysis by 
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providing an ecosystem of tools available to both scientists and method developers and includes resources 
to integrate contributions, to share use cases [28], and to host and visualize networks [29]. 

To demonstrate the power of this unified platform, we used netZoo tools to build the first comprehensive 
collection of genome-scale GRNs for the cell lines in the Cancer Cell Line Encyclopedia (CCLE) [30-32]. 
We also used PANDA, LIONESS, and MONSTER to infer TF-gene targeting in melanoma to explore 
how regulatory changes affect disease phenotype, and used DRAGON to integrate nine types of genomic 
information and find multi-omic markers that are associated with drug sensitivity.  

 

Results and discussion 

netZoo integrates network inference and downstream analyses 

Regulatory processes drive gene expression and help define both phenotype and the ability of a biological 
system to respond to perturbations. However, identifying context-specific regulatory processes is difficult 
because the underlying regulatory network is often unobserved [6]. Several netZoo methods address this 
challenge by integrating multiple sources of available data to infer TF-gene regulation. PANDA [14] 
builds a regulatory TF-gene network by first positing a prior regulatory network and then iteratively 
optimizing its structure by seeking consistency between gene co-expression and TF protein-protein 
interactions (PPIs). The prior regulatory network can be constructed by scanning the sequence of the 
promoter region of target genes (for example, by using FIMO [33]) for transcription factor binding sites 
(TFBS) using TF motifs taken from catalogs (such as CIS-BP [5]). The input TF PPI data can be obtained 
from resources such as STRING [2] and gene co-expression is obtained from the particular experiment 
being analyzed. The inference is based on the concept that interacting TFs co-regulate their target genes 
and co-expressed genes are potentially regulated by the same sets of TFs. PANDA uses message passing 
to iteratively update all three data sets, maximizing consistency between them, until it converges on a data 
set-specific regulatory network with interaction scores between TFs and their regulated targets. 

Other methods in netZoo were built using PANDA’s conceptual framework. OTTER [15] takes the same 
input but uses regression as an alternative implementation of the network optimization solution. SPIDER 
[18] uses epigenetic data such as DNase-Seq measurements of DNA accessibility to inform the PANDA 
prior network on context-specific accessible chromatin regions. EGRET [19] uses cis-eQTL data to seed 
the method with genotype-specific priors. PUMA [17] extends PANDA’s regulatory framework by 
including miRNA target predictions in the initial prior network to capture both TF and miRNA regulation 
of target genes/mRNAs.  

LIONESS [20] is a general-purpose method for single-sample network estimation that can be used with 
any network inference approach. It iteratively leaves out individual samples and uses linear interpolation 
to estimate sample-specific networks for each sample in the original sample set. LIONESS outputs 
individual sample edge weights which can be treated as inferred measures on each sample, allowing 
statistical comparisons to be performed on the associated networks. A key use case of LIONESS is to 
estimate sample-specific GRNs using PANDA.  

DRAGON [16]is a flexible method for integrating multiple data sources into a GGM. GGMs differ from 
correlation networks in that partial correlation corrects for spurious correlations between modeled 
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variables; the multi-omic networks estimated by DRAGON therefore represent direct associations 
between the different omic types included in the model. DRAGON differs from PANDA and similar Zoo 
tools for network estimation in that it estimates an undirected unipartite network rather than a bipartite 
GRN. 

A second group of tools in netZoo were developed to identify and explore higher-order structure in 
biological networks [34, 35] by identifying highly connected network “communities” and comparing the 
structure of these communities between phenotypic states. CONDOR [21] identifies communities in 
bipartite graphs (including eQTL networks and GRNs), while ALPACA [22] finds differential 
community structures between two networks, such as in a case versus control setting, by going beyond 
the simple difference of edge weights and using the complete network structure to find differential 
communities. CRANE [23] extends ALPACA’s differential community estimation by assessing 
significance of differential modules and comparing to a baseline of network ensembles that were 
generated by preserving the specific structure and constraints of GRNs. An important use case of CRANE 
is modeling the transition between an initial and a final condition such as between healthy and disease 
states. A fourth method, MONSTER [24], treats the transition between related biological states as one in 
which a first network is subject to a regulatory transition that involves altering transcription factor 
connections to their target genes. Mathematically, MONSTER models such changes by identifying a 
“transition matrix” that maps an initial state network to a final state network to identify the TFs that have 
the largest effect on the structure of the network and therefore are likely to help drive the phenotypic 
transition. 

Many of the netZoo tools share common methodological and computational cores and over the years we 
have used combinations of these tools to explore the regulatory features driving biological states [36, 37]. 
Harmonizing the implementation of these tools to create a unified resource, netZoo, facilitates 
interoperability and the seamless integration in a pipeline that connects network inference with 
downstream analyses (Figure 1) to generate hypotheses and actionable biological insights.  

Modeling TF targeting in melanoma  

Melanoma progression and metastasis is known to be associated with many regulatory changes that alter 
patterns of gene expression [38], ultimately leading to phenotype switching to malignancy and drug 
resistance. These changes in expression can be tied to a variety of regulatory elements including 
transcription factor targeting, miRNA suppression of transcripts, and genomic and epigenetic changes. To 
demonstrate the utility of the netZoo framework for combining netZoo tools, we applied PANDA with 
LIONESS to model transcriptional regulation for individual samples in melanoma. This workflow allows 
us to understand regulatory changes in disease by estimating and analyzing sample-specific regulatory 
networks for the 76 melanoma cell lines available in CCLE and exploring a variety of disease-associated 
processes.  

First, we used PANDA to generate an aggregate network across all CCLE cell lines, and we derived 
single-sample networks using LIONESS. Then, we used ANOVA to analyze the 76 melanoma networks 
to explore whether TF targeting scores, the sum of outgoing edge weights for each TF in the network 
[39], could be linked to methylation changes and copy number alterations. We defined hypermethylated 
and hypomethylated promoter sites as those having methylation status greater or less than three standard 
deviations from the mean (|z|>3) respectively; we considered a gene to be amplified if it had evidence of 
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more than three copies in the genome and to be deleted if both copies are lost. We only computed the 
associations if they had at least three positive instances of the explanatory variable (for example, for a 
given gene at least three cell lines had a hypomethylation in that gene’s promoter) and corrected for 
multiple testing using a false discovery rate of less than 0.25 following the Benjamini-Hochberg 
procedure [40].  

Among the top ten associations (Figure 2A), we found that the targeting by the TF melanocyte inducing 
transcription factor (MITF) was associated with changes in promoter methylation, in particular, we found 
a significant association between the MITF targeting score, computed as the TF weighted outdegree, and 
promoter hypermethylation of Discoidin, CUB and LCCL Domain Containing 2 (DCBLD2) (Figure 2A), 
a gene that has been suggested to trigger oncogenic processes in melanoma through Epidermal Growth 
Factor Receptor (EGFR) signaling [41]. This finding consistent with the identification of MITF as a key 
driver of melanoma [42, 43]. We also found that MITF targeting was associated with the deletion of 
Protein Tyrosine Phosphatase Non-Receptor Type 20 (PTPN20; Figure 2A), providing further evidence 
that disrupted signaling mediated by MITF regulation plays an important role in melanoma.  

The targeting by TFs glioma-associated oncogenes 1 and 2 (GLI1 and GLI2) was also significantly 
increased in melanoma; both TFs had previously been linked to drug resistance in melanoma cell lines 
[44]. In examining GLI1 and GLI2 targeting, we found it to be associated with promoter hypomethylation 
of MIR6893. According to TargetScan [10]), MIR6893 regulates two related TFs, Glis Family Zinc Finger 
1 and 2 (GLIS1 and GLIS2) and both have been reported to be involved in psoriasis [45], an 
inflammatory skin condition, which may indicate that they play a similar role in melanoma. Finally, 
examining additional significant associations (Figure 2A), we find a decrease of targeting by TBX19 to be 
associated with amplification of the HLA-DBA1 and HLA-DQB1 genes, both of which are known to be 
melanoma risk factors [46]. TBX19 itself has not been implicated in melanoma, but it has been linked to 
lymph node metastasis in colorectal cancer [47] and TBX2, another member of the T-Box family, is 
involved in melanoma proliferation [48].  

We also tested whether TF targeting in the CCLE melanoma cell lines was associated with response to 
Regorafenib, a multi-kinase inhibitor that has been approved for treating metastatic colorectal cancer, 
advanced gastrointestinal stromal tumors, and advanced hepatocellular carcinoma. The drug has been 
shown to have a high affinity for BRAF [49], a kinase commonly mutated in metastatic melanoma, 
suggesting it may also show efficacy in treating melanoma. We performed Elastic Net regression [50] on 
TF targeting scores to test for cell viability following Regorafenib treatment [51] and among the largest 
variable importance, we found targeting by MITF to be negatively associated with cell viability (Figure 
2B, Figure S1). This finding is consistent with studies that found that MITF loss to be associated with 
drug resistance [52] and underscores the multifunctional role that MITF appears to play in melanoma 
based on our analysis. However, other studies have implicated an increased activity of MITF in resistance 
to BRAF inhibitor treatment [53, 54]. Another TF, ZNF778, was also a strong predictor of Regorafenib 
sensitivity (Figure 2B, Figure S1); the ZNF778 promoter has also been found to be highly mutated in 
melanoma [55]. 

Finally, severe forms of melanoma are associated with a transition from a noninvasive to an invasive state 
[56] which can be driven by epithelial to mesenchymal transition (EMT). We used MONSTER to define a 
TF transition matrix that maps a nonmetastatic network for cell line GRN derived from a primary tumor 
(Depmap ID: ACH-000580) to one derived from a cell line derived from melanoma metastasis (Depmap 
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ID: ACH-001569). We found that the TFs RUNX2, GLI1, and CREB3L1 were among those with the 
largest differential involvement score [24] (Figure 2C), indicating that they have the most profound 
changes in their regulatory targets as cells become metastatic. RUNX2 has been previously identified as a 
driver of epithelial to mesenchymal transition (EMT) processes and phenotype switching in melanoma 
[56]. CREB3LI has been reported to be activated in drug resistant cell lines [57] and GLI1 knockdown 
has been shown to increase sensitivity to Vemurafenib [44], an approved melanoma BRAF inhibitor. 
Collectively, the results from these analyses suggest a co-involvement of TFs associated with both drug 
resistance and cell state transition in invasive disease and highlight the promise of multi-kinase targeting 
[58]. 

CCLE pan-cancer analysis reveals meaningful regulatory interactions 

The CCLE cell lines are among the most widely studied model systems available in oncology research 
and include a large number of omic measurements as well as viability assays following drug challenges 
and gene knockdowns; we used DRAGON [16] to explore multi-omic associations captured in these data. 
DRAGON uses partial correlations with covariance shrinkage [59] to construct GGMs representing direct 
associations between measurements, accounting for the unique structure of each data type. We calculated 
DRAGON partial correlation networks between all pairwise sets of measurements on the CCLE cell lines, 
but we will focus on three sets of correlations in our discussion here: 1) miRNA levels and gene 
knockdown, 2) protein levels with metabolite levels, and 3) cell viability assays after drug exposure and 
gene knockdown screens. 

In the first comparisons between miRNA expression and gene knockdowns, we assume that if a gene 
product is repressed by miRNA, then it is likely nonessential. We found that MIR664 levels have a strong 
partial correlation with Glutathione-Disulfide Reductase (GSR) dependency, suggesting that MIR664 
post-transcriptionally regulates GSR (Figure 3A). This is consistent with annotation in the TargetScan 
database [10], which predicts GSR to be a target of MIR664, ranked 613/5387 with a context+ score of -
0.16. In our DRAGON analysis of metabolomic and proteomic data, we first found three glycolysis 
metabolites, Phosphoenolpyruvic acid, 3-phosphoglycerate, and glyceraldehyde 3P, were negatively 
partially correlated with Lactate Dehydrogenase-A (LDHA) protein levels (Figure S2, Figure 3B). This 
suggests that these metabolites are upstream of LDHA and indicates that glycolysis operates in the 
forward direction towards metabolite breakdown (Figure S2). Second, we found that fumarate/maleate 
levels, that are TCA cycle metabolites, were negatively partially correlated with LDHA (Figure 3B). 
These two observations suggest an activity of LDHA in the forward direction towards lactate production 
through aerobic fermentation (Figure S2). The activation of suboptimal pathways such as aerobic 
fermentation (the Warburg effect [60]) to produce energy is a hallmark of cancer and has been correlated 
with poor prognosis and drug resistance [61, 62]. This effect could be dominant in CCLE, since we did 
not filter for cell lines based on their metabolic phenotype.  

We also performed DRAGON analysis of cell viability assays after drug exposure and gene knockdown 
screens. Not surprisingly, we found that viability after exposure to Dabrafenib, a BRAF inhibitor, was 
highly correlated with BRAF knockdown. Dabrafenib cell viability was also correlated to MAPK1 and 
MAP2K1, two genes that are downstream of BRAF in the MAPK signaling pathway. This finding is 
possibly due to compensatory mechanisms between functionally-related genes [63]. In the absence of 
these effects, the latter finding makes sense because although Dabrafenib is described as “selective” to 
BRAF [64], it has been shown to be active in cell lines with constitutively activated BRAF harboring the 
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V600E activating mutation [65]; this subsequently triggers drug resistance by reactivating the MAPK 
pathway, particularly, MAPK1 and MAP2K1.  

An integrated CCLE multi-omic network portal 

Having estimated DRAGON networks for additional pairwise combinations of measurements (Table S1) 
on the CCLE cell lines, we integrated these partial correlation networks from various omic types and 
created an online portal to allow exploration of the integrated relationships we discovered. Having built 
bipartite DRAGON networks between each pair of measurements, we systematically overlaid networks 
based on our understanding of the cascade of regulatory processes active in cells (Figure S3). First, 
promoter methylation status, copy number variation, histone marks, and miRNA partial correlations 
networks with gene expression were stacked to capture the multi-modal regulation of gene expression. 
Then, gene expression was linked to protein levels, which in turn was associated with cellular phenotypes 
represented by metabolite levels, drug sensitivity, and cell fitness resulting in a final genotype-to-
phenotype map. To reduce the size of the network to the most relevant positive and negative associations, 
only the 2000 most positive correlations and the 2000 most negative correlations in each pairwise 
association in each of the bipartite networks were retained in the final multi-omic network.  

The resulting integrated CCLE partial correlation network is available online 
(https://grand.networkmedicine.org/cclemap/) and can be queried to explore the biological associations 
contained within (Figure 4A). To illustrate the utility of this multi-tiered correlation network map we used 
it to examine the effect of copy number variation on gene expression. As expected, we found positive 
partial correlations between copy number and expression. For example, we not only found that CDKN2A 
and CDKN2B copy numbers have a positive partial correlation with CDKN2A and CDKN2B expression, 
respectively (Figure 4B), but that CDKN2B copy number is correlated with CDKN2A expression, which 
may reflect the fact that these two genes are adjacent in the genome. We also found negative partial 
correlations between copy number variation and gene expression. For example, MIR378D1 copy number 
is negatively partially correlated with TBC1D21 expression (Figure 4C), suggesting that TBC1D21 may 
be repressed by MIR378D1. Although TBC1D21 is not listed as a target of MIR378D1 in miRDB, other 
members of the TBC1 family, including TBC1D12 (Target Score (TS) 66), TBC1D16 (TS 61), and 
TBC1D24 (TS 53), are among its predicted targets [66].  

Creating a community ecosystem for collaborative software development 

Development of netZoo has been driven through collaborative work involving users and developers at 
several academic institutions, all of whom are committed to open-source, community-driven tool 
development. A great deal of our work in harmonizing the code has been to facilitate reproducibility 
across implementation of related methods, to facilitate re-use of common methods for network inference, 
and to standardize input and output file formats to enable creation of network analysis pipelines. 

The netZoo codebase is version-controlled in GitHub and implementations of most methods are available 
in R, Python, MATLAB, and C (Figure 5). Using a synchronized resource for code development avoids 
creating parallel branches and gives users access to tested and optimized tools that are up to date with the 
newest frameworks, particularly for the growing userbase in R and Python, as well as with third-party 
dependencies. The codebase includes additional helper functions for plotting and analysis, and GPU-
accelerated implementations [67] for faster network inference across large numbers of samples. A 
continuous integration system called ZooKeeper runs unit tests using GitHub actions and a custom server 
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to maintain the integrity of the software and update dependencies to third-party software. In addition, 
contributions from the community follow a fork-branch model and are tested through ZooKeeper before 
being added to the core codebase. Finally, users can access a set of cloud-based Jupyter notebook use 
cases and tutorials hosted through Netbooks [28] and visualize a set of networks hosted in the GRAND 
database [29]. 

 

Conclusions 

We developed netZoo as an open-source platform for the inference and analysis of biological networks, 
including multi-omic gene regulatory and partial correlation networks. We accomplished this by 
standardizing the implementations of software tools built on a common conceptual framework, in line 
with recent similar efforts [68, 69], and building an ecosystem for sharing of use cases, hosting networks, 
and continued development and maintenance which is essential for software accuracy [70]. We will 
continue to expand netZoo (Figure S4), adding new methods [71-73] and improving implementations of 
the existing tools, as well as building interfaces to allow methods to be combined appropriately. We 
welcome community participation in methods development and are committed to the broad use of the 
tools available within netZoo.  

 

Methods 

netZoo applications using the Cancer Cell Line Encyclopedia 

The CCLE project characterized more than a thousand cell lines from 35 cancer types, measuring gene 
and miRNA expression, promoter methylation status, copy number variation, protein and metabolite 
levels. Phenotypic data are available from the PRISM project on viability of these cell lines following 
drug exposure [74] and from cell fitness screens available through the dependency map [75]. For the 
1,376 CCLE cell lines that had transcriptomic measurements, we inferred GRNs using PANDA and 
LIONESS algorithms available in netZooPy v0.8.1 and used these for various analyses.  

As input to PANDA network inference process, we began with a TF-to-gene prior regulatory network 
computed by running FIMO [33] scans of 1,149 TF motifs from CIS-BP (v1.94d; [5]) in the promoter 
region of genes (defined as 1kb downstream of each gene’s transcription start site) in the reference human 
genome sequence (hg38); we adjusted the TF-gene pair by combining two previously-suggested scores 
[76, 77]. The modified score (s) integrates the distance between the detected motif and the TSS with the 
significance of motif assignment as follows: 

𝐸𝑞1: 𝑠(𝑡, 𝑔) =,−𝑙𝑜𝑔01(𝑝 − 𝑣𝑎𝑙𝑢𝑒7) ∗ 𝑒
9 :;
<:∗01=0

7

 

where t is a transcription factor, g is a target gene, k is the number of binding sites of t identified in the 
promoter region of g, dk denotes the distance of t’s biding site k to TSS of g, md the median of all the 
distances d, and p-valuek the significance of assignment of binding site k. We used as inputs a TF PPI 
network derived from the STRING database [2] (using the aggregate score for human interactions only 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2022. ; https://doi.org/10.1101/2022.05.30.494077doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.30.494077
http://creativecommons.org/licenses/by/4.0/


10 

 

and scaling them between 0 and 1) and a gene-gene correlation network based on gene expression data, as 
preprocessed in CCLE. The resulting PANDA network includes regulatory associations between 1,132 
TFs and 18,560 genes using the ‘mode’ parameter to intersection which take the intersection TF and 
genes between the three input networks. Then, we used LIONESS to infer regulatory networks for each of 
the 1,376 cell lines; all networks can be found in the GRAND database 
(https://grand.networkmedicine.org/cell/). We also computed TF targeting scores [78] by computing the 
weighted outdegree for each TF in each cell line specific network.  

Modeling TF targeting associations in melanoma 

To find associations between TF targeting and promoter methylation status and copy number variation 
status, we selected 76 melanoma CCLE cell lines and we computed the significance of associations using 
ANOVA. We considered a gene to be amplified if it had more than three copies and to be deleted if both 
copies are lost. Promoters were defined in CCLE as the 1kb region downstream of the gene’s 
transcriptional start site (TSS). Promoter hypermethylation was computed by z-scoring the methylation 
matrix across all samples and taking promoters that had a z-score larger than three. Similarly, a promoter 
was considered hypomethylated if it had a z-score less than three.  

In all melanoma cell lines, for each modality (promoter hypomethylation, promoter hypermethylation, 
gene amplification, and gene deletion) and for each gene, we built an ANOVA model using TF targeting 
as the response variable across all melanoma cell lines while the status of that gene (either promoter 
methylation or copy number status) was the explanatory variable (with positive instances for methylated 
promoters/amplified genes and negative instances for nonmethylated promoters/nonamplified genes) 
along with an additional factor correcting for the cell lineage. We only computed the associations if they 
had at least three positive instances of the explanatory variable. We corrected for multiple testing by 
taking associations that had less than 25% false discovery rate.  

To predict drug response using TF targeting, we conducted a linear regression with Elastic Net [50] 
regularization using an equal weight of 0.5 for L1 and L2 penalties using Regorafenib cell viability assays 
in melanoma cell lines as a response variable and the targeting scores of 1,132 TFs (Table S2) as the 
explanatory variable. 

Finally, to model EMT in melanoma, we used MONSTER on two LIONESS networks of melanoma 
cancer cell lines, one representing a primary tumor (Depmap ID: ACH-000580) as the initial state and the 
other a metastasis cell line (Depmap ID: ACH-001569) as the end state. We modified the original 
implementation of MONSTER that implements its own network reconstruction procedure to take any 
input network, such as LIONESS networks in our case. MONSTER identifies differentially-involved TFs 
in the transition by shuffling the columns of the initial and final state adjacency matrices 1000 times to 
build a null distribution, which is then used to compute a standardized differential TF involvement score 
by scaling the obtained scores by those of the null distribution. 

Computing CCLE multi-omic associations 

We used DRAGON to compute partial correlations between multi-omic data of CCLE cell lines. In 
particular, we computed partial correlations between the three following data-type pairs across all CCLE 
cell lines: 1) miRNA levels and gene knockdown, 2) protein levels and metabolite levels, and 3) cell 
viability assays after drug exposure and gene knockdown screens. DRAGON builds a GGM that 
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implements covariance shrinkage with omic-specific tuning parameters, a novel addition to covariance 
shrinkage that enables DRAGON to account for varying data structures and sparsities of different multi-
omic layers [59]. All variables were standardized to have a mean of 0 and a standard deviation of 1 before 
calling DRAGON. 

CCLE pan-cancer map 

To enable further exploration and discovery of biological associations, we built an online resource 
representing a multi-tiered regulatory network. First, to build a pan-cancer multi-tiered network that 
connects the genotype to cellular phenotypes, we extended DRAGON networks from modeling pairwise 
interactions between two omics to a multi-omic network by sequentially adding a new layer to an initial 
pairwise DRAGON network. In addition, since DRAGON networks are undirected, we added direction 
based on our understanding of how biological elements interact with each other. For example, gene 
expression nodes are upstream of protein levels nodes and metabolite nodes. To facilitate browsing and 
limit exploration to potentially causal associations that best reflect our understanding of how different data 
types link to one another in cellular biology, our approach was to prune edges between the same node type 
to build bipartite DRAGON networks between each pair of genomic modalities. In particular, promoter 
methylation status, copy number variation, histone marks, and miRNA were linked to gene expression in 
a pairwise fashion. Then, gene expression was linked to protein levels, which in turn was associated with 
cellular phenotypes represented by metabolite levels, drug sensitivity, and cell fitness. Only the 2000 
most positive correlations and the 2000 most negative correlations in each pairwise association were 
considered in the final network. The CCLE online pan-cancer map was built using Vis.js (v8.5.2) and can 
be queried for biological associations using user input queries at 
https://grand.networkmedicine.org/cclemap. 

For all analysis presented in this work, we used the following releases of CCLE data: Promoter 
methylation data of 2018/10/22, histone marks data of 2018/11/30, miRNA expression data of 
2018/11/03, metabolite levels data [32] of 2019/05/02. Cell viability assays were taken from the 19Q4 
release of PRISM [74]. Cell fitness screens were taken from the 21Q1 release of project Achilles. Gene 
expression and copy number variation were taken from the 21Q1 release of the Dependency Map. Protein 
levels [31] were taken from the 2020/01 version of CCLE. 

Software package 

All analyses were performed using netZooPy v0.8.1, the Python distribution of the netZoo 
(netzoo.github.io). NetZoo tools are implemented in R, Python, MATLAB, and C. netZooR v1.0 is 
currently implemented in R v4.1 and available through GitHub (https://github.com/netZoo/netZooR) and 
Bioconductor (https://bioconductor.org/packages/netZooR) and includes PANDA, LIONESS, CONDOR, 
ALPACA, SAMBAR, MONSTER, OTTER, CRANE, EGRET, and YARN. netZooPy v0.8.1 is 
implemented in Python v3.9 and includes PANDA, LIONESS, PUMA, CONDOR, SAMBAR, OTTER, 
and DRAGON. netZooM v0.5.2 is implemented in MATLAB 2020b (The Mathworks, Natick, MA, 
USA) and includes PANDA, LIONESS, PUMA, SPIDER, and OTTER. netZooC v0.2 implements 
PANDA and PUMA. 

Supplementary Information 
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Additional file 1 contains four supplementary figures and two supplementary tables. 
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Figure 1 Inference and analysis of GRNs using netZoo. YARN allows us to normalize gene expression 
data to account for differences between tissues. Then, a first group of tools uses normalized gene 
expression data to infer cellular biological networks with a first set that reconstructs GRNs using multiple 
genomic modalities (PANDA, PUMA, OTTER, LIONESS, SPIDER, EGRET) and a second method for 
multi-omic correlation-based networks (DRAGON). A second group (CONDOR, ALPACA, CRANE) 
identifies communities in the networks and finds differential community structures between two networks 
of interest. Finally, MONSTER estimates a transition matrix between two networks representing an initial 
and a final state, and SAMBAR de-sparsifies mutation data using biological pathways. The methods 
represented in this figure are YARN, PANDA, PUMA, OTTER, LIONESS, SPIDER, EGRET, 
CONDOR, ALPACA, CRANE, MONSTER, and SAMBAR. SNP: Single Nucleotide Polymorphism. 

 

Figure 2 Modeling regulatory processes in melanoma using CCLE data. A Volcano plot of the ANOVA 
associations between TF targeting scores and promoter methylation and copy number statuses in 
melanoma cell lines. The 10 largest significant associations are colored in red and cyan for methylation 
status, and in orange and purple for copy number status. B Elastic net regression of Regorafenib cell 
viability on TF targeting scores in melanoma cell lines. The figure represents the two largest positive 
coefficients and two largest negative coefficients. C Differential TF involvement in the transition between 
primary melanoma cell line and a cell line derived from melanoma metastasis. The top 50 TFs are colored 
in blue. 

 

Figure 3 Pan-cancer analysis of regulatory interactions using DRAGON. A Partial correlation between 
miRNA levels and gene knockdown screen across all cancer cell lines. B Partial correlation of metabolite 
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levels and LDHA protein levels. C Partial correlation between gene knockdown screens and Dabrafenib 
cell viability assays. 

Figure 4 Multi-tiered CCLE map links genotype to cellular phenotypes. A Screenshot of the online 
resource accessible on https://grand.networkmedicine.org/cclemap/ that links promoter methylation 
(orange triangle), copy number variation (pink diamond), histone marks, miRNA levels, gene expression 
(blue circle), protein levels (purple circle), metabolite levels (green square), drug sensitivity, and cell 
fitness using DRAGON. B Positive partial correlations between copy number variation and gene 
expression of CDKN2A and CDKN2B. C Negative partial correlation between MIR378D1 levels and 
TBC1D21 expression. 
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Figure 5 netZoo ecosystem. The codebase is hosted on GitHub and is regularly tested through a 
continuous integration system called ZooKeeper. Networks generated by netZoo tools are hosted in the 
GRAND database. Cloud-hosted use cases and tutorials are available through a JupyterHub server called 
Netbooks. GitHub discussions and issues provide a forum for discussion and exchange within the 
community. 
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