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Abstract. In the paper we study the equation Lu = f , where L is a degenerate elliptic
operator, with Neumann boundary condition in a bounded open set Ω. We prove existence
and uniqueness of solutions in the space H(Ω) for the Neumann problem.

Keywords: Neumann problem, degenerate elliptic equations

MSC 2000 : 35J70, 35J25

1. Introduction

In this paper we prove existence and uniqueness of solutions in the space H(Ω)
(see Definition 2.2) for the Neumann problem

(P)

{
Lu(x) = f(x) on Ω,

〈A(x)∇u(x), ~η(x)〉 = 0 on ∂Ω,

where L is a degenerate elliptic operator

(1.1) Lu(x) = −
n∑

i,j=1

Dj(aij(x)Diu(x)) +
n∑

i=1

bi(x)Diu(x) + g(x)u(x) + θu(x)v(x)

with Dj = ∂/∂xj (j = 1, . . . , n), θ is a constant, the coefficients aij , bi and g are mea-

surable, real-valued functions, the coefficient matrix A(x) = (aij(x)) is symmetric
and satisfies the degenerate ellipticity condition

(1.2) |ξ|2ω(x) 6 〈A(x)ξ, ξ〉 6 |ξ|2v(x)
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for all ξ ∈ � n and almost every x ∈ Ω ⊂ � n where Ω is a bounded open set with
piecewise smooth boundary (i.e., ∂Ω ∈ C0,1), ω and v are weight functions (that is,
locally integrable and nonnegative functions on

� n ), ~η(x) = (η1(x), . . . , ηn(x)) is the
unit outward normal to ∂Ω at x, 〈·, ·〉 denotes the usual inner product in � n and the

symbol ∇ indicates the gradient.
In general, the Sobolev spaces W k,p(Ω) without weights occur as spaces of solu-

tions for elliptic and parabolic partial differential equations. For degenerate partial
differential equations, i.e., equations with various types of singularities in the coef-

ficients, it is natural to look for solutions in weighted Sobolev spaces (see [1], [2]
and [3]).

A class of weights which is particularly well understood, is the class of Ap-weights
(or Muckenhoupt class) that was introduced by B. Muckenhoupt (see [4]). These

weights have found many useful applications in harmonic analysis (see [5]). Another
reason for studying Ap-weights is the fact that powers of distance to submanifolds

of
� n often belong to Ap (see [6] or [7]). There are, in fact, many interesting examples

of weights (see [8] for p-admissible weights). In this paper we will consider only Ap-

weights.
The following theorem will be proved in Section 3.

Theorem 1.1. Let Ω ⊂ � n be a bounded open set with boundary ∂Ω ∈ C0,1.

Suppose that

(H1) ω ∈ A2, v ∈ A2 and (1.2) holds;

(H2) f/v ∈ L2(Ω, v);
(H3) bi/ω ∈ L∞(Ω) (i = 1, . . . , n) and g/v ∈ L∞(Ω).

Then there exists a constantC > 0 such that for all θ > C the Neumann problem (P)
has a unique solution u ∈ H(Ω). Moreover, we have

‖u‖H(Ω) 6 2
∥∥∥f

v

∥∥∥
L2(Ω,v)

.

� �������
	��
1.2. Consider the domain Ω = {(x, y) ∈ � 2 : x2 +y2 < 1}, the weight

functions

ω(x, y) = (x2 + y2)−1/3 and v(x, y) = (x2 + y2)−1/2

and the coefficient matrix

A(x, y) =
(

(x2 + y2)−1/3 0
0 (x2 + y2)−1/2

)
.

For all ξ ∈ � 2 and almost every (x, y) ∈ Ω we have

1
(x2 + y2)1/3

|ξ|2 6 〈A(x, y)ξ, ξ〉 6 1
(x2 + y2)1/2

|ξ|2.
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If (x, y) ∈ ∂Ω = {(x, y) ∈ � 2 : x2 + y2 = 1}, then ~η(x, y) = (x, y) is the unit outward
normal to ∂Ω. By Theorem 1.1 the Neumann problem

{
Lu(x, y) = (x2 + y2)−3/8 cos(xy) on Ω,

〈A(x, y) · ∇u, ~η〉 = 0 on ∂Ω

where

Lu(x, y) = −
[

∂

∂x

( 1
(x2 + y2)1/3

∂u

∂x

)
+

∂

∂y

( 1
(x2 + y2)1/2

∂u

∂y

)]

+
sin(xy)

(x2 + y2)1/3

∂u

∂x
+

cos(xy)
(x2 + y2)1/4

∂u

∂y

+
u(x, y) sin(xy)
(x2 + y2)1/3

+ θ
u(x, y)

(x2 + y2)1/2

has a unique solution u ∈ H(Ω) (if θ > 2).

2. Definitions and basic results

Let ω be a locally integrable nonnegative function in
� n and assume that 0 <

ω < ∞ almost everywhere. We say that ω belongs to the Muckenhoupt class Ap,
1 < p < ∞, or that ω is an Ap-weight, if there is a constant C = Cp,ω such that

(
1
|B|

∫

B

ω(x) dx

)(
1
|B|

∫

B

ω1/(1−p)(x) dx

)p−1

6 C

for all balls B ⊂ � n , where | · | denotes the n-dimensional Lebesgue measure in
� n . If

1 < q 6 p, then Aq ⊂ Ap (see [5], [8] or [9] for more information about Ap-weights).
The weight ω satisfies the doubling condition if ω(2B) 6 Cω(B) for all balls B ⊂ � n ,

where ω(B) =
∫

B ω(x) dx and 2B denotes the ball with the same center as B which
is twice as large. If ω ∈ Ap, then ω is doubling (see Corollary 15.7 in [8, p. 299]).

As an example of an Ap-weight, the function ω(x) = |x|α, x ∈ � n , is in Ap if and
only if −n < α < n(p− 1) (see Corollary 4.4, Chapter IX in [10, p. 236]).
Given an open subset Ω of

� n , we will denote by Lp(Ω, ω) (1 6 p < ∞) the Banach
space of all measurable functions f defined on Ω for which

‖f‖Lp(Ω,ω) =
( ∫

Ω

|f(x)|pω(x) dx

)1/p

< ∞.

If ω ∈ Ap, 1 < p < ∞, then ω−1/(p−1) is locally integrable and we have Lp(Ω, ω) ⊂
L1

loc(Ω) for every open set Ω (see Remark 1.2.4 in [10, p. 4]). It thus makes sense to
talk about weak derivatives of functions in Lp(Ω, ω).
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Definition 2.1. Let Ω ⊂ � n be open, 1 < p < ∞, k a nonnegative integer and
ω ∈ Ap. We define the weighted Sobolev space W k,p(Ω, ω) as the set of functions
u ∈ Lp(Ω, ω) with weak derivatives Dαu ∈ Lp(Ω, ω), 1 6 |α| 6 k. The norm of u in
W k,p(Ω, ω) is defined by

(2.1) ‖u‖W k,p(Ω,ω) =
(∫

Ω

|u(x)|pω(x) dx +
∑

16|α|6k

∫

Ω

|Dαu(x)|pω(x) dx

)1/p

.

If ω ∈ Ap, then W k,p(Ω, ω) is the closure of C∞(Ω) with respect to the norm (2.1)
(see Proposition 3.5 in [11, p. 416] or Corollary 2.1.6 in [10, p. 18]). The space
W k,p

0 (Ω, ω) is the closure of C∞
0 (Ω) with respect to the norm

‖u‖W k,p
0 (Ω,ω) =

( ∑

16|α|6k

∫

Ω

|Dαu(x)|pω(x) dx

)1/p

.

The spaces W k,p(Ω, ω) and W k,p
0 (Ω, ω) are Banach spaces and for k = 1 and p = 2

the spaces W 1,2(Ω, ω) and W 1,2
0 (Ω, ω) are Hilbert spaces.

It is evident that the weight functions ω which satisfy 0 < c1 6 ω(x) 6 c2 for

x ∈ Ω give nothing new (the space Wk,p(Ω, ω) is then identical with the classical
Sobolev space W k,p(Ω)). Consequently, we shall be interested above all in such
weight functions ω which either vanish somewhere in Ω̄ or increase to infinity (or
both).

Definition 2.2. Let Ω ⊂ � n be a bounded and open set. We define the
space H(Ω) as the closure of C∞(Ω̄) with respect to the norm

‖u‖H(Ω) =
(∫

Ω

|u|2v dx +
∫

Ω

〈A∇u,∇u〉 dx

)1/2

,

where A = (aij) is the coefficient matrix of the operator L defined in (1.1), 〈·, ·〉 de-
notes the usual inner product in

� n and the symbol ∇ indicates the gradient.
The space H(Ω) is a Hilbert space with the inner product

a(u, ϕ) =
(∫

Ω

uϕv dx +
∫

Ω

〈A∇u,∇ϕ〉 dx

)1/2

.

Facts about H(Ω) are given in [1, p. 1115].
����������

2.3. By the degeneracy condition (1.2) we have
∫

Ω

|∇u|2ω dx 6
∫

Ω

〈A∇u,∇u〉 dx 6
∫

Ω

|∇u|2v dx.

Therefore, W 1,2(Ω, v) ⊂ H(Ω) ⊂ W 1,2(Ω, ω).
Note also that since A is symmetric, |〈Ax, y〉| 6 〈Ax, x〉1/2〈Ay, y〉1/2.
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2.4. Let Ω ⊂ � n be a bounded open set with boundary ∂Ω ∈ C0,1.

Using integration by parts with u, ϕ ∈ H(Ω), if u satisfies the boundary condition in
problem (P), we have

∫

Ω

ϕLu dx =
n∑

i,j=1

∫

Ω

aijDiuDjϕ dx +
n∑

i=1

∫

Ω

biϕDiu dx +
∫

Ω

guϕ dx

+ θ

∫

Ω

uϕv dx +
n∑

i,j=1

∫

∂Ω

aij
∂u

∂xj
ηiϕ dx

︸ ︷︷ ︸
=0

= B(u, ϕ) + θ

∫

Ω

uϕv dx,

where

B(u, ϕ) =
n∑

i,j=1

∫

Ω

aijDiuDjϕ dx +
n∑

i=1

∫

Ω

biϕDiu dx +
∫

Ω

guϕ dx

is a bilinear form.

We introduce the following definition of solutions for the Neumann problem (P).

Definition 2.5. Let Ω ⊂ � n be a bounded open set with ∂Ω ∈ C0,1 and suppose
that f/v ∈ L2(Ω, v). A function u ∈ H(Ω) is a solution of the Neumann problem (P)
if

∫

Ω

n∑

i,j=1

aijDiuDjϕ dx +
∫

Ω

[ n∑

i=1

biDiu + gu

]
ϕ dx + θ

∫

Ω

uϕv dx =
∫

Ω

fϕ dx

for all ϕ ∈ H(Ω).

Lemma 2.6. Suppose that ω ∈ A2, v ∈ A2, bi/ω ∈ L∞(Ω) (i = 1, . . . , n) and
g/v ∈ L∞(Ω). Then there exists a constant C > 0 such that

B(u, u) + C‖u‖2
L2(Ω,ω) > 1

2
‖u‖2

H(Ω)

for all u ∈ H(Ω).
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���������
. For all u ∈ H(Ω) we have

B(u, u) =
n∑

i,j=1

∫

Ω

aijDiuDju dx +
n∑

i=1

∫

Ω

biuDiu dx +
∫

Ω

gu2 dx(2.2)

=
∫

Ω

〈A∇u,∇u〉 dx +
n∑

i=1

∫

Ω

bi

ω
ωuDiu dx +

∫

Ω

g

v
u2v dx

>
∫

Ω

〈A∇u,∇u〉 dx−
(

max
16i6n

∥∥∥bi

ω

∥∥∥
L∞(Ω)

) n∑

i=1

∫

Ω

|u| |Diu|ω dx

−
∥∥∥g

v

∥∥∥
L∞(Ω)

∫

Ω

u2v dx

>
∫

Ω

〈A∇u,∇u〉 dx− C1

n∑

i=1

(∫

Ω

u2ω dx

)1/2(∫

Ω

|Diu|2ω dx

)1/2

− C2

∫

Ω

u2v dx

>
∫

Ω

〈A∇u,∇u〉 dx− C1

(∫

Ω

u2v dx

)1/2(∫

Ω

〈A∇u,∇u〉 dx

)1/2

− C2‖u‖2
L2(Ω,v)

where

C1 = max
16i6n

∥∥∥bi

ω

∥∥∥
L∞(Ω)

and C2 =
∥∥∥g

v

∥∥∥
L∞(Ω)

.

Using the elementary inequality

ab 6 εa2 +
1
4ε

b2 for all ε > 0,

we obtain from (2.2)

B(u, u) >
∫

Ω

〈A∇u,∇u〉 dx− C1

(
ε‖u‖2

L2(Ω,v) +
1
4ε

∫

Ω

〈A∇u,∇u〉 dx

)
(2.3)

− C2‖u‖L2(Ω,v)

=
(
1− C1

4ε

) ∫

Ω

〈A∇u,∇u〉 dx− (C1ε + C2)‖u‖2
L2(Ω,v).

If C1 > 0, we can choose ε > 0 such that

1− C1

4ε
=

1
2
, that is, ε =

C1

2
.
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Thus, (2.3) transforms to

B(u, u) > 1
2

∫

Ω

〈A∇u,∇u〉 dx−
(C2

1

2
+ C2

)
‖u‖2

L2(Ω)

=
1
2

(∫

Ω

u2v dx +
∫

Ω

〈A∇u,∇u〉 dx

)
−

(C2
1

2
+ C2 +

1
2

)
‖u‖2

L2(Ω,v)

=
1
2
‖u‖2

H(Ω) −C‖u‖2
L2(Ω,v),

where C = 1
2C2

1 + C2 + 1
2 > 0. Therefore,

B(u, u) + C‖u‖2
L2(Ω,v) > 1

2
‖u‖2

H(Ω).

If C1 = 0 (that is, bi(x) ≡ 0, i = 1, . . . , n) then (2.2) reduces to

B(u, u) >
∫

Ω

〈A∇u,∇u〉 dx− C2‖u‖2
L2(Ω,v)

> 1
2

(∫

Ω

|u|2v dx +
∫

Ω

〈A∇u,∇u〉 dx

)
−

(
C2 +

1
2

)
‖u‖2

L2(Ω,v)

=
1
2
‖u‖2

H(Ω) −C‖u‖2
L2(Ω,v).

Therefore, we also have

B(u, u) + C‖u‖2
L2(Ω,v) > 1

2
‖u‖2

H(Ω)

for all u ∈ H(Ω), where C = 1
2C2

1 + C2 + 1
2 . �

3. Proof of Theorem 1.1

We define a bilinear form

B̃ : H(Ω)×H(Ω) −→ �
, B̃(u, ϕ) = B(u, ϕ) + θ

∫

Ω

uϕv dx

and a linear mapping

T : H(Ω) −→ �
, T (ϕ) =

∫

Ω

fϕ dx.

Then u ∈ H(Ω) is a solution of the Neumann problem (P) if

B̃(u, ϕ) = T (ϕ)

for all ϕ ∈ H(Ω).
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Step 1. If θ > C then B̃ is coercive, that is, there exists a constant c > 0 such that
B̃(u, u) > c‖u‖2

H(Ω) for all u ∈ H(Ω). In fact, by Lemma 2.6 there exists a constant
C > 0 such that

B(u, u) + C‖u‖2
L2(Ω,v) > 1

2
‖u‖H(Ω).

Hence, if θ > C, we have

B̃(u, u) = B(u, u) + θ

∫

Ω

u2v dx = B(u, u) + θ‖u‖2
L2(Ω,v)

> B(u, u) + C‖u‖2
L2(Ω,v) > 1

2
‖u‖2

H(Ω).

Therefore, for θ > C we have that

(3.1) B̃(u, u) > 1
2
‖u‖2

H(Ω)

for all u ∈ H(Ω).
Step 2. B̃ is bounded. In fact, using the fact that the coefficient matrix A = (aij)

is symmetric, (H2) and (H3), we obtain

|B̃(u,ϕ)| 6 |B(u, ϕ)|+ θ

∣∣∣∣
∫

Ω

uϕv dx

∣∣∣∣

6
∫

Ω

|〈A∇u,∇ϕ〉| dx +
n∑

i=1

∫

Ω

|bi||ϕ| |Diu| dx +
∫

Ω

|g||ϕ| |u| dx + θ

∫

Ω

|u||ϕ|v dx

6
∫

Ω

〈A∇u,∇u〉1/2〈A∇ϕ,∇ϕ〉1/2 dx +
n∑

i=1

∫

Ω

|bi|
ω
|ϕ||Diu|ω dx

+
∫

Ω

|g|
v
|ϕ||u|v dx + θ

∫

Ω

|u||ϕ|v dx

6
(∫

Ω

〈A∇u,∇u〉 dx

)1/2(∫

Ω

〈A∇ϕ,∇ϕ〉 dx

)1/2

+
(

max
16i6n

∥∥∥bi

ω

∥∥∥
L∞(Ω)

) n∑

i=1

(∫

Ω

|ϕ|2ω dx

)1/2(∫

Ω

|Diu|2ω dx

)1/2

+
∥∥∥g

v

∥∥∥
L∞(Ω)

(∫

Ω

|u|2v dx

)1/2(∫

Ω

|ϕ|2v dx

)1/2

+ θ

(∫

Ω

|u|2v dx

)1/2(∫

Ω

|ϕ|2v dx

)1/2

6
(
1 + max

16i6n

∥∥∥bi

ω

∥∥∥
L∞(Ω)

+
∥∥∥g

v

∥∥∥
L∞(Ω)

+ θ
)
‖u‖H(Ω)‖ϕ‖H(Ω)

= C̃‖u‖H(Ω)‖ϕ‖H(Ω)

for all u, ϕ ∈ H(Ω).
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Step 3. The linear mapping T is bounded (that is, T ∈ [H(Ω)]∗). In fact,

|T (ϕ)| 6
∫

Ω

|f ||ϕ| dx =
∫

Ω

|f |
v
|ϕ|v dx

6
[∫

Ω

( |f |
v

)2

v dx

]1/2[∫

Ω

|ϕ|2v dx

]1/2

6
∥∥∥f

v

∥∥∥
L2(Ω,v)

‖ϕ‖H(Ω)

for all ϕ ∈ H(Ω).
Therefore the bilinear form B̃ and the linear functional T satisfy the hypotheses of

the Lax-Milgram theorem. Thus, for every f with f/v ∈ L2(Ω, v), there is a unique
solution u ∈ H(Ω) such that

B̃(u, ϕ) = T (ϕ)

for all ϕ ∈ H(Ω), that is, u is a unique solution of the Neumann problem (P).
In particular, by setting ϕ = u, we have

B̃(u, u) =
∫

Ω

fu dx.

Using the definition of B̃, we obtain

B̃(u, u) = B(u, u) + θ

∫

Ω

u2v dx =
∫

Ω

f

v
uv dx

6 ‖u‖L2(Ω,v)

∥∥∥f

v

∥∥∥
L2(Ω,v)

6 ‖u‖H(Ω)

∥∥∥f

v

∥∥∥
L2(Ω,v)

.

Using (3.1), we obtain

1
2
‖u‖2

H(Ω) 6 B̃(u, u) 6 ‖u‖H(Ω)

∥∥∥f

v

∥∥∥
L2(Ω,v)

.

Therefore,

‖u‖H(Ω) 6 2
∥∥∥f

v

∥∥∥
L2(Ω,v)

.

�
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