
QUARTERLY OF APPLIED MATHEMATICS

VOLUME LXXII, NUMBER 1

MARCH 2014, PAGES 85–91

S 0033-569X(2013)01319-4

Article electronically published on November 13, 2013

THE NEUMANN PROBLEM FOR THE EQUATION Δu− k2u = 0

IN THE EXTERIOR OF NON-CLOSED LIPSCHITZ SURFACES

By
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KIAM, Miusskaya Sq. 4, Moscow, 125047, Russia

Abstract. We study the Neumann problem for the equation Δu − k2u = 0 in the

exterior of non-closed Lipschitz surfaces in R3. Theorems on existence and uniqueness of

a weak solution of the problem are proved. The integral representation for a solution is

obtained in the form of a double layer potential. The density in the potential is defined

as a solution of the operator (integral) equation, which is uniquely solvable.

Weak solvability of elliptic boundary value problems with Dirichlet, Neumann and

mixed Dirichlet–Neumann boundary conditions in Lipschitz domains has been studied

in [1], [2], [3], [4]. It is pointed out in the book [1, p. 91] that domains with cracks (cuts)

are not Lipschitz domains. So, solvability of elliptic boundary value problems in domains

with cracks does not follow from general results on solvability of elliptic boundary value

problems in Lipschitz domains. In the present paper, the weak solvability of the Neumann

problem for the equation Δu − k2u = 0 in the exterior of non-closed Lipschitz surfaces

(cracks) in R3 is studied. Theorems on existence and uniqueness of a weak solution are

proved, integral representation for a solution in the form of a double layer potential is

obtained, and the problem is reduced to the uniquely solvable operator equation.

The weak solvability of the Neumann problem for the Laplace equation in the exterior

of several smooth non-closed surfaces in R3 has been studied in [5]. Boundary value

problems for the Helmholtz equation in the exterior of smooth non-closed screens in R3

have been studied in [6], [7].

In Cartesian coordinates x = (x1, x2, x3) in R3, we consider a bounded Lipschitz

domain G with the boundary S; i.e. S is a closed Lipschitz surface. Note that a normal

vector exists on the Lipschitz surface almost everywhere [1, p. 96]. Let γ be a nonempty

subset of the boundary S and γ �= S. Assume that γ is a non-closed Lipschitz surface

with Lipschitz boundary ∂γ in the space R3, and assume that γ includes its limiting

points, or, alternatively, assume that γ is a union of a finite number of such non-closed

surfaces, which do not have common points; in particular, they do not have common

boundary points. In the latter case, γ is not a connected set. Notice that γ is a closed
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set. Let us introduce Sobolev spaces on γ:

H−1/2(γ) = {v : v = V |γ\∂γ , V ∈ H−1/2(S)},

H̃1/2(γ) = {v : v ∈ H1/2(S), supp v ⊂ γ}.
Spaces H−1/2(γ) and H̃1/2(γ) are dual spaces in the sense of a scalar product in L2(γ)

[1, p. 91-92]. Furthermore, one can set ‖v‖H̃1/2(γ) = ‖v‖H1/2(S) for v ∈ H̃1/2(γ) (see

[1, p. 79]), and ‖v‖H−1/2(γ) = min
V |γ\∂γ=v, V ∈H−1/2(S)

‖V ‖H−1/2(S) (see [1, p. 77, p. 99]).

SpacesH1/2(S) andH−1/2(S) on a closed Lipschitz surface S and their norms are defined,

for example, in [1, p. 98].

Let Δ be a Laplacian in R3; then for the equation

(1) Δu(x)− k2u(x) = 0, k = const > 0,

consider the double layer potential

(2) W [h](x) =
1

4π

∫
S

h(y)
∂

∂ny

exp(−k|x− y|)
|x− y| dsy,

with the density h ∈ H1/2(S). By n denote the outward unit normal vector on S where

it exists. The function (2) is defined for x ∈ R3 \ S. According to Theorem 6.11 in [1],

the potential W [h](x) belongs to H1
loc(R

3 \ Ḡ)∩H1(G), and its normal derivative
∂W [h]

∂n
does not have jump on S; when approaching S from G and from R3 \ Ḡ it has the same

trace
∂W [h]

∂n

∣∣∣∣
S

∈ H−1/2(S). The overline means closure. Moreover, potential W [h](x)

belongs to C∞(R3 \ S) (see [1, p. 202]) and obeys equation (1) in R3 \ S and conditions

at infinity:

(3) u = o(|x|−1), |∇u| = o(|x|−1), |x| → ∞.

Lemma. Let h ∈ H1/2(S), k > 0, and let S be a boundary of an open bounded Lipschitz

domain G. Then there is such a constant c > 0, that inequality(
− ∂W [h]

∂n

∣∣∣∣
S

, h

)
L2(S)

≥ c‖h‖2H1/2(S)

holds.

Proof. Note that a normal vector exists on the Lipschitz surface almost everywhere

[1, p. 96]. Let Br be an open ball of radius r with the center in the origin and Ḡ ⊂ Br.

By n denote the outward (with respect to G) unit normal vector on S where it exists as

well as the outward unit normal vector on ∂Br. Writing down Green’s formula [1, p. 118]

for the function W [h](x) in Br \ Ḡ and in G, we obtain

(4) ‖∇W [h]‖2L2(Br\Ḡ) + k2‖W [h]‖2L2(Br\Ḡ)

= −
(
(W [h])+,

∂W [h]

∂n

∣∣∣∣
S

)
L2(S)

+

(
W [h],

∂W [h]

∂n

)
L2(∂Br)

,

(5) ‖∇W [h]‖2L2(G) + k2‖W [h]‖2L2(G) =

(
(W [h])−,

∂W [h]

∂n

∣∣∣∣
S

)
L2(S)

.
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By (W [h])− and (W [h])+, we mean traces of the functionW [h](x) on S when approaching

S from G and from R3\Ḡ respectively. According to Theorem 6.11 in [1], traces (W [h])−

and (W [h])+ exist and belong toH1/2(S). We remind the reader that, under conditions of

the lemma, the normal derivative of the function W [h](x) has the same trace
∂W [h]

∂n

∣∣∣∣
S

∈

H−1/2(S) when approaching S both from G and from R3 \ Ḡ. Since spaces H−1/2(S)

and H1/2(S) are dual, the scalar products are defined in L2(S) on the right-hand sides

of (4) and (5). Tending r → ∞ in (4) and taking into account that the potential W [h](x)

satisfies conditions (3), we obtain

(6) ‖∇W [h]‖2L2(R3\Ḡ) + k2‖W [h]‖2L2(R3\Ḡ) = −
(
(W [h])+,

∂W [h]

∂n

∣∣∣∣
S

)
L2(S)

.

By Theorem 6.11 in [1], the jump of the potential W [h] on S is defined by the formula

(W [h])− − (W [h])+ = −h.

Adding (5) and (6), we obtain

‖∇W [h]‖2L2(R3\S) + k2‖W [h]‖2L2(R3\S) =

(
−h,

∂W [h]

∂n

∣∣∣∣
S

)
L2(S)

.

Taking into account the theorem on equivalence of Sobolev spaces [1, Theorems 3.16,

3.30], we observe that there is such a constant c1 > 0 for which inequality holds:

(7) c1‖W [h]‖2H1(R3\S)

≤ min{k2, 1}(‖∇W [h]‖2L2(R3\S) + ‖W [h]‖2L2(R3\S)) ≤
(
−h,

∂W [h]

∂n

∣∣∣∣
S

)
L2(S)

.

Using the fact that the trace operator of a double layer potential W [h] ∈ H1(G) ∩
H1

loc(R
3 \ Ḡ) is bounded on S (see [1, Theorem 3.37]) when approaching S both from G

and from R3 \ Ḡ for some constant c2 > 0, we obtain (see [1, p. 203-204])

‖h‖2H1/2(S) =
∥∥(W [h])+ − (W [h])−

∥∥2
H1/2(S)

≤ ‖(W [h])+‖2H1/2(S) + ‖(W [h])−‖2H1/2(S)

≤ c2‖W0[h]‖2H1(R3\S).

Here W0[h](x) = δ(x)W [h](x), where δ(x) ∈ C∞(R3) is a cutoff function, such that

δ(x) ≤ 1 for all x ∈ R3, δ(x) ≡ 1 in an open bounded domain containing Ḡ, and δ(x) ≡ 0

in the exterior of some ball with the center in the origin. Clearly,

‖W0[h]‖2H1(R3\S) ≤ c3‖W [h]‖2H1(R3\S),

for some constant c3 > 0, so

‖h‖2H1/2(S) ≤ c2c3‖W [h]‖2H1(R3\S).

Using (7), we obtain

c‖h‖2H1/2(S) ≤
(
− ∂W [h]

∂n

∣∣∣∣
S

, h

)
L2(S)

, c = c1/(c2c3).

The lemma is proved. �
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Let us formulate the Neumann problem for the equation (1) in the exterior of non-

closed Lipshitz surfaces γ.

Problem N . Find a function u(x) ∈ H1
loc(R

3 \ Ḡ)∩H1(G)∩C2(R3 \γ) that satisfies
equation (1) in R2 \ γ the boundary condition

(8)
∂u

∂n

∣∣∣∣
γ

= f ∈ H−1/2(γ)

and conditions at infinity (3).

Boundary condition (8) implies that the normal derivative of the function u(x) has

the same trace
∂u

∂n

∣∣∣∣
γ

when approaching γ from G and from R3 \ Ḡ, and this trace has

to satisfy condition (8).

Let us construct the solution of the problem. We look for a solution in the form of a

double layer potential

(9) u(x) = W [g](x) =
1

4π

∫
γ

g(y)
∂

∂ny

exp(−k|x− y|)
|x− y| dsy

=
1

4π

∫
S

g(y)
∂

∂ny

exp(−k|x− y|)
|x− y| dsy

with the density g ∈ H̃1/2(γ) ⊂ H1/2(S). The function (9) is defined if x ∈ R3 \ γ.
It follows from the aforementioned properties of a double layer potential (2) that the

potential W [g](x) belongs to H1
loc(R

3 \ Ḡ)∩H1(G), its normal derivative has a trace on

S:
∂W [g]

∂n

∣∣∣∣
S

∈ H−1/2(S), and it has a trace on γ:
∂W [g]

∂n

∣∣∣∣
γ

∈ H−1/2(γ). Furthermore,

the potential W [g](x) belongs to C∞(R3 \ γ) (see [1, p. 202]) and satisfies equation (1)

in R3 \ γ as well as conditions at infinity (3). Therefore, for any function g from the

space H̃1/2(γ), the potential W [g](x) satisfies all conditions of the problem N , except

for the boundary condition (8). We have to find the function g ∈ H̃1/2(γ) to satisfy the

boundary condition (8). Substituting (9) into the boundary condition (8), we arrive at

the operator equation

(10) Mg|γ = f ∈ H−1/2(γ), Mg =
∂W [g]

∂n
.

To prove the solvability of equation (10), we have to study properties of the operator M

on the left-hand side of the equation.

Operator M is bounded when acting from H1/2(S) into H−1/2(S) by Theorem 6.11

in [1], so when acting from H̃1/2(γ) ⊂ H1/2(S) into H−1/2(S) it is bounded as well. If a

set of functions is bounded (in norm) in H−1/2(S) by a constant, then a set of narrowing

of these functions to γ is bounded (in norm) in H−1/2(γ) also and by the same constant.

Therefore, the operator M is bounded when acting from H̃1/2(γ) into H−1/2(γ). Since

g ∈ H̃1/2(γ) ⊂ H1/2(S), by applying the lemma to the operator M , we have(
− ∂W [g]

∂n

∣∣∣∣
S

, g

)
L2(S)

=

(
− ∂W [g]

∂n

∣∣∣∣
γ

, g

)
L2(γ)

≥ c‖g‖2H1/2(S) = c‖g‖2
H̃1/2(γ)

.
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Therefore, for some constant c > 0, we have

(11) (−Mg|γ , g)L2(γ)
≥ c‖g‖2

H̃1/2(γ)
.

Here by Mg|γ =
∂W [g]

∂n

∣∣∣∣
γ

we mean the trace of the normal derivative of the function

(9) on γ; this trace belongs to H−1/2(γ). Note that the operator M acts from H̃1/2(γ)

into H−1/2(γ) and bounded, while spaces H̃1/2(γ), H−1/2(γ) are dual in the sense of

a scalar product in L2(γ). Inequality (11) implies that the operator (−M) is positive

and bounded below. Consequently, from Lemma 2.32 in [1, p. 43] it follows that the

operator (−M) is invertible (it has bounded inverse operator). Therefore, equation (10)

has a unique solution g ∈ H̃1/2(γ) for any function f ∈ H−1/2(γ). The potential (9)

constructed on this solution satisfies all conditions of the problem N . From the above

considerations follows

Theorem 1. The solution of the problem N exists and is given by formula (9), where

g ∈ H̃1/2(γ) is a solution of equation (10), which is uniquely solvable in H̃1/2(γ).

Let us prove the uniqueness of a solution to the problem N .

Theorem 2. The problem N has at most one solution.

Proof. Let u(x) be a solution of the homogeneous problem N . Consider the ball

Br of large enough radius r with the center in the origin. Suppose that Ḡ ⊂ Br and

Ḡ ∩ ∂Br = ∅. The overline means closure, while ∂Br is a sphere, which is the boundary

of the ball Br. Since u(x) ∈ H1
loc(R

3 \ Ḡ) ∩ H1(G), the Green’s formulae [1, Theorem

4.4, p. 118],

(12) ‖∇u‖2L2(G) + k2‖u‖2L2(G) =

(
u−,

∂u

∂n

∣∣∣∣
S

)
L2(S)

,

(13) ‖∇u‖2L2(Br\Ḡ) + k2‖u‖2L2(Br\Ḡ) = −
(
u+,

∂u

∂n

∣∣∣∣
S

)
L2(S)

+

(
u,

∂u

∂n

)
L2(∂Br)

,

hold for the function u. By n on ∂Br, the outward (regarding Br) unit normal vector is

understood, while by n on S, the outward (regarding G) unit normal vector is understood

(where it exists). Since the function u(x) belongs to H1
loc(R

3\Ḡ)∩H1(G), its traces on S

exist when approaching S both from G and from R3 \ Ḡ; these traces are denoted by u−

and u+ respectively and belong to H1/2(S) (see [1, Theorems 3.37, 3.38, p. 102]). Since,

in addition, the function u(x) obeys equation (1) outside S, the traces of the normal

derivative of the function u exist on S by Lemma 4.3 in [1] when approaching S both

from G and from R3\Ḡ. Moreover, it follows from the formulation of the problem N that

these traces of the normal derivative of the function u on S from G and from R3 \ Ḡ are

the same; they are denoted by
∂u

∂n

∣∣∣∣
S

and belong to H−1/2(S) by Lemma 4.3 in [1]. Since

spaces H−1/2(S) and H1/2(S) are dual, the scalar product in L2(S) on the right-hand

sides of (12) and (13) is defined. Note that
∂u

∂n

∣∣∣∣
γ

= 0 ∈ H−1/2(γ), since u is a solution
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of the homogeneous problem N . Moreover, u+ = u− on S \ γ, since u ∈ C2(R3 \ γ).

Adding (12) and (13) we obtain

(14) ‖∇u‖2L2(Br\S) + k2‖u‖2L2(Br\S) =

(
u,

∂u

∂n

)
L2(∂Br)

=

∫
∂Br

u
∂u

∂n
ds.

Using conditions (3) at infinity, we obtain from (14) as r → ∞

lim
r→∞

(‖∇u‖2L2(Br\S) + k2‖u‖2L2(Br\S)) = ‖∇u‖2L2(R3\S) + k2‖u‖2L2(R3\S) = 0.

Therefore, u ≡ 0 in R3 \ S because k > 0. Since u ∈ C2(R3 \ γ), we observe that u ≡ 0

in R3 \ γ. Thus, the homogeneous problem N has only the trivial solution. In view of

the linearity of the problem N , the inhomogeneous problem N has at most one solution.

The theorem is proved. �
In conclusion, we note that papers [8], [9] treat the Neumann problem for the Laplace

equation in planar domains with cracks. Interior domains are studied in [8], while exterior

domains are studied in [9]. The well-posed classical formulation of the problems is given.

Existence of classical solutions is proved under certain conditions, and theorems on a

number of solutions are given. The integral representation for solutions is obtained in

the form of potentials, densities in which satisfy the uniquely solvable integral equations.

Note that the Neumann problem for the 2D Laplace equation is not uniquely solvable in

both interior and exterior domains, but it can be reduced to the uniquely solvable integral

equation by a special technique. Results obtained in [8], [9] for single-sided cracks are

extended to the case of double-sided cracks in [10] in the case of interior domains, and

in [11] in the case of exterior domains.
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