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 1 

Abstract 2 

The neuroscience of perception has recently been revolutionized with an integrative reverse-engineering approach in which 3 

computation, brain function, and behavior are linked across many different datasets and many computational models. We here 4 

present a first systematic study taking this approach into higher-level cognition: human language processing, our species’ 5 

signature cognitive skill. We find that the most powerful ‘transformer’ networks predict neural responses at nearly 100% and 6 

generalize across different datasets and data types (fMRI, ECoG). Across models, significant correlations are observed among all 7 

three metrics of performance: neural fit, fit to behavioral responses, and accuracy on the next-word prediction task (but not 8 

other language tasks), consistent with the long-standing hypothesis that the brain’s language system is optimized for predictive 9 

processing. Model architectures with initial weights further perform surprisingly similar to final trained models, suggesting that 10 

inherent structure – and not just experience with language – crucially contributes to a model’s match to the brain. 11 

computational neuroscience, language comprehension, fMRI, ECoG, natural language processing, artificial neural networks, deep learning 12 
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A core goal of neuroscience is to decipher from patterns of neural activity the algorithms underlying our abilities to 17 

perceive, think about, and act in the world. Recently, a new “reverse engineering” approach to computational modeling in 18 

systems neuroscience has transformed our algorithmic understanding of the ventral stream in primate vision (Bao et al., 19 

2020; Cadena et al., 2019; Cichy et al., 2016; Kietzmann et al., 2019; Kubilius et al., 2019; Schrimpf et al., 2018, 2020; Yamins 20 

et al., 2014), and holds great promise for application to other aspects of brain function. This approach has been enabled by 21 

a breakthrough in artificial intelligence (AI): the engineering of artificial neural network (ANN) systems that perform core 22 

perceptual tasks with unprecedented accuracy, approaching human levels, and that do so using computational machinery 23 

that is abstractly similar to biological neurons. In the ventral visual stream, the key AI developments come from deep 24 

convolutional neural networks (DCNNs) that perform visual object recognition from natural images (Ciregan et al., 2012; 25 

Krizhevsky et al., 2012; Schrimpf et al., 2018, 2020; Yamins et al., 2014), which is widely thought to be the primary function 26 

of this pathway. Leading DCNNs for object recognition have now been shown to predict the responses of neural populations 27 

in multiple stages of the ventral stream (V1, V2, V4, IT), in both macaque and human brains, approaching the noise ceiling of 28 

the data. Thus, although far from perfect models, DCNNs could provide the basis for a first complete account of how the 29 

brain computes object percepts from visual images. 30 

 31 

Inspired by this success story, analogous ANN models are now regularly applied to other domains of sensation and 32 

perception (Kell et al., 2018; Zhuang et al., 2017). Could these models also let us reverse-engineer the brain mechanisms of 33 

higher-level human cognition? Here we show for the first time how the reverse-engineering approach pioneered in the 34 

ventral stream can be applied to a higher-level cognitive domain that plays an essential role in human mental life: language 35 

processing, or the extraction of meaning from spoken or written phrases, sentences, and stories. Cognitive scientists have 36 

for decades treated neural network models with skepticism (Marcus, 2018; Pinker & Prince, 1988), as these systems lacked 37 

the capacity for explicit symbolic representation, a core feature of language, and thinking and reasoning more generally. 38 

Recent ANN models of language in AI, however, have proven capable of at least approximating some aspects of symbolic 39 

computation, and have achieved remarkable success on a wide range of applied natural language processing (NLP) tasks. 40 

The results presented here, based on this new generation of ANNs, suggest that a computationally adequate model of 41 

language processing in the brain may be closer than previously thought. 42 

 43 

Because we build on the same logic in our analysis of language in the brain, it is helpful to review why the neural network-44 

based reverse engineering approach has proven so compelling in the study of object recognition in the ventral stream. 45 

Crucially, our ability to robustly link computation, brain function, and behavior is supported not by testing a single model on 46 

a single dataset or a single kind of data, but by large-scale integrative benchmarking (Schrimpf et al., 2020) that establishes 47 

consistent patterns of performance across many different ANNs applied to multiple neural and behavioral datasets, 48 

together with their performance on the proposed core computational function of the brain system under study. Given the 49 

complexities of the brain’s structure and the functions it performs, we know that any one of these models is surely 50 

oversimplified and ultimately wrong – at best just an approximation of some aspects of what the brain might do. But some 51 

models are less wrong, and consistent trends in performance across many models can reveal insights that go substantially 52 

beyond what any one model can tell us. 53 
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In the ventral stream specifically, our understanding that computations underlying object recognition are analogous to the 54 

structure and function of DCNNs is supported by findings that across hundreds of model variants, DCNNs that perform 55 

better on object recognition tasks also better capture human recognition behavior and neural responses in IT cortex of both 56 

human and non-human primates (Rajalingham et al., 2018; Schrimpf et al., 2018, 2020; Yamins et al., 2014). This integrative 57 

benchmarking reveals a rich pattern of correlations among three classes of performance measures — (i) accuracy on the 58 

core object recognition task, (ii) accuracy in predicting hits and misses in human object recognition behavior, or human 59 

object similarity judgments, and (iii) neural variance explained, in IT neurophysiology or fMRI responses — such that for any 60 

DCNN model we can predict how well it scores on each of these measures from the other measures. This pattern of results 61 

was not assembled in a single paper but in multiple papers across several labs and several years of work. Taken together, 62 

they provide strong evidence that the ventral stream supports primate object recognition through something like a deep 63 

convolutional feature hierarchy, the exact details of which are being modeled more and more precisely. 64 

Here we describe an analogous pattern of results for ANN models of human language, establishing a link between 65 

transformer-based ANN architectures that have revolutionized natural language processing in AI systems over the last two 66 

years, and fundamental computations of human language processing as revealed through both neural and behavioral 67 

measures. Language comprehension is a quintessentially human ability, bridging perception and high-level reasoning, and 68 

forming the foundation of human culture. The processing of language is known to depend causally on a left-lateralized 69 

fronto-temporal brain network (Bates et al., 2003; Binder et al., 1997; Fedorenko & Thompson-Schill, 2014; Friederici, 2012; 70 

Gorno-Tempini et al., 2004; Hagoort, 2019; Price, 2010) (Fig. 1) that responds robustly and selectively to linguistic input 71 

(Fedorenko et al., 2011; Monti et al., 2012), whether auditory or visual (Deniz et al., 2019; Regev et al., 2013). Yet the 72 

precise computations underlying language processing in the brain remain unknown. Computational models of sentence 73 

processing have previously been used to explain both behavioral (Dotlačil, 2018; Futrell, Gibson, & Levy, 2020; Gibson, 74 

1998; Gibson et al., 2013; Hale, 2001; Jurafsky, 1996; Lakretz et al., 2020; Levy, 2008a, 2008b; Lewis et al., 2006; McDonald 75 

Figure 1: Comparing Artificial Neural Network models of language processing to human language processing. We tested how well different models 

predict measurements of human neural activity (fMRI and ECoG) and behavior during language comprehension. The candidate models ranged from simple 

embedding models to more complex recurrent and transformer networks. Stimuli ranged from sentences to passages to stories and were 1) fed into the 

models, and 2) presented to human participants (visually or auditorily). Models’ internal representations were evaluated on three major dimensions: their 

ability to predict human neural representations; their ability to predict human behavior in the form of reading times; their ability to perform computational 

tasks such as next-word prediction. We establish consistent relationships between these measures across many different models – these trends of 

performance reveal insights beyond what a single model can tell us. 
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& Macwhinney, 1998; Smith & Levy, 2013; Spivey-Knowlton, 1996; Steedman, 2000; van Schijndel et al., 2013), and neural 76 

responses to linguistic input (Brennan et al., 2016; Brennan & Pylkkänen, 2017; Ding et al., 2015; Frank et al., 2015; 77 

Henderson et al., 2016; Huth et al., 2016; Lopopolo et al., 2017; Lyu et al., 2019; T. M. Mitchell et al., 2008; Nelson et al., 78 

2017; Pallier et al., 2011; Pereira et al., 2018; Rabovsky et al., 2018; Shain et al., 2020; Wehbe et al., 2014; Willems et al., 79 

2016; Gauthier & Ivanova, 2018; Gauthier & Levy, 2019; Hu et al., 2020; Jain & Huth, 2018; S. Wang et al., 2020; Schwartz et 80 

al., 2019; Toneva & Wehbe, 2019). However, prior studies have not attempted any of the large-scale integrative 81 

benchmarking that has proven so valuable in understanding vision in the ventral stream; they typically test just one or a 82 

small number of models against a single dataset, and the same models are rarely evaluated on all three metrics of neural, 83 

behavioral, and objective task performance. Previous models have also left much of the variance in human neural data 84 

unexplained, and most do not have sufficient capacity to solve the full linguistic problem that the brain solves – to form a 85 

representation of sentence meaning capable of performing a broad range of real-world language tasks on diverse natural 86 

linguistic input. We are thus left with a collection of suggestive results but no clear sense of how close neural models are to 87 

fully explaining language processing in the brain, or what features are likely to transcend the substantial inadequacies of any 88 

one model. 89 

Our goal here is to present a first systematic integrative-benchmarking reverse engineering study of language in the brain, 90 

at the scale necessary to discover robust relationships between neural and behavioral measurements from humans, and 91 

performance of models on language tasks. We seek to determine not just which model fits empirical data best, but what 92 

dimensions of variation across models are correlated with fit to human data. This requires testing a broad suite of ANN 93 

architectures with sufficient variance on all three kinds of measures (fit to neural and behavioral data, and model 94 

performance). This approach has not been applied in the study of language or any other higher cognitive system, and even 95 

in perception has not been attempted within a single integrated study. Thus, we view our work more generally as a 96 

template for how to apply the integrative reverse-engineering approach to a novel perceptual or cognitive system. 97 

Specifically, we examined the relationships between 43 diverse state-of-the-art ANN language models (henceforth ’models’) 98 

across three neural language comprehension datasets (two fMRI, one electrocorticography (ECoG)), as well as behavioral 99 

signatures of human language processing in the form of self-paced reading times, and a range of linguistic functions 100 

assessed via standard engineering tasks from NLP. The models spanned all major classes of existing ANN language 101 

approaches and included simple embedding models (e.g., GloVe (Pennington et al., 2014)), more complex recurrent neural 102 

networks (e.g., LM1B (Jozefowicz et al., 2016)), and many variants of transformers or attention-based architectures—103 

including both ‘unidirectional-attention’ models (trained to predict the next word given the previous words; e.g., GPT 104 

(Radford et al., 2019)) and ‘bidirectional-attention’ models (trained to predict a missing word given the surrounding context; 105 

e.g., BERT (Devlin et al., 2018)). Our integrative approach yields four major findings. (1) Models’ relative fit to neural data 106 

(“neural predictivity’’) generalizes across different datasets and data types (fMRI, ECoG), and certain architectural features 107 

consistently lead to more brain-like models: transformer-based models perform better than recurrent networks or word-108 

level embedding models, and larger-capacity models perform better than smaller models. (2) The best models explain 109 

nearly 100% of the explainable variance (up to the noise ceiling) in neural data. This result stands in stark contrast to earlier 110 

generations of models that have typically accounted for at most 30-50% of the predictable neural signal. (3) Across models, 111 

there are significant correlations among all three metrics of model performance: neural fit, fit to reading time in behavior, 112 

and model accuracy on the next-word prediction task; no other linguistic task was predictive of models’ fit to neural or 113 

behavioral data. These findings provide the strongest evidence to date for a classic hypothesis about the computations 114 

underlying human language understanding, that the brain’s language system is optimized to extract meaning through 115 

predictive processing. (4) Models initialized with random weights (prior to training) perform surprisingly similarly in neural 116 

predictivity to final trained models, which suggests that network architecture contributes as much or more than experience-117 

dependent learning to a model’s match to the brain. In particular, one architecture introduced just in 2019, the generative 118 

pre-trained transformer (GPT-2), consistently outperforms all other models and explains almost all variance in both fMRI 119 

and ECoG data from sentence processing tasks. GPT-2 is also arguably the most cognitively plausible of the transformer 120 

models (because it uses unidirectional, forward attention), and performs best overall as an AI system when considering 121 

both natural language understanding and natural language generation tasks. Thus contemporary AI appears to be rapidly 122 

converging on architectures that might capture language processing, at least up to the sentence level, in the human mind 123 

and brain. 124 
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 125 

Results 126 

We evaluated a broad range of state-of-the-art ANN models on the match of their internal representations to three human 127 

neural datasets. The models spanned all major classes of existing language models (Methods_5, Table S10). The neural 128 

datasets consisted of i) fMRI activations while participants read short passages, presented one sentence at a time (across 129 

two experiments) that spanned diverse topics (Pereira2018 dataset (Pereira et al., 2018)); ii) ECoG recordings while 130 

participants read semantically and syntactically diverse sentences, presented one word at a time (Fedorenko2016 dataset 131 

(Fedorenko et al., 2016)); and iii) fMRI BOLD signal time-series elicited while participants listened to few-minutes-long 132 

naturalistic stories (Blank2014 dataset (I. Blank et al., 2014)) (Methods_1-3). Thus, the datasets varied in the method 133 

(fMRI/ECoG), the nature and grain of linguistic units to which responses were recorded (sentences/words/2s-long story 134 

fragments), and modality (reading/listening). In most analyses, we consider the overall results across the three neural 135 

datasets; when considering the results for the individual neural datasets, we give the most weight to Pereira2018 because 136 

it includes multiple repetitions per stimulus (sentence) within each participant and quantitatively exhibits the highest 137 

internal reliability (Fig. S1). Because our research questions concern language processing, we extracted neural responses 138 

from language-selective voxels or electrodes that were functionally identified by an extensively validated independent 139 

“localizer” task that contrasts reading sentences versus nonword sequences (Fedorenko et al., 2010). This localizer robustly 140 

identifies the fronto-temporal language-selective network (Methods_1-3, Fig. 2b, S3). 141 

To compare a given model to a given dataset, we presented the same stimuli to the model that were presented to humans 142 

in neural recording experiments and ‘recorded’ the model’s internal activations (Methods_5-6, Fig. 1). We then tested how 143 

well the model recordings could predict the neural recordings for the same stimuli, using a method originally developed for 144 

studying visual object recognition (Schrimpf et al., 2018; Yamins et al., 2014). Specifically, using a subset of the stimuli, we 145 

fit a linear regression from the model activations to the corresponding human measurements, modeling the response of 146 

each voxel (Pereira2018) / electrode (Fedorenko2016) / region (Blank2014) as a linear weighted sum of responses of 147 

different units from the model. We then computed model predictions by applying the learned regression weights to model 148 

activations for the held-out stimuli, and evaluated how well those predictions matched the corresponding held-out human 149 

measurements by computing Pearson’s correlation coefficient. We further normalized these correlations by the 150 

extrapolated reliability of the particular dataset, which places an upper bound (”ceiling”) on the correlation between the 151 

neural measurements and any external predictor (Methods_7, Fig. S1). The final measure of a model’s performance 152 

(‘predictivity’ or ‘score’) on a dataset is thus Pearson’s correlation between model predictions and neural recordings 153 

divided by the estimated ceiling and averaged across voxels/electrodes/regions and participants. We report the score for 154 

the best-performing layer of each model (Methods_6, Fig. S10). 155 
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Specific models accurately predict human brain activity. We found (Fig. 2a-b) that specific models predict Pereira2018 and 156 

Fedorenko2016 datasets with up to 100% predictivity (see Fig. S2 for generalization to another metric) relative to the noise 157 

ceiling (Methods_7, Fig. S1). The Blank2014 dataset is also reliably predicted, but with lower predictivity. Models vary 158 

substantially in their ability to predict neural data. Generally, embedding models such as GloVe do not perform well on any 159 

dataset. In contrast, recurrent networks such as skip-thoughts, as well as transformers such as BERT, predict large portions 160 

of the data. The model that predicts the human data best across datasets is GPT2-xl, a unidirectional-attention transformer 161 

model, which predicts Pereira2018 and Fedorenko2016 at close to 100% and is among the highest-performing models on 162 

Blank2014 with 32% predictivity. These scores are higher in the language network than other parts of the brain (SI-4). 163 

Model scores are consistent across experiments/datasets. To test the generality of the model representations, we examined the 164 

consistency of model scores across datasets. Indeed, if a model does well on one dataset, it tends to also do well on other 165 

datasets (Fig. 2c), ruling out the possibility that we are picking up on spurious, dataset-idiosyncratic predictivity, and 166 

suggesting that the models’ internal representations are general enough to capture brain responses to diverse linguistic 167 

materials presented visually or auditorily, and across three independent sets of participants. Specifically, model scores 168 

across the two experiments in Pereira2018 (overlapping sets of participants) correlate at r=.94 (Pearson here and 169 

elsewhere, p<<.00001), scores from Pereira2018 and Fedorenko2016 correlate at r=.50 (p<.001), and from Pereira2018 and 170 

Blank2014 at r=.63 (p<.0001). 171 

 172 

Next-word-prediction task performance selectively predicts neural scores. In the critical test of which computations might 173 

underlie human language understanding, we examined the relationship between the models’ ability to predict an upcoming 174 

word and their brain predictivity. Words from the Wikitext-2 dataset (Merity et al., 2016) were sequentially fed into the 175 

candidate models. We then fit a linear classifier (over words in the vocabulary; n=50k) from the last layer’s feature 176 

representation on the training set to predict the next word, and evaluated performance on the held-out test set 177 

(Methods_8). Indeed, next-word-prediction task performance robustly predicts neural scores (Fig. 3a; r=.45, p<.01, 178 

averaged across datasets). The best language model, GPT2-xl, also achieves the highest neural predictivity (see previous 179 

section). This relationship holds for model variants within each class—embedding models, recurrent networks, and 180 

transformers—ruling out the possibility that this correlation is simply due to between-class differences in next-word-181 

prediction performance. 182 

To test whether next-word prediction is special in this respect, we asked whether model performance on any language task 183 

correlates with neural predictivity. Focusing on the high-performing, transformer models, we found that performance on 184 

tasks from the GLUE benchmark collection (Cer et al., 2018; Dolan & Brockett, 2005; Levesque et al., 2012; Rajpurkar et al., 185 

2016; Socher et al., 2013; A. Wang, Singh, et al., 2019; Warstadt et al., 2019; Williams et al., 2018)—including 186 

grammaticality judgments, sentence similarity judgments, and entailment—do not correlate with neural predictivity, in 187 

Figure 2: Specific models accurately predict neural responses consistently across datasets. (a) We compared 43 computational models of language 

processing (ranging from embedding to recurrent and bi- and uni-directional transformer models) in their ability to predict human brain data. The neural 

datasets include: fMRI voxel responses to visually presented sentences (Pereira2018), ECoG electrode responses to visually presented (word-by-word) 

sentences (Fedorenko2016), fMRI ROI responses to ~5min-long stories (Blank2014). For each model, we plot the normalized predictivity, i.e. the fraction of 

ceiling (gray line; Methods_7, Fig. S1) the model can predict. Ceiling levels are .32 (Pereira2018), .17 (Fedorenko2016), and .20 (Blank2014). Model classes 

are grouped by color (Methods_5, Table S10). Error bars (here and elsewhere) represent m.a.d. over subject scores. (b) Normalized predictivity of GloVe (a 

low-performing embedding model) and GPT2-xl (a high-performing transformer model) in the language-responsive voxels in the left hemisphere of two 

representative participants from Pereira2018 (also Fig. S3). (c) To test how well model scores generalize across datasets, we correlated: two experiments 

with different stimuli (and some participant overlap) in Pereira2018 (very strong correlation), and Pereira2018 model scores with the scores for each of 

Fedorenko2016 and Blank2014 (lower but still highly significant correlations). Scores overall thus tend to generalize across datasets, although differences 

between datasets exist which warrant the full suite of datasets. 
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spite of eliciting variable performance across models (Fig. 3b-c). The difference in the strength of correlation between 188 

neural data and the next-word prediction task vs. the GLUE tasks is highly reliable (p<<0.00001). This result suggests that 189 

optimizing for predictive representations may be a critical shared objective of biological and artificial neural networks for 190 

language, and perhaps more generally (Keller and Mrsic-Flogel, 2018; Singer et al., 2018). 191 

 192 

Neural predictivity and next-word-prediction task performance correlate with behavioral predictivity. Beyond internal neural 193 

representations, we tested the models’ ability to predict external behavioral outputs because, ultimately in integrative 194 

benchmarking, we strive for a computationally precise account of language processing that can explain both neural 195 

response patterns and observable linguistic behaviors. We chose a large corpus (n=180 participants) of self-paced reading 196 

times for naturalistic story materials (Futrell2018 dataset (Futrell, Gibson, Tily, et al., 2020)). Per-word reading times 197 

provide a theory-neutral measure of incremental comprehension difficulty, which has long been a cornerstone of 198 

psycholinguistic research in testing theories of sentence comprehension (Demberg & Keller, 2008; Gibson, 1998; Just & 199 

Carpenter, 1980; D. C. Mitchell, 1984; Rayner, 1978; Smith & Levy, 2013). 200 

Specific models accurately predict human reading times. We regressed each model’s last layer’s feature representation against 201 

reading times and evaluated predictivity on held-out words. As with the neural datasets, we observed a spread of model 202 

ability to capture human behavioral data, with models such as GPT2-xl, skip-thoughts, and AlBERT-xxlarge predicting these 203 

Figure 3: Model performance on a next-word-prediction task selectively predicts neural scores. a) Next-word-prediction task performance was evaluated 

as the surprisal between the predicted and true next word in the WikiText-2 dataset of 720 Wikipedia articles, or perplexity (x-axis, lower is better). Next-

word-prediction task scores strongly predict neural scores across datasets (inset: this correlation is significant for two individual datasets: Pereira2018 and 

Blank2014; the correlation for Fedorenko2016 is also positive but not significant). b) Performance on diverse language tasks from the GLUE benchmark 

collection does not correlate with overall or individual (inset; SI-5) neural predictivity. c) Correlations of individual tasks with neural predictivity scores. Only 

improvements on next-word prediction lead to improved neural predictivity. 

Figure 4: Behavioral predictivity, neural predictivity, and next-word-prediction task performance are pairwise correlated. (a) Behavioral predictivity of each 

model on Futrell2018 human reading times (notation similar to Fig. 2). Ceiling level is .78. (b) Models’ neural predictivity aggregated across the three neural 

datasets (or for each dataset individiually; inset and Fig. 6) correlates with behavioral predictivity. (c) Next-word-prediction task performance (Fig. 3) 

correlates with behavioral predictivity. 
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data close to or at ceiling (Fig. 4a; also Merkx & Frank, 2020; Wilcox et al., 2020). 204 

Neural predictivity correlates with behavioral predictivity. To test whether models with the highest neural scores also predict 205 

reading times best, we compared models’ neural predictivity (across datasets) with those same models’ behavioral 206 

predictivity. Indeed, we observed a strong correlation (Fig. 4b; r=.49, p<.001), which also holds for the individual neural 207 

datasets (Fig. S6). These results suggest that further improving models’ neural predictivity will simultaneously improve 208 

their behavioral predictivity. An intriguing outlier in this analysis is the skip-thoughts model, which predicts neural activity 209 

only moderately, but predicts reading times at ceiling. 210 

Next-word-prediction task performance correlates with behavioral predictivity. Next-word-prediction task performance is predictive 211 

of reading times (Fig. 4c; r=.37, p<.05), in line with earlier studies (Goodkind & Bicknell, 2018; van Schijndel & Linzen, 2018). 212 

Note that this relationship, similar to the brain-to-behavior one, is not as strong as the one between next-word-prediction 213 

task performance and neural predictivity. This difference could point to additional mechanisms, on top of predictive 214 

language processing, that were recruited for the reading task. 215 

 216 

Model architecture alone yields predictive representations. The brain’s language network plausibly arises through a 217 

combination of evolutionary and learning-based optimization. Can we test the relative importance of these two factors 218 

using model-to-brain comparisons? All models come with intrinsic architectural properties, like size, the presence of 219 

recurrence, and the directionality and length of context used to perform the target task (Methods_5, Table S10). These 220 

differences strongly affect model performance on normative tasks like next-word prediction after training, and define the 221 

representational space that the model can learn (Arora et al., 2018; Fukushima, 1988). To test whether model architecture 222 

alone—without training—already yields representational spaces that are similar to those implemented by the language 223 

network in the brain, we evaluated models with their initial (random) weights. Strikingly, even with no training, several 224 

model architectures reliably predicted brain activity and behavior (Fig. 5). For example, across the four datasets, untrained 225 

GPT2-xl achieves an average predictivity of ~61%, only ~14% lower than the trained network. (Importantly, a random 226 

context-independent embedding with equal dimensionality but no architectural priors predicts only a small fraction of the 227 

datasets, on average below 30% (Fig. S8), suggesting that a large feature space alone, without architectural priors, is not 228 

sufficient.) A similar trend is observed across models: training generally improves neural and behavioral predictivity, on 229 

average by .1 (26% relative improvement). Across models, the untrained scores are strongly predictive of the trained scores 230 

(r=.82, p<<.00001), indicating that models that predict human data poorly with random weights also perform poorly after 231 

training, but models that already perform well with random weights improve further with training. 232 

Figure 5: Model architecture alone already yields predictive 

representations and untrained performance predicts trained 

performance. We evaluate untrained models by keeping weights at their 

initial random values. The remaining representations are driven by 

architecture alone and are tested on the three neural (Fig. 2) and the 

behavioral dataset (Fig. 4). Across all datasets, architecture alone yields 

representations that predict human brain activity considerably well. On 

average, training improves model scores by 26%. For Pereira2018, 

training improves predictivity the most whereas for Fedorenko2016, 

Blank2014 and Futrell2018 training does not always change—and for 

some models even decreases—the similarity with human measurements 

(Fig. S7). The untrained model performance is consistently predictive of 

its performance after training across and within (inset) datasets. 
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 233 

Discussion 234 

Our results, summarized in Fig. 6, show that specific ANN language models can predict human neural and behavioral 235 

responses to linguistic input with high accuracy: the best models achieve, on some datasets, perfect predictivity relative to 236 

the noise ceiling. Neural predictivity correlates across datasets spanning recording modalities (fMRI, ECoG, reading times) 237 

and diverse materials presented visually and auditorily, establishing the robustness and generality of these findings. 238 

Critically, both neural and behavioral predictivity correlate with model performance on the normative next-word prediction 239 

task, but not other language tasks. Finally, model architectures alone, with random weights, produce representations that 240 

capture neural and behavioral linguistic responses and closely ‘track’ the representations with learned weights across 241 

datasets. 242 

 243 

Underlying the integrative reverse-engineering framework, as implemented here in the cognitive domain of language, is the 244 

idea that large-scale neural networks can serve as possible mechanistic hypotheses of brain processing. We here identified 245 

some models—unidirectional-attention transformer architectures—that accurately capture brain activity during language 246 

processing, and began dissecting variations across the range of model candidates to explain why they achieve high brain 247 

predictivity. Two core findings emerged, both supporting the idea that the human language system is optimized for 248 

predictive processing. First, we found that the models’ performance on the next-word prediction (‘language modeling’) task, 249 

but not other language tasks, relates to neural predictivity (see (Gauthier & Levy, 2019) for related evidence of fine-tuning 250 

of one model on tasks other than next-word-prediction leading to worse model-to-brain fit). Language modeling is the task 251 

of choice in the natural language processing (NLP) community: it is simple, unsupervised, scalable, and appears to produce 252 

the most generally useful, successful language representations. This is likely because language modeling encourages a 253 

neural network to build a joint probability model of the linguistic signal, which implicitly requires sensitivity to diverse kinds 254 

of regularities in the signal. Second, we found that the models best matching human language processing are precisely 255 

those that are trained to predict the next word. Predictive processing has advanced to the forefront of theorizing in 256 

cognitive science (Clark, 2013; Tenenbaum et al., 2011) and neuroscience (Keller & Mrsic-Flogel, 2018), including in the 257 

domain of language (Kuperberg & Jaeger, 2016; Levy, 2008a). The rich sources of information that comprehenders combine 258 

to interpret language—including lexical and syntactic information, pragmatic reasoning, and world knowledge (Garnsey et 259 

al., 1997; MacDonald et al., 1994; Tanenhaus et al., 1995; Trueswell et al., 1993, 1994)—can be used to make informed 260 

guesses about how the linguistic signal may unfold, and much behavioral and neural evidence now suggests that readers 261 

and listeners indeed engage in such predictive behavior (Altmann & Kamide, 1999; Frank & Bod, 2011; Kuperberg & Jaeger, 262 

2016; Shain et al., 2020; Smith & Levy, 2013). Some accounts, rooted in the rich tradition of the analysis-by-synthesis 263 

approach to cognition (Neisser, 1967), construe prediction as forward-simulation carried out by the language production 264 

Figure 6: Summary of the key results. Normalized neural and behavioral predictivities are shown in the red and orange rectangles. For the neural datasets 

(averaged and individual, top row), and for the behavioral dataset (bottom right), we report i) the value for the model achieving the highest predictivity, 

and ii) the correlation between the untrained and trained scores. The next-word-prediction task (bottom left) predicts neural and behavioral scores; and 

neural scores predict behavioral scores. 
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system that draws on the generative language model (Dell & Chang, 2014; Pickering & Garrod, 2013). An intriguing 265 

possibility is therefore that both the human language system and successful ANN models of language are optimized to 266 

predict upcoming words in the service of efficient meaning extraction. 267 

 268 

We also demonstrated that architecture alone, with random weights, can yield representations that match human brain 269 

data well. If we construe model training as analogous to learning in human development, then human cortex might already 270 

provide a sufficiently rich structure that allows for the rapid acquisition of language (Rodriguez & Granger, 2016). Perhaps 271 

most of development is then a combination of the system wiring up (Saygin et al., 2016; Zador, 2019) and learning the right 272 

decoders on top of largely structurally defined features. In that analogy, community development of new architectures 273 

could be akin to evolution (Hasson et al., 2020), or perhaps, more accurately, selective breeding with genetic modification: 274 

structural changes are tested and the best-performing ones are incorporated into the next generation of models. 275 

Importantly, this process implicitly still optimizes for language modeling, only on a different timescale. 276 

 277 

These discoveries pave the way for many exciting future directions. The most brain-like language models can now be 278 

investigated in richer detail, ideally leading to intuitive theories around their inner workings. Such research is much easier to 279 

perform on models than on biological systems since all their structure and weights are easily accessible and manipulable 280 

(Cheney et al., 2017; Lindsey et al., 2019). Controlled comparisons of minimally different architectural variants and training 281 

objectives could define the necessary and sufficient conditions for human-like language processing (Samek et al., 2017), 282 

synergizing with parallel ongoing efforts in NLP to probe ANNs’ linguistic representations (Hewitt & Manning, 2019; Linzen 283 

et al., 2016; Tenney et al., 2020). Here, we worked with off-the-shelf models, and compared their match to neural data 284 

based on their performance on the next-word-prediction task vs. other tasks. Re-training many models on many tasks from 285 

scratch might determine which features are most important for brain predictivity, but is currently prohibitively expensive 286 

due to the insurmountable space of hyper-parameters. Further, the fact that language modeling is inherently built into the 287 

evolution of language models by the NLP community, as noted above, may make it impossible to fully eliminate its 288 

influences on the architecture even for models trained from scratch on other tasks. 289 

 290 

How can we develop models that are even more brain-like? Despite impressive performance on the datasets and metrics 291 

here, ANN language models are far from human-level performance in the hardest problems of language understanding. An 292 

important open direction is to integrate language models like those used here with models and data resources that attempt 293 

to capture aspects of meaning important for commonsense world knowledge (e.g., Bisk et al., 2020; Bosselut et al., 2020; 294 

Sap et al., 2019, 2020; Yi et al., 2018). Such models might capture not only predictive processing in the brain—what word is 295 

likely to come next—but also semantic parsing, mapping language into conceptual representations that support grounded 296 

language understanding and reasoning (Bisk et al., 2020). The fact that language models lack meaning and focus on local 297 

linguistic coherence (Mahowald et al., 2020; Wilcox et al., 2020) may explain why their representations fall short of ceiling 298 

on Blank2014, which uses story materials and may therefore require long-range contexts. 299 

 300 

One key missing piece in the mechanistic modeling of human language processing is a more detailed mapping from model 301 

components onto brain anatomy. In particular, aside from the general targeting of the fronto-temporal language network, it 302 

is unclear which parts of a model map onto which components of the brain’s language processing mechanisms. In models of 303 

vision, for instance, attempts are made to map ANN layers and neurons onto cortical regions (Kubilius et al., 2019) and sub-304 

regions (Lee & DiCarlo, 2018). However, whereas function and its mapping onto anatomy is at least coarsely defined in the 305 

case of vision (Felleman & Van Essen, 1991), a similar mapping is not yet established in language beyond the broad 306 

distinction between perceptual processing and higher-level linguistic interpretation (Fedorenko & Thompson-Schill, 2014). 307 

The network that supports higher-level linguistic interpretation—which we focus on here—is extensive and plausibly 308 

contains meaningful functional dissociations, but how the network is precisely subdivided and what respective roles its 309 

different components play remains debated. Uncovering the internal structure of the human language network, for which 310 

intracranial recording approaches with high spatial and temporal resolution may prove critical (Mukamel & Fried, 2012; 311 

Parvizi & Kastner, 2018), would allow us to guide and constrain models of tissue-mapped mechanistic language processing. 312 

More precise brain-to-model mappings would also allow us to test the effects of perturbations on models and compare 313 

them against perturbation effects in humans, as assessed with lesion studies or reversible stimulation. More broadly, 314 

anatomically and functionally precise models are a required software component of any form of brain-machine-interface. 315 
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 316 

Taken together, our findings suggest that predictive artificial neural networks serve as viable candidate hypotheses for how 317 

predictive language processing is implemented in human neural tissue. They lay a critical foundation for a promising 318 

research program synergizing high-performing mechanistic models of natural language processing with large-scale neural 319 

and behavioral measurements of human language comprehension in a virtuous cycle of integrative reverse-engineering: 320 

testing model ability to predict neural and behavioral brain measurements, dissecting the best-performing models to 321 

understand which components are critical for high brain predictivity, developing better models leveraging this knowledge, 322 

and collecting new data to challenge and constrain the future generations of neurally plausible models of language 323 

processing. 324 

  325 
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Methods 694 

1. Neural dataset 1: fMRI (Pereira2018). We used the data from Pereira et al.’s (2018) Experiments 2 (n=9) and 3 (n=6) (10 695 

unique participants). (The set of participants is not identical to Pereira et al., 2018: i) one participant (tested at Princeton) 696 

was excluded from both experiments here to keep the fMRI scanner the same across participants; and ii) two participants 697 

who were excluded from Experiment 2 in Pereira et al., 2018, based on the decoding results in Experiment 1 of that study 698 

were included here, to err on the conservative side.) Stimuli for Experiment 2 consisted of 384 sentences (96 text passages, 699 

four sentences each), and stimuli for Experiment 3 consisted of 243 sentences (72 text passages, 3 or 4 sentences each). The 700 

two sets of materials were constructed independently, and each spanned a broad range of content areas. Sentences were 701 

7-18 words long in Experiment 2, and 5-20 words long in Experiment 3. The sentences were presented on the screen one at 702 

a time for 4s (followed by 4s of fixation, with additional 4s of fixation at the end of each passage), and each participant read 703 

each sentence three times, across independent scanning sessions (see Pereira et al., 2018 for details of experimental 704 

procedure and data acquisition). 705 

Preprocessing and response estimation: Data preprocessing was carried out with SPM5 (using default parameters, unless 706 

specified otherwise) and supporting, custom MATLAB scripts. (Note that SPM was only used for preprocessing and basic 707 

modeling—aspects that have not changed much in later versions; for several datasets, we have directly compared the 708 

outputs of data preprocessed and modeled in SPM5 vs. SPM12, and the outputs were nearly identical.) Preprocessing 709 

included motion correction (realignment to the mean image of the first functional run using 2nd-degree b-spline 710 

interpolation), normalization (estimated for the mean image using trilinear interpolation), resampling into 2mm isotropic 711 

voxels, smoothing with a 4mm FWHM Gaussian filter and high-pass filtering at 200s. A standard mass univariate analysis 712 

was performed in SPM5 whereby a general linear model (GLM) estimated the response to each sentence in each run. These 713 

effects were modeled with a boxcar function convolved with the canonical Hemodynamic Response Function (HRF). The 714 

model also included first-order temporal derivatives of these effects (which were not used in the analyses), as well as 715 

nuisance regressors representing entire experimental runs and offline-estimated motion parameters. 716 

Functional localization: Data analyses were performed on fMRI BOLD signals extracted from the bilateral fronto-temporal 717 

language network. This network was defined functionally in each participant using a well-validated language localizer task 718 

(Fedorenko et al., 2010), where participants read sentences vs. lists of nonwords. This contrast targets brain areas that 719 

support ‘high-level’ linguistic processing, past the perceptual (auditory/visual) analysis. Brain regions that this localizer 720 

identifies are robust to modality of presentation (e.g., Fedorenko et al., 2010; Scott et al., 2017), as well as materials and 721 

task (Diachek et al., 2020). Further, these regions have been shown to exhibit strong sensitivity to both lexico-semantic 722 

processing (understanding individual word meanings) and combinatorial, syntactic/semantic processing (putting words 723 

together into phrases and sentences) (Bautista & Wilson, 2016; I. Blank et al., 2016; I. A. Blank & Fedorenko, 2020; 724 

Fedorenko et al., 2010, 2012, 2016, 2020). Following prior work, we used group-constrained, participant-specific functional 725 

localization (Fedorenko et al., 2010). Namely, individual activation maps for the target contrast (here, sentences>nonwords) 726 

were combined with “constraints” in the form of spatial ‘masks’—corresponding to data-driven, large areas within which 727 

most participants in a large, independent sample show activation for the same contrast. The masks (available from 728 

https://evlab.mit.edu/funcloc/ and used in many prior studies e.g., Jouravlev et al., 2019; Diachek et al., 2020; Shain et al., 729 

2020) included six regions in each hemisphere: three in the frontal cortex (two in the inferior frontal gyrus, including its 730 

orbital portion: IFGorb, IFG; and one in the middle frontal gryus: MFG), two in the anterior and posterior temporal cortex 731 

(AntTemp and PostTemp), and one in the angular gyrus (AngG). Within each mask, we selected 10% of most localizer-732 

responsive voxels (voxels with the highest t-value for the localizer contrast) following the standard approach in prior work. 733 

This approach allows to pool data from the same functional regions across participants even when these regions do not 734 

align well spatially. Functional localization has been shown to be more sensitive and to have higher functional resolution 735 

(Nieto-Castanon & Fedorenko, 2012) than the traditional group-averaging approach (Holmes & Friston, 1998), which 736 

assumes voxel-wise correspondence across participants. This is to be expected given the well-established inter-individual 737 

differences in the mapping of function to anatomy, especially pronounced in the association cortex (e.g., Frost & Goebel, 738 

2012; Tahmasebi et al., 2012; Vazquez-Rodriguez et al., 2019). 739 

We constructed a stimulus-response matrix for each of the two experiments by i) averaging the BOLD responses to each 740 

sentence in each experiment across the three repetitions, resulting in 1 data point per sentence per language-responsive 741 

voxel of each participant, selected as described above (13,553 voxels total across the 10 participants; 1,355 average, ±6 std. 742 
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dev.), and ii) concatenating all sentences (384 in Experiment 2 and 243 in Experiment 3), yielding a 384x12,195 matrix for 743 

Experiment 2, and a 243x8,121 matrix for Experiment 3. 744 

To examine differences in neural predictivity between the language network and other parts of the brain, we additionally 745 

extracted fMRI BOLD signals from two other networks: the multiple demand (MD) network (Duncan, 2010; Fedorenko et al., 746 

2013) and the default mode network (DMN) (Buckner et al., 2008; Buckner & DiNicola, 2019). These networks were also 747 

defined functionally using well-validated localizer contrasts (Fedorenko et al., 2013; Mineroff et al., 2018) using a similar 748 

procedure as the one used for defining the language network: combining a set of ‘masks’ with individual activation maps, 749 

and selecting top 10% of most localizer-responsive voxels within each mask. Both networks were defined using a spatial 750 

working memory task (Fedorenko et al., 2011, 2013). For the MD network, we used the hard>easy contrast, and for the 751 

DMN network, we used the fixation>hard contrast. As for the language network, the MD and DMN masks were derived 752 

from large sets of participants for those contrasts, and are also available at https://evlab.mit.edu/funcloc/. The MD network 753 

and the DMN included 29,936 (2,994±230) and 10,978 (1,098±7) voxels, respectively. 754 

 755 

2. Neural dataset 2: ECoG (Fedorenko2016). We used the data from Fedorenko et al.’s (2016) study (n=5). (The set of 756 

participants includes one participant, S2, who was excluded from the main analyses in Fedorenko et al., 2016 due to a small 757 

number of electrodes of interest; because we here used only language-responsiveness as the criterion for electrode 758 

selection, this participant had enough electrodes to be included.) Stimuli consisted of 80 hand-constructed 8-word long 759 

semantically and syntactically diverse sentences and 80 lists of nonwords (as well as some other stimuli not used in the 760 

current study). For the critical analyses, we selected a set of 52 sentences that were presented to all participants. The 761 

materials were presented visually one word at a time (for 450 or 700 ms), and participants performed a memory probe task 762 

after each stimulus (see Fedorenko et al., 2016 for details of the experimental procedure and data acquisition). 763 

Preprocessing and response estimation: We here provide only a brief summary, highlighting points of deviation from 764 

Fedorenko et al. (2016). The total numbers of implanted electrodes were 120, 128, 112, 134, and 98 for the five 765 

participants, respectively. Signals were digitized at 1200 Hz. Similar to Fedorenko et al. (2016), i) the recordings were high-766 

pass filtered with a cut off frequency of 0.5 Hz; ii) reference, ground, and electrodes with high noise levels were removed, 767 

leaving 117, 118, 92, 130, and 88 electrodes (for these analyses, we were more permissive with respect to noise levels 768 

compared to Fedorenko et al., 2016, to include as many electrodes in the analyses as possible; hence the numbers of 769 

analyzed electrodes are higher here than in the original study for 4 of the 5 participants); iii) spatially distributed noise 770 

common to all electrodes was removed using a common average reference spatial filter between electrodes with line noise 771 

smaller than a predefined threshold (electrodes connected to the same amplifier); and iv) a set of notch filters were used to 772 

remove the 60 Hz line noise and its harmonics. To extract the high gamma band activity—which has been shown to 773 

correspond to spiking neural activity in the vicinity of the electrodes (Buzsáki et al., 2012)—we used a gaussian filter bank 774 

with centers at 73, 79.5, 87.8, 96.9, 107, 118.1, 130.4, and 144 Hz, and standard deviations of 4.68, 4.92, 5.17, 5.43, 5.7, 775 

5.99, 6.3, and 6.62 Hz, respectively. This approach differs from Fedorenko et al. (2016), where an IIR band-pass filter was 776 

used to select frequencies in the range of 70-170 Hz, and is likely more sensitive (Dichter et al. 2018). Finally, as in 777 

Fedorenko et al. (2016), the Hilbert transform was used to extract the analytic signal (Lawrence Marple, 1999) (except here, 778 

the average of the Hilbert signal across the eight filters was used as high-gamma signal), z-scored for each electrode with 779 

respect to the activity throughout the experiment, and the signal envelopes were downsampled to 300 Hz for further 780 

analysis (we did not additionally low-pass filter at 100 Hz, as in Fedorenko et al., 2016). 781 

Functional localization: Mirroring the fMRI approach, where we focused on language-responsive voxels, data analyses were 782 

performed on signals extracted from language-responsive electrodes. These electrodes were defined in each participant 783 

using the same localizer contrast as in the fMRI datasets. In particular, we examined electrodes in which the envelope of the 784 

high gamma signal was significantly higher (at p<.01) for trials of the sentence condition than the nonword-list condition 785 

(for details, see Fedorenko et al., 2016). 786 

We constructed a stimulus-response matrix by i) averaging the z-scored high-gamma signal over the full presentation 787 

window of each word in each sentence, resulting in 8 data points per sentence per language-responsive electrode (97 788 
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electrodes total across the 5 participants; 47, 8, 9, 15, and 18 for participants S1 through S5, respectively), and ii) 789 

concatenating all words in all sentences (416 words across the 52 sentences), yielding a 416x97 matrix. 790 

To examine differences in neural predictivity between language-responsive and other electrodes, we additionally extracted 791 

high gamma signals from a set of ‘stimulus-responsive’ electrodes. Stimulus-responsive electrodes were defined as 792 

electrodes in which the envelope of the high gamma signal for the sentence condition was significantly different (at p<0.05 793 

by a paired-samples t-test) from the activity during the inter-trial fixation interval preceding the trial. This selection 794 

procedure resulted in 67, 35, 20, 29, and 26 electrodes. As expected, this set of electrodes included many of the language-795 

responsive electrodes; for the analysis in SI-4, we exclude the language-responsive electrodes leaving 105 stimulus- (but not 796 

language-) responsive electrodes. 797 

3. Neural dataset 3: fMRI (Blank2014). We used the data from Blank et al. (2014) (n=5). (The set of participants includes 5 of 798 

the 10 participants in Blank et al., 2014, because we wanted each participant to have been exposed to the same materials 799 

and as many stories as possible; the 5 participants included here all heard eight stories.) Stimuli consisted of stories from 800 

the publicly available Natural Stories Corpus (Futrell et al., 2018). These stories, adapted from existing texts (fairy tales and 801 

short stories) were designed to be “deceptively naturalistic”: they contained an over-representation of rare words and 802 

syntactic constructions embedded in otherwise natural linguistic context. The stories were presented auditorily (each was 803 

~5 min in duration), and following each story, participants answered 6 comprehension questions (see Blank et al., 2014 for 804 

details of the experimental procedure, data acquisition, and preprocessing). 805 

Functional localization: As in the Pereira2018 dataset, data analyses were performed on fMRI BOLD signals extracted from 806 

the language network. From each language-responsive voxel of each participant, the BOLD time-series for each story was 807 

extracted. Across the eight stories, the BOLD time-series included 1,317 time-points (TRs, time of repetition; TR=2s and 808 

corresponds to the time it takes to acquire the full set of slices through the brain). To align the neuroimaging data with the 809 

story text, we first split the text into consecutive 2-second intervals (corresponding to the fMRI TRs) based on the auditory 810 

recording; if a word straddled boundaries of intervals, it was assigned to the 2s interval in which that spoken word ended. 811 

Each of the resulting intervals thus included a story “fragment”, which could be a full short sentence, part of a longer 812 

sentence, or a transition between the end of one sentence and the beginning of another. Due to the temporal resolution of 813 

the HRF, whose peak’s latency is 4-6 seconds, we assumed that each time-point in the BOLD signal represented activity 814 

elicited by the text fragment that occurred 4s (i.e., 2 TRs) earlier. 815 

We constructed a stimulus-response matrix by i) averaging the BOLD signals corresponding to each TR in each story across 816 

the voxels within each ROI of each participant (averaging across the voxels within ROIs was done to increase the signal-to-817 

noise ratio), resulting in 1 data point per TR per language-responsive ROI of each participant (60 ROIs total across the 5 818 

participants), and ii) concatenating all story fragments (1,317 ‘stimuli’), yielding a 1,317x60 matrix. 819 

 820 

4. Behavioral dataset: Self-paced reading (Futrell2018). We used the data from Futrell et al. (2018) (n=179). (The set of 821 

participants excludes 1 participant for whom data exclusions—see below—left only 6 data points or fewer.) Stimuli 822 

consisted of ten stories from the Natural Stories Corpus (same materials as those used in Blank2014, plus two additional 823 

stories), and any given participant read between 5 and all 10 stories. The stories were presented online (on Amazon’s 824 

Mechanical Turk platform) visually in a dashed moving window display—a standard approach in behavioral psycholinguistic 825 

research (Just et al., 1982). In this approach, participants press a button to reveal each consecutive word of the sentence or 826 

story; as they press the button again, the word they just saw gets converted to dashes again, and the next word is 827 

uncovered. The time between button presses provides an estimate of overall language comprehension difficulty, and has 828 

been shown to be robustly sensitive to both lexical and syntactic features of the stimuli (Grodner & Gibson, 2005; Smith & 829 

Levy, 2013, inter alia) (see Futrell et al., 2018 for details of the experimental procedure and data acquisition.) We followed 830 

data exclusion criteria in Futrell et al. (2018): for any given participant, we only included data for stories where they 831 

answered 5 or all 6 comprehension questions correctly, and we excluded reading times (RTs) that were shorter than 100 ms 832 

or longer than 3000 ms. 833 

 834 
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We constructed a stimulus-response matrix by i) obtaining the RTs for each word in each story for each participant (848,762 835 

RTs total across the 179 participants; 338 average, ±173 std. dev.), and ii) concatenating all words in all sentences (10,256 836 

words across 485 sentences), yielding a 10,256x179 matrix. 837 

 838 

5. Computational models. We tested 43 language models that were selected to sample a broad range of computational 839 

designs across three major types of architecture: embeddings, recurrent architectures, and attention-based ‘transformer’ 840 

architectures. Here we provide a brief overview (see Table SI-10 for a summary of key features varying across the models). 841 

GloVe (Pennington et al., 2014) is a word embedding model where embeddings are positioned based on co-occurrence in 842 

the Common Crawl corpus; ETM (Dieng et al., 2019, 20ng dataset) combines word embeddings with an embedding of each 843 

word’s assigned topic; and word2vec (Mikolov et al., 2013)—abbreviated as w2v—provides embeddings which are trained 844 

to guess a word based on its context. lm_1b (Jozefowicz et al., 2016) is a 2-layer long short-term memory (LSTM) model 845 

trained to predict the next word in the One Billion Word Benchmark (Chelba et al., 2014); and the skip-thoughts model 846 

(Kiros et al., 2015) is trained to reconstruct surrounding sentences in a passage. For all 38 transformer models (pretrained 847 

models from the HuggingFace library (Wolf et al., 2019)), we only evaluate the encoder and not the decoder; the encoders 848 

process long contexts (100s of words) with a deep neural network stack of multiple attention heads that operate in a feed-849 

forward manner (except the Transformer-XL-wt103 and the two XLNet models, which use recurrent processing), and differ 850 

mostly in the choice of directionality, network architecture, and training corpora (Table SI-11). We highlight key features of 851 

different classes of transformer models (BERT, RoBERTa, XLM, XLM-RoBERTa, Transformer-XL-wt103, XLNet, CTRL, T5, 852 

AlBERT, and GPT) in the order in which they appear in the bar-plots (e.g., Fig. 2a), except for the three ‘distilled’ models 853 

(Sanh et al., 2019), which we mention in the end. BERT transformers (Devlin et al., 2018) (n=4; bert-base-uncased, bert-854 

base-multilingual-cased, bert-large-uncased, bert-large-uncased-whole-word-masking) are optimized to train bidirectional 855 

representations taking into account context both to the left and right of a masked token. RoBERTa transformers (Liu et al., 856 

2019) (n=2; roberta-base, roberta-large) as a variation of BERT improve training hyper-parameters such as masking tokens 857 

dynamically instead of always masking the same token. XLM models (Lample & Conneau, 2019) (n=7; xlm-mlm-enfr-1024, 858 

xlm-clm-enfr-1024, xlm-mlm-xnli15-1024, xlm-mlm-100-1280 , xlm-mlm-en2048) learn cross-lingual models by predicting 859 

the next (“clm”) or a masked (“mlm”) token in a different language. XLM-RoBERTa (Conneau et al., 2019) (n=2; xlm-roberta-860 

base, xlm-roberta-large) combines RoBERTa masking with cross-lingual training in XLM. Transformer-XL-wt103 (Dai et al., 861 

2020) adds a recurrence mechanism to GPT (see below) and trains on the smaller WikiText-103 corpus. XLNet transformers 862 

(Yang et al., 2019) (n=2; xlnet-base-cased, xlnet-large-cased) permute tokens in a sentence to predict the next token. CTRL 863 

(Keskar et al., 2019) adds control codes to GPT (see below) which influence text generation in a specific style. T5 864 

transformers (Raffel et al., 2019) (n=5; t5-small, t5-base, t5-large, t5-3b, t5-11b) train the same model across a range of 865 

tasks including the prediction of multiple corrupted tokens, GLUE (A. Wang, Singh, et al., 2019), and SuperGLUE (A. Wang, 866 

Pruksachatkun, et al., 2019) in a text-to-text manner where the task is provided as a text prefix. AlBERT transformers (Lan et 867 

al., 2019) (n=8; albert-base-v1, albert-large-v1, albert-xlarge-v1, albert-xxlarge-v1, albert-base-v2, albert-large-v2, albert-868 

xlarge-v2, albert-xxlarge-v2) use parameter-sharing and model inter-sentence coherence. GPT transformers (n=5) are 869 

trained to predict the next token in a large dataset emphasizing document quality (openaigpt (Radford et al., 2018) on the 870 

Book Corpus dataset, gpt2, gpt2-medium, gpt2-large, and gpt2-xl (Radford et al., 2019) on WebText). Finally, distilled 871 

versions of models (Sanh et al., 2019) (n=3; distilbert-base-uncased, distilgpt2, distilroberta-base) train compressed models 872 

on a larger teacher network. 873 

 874 

To retrieve model representations, we treated each model as an experimental participant (Figure 1) and ran the same 875 

experiment on it that was run on humans. Specifically, sentences were fed in sequentially into the model (for Pereira2018, 876 

Blank2014, and Futrell2018, sentences were grouped by passage / story to mimic the procedure with human participants). 877 

For embedding and recurrent models, sentences were fed in word-by-word; for transformers, the context before (but not 878 

after) each word was also fed into the models due to their lack of memory; the length of the context was determined by the 879 

models’ architectures. For recurrent models, the memory was reset after each paragraph (Pereira2018), each sentence 880 

(Fedorenko2016), or each story (Blank2014 and Futrell2018). 881 

 882 

After the processing of each word, we retrieved (“recorded”) model representations at every computational block (e.g., one 883 

LSTM cell or one Transformer encoder block). (Word-by-word processing increases computational cost but is necessary to 884 

avoid bidirectional models, like the BERT transformers, seeing the future.) When comparing against human recordings 885 
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spanning more than one word such as a sentence (Pereira2018) or story fragment (Blank2014), we aggregated model 886 

representations: for the embedding models, we used the mean of the word representations; for recurrent and transformer 887 

models, we used the representation of the last word since these models already aggregate representations of the preceding 888 

context, up to a maximum context length of 512 tokens. 889 

 890 

6. Comparison of models to brain measurements. We treated the model representation at each layer separately and 891 

tested how well it could predict human recordings (for Pereira2018, we treated the two experiments separately, but 892 

averaged the results across experiments for all plots except Fig. 2c). To generate predictions, we used 80% of the stimuli 893 

(sentences in Pereira2018, words in Fedorenko2016 and Futrell2018, and story fragments in Blank2014; Fig. 1) to fit a linear 894 

regression from the corresponding 80% of model representations to the corresponding 80% of human recordings. We 895 

applied the regression on model representations of the held-out 20% of stimuli to generate model predictions, which we 896 

then compared against the held-out 20% of human recordings with a Pearson correlation. This process was repeated five 897 

times, leaving out different 20% of stimuli each time, and we computed the per-voxel/electrode/ROI mean predictivity 898 

across those five splits. We aggregated these per-voxel/electrode/ROI scores by taking the median of scores for each 899 

participant’s voxels/electrodes/ROIs and then computing the median and median absolute deviation (m.a.d.) across 900 

participants (over per-participant scores). Finally, this score was divided by the estimated ceiling value (see Estimation of 901 

ceiling below) to yield a final score in the range of [0, 1]. We report the results for the best-performing layer for each model 902 

(SI-12). 903 

7. Estimation of ceiling. Due to intrinsic noise in biological measurements, we estimated a ceiling value to reflect how well 904 

the best possible model of an average human could perform. To do so, we first subsampled—for each dataset separately—905 

the data with n recorded participants into all possible combinations of s participants for all 𝑠 ∈ [2, 𝑛] (e.g. {2, 3, 4, 5} for 906 

Fedorenko2016 with n=5 participants). For each subsample s, we then designated a random participant as the target that 907 

we attempt to predict from the remaining 𝑠 − 1 participants (e.g., predict 1 subject from 1 (other) subject, 1 from 2 908 

subjects, …, 1 from 4, to obtain a mean score for each voxel/electrode/ROI in that subsample. To extrapolate to infinitely 909 

many humans and thus to obtain the highest possible (most conservative) estimate, we fit the equation 𝑣 = 𝑣0 × (1 −910 𝑒− 𝑥𝜏0) where x is each subsample’s number of participants, v is each subsample’s correlation score and 𝑣0 and 𝜏0 are the 911 

fitted parameters for asymptote and slope respectively. This fitting was performed for each voxel/electrode/ROI 912 

independently with 100 bootstraps each to estimate the variance where each bootstrap draws x and v with replacement. 913 

The final ceiling value was the median of the per-voxel/electrode/ROI ceilings 𝑣0. 914 

For Fedorenko2016, a ceiling was estimated for each electrode in each participant, so each electrode’s raw value was 915 

divided by its own ceiling value. Similarly, for Blank2014, a ceiling was estimated for each ROI in each participant, so each 916 

ROI’s raw value was divided by its own ceiling value. For Pereira2018, we treated the two experiments separately, focusing 917 

on the 5 participants that completed both experiments to obtain full overlap in the materials for each participant, and used 918 

10 random sub-samples to keep the computational cost manageable. A ceiling was estimated for all voxels in the 5 919 

participants who participated in both experiments. Each voxel’s raw predictivity value was divided by the average ceiling 920 

estimate (across all the voxels for which it was estimated). For Futrell2018, given the large number of participants and 921 

because most participants only had measurements for a subset of the stimuli, we did not hold out one participant but 922 

rather tested how well the mean RTs for one half of the participants predicted the RTs for the other half of participants. We 923 

further took 5 random subsamples at every 5 participants, starting from 1, and built 3 random split-halves, again to keep 924 

computational cost manageable. A ceiling was estimated for each participant, and each participant’s raw values were 925 

divided by this ceiling. (Note that this approach is even more conservative than the leave-one-out approach, because split-926 

half correlations tend to be higher than one-vs.-rest, due to a reduction in noise when averaging (for each half).) 927 

 928 

8. Language Modeling. To assess the models’ performance on the normative next-word-prediction task, we used a dataset 929 

of 720 Wikipedia articles, WikiText-2 (Merity et al., 2016), with 2M training, 218k validation, and 246k test tokens (words 930 

and word-parts). These tokens were processed by model-specific tokenization with a maximum vocabulary size of 250k, 931 

selected based on the tokens’ frequency in the model’s original training dataset, and split up into blocks of 32 tokens each 932 

(both the vocabulary size and the length of blocks were constrained by computational cost limitations). We sequentially 933 
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fed the tokens into models as explained in Computational Models and captured representations at each step from each 934 

model’s final layer. To predict the next word, we fit a linear decoder from those representations to the next token  over 935 

words in the vocabulary (n=50k), on the training tokens. This decoder is trained with a cross-entropy-loss 𝐿 =936 − ∑ 𝑡𝑐𝑖 log ( 𝑒𝑠𝑐𝑖∑ 𝑒𝑠𝑑𝑖𝐶𝑑 ) 𝐶𝑐  where 𝑡𝑐𝑖  is the true label for class c and sample i, and 𝑠𝑐𝑖  is the predicted probability of that class; the 937 

linear weights are updated with AdamW and a learning rate of 5e-5 in batches of 4 blocks until convergence as defined on 938 

the validation set. Importantly, note that we only trained weights of a readout decoder, not the weights of models 939 

themselves, in order to maintain the same model representations that we used in model-to-brain and model-to-behavior 940 

comparisons. The final language modeling score is reported for each model as the perplexity, i.e. the exponent of the 941 

cross-entropy loss, on the held-out test set. 942 

 943 
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Supplement 954 

Figure S1: Ceiling estimates for neural and behavioral datasets. Due to intrinsic noise in biological measurements, we 955 

estimated a ceiling value to reflect how well the best possible model of an average human could perform, based on sub-956 

samples of the total set of participants (see Methods-7). For each sub-sample, 𝑠 − 1 participants are used to predict a held-957 

out participant (except in Futrell2018, where this is done on split-halves, as described in the text). Each dot represents a 958 

correlation between the average of the 𝑠 − 1 participants and the left-out participant for a random sub-sample of the 959 

number of participants 𝑠 indicated on the x-axis. We then bootstrapped 100 random combinations of those dots to 960 

extrapolate (gray lines) the highest possible ceiling if we had an infinite number of participants at our disposal. The 961 

parameters of these bootstraps are then aggregated by taking the median to compute an overall estimated ceiling (dashed 962 

gray line with 95% CI in error-bars). We use this estimated ceiling to normalize model scores and here also report the 963 

number of participants at which the estimated ceiling would be met (which show that for Pereira2018 and Futrell2018, the 964 

number of participants we have is at and close to the asymptote value, respectively). 965 

 966 

Figure S2: Scores generalize across metrics. Model scores on each dataset generalize across different choices of a similarity 967 

metric; here we plot the predictivity metric used in the manuscript on the x-axis against a model-to-brain similarity metric 968 

based on representational dissimilarity matrices (RDMs) between models and neural representations on the y-axis. Like in 969 

the predictivity metric, stimuli along with corresponding model activations and brain recordings were split 5-fold but we 970 

then only compared the respective test splits given that the RDM metric does not employ fitting. Specifically, we followed 971 

(Kriegeskorte, 2008) and computed the RDM for each model’s activations, and a separate RDM for each brain recording 972 

dataset, based on 1 minus the Pearson correlation coefficient between pairs of stimuli; then, we measured model-brain 973 

similarity via Spearman correlation across the two RDMs’ upper triangles. The RDM score for one model on one human 974 

dataset is then the mean over splits. We ran each model and compared resulting scores with the primarily used scores from 975 

the predictivity metric. Correlations for models’ scores between the predictivity and the RDM metrics are: Pereira2018 976 

r=.57, p<0.0001; Fedorenko2016 r=.40, p<.01; Blank2014 r=.38, p<.05. 977 

  978 
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Figure S3: Brain surface visualization of model predictivity scores. Plots show surface projections of volumetric individual 979 

language-responsive functional ROIs in the left and right hemispheres (LH and RH) for five representative participants from 980 

Pereira2018. In each voxel of each fROI, we show a normalized predictivity value for two models that differ substantially in 981 

their ability to predict human data: GloVe (first two columns) and GPT2-xl (second two columns; for GPT2-xl, we show 982 

predictivity values from the overall best-performing layer, in line with how we report the results in the main text). (Note 983 

that the voxel locations are identical between GloVe and GPT2-xl, and are determined by an independent functional 984 

language localizer as described in the text; we here illustrate the differences in predictivity values, along with showing 985 

sample fROIs used in our analyses). Predictivity values were ceiling-normalized for each participant and each of 12 ROIs 986 

separately (a slight deviation from the approach in the main analysis, which was designed to control for between-region 987 

differences in reliability). The data were analyzed in the volume space and co-registered using SPM12 to Freesurfer’s 988 

standard brain CVS35 (combined volumetric and surface-based (CVS)) in the MNI152 space using nearest neighbor 989 

interpolation and no smoothing. The ceiled predictivity maps for the language localizer contrast (10% of most language-990 

responsive voxels in each ‘mask’; Methods-1) were projected onto the cortical surface using mri_vol2surf in Freesurfer 991 

v6.0.0 with a projection fraction of 1. The surface projections were visualized on an inflated brain in the MNI152 space using 992 

the developer version of Freeview (assembly March 10th, 2020). The bar plots in the rightmost column show the normalized 993 

predictivity values per ROI (median across voxels) in the language network for GPT2-xl. Error bars denote m.a.d. across 994 

voxels. The distribution of predictivity values across the language-responsive voxels, and the similar predictivity magnitudes 995 

across the ROIs in the bar graphs, both suggest that the results (between-model differences in neural scores) are not driven 996 

by one particular region of the language network, but are similar across regions, and between the LH and RH components of 997 

the network (see also SI-4). 998 
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 999 

SI-4 – Language specificity  1000 

In the analyses reported in the manuscript, we focused on the language-responsive regions / electrodes. Here, for two 1001 

datasets, we investigated the model-brain relationship outside the language network in order to assess the spatial 1002 

specificity of our results, i.e., to test whether they obtain only, or more strongly, in the language network compared to 1003 

other parts of the brain. For both datasets, we report analyses based on raw predictivity values, without normalizing by the 1004 

estimated noise ceiling because the brain regions of the language network differ from other parts of the brain in how 1005 

strongly their activity is tied to stimulus properties during comprehension (e.g., I. A. Blank & Fedorenko, 2017, 2020; 1006 

Diachek et al., 2020; Shain et al., 2020; Wehbe et al., 2020). This variability is important to take into account when 1007 

comparing between functionally different brain regions/electrodes because we are interested in how well the models 1008 

explain linguistic-stimulus-related neural activity. When we normalize the neural responses of a non-language-responsive 1009 

region/electrode using a language comprehension task, we’re effectively isolating whatever little stimulus-related activity 1010 

this region/electrode may exhibit, putting them on ~equal or similar footing with the language-responsive 1011 

regions/electrodes. (For completeness and ease of comparison with the main analyses, we also report analyses based on 1012 

normalized predictivity values.) 1013 

 1014 

Fedorenko2016: The scores obtained from language-responsive electrodes were compared to those obtained from 1015 

stimulus-responsive electrodes, excluding the language-responsive ones (see Methods-2), for all 43 models. The number of 1016 

language-responsive electrodes across five participants was 97, and the number of stimulus-, but not language-, responsive 1017 

electrodes across the participants was comparable (n=105). The analysis was identical to the main analysis (see Methods), 1018 

besides omitting the ceiling normalization for the raw predictivity analyses. As described in Methods, normalization was 1019 

performed for each electrode in each participant separately. 1020 

For raw predictivity, neural responses in the language-responsive electrodes were predicted 49.21% better on average 1021 

across models than the non-language-responsive electrodes (independent-samples two-tailed t-test: t=3.4, p=0.001). (For 1022 

normalized predictivity, neural responses in the language-responsive electrodes were predicted 59.26% better on average 1023 

across models than the non-language-responsive electrodes (t=2.24, p=0.03).) 1024 

 1025 

Pereira2018: The scores obtained from the language network were compared to those obtained from two control 1026 

networks: the multiple demand (MD) network and the default mode network (DMN) (see Methods), for all 43 models. The 1027 

number of voxels in the language network across participants was, on average, 1,355 (± 7 SD across participants), and the 1028 

average number of voxels in the MD network and the DMN was comparable (MD: 2,994±230); DMN: 1,098±7). The analysis 1029 

was identical to the main analysis (see Methods), besides omitting the ceiling normalization for the raw predictivity 1030 

analyses. For the normalized predictivity analyses, the network predictivity values were normalized by their respective 1031 

network ceiling values. 1032 

For raw predictivity, neural responses in the language network ROIs were predicted 16.96% better on average across 1033 

models than the MD network ROIs (independent-samples two-tailed t-test: t=2.26, p=0.03) and numerically (14.33%) better 1034 

than the DMN ROIs (t=1.78, p=0.08). (For normalized predictivity, neural responses in the language network ROIs were 1035 

predicted numerically (6.47%) worse on average than the MD network ROIs (t=-0.92, p=0.36) and also numerically (1.05%) 1036 

worse than the DMN ROIs (t=-0.31, p=0.76).) 1037 

 1038 

These results suggest that—when allowing for inter-regional differences in the reliability of language-related responses—1039 

the model-to-brain relationship is stronger in the language-responsive regions/electrodes. However, we leave open the 1040 

possibility that language models also explain neural responses outside the boundaries of the language network, perhaps 1041 

because these models capture some parts of our general semantic knowledge, which is plausibly stored in a distributed 1042 

fashion across the brain. For example, several earlier studies used simple embedding models to decode linguistic meaning 1043 

from fMRI data (e.g., Wehbe et al., 2014; Huth et al., 2016; Anderson et al., 2017; Pereira et al., 2018) and reported reliable 1044 

decoding not only within the language network, but also across other parts of association cortex. Given that we know that 1045 

different large-scale cortical networks differ functionally in important ways (e.g., see Fedorenko & Blank, 2020, for a recent 1046 

discussion of the language vs. MD networks), it will be important to investigate in future work the precise mapping between 1047 

the language models’ representations and neural responses in these different functional networks. 1048 
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 1049 

SI-5 – Model performance on diverse language tasks vs. model-to-brain fit  1050 

To test whether the next-word prediction task is special in predicting model-to-brain fit, we used the Pereira2018 dataset to 1051 

examine the relationship between the models’ performance on diverse language processing tasks from the General 1052 

Language Understanding Evaluation (GLUE) benchmarks (Wang et al., 2018) and neural predictivity. We used a subset of the 1053 

high-performing, transformer models (n=30 of the 38 where we could find published commitments of which features to use 1054 

for GLUE). The GLUE benchmark encompasses nine tasks that can be classified into three categories: single-sentence 1055 

judgment tasks (n=2), sentence-pair semantic similarity judgment tasks (n=3), and sentence-pair inference tasks (n=4). The 1056 

two single-sentence tasks are both binary classification tasks: models are asked to determine whether a given sentence is 1057 

grammatical or ungrammatical (Corpus of Linguistic Acceptability, CoLA (Warstadt et al., 2018)), or whether the sentiment 1058 

of a sentence is positive or negative (Stanford Sentiment Treebank, SST-2 (Socher et al., 2013)). In the semantic similarity 1059 

tasks, models are asked to assert or deny the semantic equivalence of question pairs (Quora Question Pairs, QQP (Chen et 1060 

al., 2018)) or sentence pairs (Microsoft Research Paraphrase Corpus, MRPC (Dolan & Brockett, 2005)), or to judge the 1061 

degree of semantic similarity between two sentences on a scale of 1-5 (Semantic Textual Similarity Benchmark, STS-B (Cer 1062 

et al., 2017)). Lastly, the benchmark contains four inference tasks, of which we include three (following Devlin et al., 2018), 1063 

we exclude the Winograd Natual Language Inference, WNLI, task; see (12) in https://gluebenchmark.com/faq). In two of 1064 

these tasks, models are asked to determine the entailment relationship between sentences in a pair using either tertiary 1065 

classification: entailment, contradiction, neutral (Multi-Genre Natural Language Inference corpus, MNLI (Williams et al., 1066 

2018)), or binary classification: entailment or no entailment (Recognizing Textual Entailment, RTE (Dagan et al., 2006, Bar 1067 

Haim et al., 2006, Giampiccolo et al., 2007, Bentivogli et al., 2009)). And in the third inference task, the Question Natural 1068 

Language Inference, QNLI, task (Rajpurkar et al., 2016, White et al., 2017, Demszky et al., 2018), models are presented with 1069 

question-answer pairs and asked to decide whether or not the answer-sentence contains the answer to the question. 1070 

In order to evaluate model performance on GLUE benchmark tasks, each GLUE dataset was first converted into a format 1071 

that is compatible with transformer model input using functionality from the GLUE data processor provided by Huggingface 1072 

transformers (https://huggingface.co/transformers/). In particular, each set of materials is represented as a matrix that 1073 

includes the following dimensions: item (and sentence for multi-sentence materials) ID, ID for each individual word (with 1074 

reference to the vocabulary used by the transformer models), the label (e.g., grammatical vs. ungrammatical), and the 1075 

‘attention mask’ which specifies which part(s) of the sentences the model should pay attention to (e.g., some ‘padding’ is 1076 

commonly used to equalize the lengths of sentences/items to the target length of 128 tokens (again constrained by 1077 

computational cost), and the attention mask is set to include only the actual words in the materials, and not the padding, 1078 

and in some models to further constain which parts of the input to attend to—e.g., in GPT2 models, the rightward context is 1079 

ignored). Next, each GLUE dataset was then fed into each model to obtain a sequence of hidden states at the output of the 1080 

last layer of the model. Following default settings from Huggingface transformers, from these hidden states, we then 1081 

extracted the token of interest: for bidirectional models such as BERT, this was the first input token—a special token ([cls]) 1082 

that is appended to each item and designed for sequence classification tasks, and for unidirectional models such as GPT-2, 1083 

XLNet or CTRL, this token corresponded to the last attended token (e.g., the last word/word-part in the sentence). In order 1084 

to ensure a fair comparison between the models and to avoid the skewing of representations by individual task pre-training, 1085 

dense linear pooling projection layers (specific to some transformer) are disregarded. Finally, we fit a linear decoder from 1086 

the features of the extracted tokens of interest to the task label(s). For tasks with two or more labels, a cross-entropy loss 1087 

function is used; for the task that uses a rating scale, the decoder is trained with a mean-square error (MSE) loss function. 1088 

Similar to the next-word prediction task, the linear weights are updated with the AdamW optimizer and a learning rate of 1089 

5e-5 in batches of 8 blocks until convergence as defined on the validation set. Importantly, and also similar to the next-1090 

word-prediction task, we only trained weights of a readout decoder, not the weights of models themselves, in order to 1091 

maintain the same model representations that we used in model-to-brain and model-to-behavior comparisons. To account 1092 

for potential bias in the GLUE datasets, multiple metrics within tasks, as well as different metrics across tasks are reported 1093 

in the GLUE benchmark. Following standards in the field, we report the final task score as accuracy for SST-2, QQP, MRPC, 1094 
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MNLI, RTE, and QNLI, Matthew's Correlation for CoLA, and Pearson correlation for STS-B. The results are shown in Fig. S5. 1095 

None of the tasks significantly predicted neural scores, suggesting that next-word prediction may be special in its ability to 1096 

predict brain-like processing. 1097 

 1098 

Figure S5: Performance on next-word prediction selectively predicts model-to-brain fit. Performance on GLUE tasks was 1099 

evaluated as described in SI-5. Only the next-word prediction correlations but none of the GLUE correlations were 1100 

significant. 1101 

 1102 
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Figure S6: Models’ neural predictivity for each dataset is correlated with behavioral predictivity. In Fig. 4b, we showed 1103 

that the models’ neural predictivity (averaged across the three neural datasets: Pereira2018, Fedorenko2016, Blank2014) 1104 

correlates with behavioral predictivity. Here, we show that this relationship also holds for each neural dataset individually: 1105 

Pereira2018: p<0.0001, Fedorenko2016: p<0.01, Blank2014: p<0.01. 1106 

 1107 

Figure S7: Model architecture alone already yields predictive representations and untrained performance predicts trained 1108 

performance. In Fig. 5, we showed that untrained models already achieve robust brain predictivity (averaged across the 1109 

three neural and one behavioral datasets). Here, we show that this relationship also holds for each dataset individually: 1110 

Pereira2018: p<<0.00001, Fedorenko2016: p<0.05, Blank2014: p<0.00001, Futrell2018: p<<0.00001. 1111 

 1112 

 1113 

 1114 

 1115 

 1116 

 1117 
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Figure S8: Performance of models with random weights depends on architecture. a) The relationship between model 1118 

performance with vs. without training on the wikitext-2 next-word-prediction task. Consistent with model performance with 1119 

vs. without training on neural and behavioral datasets (Fig. 5), untrained models perform reasonably well. Training improves 1120 

scores by 80% on average, and most prominently for GPT models, in teal (where the quality of the training data is 1121 

optimized; see Computational models in Methods). b) Neural and behavioral scores of GPT2-xl, the best-performing model, 1122 

with vs. without training, and of a random embedding of the same size. Embedding size alone is not sufficient: a random 1123 

embedding matched in size to GPT2-xl scores worse than untrained GPT2-xl in all four datasets (3 neural, and 1 behavioral). 1124 

These results suggest that model architecture critically contributes to model-to-brain and model-to-behavior fits. 1125 

 1126 

SI-9 – Effects of model architecture and training on neural and behavioral scores 1127 

 1128 

The 43 language models included in the current study span three major types of architecture: embedding models, recurrent 1129 

models, and attention-based transformer architectures. However, in addition to this coarse distinction, the individual 1130 

models vary widely in diverse architectural and training features. A rigorous examination of the effects of different model 1131 

features on model-to-brain/behavior fit would require careful pairwise comparisons of minimally different models, which is 1132 

not possible for ‘off-the-shelf’ models without extremely expensive re-training from scratch under many/all possible 1133 

combinations of architecture, training diet, optimization objective, and other hyper-parameters. However, we here 1134 

undertook a preliminary exploratory investigation. In particular, for a subset of model features (Table SI-9), we computed a 1135 

Pearson correlation between the feature values and the averaged model score across all four datasets (3 neural, and 1 1136 

behavioral). We included five architectural features. Three features were continuous: i) number of hidden layers, which 1137 

varied between 1 and 48 (mean 16.02, std. dev. 11.02); ii) number of features (units across considered layers), which varied 1138 

between 300 and 78,400 (mean 20,971.26, std. dev. 18,362.91); and the size of the embedding layer, which varied between 1139 

128 and 48,000 (mean 872.28, std. dev. 744.33). And the remaining two features were binary: iv) uni- vs. bi-directionality 1140 

(32/43 models were bi-directional), and v) the presence of recurrence (5/43 models had recurrence). And we included two 1141 

training-related features: i) training data size (in GB), which varied between 0.2 and 336 (mean 351.06 std. dev. 726.81); and 1142 

ii) vocabulary size, which varied between 30,000 and 3,000,000 (mean 223,096.95 std. dev. 561,737.36). All training data 1143 

numbers were taken from the original model papers, and if training data was specified in tokens, a conversion rate of 4 1144 

bytes per token was used. We further excluded the multilingual XLM and BERT models when examining the effect of 1145 

training data size, because those numbers could not be confidently verified. For comparison, we also included performance 1146 

on the next-word-prediction task that we examined in the main text. 1147 

 1148 

The results are shown in Fig. S9. As expected—given the results reported in the main text for the individual datasets (Fig. 3, 1149 

4c)—next-word prediction performance robustly predicts model-to-brain/behavior fit (r = 0.49, p < 0.01). These results 1150 

suggest that optimizing for predictive representations may be a critical shared feature of biological and artificial neural 1151 

networks for language. How do architectural and training-related features compare to next-word-prediction task 1152 

performance in their effect on neural/behavioral predictivity? Two architectural size features are most correlated with 1153 

model performance: number of hidden layers (r = 0.56, p < 0.001), and number of features (r = 0.68, p << 0.0001). This is 1154 

expected given that the most recent models with the highest performance on linguistic tasks are also the largest ones that 1155 

researchers are able to run on modern hardware. The two training-related features—training data size and vocabulary 1156 
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size—are significantly negatively correlated with model performance. To rule out the possibility that the negative effect of 1157 

training-related features is driven by models with relatively small training datasets and vocabulary size (e.g., ETM; Table 1158 

S10) that have low brain/behavior predictivity, we ran an additional analysis considering only transformer models (n=38): 1159 

even in these generally highly predictive models, more training data (r = -0.29, p = 0.11 [not plotted]) or larger vocabulary 1160 

size (r = -0.21, p = 0.25 [not plotted]) do not appear to be beneficial, although the negative correlations are non-significant. 1161 

 1162 

Does the collection of model designs investigated in this paper inform the hyperparameters that should be optimized for in 1163 

any new model to achieve high predictivity? To provide a preliminary answer to this question, we performed an exploratory 1164 

analysis in the form of stepwise forward model selection and examined (a) the most parsimonious model that explains the 1165 

data, and (b) how much variance the selected features explain cumulatively (Fig. S9b). High overall explained variance 1166 

indicates that the combination of features selected by the model is predictive of model performance, whereas low overall 1167 

explained variance indicates that crucial predictive hyperparameters are still being neglected. In the forward regression 1168 

analysis, we add predictors based on the highest R2-adjusted value of the new model, as long as variance increases by 1169 

adding a new factor. This analysis revealed that adding training dataset size and recurrence does not lead to variance 1170 

increase. Significance markers indicate the p-value for significance of adding each term, and for each regression step we 1171 

plot the added explained variance (in R2-adjusted) of the variable chosen by the model. The overall cumulative R2-adjusted 1172 

value of the selected model is 0.822. 1173 

 1174 

Figure S9: Effects of model architecture vs. training on neural and behavioral scores. a) We compared the effects on neural 1175 

and behavioral scores (the averaged model score across all four datasets) of three kinds of features: (i) architectural 1176 

properties, (ii) training-dependent variables, and, for comparison, iii) performance on the next-word-prediction task 1177 

examined in the main text (Fig. 3, 4c). b) Alternative combination of predictors with stepwise forward regression model. 1178 

New predictors are added based on the highest R2-adjusted value of the new model, as long as variance increases by adding 1179 

a new factor (thus excluding training dataset size and recurrence). Significance markers indicate the p-value for significance 1180 

of adding model terms. For each regression step, we plot the added explained variance (in R2-adjusted) of the variable 1181 

chosen by the model. The overall cumulative R2-adjusted value of the selected model is 0.822. As in a), the preferred 1182 

explanatory variable is the number of features. Stepwise forward regression based on significance leads to the same model-1183 

choice. Note that, as above, t5-11b is excluded for regression based on next-word-prediction, and multilingual models are 1184 

excluded for regression on training size.   1185 

 1186 

 1187 

  1188 
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Table S10: Overview of model designs. 1189 

 1190 

  1191 
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Figure S11: Distribution of layer preference (best performing layer) per voxel for GPT2-xl for Pereira2018. A per-voxel per-1192 

participant raw predictivity value was obtained in the language network by computing the mean over cross-validation splits 1193 

and experiments. For each voxel, the layer with the highest predictivity value was estimated as the “preferred” layer 1194 

(argmax over layer scores). As in the main analyses, the voxels in the language network were included. Zero on the x-axis 1195 

corresponds to the embedding layer of the model. The upper plot is averaged across all participants in Pereira2018 (n=10). 1196 

The lower panel shows the participant-wise layer preference for five representative participants. Across participants, most 1197 

voxels show the highest predictivity value for later layers of GPT2-xl. Within participants, the layer preference across voxels 1198 

varies but is often clustered around particular layers. Investigations of how predictivity fluctuates across model layers, 1199 

and/or between the language network and other parts of the brain, is left for future work. 1200 

 1201 
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