
The Neural Basis of
Decision Making

Joshua I. Gold1 and Michael N. Shadlen2

1Department of Neuroscience, University of Pennsylvania, Philadelphia,
Pennsylvania 19104-6074; email: jigold@mail.med.upenn.edu

2Howard Hughes Medical Institute and Department of Physiology and Biophysics,
University of Washington, Seattle, Washington 98195-7290;
email: shadlen@u.washington.edu

Annu. Rev. Neurosci. 2007. 30:535–74

The Annual Review of Neuroscience is online at
neuro.annualreviews.org

This article’s doi:
10.1146/annurev.neuro.29.051605.113038

Copyright c© 2007 by Annual Reviews.
All rights reserved

0147-006X/07/0721-0535$20.00

Key Words

psychophysics, signal detection theory, sequential analysis, motion

perception, vibrotactile perception, choice, reaction time

Abstract

The study of decision making spans such varied fields as neuro-

science, psychology, economics, statistics, political science, and com-

puter science. Despite this diversity of applications, most decisions

share common elements including deliberation and commitment.

Here we evaluate recent progress in understanding how these basic

elements of decision formation are implemented in the brain. We

focus on simple decisions that can be studied in the laboratory but

emphasize general principles likely to extend to other settings.
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INTRODUCTION

A decision is a deliberative process that results

in the commitment to a categorical proposi-

tion. An apt analogy is a judge or jury that must

take time to weigh evidence for alternative

interpretations and/or possible ramifications

before settling on a verdict. Here we evalu-

ate progress in understanding how this pro-

cess is implemented in the brain. Our scope

is somewhat narrow: We consider primarily

studies that relate behavior on simple sensory-

motor tasks to activity measured in the brain

because of the ability to precisely control sen-

sory input, quantify motor output, and target

relevant brain regions for measurement and

analysis. Nevertheless, our intent is broad: We

hope to identify principles that seem likely

to contribute to the kinds of flexible and nu-

anced decisions that are a hallmark of higher

cognition.

SDT: signal
detection theory

SA: sequential
analysis

The organization of this review is as fol-

lows. We first describe the computational el-

ements that comprise the decision process.

We then briefly review signal detection the-

ory (SDT) and sequential analysis (SA), two

related branches of statistical decision theory

that represent formal, mathematical prescrip-

tions for how to form a decision using these

computational elements. We then dissect sev-

eral experimental results in the context of this

theoretical framework to identify neural sub-

strates of decision making. We conclude with

a discussion of the strengths and limitations

of this approach for inferring principles of

higher brain function.

Elements of a Decision

The decisions required for many sensory-

motor tasks can be thought of as a form

of statistical inference (Kersten et al. 2004,

Rao 1999, Tenenbaum & Griffiths 2001, von

Helmholtz 1925): What is the (unknown)

state of the world, given the noisy data pro-

vided by the sensory systems? These decisions

select among competing hypotheses h1 . . . hn

(often n = 2) that each represent a state of

the world (e.g., a stimulus is present or ab-

sent). The elements of this decision process

(see Figure 1) are described in terms of prob-

ability theory, as follows.

The probability P(hi), or prior, refers to

the probability that hi is true before obtain-

ing any evidence about it. In the courtroom

analogy, priors correspond to prejudices that

can bias jurors’ judgments. Bayesian infer-

ence prescribes a more positive role for pri-

ors, which are necessary to convert measur-

able properties of evidence (the values it can

attain when hi is true) to inferred ones (the

probability that hi is true given a particular ob-

servation). For a sensory-motor task, a prior

typically corresponds to the predicted prob-

ability of seeing a particular stimulus or re-

ceiving a particular reward on the upcoming

trial, which can be instructed (e.g., Carpenter

& Williams 1995, Basso & Wurtz 1998, Dor-

ris & Munoz 1998, Platt & Glimcher 1999) or

inferred from its relative frequency of occur-

rence on previous trials (Sugrue et al. 2004).

The evidence (e) refers to information that

bears on whether (and possibly when) to com-

mit to a particular hypothesis. A strand of hair

found at a crime scene can be used as evidence

if it supports or opposes the hypothesis that a

certain person was present at that location.

For a perceptual task, neural activity that rep-

resents immediate or remembered attributes

of a sensory stimulus can be used as evidence.

However, like hair at a crime scene, this sen-

sory activity is evidence only insofar as it bears
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One state holds

e.g., up

Two possible states

{up,down}

Consideration of

two propositions 

(hypotheses)

h
1
:up or h

2
: down

x = x
1
, x

2
,...{ }

Sensory data

Useful form 

of evidence
e

In the world In the brain

Decision variable

l
12

(e) ≡
P e h

1( )

P e h
2( )

or logLR
12

≡ log l
12

(e)[ ]

e.g., y ≈ ...

One action

e.g., answer “up”

Experience payoff or cost

value or utility

vij∈{1,2}

Apply decision rule

e.g., choose left if

l
12

(e) ≥ criterion

Context

e.g., instruction

Motivation to

perform the task

Establish

decision rule

based on goals 

Statistical knowledge

P e h
i( )

P h
i( )

v h
i( )H

j

Consequence

of action & state

(4 possible)

Contextual cues and       

prexisting knowledge

Information flow

for each decision

Evaluation

likelihoods:

priors:

values:

Figure 1

Elements of a simple decision between two alternatives. The left side represents elements of the world.
The right side represents elements of the decision process in the brain. Black elements establish context.
Red elements form the decision. Blue elements evaluate and possibly update the decision process.

on a hypothesis. Thus e is useful when it can

be interpreted in the context of conditional

probabilities such as P (e | hi ), the “likelihood”

function describing the values that e can attain

when hi is true. Perceptual tasks are useful for

studying decision formation in part because

of the ability to control precisely the quan-

tity and quality of the sensory evidence and

measure the impact on likelihood functions

obtained from relevant sensory neurons.

Value (v) is the subjective costs and benefits

that can be attributed to each of the potential

outcomes (and associated courses of action)

of a decision process. Value can be manip-

ulated by giving explicit feedback or mone-

tary rewards to human subjects or preferred

food or drink to nonhuman subjects. Value

can also reflect more implicit factors such as

the costs associated with wasted time, effort,

and resources. Here we make no distinction
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DV: decision
variable

between value and utility, disregarding their

technical meanings and opting instead for a

more general concept that describes subjec-

tive influences on the decision process.

The decision variable (DV) represents the

accrual of all sources of priors, evidence, and

value into a quantity that is interpreted by the

decision rule to produce a choice. It is a con-

ceptual entity corresponding to the delibera-

tions in a trial leading up to the verdict. Note

that here “deliberations” does not imply that

the DV is necessarily computed rationally and

without emotion; rather, it emphasizes that

the DV is capable of accounting for multiple

sources of information (priors, evidence, and

value) that are interpreted over time. Thus,

the DV is not tied to the (possibly fleeting)

appearance of stimuli but spans the time from

the first pieces of relevant information to the

final choice. Also, unlike the choice, which is

discrete, it is often best thought of as an ana-

log quantity. We spend much of this chapter

refining the concept of a DV and describing

efforts to find its neural correlates.

The decision rule determines how and

when the DV is interpreted to arrive at a com-

mitment to a particular alternative Hi (the

choice associated with hypothesis hi). The rule

causes the jury to declare, “we have a verdict.”

A conceptually simple rule is to place a cri-

terion value on the DV. This rule requires a

DV whose magnitude reflects the balance of

support and opposition for a hypothesis. Such

a rule allows the decision maker to achieve at

least one of several appealing long-term goals,

including maximizing accuracy or reward or

achieving a target decision time.

The course of action that follows the com-

mitment to an alternative is often necessary

to reap the costs and benefits associated with

that alternative. In these cases, the decision

itself might be best thought of not as an

abstract computation but rather as the ex-

plicit intention to pursue (or avoid) a par-

ticular course of action. This idea is a form

of “embodiment” that places high-order cog-

nitive capacities such as decision making in

the context of behavioral planning and execu-

tion (Cisek 2007, Clark 1997, Merleau-Ponty

1962, O’Regan & Noë 2001). A key practi-

cal implication is that the parts of the brain

responsible for selecting (or planning) certain

behaviors may play critical roles in forming

decisions that lead to those behaviors.

The goals of a decision maker are to

achieve desired outcomes and avoid unde-

sired ones. Desired outcomes include “get-

ting it right” or maximizing the percentage

of correct responses in tasks that have right

and wrong answers or, more generally, maxi-

mizing expected value (Green & Swets 1966).

Undesired outcomes include getting it wrong,

minimizing value and wasting time, effort,

or resources. Goals are critical because the

decision process is assumed to be intended,

and perhaps even optimized, to achieve them.

Indeed, optimality can be assessed only in

the context of a goal. Thus, behavior that is

“suboptimal” with respect to certain objective

goals such as maximizing accuracy might in

fact be optimal with respect to the idiosyn-

cratic goal(s) of the decision maker.

Evaluation, or performance monitoring,

is necessary to analyze the efficacy or op-

timality of a decision with respect to its

particular goals. For laboratory tasks, evalu-

ation can occur with or without explicit feed-

back (e.g., Carter et al. 1998, Ito et al. 2003,

Ridderinkhof et al. 2004, Schall et al. 2002,

Stuphorn et al. 2000). In either case it is likely

to play a critical role in shaping future deci-

sions via learning mechanisms that, in princi-

ple, can affect every aspect of the process, from

incorporating the most appropriate priors, ev-

idence, and value into the DV to establishing

the most effective decision rule.

Conceptual Framework

Signal detection theory. SDT is one of the

most successful formalisms ever used to study

perception. Unlike information theory and

other biostatistical tools commonly used for

data analysis, SDT prescribes a process to

convert a single observation of noisy evidence

into a categorical choice. Early applications
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allowed psychologists to infer from behavior

properties of the underlying sensory repre-

sentation (Green & Swets 1966). Later, pi-

oneering work in retinal and somatosensory

physiology established SDT as a valuable tool

to relate the measured responses of sensory

neurons to the limits of detection and discrim-

ination (for reviews see Parker & Newsome

1998, Rieke et al. 1997). More recently, it has

begun to shed light on decision mechanisms.

According to SDT, the decision maker ob-

tains an observation of evidence, e. In per-

ceptual psychophysics, e is derived from the

senses and might be the spike count from

a neuron or pool of neurons, or a derived

quantity such as the difference between spike

rates of two pools of neurons. It is caused

by a stimulus (or state) controlled by the ex-

perimenter; e.g., h1 (stimulus present) or h2

(stimulus absent). If e is informative, then its

magnitude differs under these states. How-

ever, e is also corrupted by noise. Thus e is

a random variable described by a distribution

whose parameters (e.g., the mean) are set by h1

or h2. These conditionalized distributions de-

scribe the likelihoods P (e | h1) and P (e | h2).

Unlike standard statistical methods, the ob-

ject of SDT is not to determine whether the

parameters describing these distributions are

different but instead to decide which of the

states gave rise to the observation e.

The decision requires the construction of

a DV from e. For binary decisions, the DV is

typically related to the ratio of the likelihoods

of h1 and h2 given e: l12(e) ≡ P (e | h1)/P (e | h2).

A simple decision rule is to apply a criterion to

the DV; e.g., choose h1 if and only if l12(e) ≥ β,

where β is a constant. A strength of SDT is

that a variety of goals can be reached by simply

using different values for the criterion. If the

goal is accuracy and the two alternatives are

equally likely, then β = 1. If the goal is accu-

racy and the prior probability favors one of the

hypotheses, then β = P (h2)/P (h1). If the goal

is to maximize value (where vij is the value as-

sociated with choice Hj when hypothesis hi is

true), then β = (v22 + v21)P (h2)
(v11 + v12)P (h1)

. For more details,

the reader should refer to the first chapter of

LR: likelihood ratio

logLR: logarithm of
the likelihood ratio

Green & Swets (1966), where these expres-

sions are derived.

SDT thus provides a flexible framework

to form decisions that incorporate priors,

evidence, and value to achieve a variety of

goals. Unfortunately, this flexibility also poses

a challenge to neurobiologists. The above ex-

pressions were obtained assuming that the DV

is the likelihood ratio (LR), l12 (e). However,

equivalent expressions (that is, those that will

achieve the same goals) can be obtained (by

scaling β) using any quantity that is monoton-

ically related to the LR. In other words, these

equations do not constrain the priors, e, value,

the DV, or β to take on any particular form,

only that they interact in a certain way. Thus

it is difficult to assign a quantity measured in

the brain to any one of these elements with-

out knowing how the others are represented.

One powerful approach to unraveling this co-

nundrum is to exploit differences in the time

scales of these elements in decision formation.

Sequential analysis. SA is a natural exten-

sion to SDT that accommodates multiple

pieces of evidence observed over time. SA

assumes that the decision has two parts: the

usual one between h1 and h2, and another

about whether it is time to stop the process

and commit (Figure 2). In its most general

form, SA allows the procedure for construct-

ing the DV and the decision rule to be adjusted

with each new sample of evidence. However,

many decisions can be understood by assum-

ing fixed definitions for these elements. A sim-

ple DV constructed from multiple, indepen-

dent pieces of evidence, e1, e2, . . . , en, is the

logarithm of the LR (logLR, or “weight of ev-

idence”), which is just the sum of the logLRs

associated with each piece of evidence:

log LR12 ≡ log
P (e1, e2, . . . , en|h1)

P (e1, e2, . . . , en|h2)

=
n

∑

i=1

log
P (e i | h1)

P (e i | h2)
. 1.

A simple stopping rule is to update this DV

with new pieces of evidence until reaching a

www.annualreviews.org • Decision Making 539
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e
2

→ f
1

e
0
,e

1
,e

2( ) ⇒
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v
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c
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2
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Race model

A
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A
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m
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te

d
e
v
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e
n

c
e
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o
r 

h
1
  
 

B
H

2
Choose 

A
c
c
u

m
u

la
te

d
e
v
id

e
n

c
e
 f

o
r 

h
2
  
 

→

Figure 2

Sequential analysis. (a) General framework. The decision is based on a sequence of observations. After
each acquisition, a DV is calculated from the evidence obtained up to that point; then more evidence can
be obtained or the process can be terminated with a commitment to H1 or H2. In principle, both the
fi (· · ·)s, which convert the evidence to a DV, and the criteria can be dynamic (e.g., to incorporate the cost
of elapsed time). e0 can be interpreted as the evidence bearing on the prior probability of the hypotheses.
(b) In random walk models, the DV is a cumulative sum of the evidence. The bounds represent the
stopping rule. If e is a logLR, then this process is the SPRT (see The Sequential Probability Ratio Test).
When the evidence is sampled from a Gaussian distribution in infinitesimal time steps, the process is
termed diffusion with drift µ, or bounded diffusion. (c) In the race model, two or more decision processes
represent the accumulated evidence for each alternative. When there are two alternatives and the
accumulations are inversely correlated, the race model is nearly identical to a symmetric random walk.
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positive or negative criterion (the bounds in

Figure 2b).

Together, this DV and stopping rule com-

prise the sequential probability ratio test

(SPRT) (see The Sequential Probability Ratio

Test), which is the most efficient test for de-

ciding between two hypotheses on this kind

of problem: It achieves a desired error rate

with the smallest number of samples, on av-

erage (Wald & Wolfowitz 1947). This proce-

dure played a prominent role in allowing Alan

Turing and colleagues to break the German

enigma cipher in World War II (Good 1979,

1983). Their success depended on not only

deducing the contents of intercepted mes-

sages correctly, but also doing so in time for

the information to be of strategic use.

SA in numerous guises has been a valu-

able tool for psychophysical analysis, particu-

larly for studying the trade-off between speed

and accuracy (Luce 1986, Smith & Ratcliff

2004). In recruitment or race models, evi-

dence supporting the various alternatives is

accumulated independently to fixed thresh-

olds (Audley & Pike 1965, LaBerge 1962,

Logan 2002, Reddi et al. 2003, Vickers 1970).

In other models that are more closely re-

lated to the SPRT, a weight of evidence is

accumulated to support one alternative ver-

sus another (Busemeyer & Townsend 1993,

Diederich 2003, Laming 1968, Link 1992,

Link & Heath 1975). These models mirror

the mathematical description of a random

walk or diffusion process (Ratcliff & Rouder

1998, Ratcliff & Smith 2004, Smith 2000,

Smith & Ratcliff 2004): The accumulation

of noisy evidence creates a virtual trajectory

equivalent to the dancing movements of a tiny

particle in Brownian motion (Figure 2).

SA promises to play an important role in

the neurobiology of decision making. First,

investigators continue to develop neurobio-

logically inspired implementations of SA that

will help to identify where and how the brain

carries out the underlying computations (Lo

& Wang 2006, Usher & McClelland 2001,

Wang 2002). Second, SA provides a means to

distinguish evidence from the DV. Evidence is

THE SEQUENTIAL PROBABILITY RATIO
TEST

Consider the following toy problem. Two coins are placed in a

bag. They are identical except that one is fair and the other is

a trick coin, weighted so that heads appears on 60% of tosses,

on average. Suppose one of the coins is drawn from the bag,

and we are asked to decide whether it is the trick coin. We

can base our decision on a series of any amount of tosses. The

SPRT works as follows. Each observation (toss) e i is converted

to a weight of evidence, the logLR in favor of the trick coin

hypothesis. There are only two possible values of evidence,

heads or tails, which give rise to weights (wi ):

wi =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

log
P (e i = heads|h1 : trick coin)

P (e i = heads|h2 : fair coin)

= log
0.6

0.5
= 0.182 if heads

log
P (e i = tails|h1 : trick coin)

P (e i = tails|h2 : fair coin)

= log
0.4

0.5
= −0.223 if tails

According to SPRT, the decision variable is the running sum

(accumulation) of the weights. After the nth toss, the decision

variable is

yn =
n

∑

i=1

wi

We apply the following rules:

if yn ≥ log
1 − α

α
answer “trick”

if yn ≤ log
β

1 − β
answer “fair”

if log
β

1 − β
� yn � log

1 − α

α
get more evidence

where α is the probability that a fair coin will be misidentified

[i.e., a type I error: P (H1| h2)] and β is the probability that

a trick coin will be misidentified [a type II error:P (H2| h1)].

For example, if α = β = 0.05, then the process stops when

|yn| ≥ log(19). The criteria can be viewed as bounds on a

random walk. To achieve a lower rate of errors, the bounds

must be moved further from zero, thus requiring more sam-

ples of evidence, on average, to stop the process.

SPRT: sequential
probability ratio test

momentary, whereas the DV evolves in time.

Changes to either can affect accuracy or de-

cision times differently and can, in principle,

be distinguished in neural recordings (Hanks

et al. 2006). Third, SA includes a termination

www.annualreviews.org • Decision Making 541

A
n
n
u
. 
R

ev
. 
N

eu
ro

sc
i.

 2
0
0
7
.3

0
:5

3
5
-5

7
4
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 U

N
IV

E
R

S
IT

Y
 O

F
 W

A
S

H
IN

G
T

O
N

 -
 H

E
A

L
T

H
 S

C
IE

N
C

E
S

 L
IB

R
A

R
IE

S
 o

n
 0

7
/0

8
/0

7
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



VTF: vibrotactile
frequency

rule. Analogous mechanisms in the brain are

required to make decisions and commit to al-

ternatives on a time frame that is not governed

by the immediacy of sensory input or motor

output, a hallmark of cognition.

EXPERIMENTS

Below we summarize key experimental results

that shed light on how the brain implements

the elements of a decision. We focus first on

perceptual decisions and how to distinguish

sensory evidence from the DV and the deci-

sion rule. We then describe simple motor tasks

that appear to engage similar decision mech-

anisms. Finally we discuss value-based deci-

sions that weigh expectation and preference

as opposed to sensory evidence.

Perceptual Tasks

Vibrotactile frequency (VTF) discrimina-

tion. Developed in the 1960s by Mount-

castle and colleagues, the VTF paradigm

requires the subject, typically a monkey, to

compare the frequency of vibration of two

tactile stimuli, f 1 and f 2, separated by a

time gap (Figure 3a). The range of fre-

quencies used (∼10–50 Hz) does not acti-

vate specialized frequency detectors but in-

stead requires the nervous system to extract

the intervals or rate of skin depression (Luna

et al. 2005, Mountcastle et al. 1990). This in-

formation is used to decide whether the fre-

quency is greater in the first or second in-

terval. The monkey communicates its answer

by pressing a button with the nonstimulated

hand.

Comparison (f2)Base (f1) KU PB

500 ms

10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

Frequency of comparison (Hz)

b

a

Proportion 

of choices

f2 > f1

f1 = 20 Hz

Figure 3

Neural correlates of a decision about vibrotactile frquency. (a) Testing paradigm. A test probe delivers a
sinusoidal tactile stimulus to the finger at base frequency f 1. After a delay period, a comparison stimulus
is delivered at frequency f 2. Then the monkey must decide whether f 2 > f 1, a decision it indicates by
releasing a key (KU) and pressing a button (PB) with its free hand. (b) Psychometric function. The task is
difficult when the base (20 Hz) and comparison frequencies are similar ( f 2 ≈ f 1). (c) Response of a
typical S1 neuron. Rasters show spikes from individual trials, grouped by the combination of base and
comparison frequencies (left). The neuron responds to the vibration stimulus in both the base and the
comparison periods. The firing rate encodes the vibration frequency similarly in the base and comparison
periods (brown and purple graphs, respectively), but it does not reflect the monkey’s choice (black and white
lines and data points in the lower panels). The neuron is uninformative in the interval between base and
comparison stimuli. (d ) Response of a neuron in ventral premotor cortex. Same conventions as in (c).
This neuron carries information about the base frequency during the interstimulus interval (blue). In the
comparison epoch (purple), the neuron is more active when f 2 < f 1. Note that for all trials, the base and
comparison frequencies differ by 8 Hz. Adapted with permission from Hernandez et al. (2000), Romo
et al. (2004).
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Figure 3

(Continued )
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Signals that encode the VTF stimulus have

been traced from the periphery into the pri-

mary somatosensory cortex (S1). For most

S1 neurons, the average firing rate increases

monotonically with increasing stimulus fre-

quency. For many S1 neurons, firing rate

modulations also follow the periodicity of the

stimulus (Figure 3c). However, the average

firing rate is thought to represent the evi-

dence used to perform the task. First, behav-

ioral sensitivity more closely matches the dis-

criminability of S1 responses when average

rates, rather than periodic modulations, are

used. Second, trial-to-trial variations in the

rates, but not the periodic modulations, of

S1 neurons predict to a slight but significant

degree the monkeys’ choices (Salinas et al.

2000). This relationship, termed the choice

probability (Parker & Newsome 1998), is ex-

pected for neurons that provide noisy evi-

dence for the decision, especially if the same

trial-to-trial variations are shared by other S1

neurons ( Johnson 1980a,b; Kohn & Smith

2005; Shadlen et al. 1996; Zohary et al. 1994).

Third, replacing the VTF stimulus in the first

and/or second interval with electrical micro-

stimulation of S1, in some cases using ape-

riodic stimuli that lack regular intervals

between activations, elicits nearly the same

behavioral responses as does the physical stim-

ulus (Romo et al. 1998, 2000).

The firing rate of S1 neurons thus repre-

sents the sensory evidence that underlies the

decision. Why the evidence and not the DV?

To make a decision, the brain must compare f 2

with f 1. This comparison cannot occur until

f 2 is applied, and it must incorporate informa-

tion about f 1 that has been held in working

memory. S1 responses reflect the f 1 stimulus

during the first interval and the f 2 stimulus

during the second interval (Figure 3c). They

therefore do not provide the comparison.

Activity in several brain areas, including

the second somatosensory cortex (S2; Romo

et al. 2002) and the dorsolateral prefrontal

cortex (dlPFC, or Walker area 46; Brody et al.

2003, Romo et al. 1999) but especially the

medial and ventral premotor cortices (MPC

and VPC), more closely resembles a DV.

Many neurons in these areas persist in firing

through the delay period between f 1 and f 2

(Figure 3d, blue insert). Moreover, during the

second interval, the activity of some of these

neurons reflects a comparison between f 2 and

f 1 (Figure 3d, purple insert). However, identi-

fying the nature of this comparison can be dif-

ficult. For the example neuron in Figure 3d,

it is unknown whether the activity during

the comparison period reflects the difference

f 2 − f 1 or merely the sign of the difference

(which is more closely related to the decision

outcome than the DV) because in every case

f 2 − f 1 = 8 Hz. A less direct analysis using

choice probability suggests that some neurons

in these brain areas might represent the differ-

ence between f 2 and f 1 (see Hernandez et al.

2002, Romo et al. 2004).

This extraordinary body of work provides

to date the most complete picture of the di-

versity of brain areas that contribute to de-

cision formation on even a simple sensory-

motor task. For some areas, their role in task

performance seems clear. S1 provides the sen-

sory evidence. Primary motor cortex helps to

prepare and execute the behavioral response.

However, for the remainder of these brain ar-

eas (and doubtless others yet to be studied)

that lie at intermediate stages between sensory

input and motor output, many challenges lie

in the way of an equally precise recounting of

their roles in decision formation.

One challenge is to understand the appar-

ent redundancy. For example, memory traces

of f 1 and f 1/f 2 comparisons are both found

in S2, VPC, MPC, and dlPFC. Do the subtle

differences in how those computations man-

ifest in the different brain areas indicate sub-

tly different roles in these processes? Or is

there simply a continuous flow of informa-

tion through these circuits, such that each per-

forms a unique role but has continuous access

to the computations performed by the other

circuits?

Another challenge lies in linking neural ac-

tivity to a particular element of the decision

process. For example, in several brain regions,
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but especially in the dlPFC, delay-period ac-

tivity resembles a working memory trace of

the evidence provided by f 1. An alternative

explanation is that the delay-period activity

represents the DV: a prediction of the deci-

sion, given f 1. Specifically, if f 1 is low, the

answer is (or might seem) likely to be f 2 > f 1.

If f 1 is high, f 2 < f 1 might seem more likely.

This DV would later be updated by the f 2

evidence. Consistent with this idea, manipu-

lating properties of the f 1 stimulus can bias

choices under some conditions (Luna et al.

2005). Contrary to this idea, dlPFC delay-

period activity reflects f 1 when using a stim-

ulus set in which the value of f 1 cannot be

used to predict f 2 (Romo et al. 1999). How-

ever, little is known about the task-related ex-

pectations that might be represented during

the delay period.

Random-dot motion (RDM) direction dis-

crimination. Similar to the VTF paradigm,

the RDM paradigm (Figures 4 and 5) was

developed to study the relationship between

sensory encoding and perception. Unlike the

VTF task, the RDM task requires a single

stimulus presentation and thus eliminates the

need for working memory. The monkey de-

cides between two possible (opposite) direc-

tions of motion that are known in advance.

Task difficulty is controlled by varying the

percentage of coherently moving dots. The

direction decision is typically indicated with

an eye movement.

The evidence used to form the direction

decision has been traced to neurons in the

middle temporal area (MT/V5) tuned for the

direction of visual motion. SDT analyses of

the strength and variability of MT responses

provided a foundation for understanding be-

havioral accuracy (Britten et al. 1992, 1993;

Shadlen et al. 1996). Choice probabilities in-

dicated that individual MT neurons weakly

but significantly predict the monkey’s direc-

tion decisions, including errors (Britten et al.

1996). Lesion and microstimulation studies,

exploiting the systematic organization of MT

with respect to motion location and direction,

RDM: random-dot
motion

further established a causal link for MT ac-

tivity and task performance (Ditterich et al.

2003; Newsome & Paré 1988; Salzman et al.

1990, 1992).

Two aspects of the task facilitate the study

of the neural mechanisms of decision forma-

tion. The first aspect is that the time needed

to make the decision is particularly long for

perceptual tasks, typically many 100s of ms.

Thus researchers have characterized neural

correlates of the decision process as it un-

folds in time. For a version of the RDM

task in which motion viewing time (t) is con-

trolled by the experimenter, performance im-

proves as roughly
√

t (Figure 4b), the rela-

tion expected if at each successive moment the

brain acquired (i.e., integrated) an indepen-

dent sample of noisy evidence. Performance

on other perceptual tasks, including even a

version of the RDM task, can show little or

no improvement with prolonged viewing du-

ration (Ludwig et al. 2005, Uchida et al. 2006,

Uka & DeAngelis 2003, Watson 1986). In this

sense the RDM task may be less representa-

tive of perception than of cognitive decision

making, which can involve multiple sources of

evidence acquired over a flexible time scale.

The second benefit of the RDM task is

the imposed link between the direction de-

cision and a particular course of action, the

eye-movement response. This link enables in-

vestigators to treat the decision as a prob-

lem of movement selection. Thus, the search

for the DV has focused on parts of the brain

involved in the selection and preparation of

eye movements, including the lateral intra-

parietal area (LIP), superior colliculus (SC),

frontal eye field (FEF), and dlPFC (Horwitz &

Newsome 1999, 2001; Kim & Shadlen 1999;

Shadlen & Newsome 1996, 2001).

In one experiment (Figure 4), motion

viewing was interrupted at a random time

during decision formation by turning off the

RDM stimulus and applying a brief electrical

current to the frontal eye field (FEF) (Gold &

Shadlen 2000, 2003). The microstimulation

caused a short-latency saccade whose ampli-

tude and direction were determined by the
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Figure 4

Representation of an evolving DV by the motor system. (a) Interrupted direction discrimination task.
The monkey decides the net direction of motion, here shown as up versus down. Task difficulty is
governed by the fraction of dots that move coherently from one movie frame to the next (% coherence).
The motion viewing is interrupted prematurely, and on a fraction of trials, a brief current is applied to the
FEF to evoke a saccade. The monkey makes a second, voluntary movement to a choice target to indicate
his decision. (b) Decision accuracy improves as a function of motion-viewing duration. Psychophysical
threshold is defined as the motion coherence supporting 82% correct. Threshold falls by

√
t (slope of

line fit on log-log plot = –0.46; 95% CI: –0.59 to –0.33). These data are from trials in which no
stimulation occurred. Similar data were obtained on stimulated trials. (c) Examples of eye movement
trajectories. Fixation point is at the origin. The two larger circles are the choice targets. The random-dot
stimulus (not shown) was centered on the fixation point. The symbols mark eye position in 2-ms steps.
FEF stimulation during fixation, in the absence of motion and choice targets, elicited a rightward saccade
(trace marked “Fix”). Stimulation while viewing upward and downward motion induced saccades that
deviated in the direction of the subsequent, voluntary eye movements. (d ) The average amount of
deviation depends on motion strength and viewing time. The amount of deviation toward the chosen
target was estimated using the evoked saccades from 32 stimulation sites (14,972 trials). This result shows
that the oculomotor system is privy to information about the evolving decision, not just the final outcome
of the decision process. Adapted from Gold & Shadlen (2000, 2003) with permission.
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site of stimulation, a defining feature of the

FEF (Bruce et al. 1985, Robinson & Fuchs

1969). This evoked saccade tended to deviate

in the direction governed by the eye move-

ment associated with the monkey’s ultimate

choice. The amount of deviation, even when

measured early in the decision process, par-

alleled the evolution of a DV that explained

accuracy as a function of motion strength and

viewing time. This result is inconsistent with

the notion that a central decision maker com-

pletes its operation before activating the mo-

tor structures to perform the necessary ac-

tion. Instead, it implies that, at least under

some conditions, information flow from sen-

sory neurons to motor structures is more or

less continuous (Spivey et al. 2005).

To measure the correspondence more pre-

cisely in time of neural activity with elements

of the decision process, a reaction-time (RT)

version of the RDM task was developed. This

task allowed the monkey to indicate its choice

as soon as a commitment to one of the alterna-

tives is reached. Figure 5b shows examples of

choice and RT functions for a monkey. Mean

RT increases as task difficulty increases. For

easy stimuli, RT varies with stimulus strength

even when choice accuracy is perfect. It ul-

timately approaches an asymptote that rep-

resents time that is not used on the decision

per se. This nondecision time (328 ms in this

data set) includes visual and motor latencies

and possibly other processing stages that are

less understood (see below). For difficult stim-

uli, the nondecision time is relatively short

compared with the RT, implying long deci-

sion times. In contrast, this nondecision time

often takes up the lion’s share of RT for sim-

pler tasks, an important caveat for interpreting

many RT studies.

Studies of neural mechanisms underlying

the decision process on the RT task have fo-

cused on area LIP. LIP is anatomically po-

sitioned midway through the sensory-motor

chain, with inputs from MT and MST and

outputs to the FEF and SC (Andersen et al.

1990, 1992; Asanuma et al. 1985; Blatt et al.

1990; Fries 1984; Lewis & Van Essen 2000a;

RT: reaction time

MST: medial
superior temporal
area

Lynch et al. 1985; Paré & Wurtz 1997). This

area has been implicated in other high-order

processes involved in the selection of saccade

targets, including working memory, alloca-

tion of attention, behavioral intention, spa-

tial inference, and representation of bias, re-

ward, expected value, and elapsed time (Assad

& Maunsell 1995, Chafee & Goldman-Rakic

2000, Dorris & Glimcher 2004, Eskandar

& Assad 1999, Friedman & Goldman-Rakic

1994, Janssen & Shadlen 2005, Leon &

Shadlen 2003, Platt & Glimcher 1999, Sugrue

et al. 2004). Moreover, neural activity in

LIP—particularly in its ventral subdivision,

termed LIPv (Blatt et al. 1990, Lewis & Van

Essen 2000b)—reflects decision formation on

a fixed-duration version of the RDM task

(Shadlen & Newsome 1996, 2001).

Figure 5c,d illustrates the responses of

LIP neurons during the RT paradigm. In

these experiments, one of the choice targets

(Tin) is in the response field (RF) of the

LIP neuron; the other target (Tout) and the

RDM stimulus lie outside the neuron’s RF

(Figure 5a). Thus, these neurons are stud-

ied under conditions in which they are apt to

signal the monkey’s choice (via the associated

action). What is more interesting is that their

activity reflects the decision process that leads

to that choice.

Aligning the responses to stimulus onset

(t = 0 on the left side of Figure 5c) pro-

vides a glimpse into the brain’s activity in

the epoch when the animal is forming the

decision but has yet to commit overtly to a

choice. Initially, there is a brief dip in the

firing rate followed by a rise in activity that

is independent of the direction and strength

of motion or the monkey’s ultimate choice.

Then, after ∼220 ms, the average response

begins to reveal differences in the evidence

and outcome of the decision. On trials that

end in a Tin choice, the firing rate rises like a

ramp, on average. On trials that end in a Tout

choice, the firing rate meanders or tends to

decline. This dependence on choice is evident

even when the stimulus is ambiguous (0%

coherence).
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Aligning the responses to saccade initia-

tion (Figure 5c, right) reveals a correlate of

commitment: a threshold rate of firing be-

fore Tin choices. When separated by motion

strength, the curves overlap considerably just

prior to the saccade and thus make it im-

possible to identify a single point of conver-

gence because each motion strength leads to

a broad distribution of RTs. When these same

responses are grouped by RT instead of mo-

tion strength, they achieve a common level

of activity ∼70 ms before saccade initiation

(arrow in Figure 5d ). Thus the decision

process appears to terminate when the neu-

rons associated with the chosen target reach

a critical firing rate. When the monkey

chooses Tout, another set of neurons—the

ones with the chosen target in their RFs—

determines the termination of the decision

process.
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The pattern of LIP activity matches pre-

dictions of diffusion/race models (Figure

2b,c). The coherence-dependent rise appears

to reflect an accumulation of noisy evidence.

This evidence comes from a difference in ac-

tivity of pools of MT neurons with oppo-

site direction preferences (Figure 5c, shaded

insert), which is thought to approximate the

associated logLR (Gold & Shadlen 2001).

However, some caveats should be noted. The

dashed curves of Figure 5c (right) do not end

in a common lower bound and instead look

like the average of paths of evidence for, say,

right when the left choice neurons win in a

race model (Mazurek et al. 2003). Also, the

DV is represented only from ∼220 ms after

motion onset until ∼70–80 ms before saccade

initiation. Reassuringly, these times taken to-

gether nearly match the nondecision time

from fits of the diffusion model to the choice-

accuracy behavioral data. Whereas the initial

∼220-ms latency is long in comparison with

latencies of neural responses in MT (which

show direction selectivity ∼100 ms after onset

of a RDM stimulus; Figure 5c, insert) and LIP

(which can indicate the presence of a target in

<60 ms; Bisley et al. 2004), behavioral mea-

surements also indicate that evidence does not

affect decisions until after this critical waiting

time (Huk & Shadlen 2005, Kiani et al. 2006).

Studies using electrical microstimulation

have helped to establish further the causal

roles of MT and LIP in representing the ev-

idence and DV, respectively (Ditterich et al.

2003, Hanks et al. 2006). Earlier studies us-

ing a fixed-duration version of the RDM task

showed that microstimulation of direction-

selective MT neurons causes monkeys to bias

their decisions in favor of the preferred direc-

tion of the stimulated neurons (Salzman et al.

1990, 1992). This result could be attributed

to a perturbation of the evidence, the DV, or

both. The RT task makes it possible to distin-

guish these alternatives (Figure 6). MT mi-

crostimulation has strong effects on all sub-

sequent choices and RTs, biasing the monkey

toward more, faster choices in the preferred

direction of the stimulated neurons and fewer,

slower choices in the opposite direction. This

finding is consistent with an additive offset of

the evidence, which causes an increased rate

of rise of its integral, the DV. Conversely, LIP

microstimulation has small effects on choice

and modest effects on RT, which is consistent

with an additive offset of the DV that does

not affect its rate of rise but rather pushes it

closer to (or further from) the threshold for

terminating the decision (Hanks et al. 2006).

A further test of the idea that LIP neu-

rons represent the DV used weak motion

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 5

Neural mechanism of a decision about direction of motion. (a) Choice-reaction time (RT) version of the
direction discrimination task. The subject views a patch of dynamic random dots and decides the net
direction of motion. The decision is indicated by an eye movement to a peripheral target. In the RT task,
the subject controls the viewing duration by terminating each trial with an eye movement whenever
ready. The gray patch shows the location of the response field (RF) of an LIP neuron. (b) Effect of
stimulus difficulty on accuracy and decision time. Solid curves are fits of the diffusion model (see Palmer
et al. 2005), which accounts simultaneously for choice and decision time. (c) Response of LIP neurons
during decision formation. Average firing rate from 54 LIP neurons is shown for three levels of difficulty.
Responses are grouped by motion strength and direction of choice, as indicated. Left: The responses are
aligned to onset of random-dot motion. Averages are shown during decision formation (curves truncated
at the median RT or 100 ms before the eye movement). Shaded insert shows average responses from
direction selective neurons in area MT to motion in the preferred and antipreferred directions. After a
transient, MT responds at a nearly constant rate. Right: The responses are aligned to the eye movement.
The LIP firing rates approximate the integral of a difference in firing rate between MT neurons with
opposite direction preferences. (d ) Responses grouped by RT. Only Tin choices are shown. All trials
reach a stereotyped firing rate ∼70 ms before saccade initiation (arrow). Adapted with permission from
Shadlen et al. (2006) and Roitman & Shadlen (2002); insert from online database used in Britten et al.
(1992), http://www.neuralsignal.org database nsa2004.1.
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equivalent to added rightward motion
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Mean

a

b

Bound for right choice

Bound for left choice

Momentary evidence in MT DV in LIP

–A

0

+A
Bound for right choice

Bound for left choice

Momentary evidence in MT

stim adds cumulatively

Stim adds constant
0

mean

Evidence
for right
(R – L)

DV in LIP

Evidence
for right
(R – L)

Figure 6

Effects of microstimulation in MT and LIP. In both areas microstimulation (red curves) causes a change in
both choice and RT. The schematic shows the consequences of adding a small change in spike rate to the
evidence or to the DV. The graphs on the right are theoretical results obtained using the bounded
diffusion model. They resemble the pattern of data in Hanks et al. (2006). (a) MT microstimulation
mimics a change in stimulus strength (evidence). (b) LIP microstimulation mimics an additive offset to
the DV (or, equivalently, the height of the bounds).
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perturbations in the background of the RDM

display (Huk & Shadlen 2005). Each pertur-

bation was a subtle boost or decrement in

motion energy lasting just 100 ms. The ef-

fects on RT and choices were consistent with

a process of integration. The motion pulses

affected choices that occurred up to 800 ms

after the pulse, and they affected RTs through

a sustained effect on the DV (like MT micro-

stimulation). LIP neurons also registered

these brief motion perturbations with long-

lasting changes in firing rate consistent with a

process of integration.

We do not know how or where this in-

tegral is computed. It might be computed

in LIP itself, or it might be computed else-

where and merely reflected in LIP. A model

of LIP can achieve integration by mix-

ing feedback excitation—using N-methyl-D-

aspartate (NMDA) channels with relatively

long conductance times—within neuronal

pools that share a common RF with an in-

hibitory antagonism between pools represent-

ing opposite directions (Wang 2002). This

hybrid of biophysical and large-scale neural

modeling was originally designed to simulate

working memory. That the model can also

form a DV in a manner consistent with many

aspects of the physiological results, includ-

ing deviations from perfect integration (Wong

et al. 2005, Wong & Wang 2006), suggests

that this kind of persistent activity might serve

multiple roles in the brain. Indeed, the ques-

tion of how neurons or neural circuits can in-

tegrate is not limited to the study of decision

making and working memory but extends to

motor control and navigation as well (Major

& Tank 2004). Progress in this area is likely

to shed light on cognitive functions that oper-

ate on time scales longer than biophysical and

signaling time constants in single cells.

We also know little about how the criterion

is applied to the DV. Neurons that achieve a

threshold level of activity in anticipation of

a saccadic eye movement on RT tasks have

been found not just in LIP but also in FEF

and SC (Hanes & Schall 1996, Ratcliff et al.

2003). However, how this criterion is set and

what happens when it is reached are unknown.

Because the criterion controls the trade-off

between speed and accuracy (Palmer et al.

2005), parts of the basal ganglia sensitive to

both reward and movement onset have been

suggested as possible substrates (Lo & Wang

2006). An alternative possibility is that a sin-

gle neural circuit can represent the DV and

its conversion to a binary choice, which would

suggest that the criterion is an intrinsic prop-

erty of LIP, FEF, or SC (Machens et al. 2005,

Wang 2002, Wong & Wang 2006).

Heading discrimination. Optic flow is the

pattern of motion that occurs when we move

through the environment (Gibson 1950). A

natural candidate for the momentary evidence

used to infer heading direction from optic flow

is in the medial superior temporal cortex (area

MST). MST neurons are tuned for expansion,

rotation, translation and other large-field mo-

tion patterns that comprise optic flow (Duffy

& Wurtz 1991, 1995, 1997; Graziano et al.

1994; Lagae et al. 1994; Saito et al. 1986;

Tanaka et al. 1986; Tanaka & Saito 1989).

Indeed, for a one-interval heading direction-

discrimination task using a RDM flow field,

signal-to-noise measurements of MST activ-

ity correlate with behavioral sensitivity in a

manner similar to results from MT using the

RDM direction task (Britten & van Wezel

2002, Heuer & Britten 2004).

However, microstimulation experiments

have provided only weak evidence for a causal

role of MST neurons for the heading deci-

sion (Britten & van Wezel 1998). Microstim-

ulation can cause the monkey to bias choices

for one heading direction, but often it is in

the direction opposite the preferred heading

of the stimulated neurons. This might be ex-

plained by a lack of a clustered organization of

neurons tuned to similar optic flow patterns

(Britten 1998). A more tantalizing explana-

tion comes from the fact that many MST neu-

rons receive visual and vestibular inputs that

both contribute to heading sensitivity (Gu

et al. 2006) but, for about half these neurons,

have opposite direction preferences. Thus,
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microstimulation intended to bias judgments

in a particular direction using visual cues

might instead activate a local circuit domi-

nated more by vestibular tuning in the op-

posite direction. Consistent with this idea,

choice probabilities (the weak correlations be-

tween the variable discharge of MST neurons

and the trial-to-trial variations in the mon-

key’s decisions) also appear to depend on the

vestibular tuning of the neuron (DeAngelis

et al. 2006).

We do not know where the DV is repre-

sented for this task. One possibility is MST it-

self, which contains many neurons with spik-

ing activity that persists even in the absence

of a stimulus. However, the lack of build-

up activity as the decision is formed and

weak choice probability support the idea that

MST represents only the momentary evi-

dence (Heuer & Britten 2004). Another pos-

sibility is the ventral intraparietal area (VIP),

which receives direct input from MT and

MST and contains many neurons with re-

sponse properties similar to MST on op-

tic flow and heading tasks (Bremmer et al.

2002a,b; Zhang et al. 2004; Zhang & Britten

2004). However, as in MST, it is difficult to

tell if VIP represents a DV or the momen-

tary evidence used by other brain structures to

decide whether, say, an object is nearing the

head and needs to be avoided (Colby et al.

1993, Duhamel et al. 1998, Graziano et al.

1997). In our view, the DV for the heading

task is likely to be represented in structures

that provide high-level control of the behav-

ioral (eye movement) response; e.g., area LIP.

If the monkey were trained to reach for but-

tons, likely candidates would be parietal and

prefrontal cortical areas that provide analo-

gous control of reaching movements.

Disparity discrimination. MT neurons are

selective for not only motion direction but

also the binocular disparity of images pre-

sented to the two eyes, a cue for depth

(Maunsell & Van Essen 1983, Uka &

DeAngelis 2006). Recent studies using a

one-interval depth-discrimination task with

a RDM stimulus viewed stereoscopically

showed that the sensitivity of MT neurons

to noisy perturbations in disparity rivaled the

behavioral sensitivity of the monkey (Uka &

DeAngelis 2003). Electrical microstimulation

experiments, aided by the clustered organiza-

tion of MT with respect to disparity, further

established their causal role in providing ev-

idence for decisions about depth (DeAngelis

et al. 1998, 1999; Krug et al. 2004).

Can MT neurons that provide evidence

about depth provide, in a different con-

text, evidence about direction? To test this,

monkeys were trained on a RDM direction-

discrimination task in which the dots could

be presented with task-irrelevant disparities.

Electrical microstimulation at sites with weak

disparity tuning tended to have the largest

effects on performance. Microstimulation at

sites with strong disparity tuning had weaker

effects on performance, even when those sites

were strongly tuned for direction (DeAngelis

& Newsome 2004). The results suggest that

the DV tended to discount MT neurons

whose responses were sensitive to disparity,

possibly because that variable was irrelevant

to the direction task. This kind of context-

dependent read-out implies a critical role for

learning in establishing the flow of informa-

tion from neurons that represent the evidence

to neurons that form the DV (Freedman &

Assad 2006, Law & Gold 2005).

Less is known about the role of MT neu-

rons in decisions that require both depth

and motion information. Nevertheless, a task

requiring a decision about the direction of

rotation of a transparent, sparsely textured

cylinder has provided a striking result for

MT choice probabilities. An observer view-

ing such a cylinder sees the texture (e.g.,

dots) on the front and back surfaces move

in opposite directions. The opposing motion

gives rise to a distinct pattern of firing rates

among direction-selective MT neurons that

can be unambiguously associated with trans-

parency. However, if not for the depth cues,

the cylinder can appear to rotate in a clock-

wise or counterclockwise direction depending
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on whether the two motion directions are as-

sociated with the front and back or vice versa

(Ullman 1979).

MT neurons that are both disparity and

direction selective furnish evidence to remove

this ambiguity (Bradley et al. 1998). For exam-

ple, an MT neuron preferring near disparities

and rightward motion responds best when the

nearer plane is moving to the right. Such a

neuron provides positive evidence for the in-

terpretation that a vertical cylinder is rotating

in accordance with a right-hand rule (front

surface to the right) (Dodd et al. 2001). A

strong trial-to-trial correlation exists between

the variable discharge of these neurons and

the monkeys’ rotation judgments (Krug et al.

2004). In fact, this choice probability is larger

than for any of the decision tasks reviewed in

this article, leading us to suspect that it is a

sign of feedback from elements in the brain

that have rendered a decision, as opposed to

feedforward variations of noisy evidence that

underlie difficult decisions near psychophysi-

cal threshold.

Face/object discrimination. Neurons se-

lective for images of faces and other com-

plex objects are found in the ventral stream

“what” or “vision for perception” pathway

(Goodale & Milner 1992, Ungerleider &

Mishkin 1982). Recent studies have begun to

examine how these neurons contribute to per-

ceptual decisions by comparing brain activity

and behavior (Allred et al. 2005, Baylis et al.

2003, Dolan et al. 1997, Freedman et al. 2002,

2003; Grill-Spector et al. 2000, Op de Beeck

et al. 2001, Rainer et al. 2004). In one study,

monkeys performed a one-interval discrimi-

nation of face versus nonface images masked

by white noise (Afraz et al. 2006). Electri-

cal microstimulation applied during stimulus

viewing to clusters of neurons in the infero-

temporal (IT) cortex that showed a preference

for faces biased decisions toward face versus

nonface. The magnitude of the bias was com-

parable to that found using MT microstimu-

lation on direction and disparity tasks, equiv-

alent to a change in stimulus strength on the

order of psychophysical threshold. This find-

ing provided the first direct evidence that face-

selective IT neurons play a causal role in the

perception of faces. It suggests that IT activity

represents the evidence used to solve the task

but does not rule out the possibility that IT

represents a DV or even the outcome of the

perceptual categorization (Sheinberg & Lo-

gothetis 1997, 2001).

In a related study, measurements of blood

oxygen level differences (BOLD) in fMRI

were used to identify correlates of a DV that

reads out object categorization evidence from

IT (Heekeren et al. 2004). Human subjects

were trained to perform a one-interval dis-

crimination between faces and houses masked

by noise. The two sets of stimuli were used

because distinct regions of IT are activated

for unmasked images from the two categories

(Haxby et al. 1994, Kanwisher et al. 1997). A

candidate DV was found in the dlPFC. Activ-

ity in this area was strongest when the sensory

evidence was strongest and tended to covary

with the magnitude of the difference in the

BOLD signal measured on single trials in the

“face” and “house” areas. Such fMRI experi-

ments provide an essential link between mon-

key neurobiology and human brain function,

although they lack the spatial and temporal

resolution to characterize fully the neuronal

dynamics that distinguish evidence from the

DV.

Electroencephalography (EEG), which is

not burdened by the same temporal resolu-

tion problem, has been measured in human

subjects for similar one-interval categoriza-

tion tasks requiring a discrimination be-

tween pictures of faces and pictures of cars

(Philiastides et al. 2006, Philiastides & Sajda

2006, VanRullen & Thorpe 2001). Two sig-

nal kernels could best differentiate the car and

face stimuli on single trials. An early potential

that appeared ∼170 ms after stimulus onset

was selective for faces and only weakly predic-

tive of errors, a possible correlate of sensory

evidence. A later potential appearing ∼300 ms

after stimulus onset appeared to reflect the

difficulty of the decision linking the sensory
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evidence to the subject’s choice, a quality of

the DV. However, localization of the signals is

hampered by the limitations of EEG record-

ing and the powerful technique used in this

study to combine signals across electrodes.

Olfactory discrimination. To date, there

have been few experiments on the neurobi-

ology of decisions in animals beside the mon-

key. However, the availability of techniques

to study molecular and cellular mechanisms

in rodents hints at tremendous possibilities

if they could be trained on decision-making

tasks. Several recent studies have begun to

make progress by using tasks that exploit two

of their natural strengths: foraging behavior

and olfactory processing.

In one study, rats were trained to discrim-

inate between a pair of odors using a one-

interval task with mixtures of the two odors

(Uchida & Mainen 2003). The patterns of ac-

tivation in the olfactory bulb were distinctive

when the stimulus was behaviorally discrim-

inable and less distinctive otherwise, a first

step toward identifying signals comprising the

sensory evidence. However, the rats appeared

to form their decisions in a single sniff and

did not benefit from more time (Kepecs et al.

2006, Uchida et al. 2006). Such a short time

scale clouds the distinction between evidence

and DV and thus exposes possible limitations

of this model for the study of decision making.

However, it seems unlikely that rats can-

not accrue evidence in time. A recent study

demonstrated a trade-off between speed and

accuracy in a similar odor-discrimination task

(see also Abraham et al. 2004, Rinberg et al.

2006). A window of integration of ∼400

ms was identified, which rivals the inte-

gration times for monkey’s performing the

RDM direction-discrimination task. Com-

bined with the recent discovery of the ol-

factory receptor genes (Buck 1996, Buck &

Axel 1991) and subsequent progress in under-

standing the stable, topographic organization

of the olfactory bulb (e.g., Rubin & Katz 1999,

Meister & Bonhoeffer 2001, Mombaerts et al.

1996) these results suggest a promising future

for combined psychophysical and physiologi-

cal experiments on olfactory decision making

in rodents.

Detection. Detection experiments are

the archetypical SDT paradigm, yet they

present serious challenges to neurobiologists

trying to understand the underlying decision

process. According to SDT, detection begins

with a sample of evidence generated by

either a signal plus noise or noise alone. The

DV based on this sample is monotonically

related to the LR in favor of h1: “S present”

and against h2: “S absent”. The decision

is H1: “Yes” if the DV exceeds a criterion,

which is set to achieve some desired goal,

and H2: “No” otherwise. This procedure

seems straightforward but glosses over an

important question: When should the DV

incorporate evidence if there is temporal

uncertainty about when the stimulus will

appear? Obtaining samples at the wrong time

might miss the signal [i.e., high P (H2 | h1)].

In contrast, accumulating samples over time

will accumulate noise alone in all epochs

that do not contain the signal, causing more

misses in signal-present conditions and more

false alarms [P (H1 | h2)] in signal-absent con-

ditions. The consequence of these errors will

be a loss of sensitivity (Lasley & Cohn 1981).

This problem has several possible solu-

tions. One is to use an integrator that leaks,

causing irrelevant information to affect the

decision process for only a limited amount of

time (Smith 1995, 1998). Other approaches

include taking a time derivative of the evi-

dence to identify changes or using knowledge

of the spatial and temporal structure of the

stimulus to guide a more directed search for

the evidence. Some studies in the psychophys-

ical literature hint of such mechanisms (e.g.,

Henning et al. 1975, Nachmias & Rogowitz

1983, Verghese et al. 1999, Schrater et al.

2000), but to date there is little understanding

of their general role in detection.

Despite these challenges, several recent

studies have begun to shed light on de-

tection mechanisms. In one study, monkeys
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Figure 7

Motion detection. (a) Detection task. The monkey views a RDM stimulus without any net direction of
motion and must release a bar when the motion becomes coherent. Task difficulty is controlled by the
intensity of the motion step (% coherence). (b) Probability of deciding Yes plotted as a function of
stimulus intensity. (c, d ) Average firing rates from neurons in MT and VIP. The responses are aligned to
onset of the motion step and grouped by RT. Yes decisions are predicted by a rise in firing rate in both
areas. The horizontal dashed line is a criterion derived to match the animal’s performance. The missed
detections (motion step, but decision = No) are explained by a failure of the firing rate to reach this
level. According to SDT, the false alarms (no motion step, but decision = Yes) should reach this level,
but with responses aligned to the lever release at 750 ms, they do not; a possible explanation is a variable
relationship between the end of the decision process and the time of the lever release. Adapted with
permission from Cook & Maunsell (2002a,b).

were trained to detect the onset of partially

coherent motion in a RDM display (Figure 7)

(Cook & Maunsell 2002b). Activity in both

MT and VIP was correlated with trial-by-

trial detection performance and RT. However,

single-unit responses were far less reliable de-

tectors of the stimulus than were the mon-

key subjects. This finding contrasts results

from discrimination experiments and seems

likely to result, in part, from the temporal

uncertainty problem described above. Never-

theless, population analyses using a leaky ac-

cumulator model provide some insight into

the decision process. For MT, population re-

sponses on hit trials deviated from baseline

at a time that was closely coupled with mo-

tion onset and then rose steadily with a rate

of rise that was correlated with RT. Responses
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on miss trials were similar but failed to attain

the same level of activation as hits. In con-

trast, responses on false alarm trials deviated

little from baseline. These results suggest that

MT provides a preliminary form of evidence.

In contrast, VIP population responses were

less coupled to motion onset and were more

stereotypical with respect to the behavioral re-

sponse, suggesting they represent either the

DV or simply the outcome of the decision

process.

Similar detection experiments were con-

ducted using the VTF stimulus (Figure 8)

(de Lafuente & Romo 2005). As for the dis-

crimination task, S1 activity appears to rep-

resent the sensory evidence and not the DV

or choice. Increasingly intense stimuli (deeper

skin depressions) lead to high firing rates that

are more easily differentiated from neural ac-

tivity when no stimulus is present (Figure 8c,

d ). Moreover, trial-to-trial variations in the

responses to a weak stimulus are correlated,

albeit weakly, with the monkey’s yes and no

decisions. This weak choice probability is sim-

ilar in magnitude to that found for MT neu-

rons on the RDM direction-discrimination

task (Britten et al. 1996).

In contrast to S1, MPC responses are mod-

ulated by not only stimulus intensity but also

the monkey’s behavioral report (Figure 8e).

These results suggest that MPC represents

the DV that converts the evidence into a

choice. However, inspection of Figure 8e

suggests that different stimulus intensities

cause primarily differences in latency, the ex-

pected behavior of a neuron that simply re-

sponds stereotypically after the decision has

ended. Nevertheless, even if MPC neurons

represent the decision outcome and not the

DV, they do not do so in a trivial matter.

The responses are not simply associated with

the button press. Moreover, electrical mi-

crostimulation of MPC without presentation

of the tactile stimulus leads to similar per-

ceptual reports. These results have been used

to support the bold (and currently unverifi-

able) assertion that MPC responses provide

a neural correlate of the subjective percep-

tion of the tactile stimulus (see also Ress et al.

2000, Ress & Heeger 2003 for a similar asser-

tion about activity in early visual cortex, mea-

sured using fMRI, for a contrast-detection

task).

Simple Motor Latencies: Deciding
When to Initiate an Action

In this section, we consider easy decisions that

do not tax perceptual processing but instead

simply trigger a movement. Commonly used

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Figure 8

Vibrotactile detection. (a) Task. The VTF probe is placed on the finger pad. After a random delay, a
20-Hz sinusoidal indentation is applied on half the trials. The monkey must decide whether the stimulus
was present. Detection is indicated by removing a finger of the other hand from a key and pushing a
button. (PD, probe down; KD, key down; PU, probe up; MT, movement to the response button).
(b) Psychometric function. The monkey is more likely to decide Yes at larger vibration amplitudes. The
false alarm rate is ∼8%. (c) Response of a typical S1 neuron. The top half of the raster shows trials in
which vibration was applied. Red marks indicate missed-detection errors. The bottom half of the raster
shows trials in which no stimulus was shown. Red marks indicate false-alarm errors. (d ) Distributions of
firing rates in S1 during the stimulus period. Each curve represents a frequency distribution associated
with vibration at one intensity (indicated by color). The vertical line shows a possible criterion that the
brain could apply to decide yes or no. (e) Response of a typical MPC neuron. Same conventions as in
panel c. The neuron responds strongly when the monkey reports Yes even when there is no stimulus
present (false alarms). Notice that on some trials on the top half of the graph, the neuron seems to
indicate a detection decision before the stimulus is applied. These trials appear as correct detections, but
they are probably lucky mistakes. ( f ) Average firing rate of S1 and MPC neurons as a function of
stimulus intensity. The firing rates are for the epoch of stimulus presentation. Only correct responses
(Yes when amplitude >0) are included. Adapted with permission from de Lafuente & Romo (2005).
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tasks require a saccadic eye movement to a

visual target that might appear at an unpre-

dictable time or location but is unambiguous

once it appears. Insights into the underlying

decision process have come primarily by an-

alyzing the distributions of latencies from vi-

sual instruction to saccade initiation.

Motor latencies for these tasks average

∼200 ms but can range from ∼90 ms to

>400 ms (Carpenter 1988, Sparks 2002,

a

b
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Westheimer 1954). By comparison, the time

it takes to register visual input in visuo-motor

areas such as LIP, FEF, and SC can be <50 ms

(Bisley et al. 2004, Pouget et al. 2005,

Schmolesky et al. 1998) and to elicit saccadic

eye movements via electrical microstimula-

tion of FEF or SC is <40 ms (Bruce et al. 1985,

Robinson 1972, Robinson & Fuchs 1969,

Schiller & Stryker 1972, Tehovnik 1996). To-

gether, these measurements do not account

for much of the length and variability of RTs,

prompting speculation that the underlying

decision process is more sophisticated than

a mere trigger, perhaps necessarily including

procrastination to allow for censorship of an

action and indeterminacy to make actions less

predictable (Carpenter 1981).

A simple model can account for these mo-

tor latencies (Figure 9). Latency distributions

typically have a single mode with a longer

tail toward larger values. The distribution

of reciprocal latency thus appears Gaussian

(Carpenter 1981, 1988; Carpenter &

Williams 1995). Accordingly, the cumulative

distribution of reciprocal latencies plotted on

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 9

A simple model for “go” reaction times. (a) The
LATER model. Instead of accumulating random
draws of momentary evidence, the DV is a ramp
with a slope drawn from a Gaussian distribution.
The movement starts when the ramp reaches the
threshold (ST ). The distribution of predicted RT
is skewed; the reciprocals would obey a Gaussian
distribution. (b) Reciprobit plot. Predicted
cumulative distribution of RTs is a line on
transformed axes. The abscissa scale is RT−1; the
ordinate scale is the z-transformed (i.e., inverse
Normal) probability. Extrapolation of the graph
predicts a point intersecting the vertical line at
RT = ∞. The height of this point corresponds to
the probability that the slope of the ramp is ≥0.
(c) Shape of the reciprobit plot as a diagnostic aid.
If the threshold changes, the median RT shifts, but
the graph retains the same extrapolated value at
RT = ∞. The graphs swivel about this point. If
there is a change in the rate of rise (mean or
standard deviation), the median RT shifts and the
graph simply translates along the abscissa. Adapted
with permission from Sinha et al. (2006).
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a probability scale (a reciprobit plot) is nearly

linear (Figure 9b). To produce this distribu-

tion, assume that a DV begins at level S0 at

t = 0 then rises linearly with slope r. The

saccade is initiated when the DV reaches

ST at t = t1. Critically, r is not determined

precisely but is rather a random number

drawn from a Gaussian distribution with

mean µ and standard deviation σ . Because on

any trial ri = (ST − S0)/ti , the reciprocals of

the response latencies (1/ti) obey a Gaussian

distribution. The harmonic mean of the RT

is the threshold height (ST − S0) divided

by µ. This model is called LATER (linear

accumulation to threshold with ergodic rate),

which emphasizes that the DV is simply the

accumulation of a constant. It makes testable

predictions about how the distribution of RT

should change for two different mechanisms:

changes in the threshold height (ST − S0) or

the mean rate of rise (µ) (Figure 9c).

This formulation has some shortcomings.

It typically deals with only one alternative

and short RTs, conditions under which evi-

dence accumulation can be reduced to a single

number. Moreover, several possible sources of

variability are not explored as alternate hy-

potheses for resulting RT distributions, in-

cluding latencies outside the decision process

(e.g., sensory and motor delays), changes in

the variance of the rate of rise (r), and vari-

ance in the starting point or threshold. These

factors can cause real data not to conform

neatly to the prescriptions for lines, swivels,

and shifts illustrated in Figure 9. When they

do, however, the overall simplicity of LATER

is appealing, and it has been used to explain

several interesting phenomena.

One study tested the idea that prior prob-

ability affects the threshold for initiating an

action (Carpenter & Williams 1995). Priors

were manipulated by changing the probabil-

ity that the target would be shown to the right

or left of fixation. Not surprisingly, the laten-

cies for eye movements to the target at the

more probable location were faster, on aver-

age, than to the other location. Differences

in the distributions of RT for different pri-

ors conformed to the “swivel” prediction, sug-

gesting a change in the threshold (relative to

the starting point) and not in the rate of rise

of the DV. The threshold appeared to change

as a linear function of the logarithm of the

prior, which suggested that the DV has units

log(P ). This idea is important because it im-

plies a form of probabilistic reasoning, with

the DV representing a level of certainty that

the prepared movement should be executed.

Further studies have shown that different de-

cision strategies that favor urgency, certainty,

or prior expectations seem to trade off in these

units of log(P) (Reddi et al. 2003, Reddi &

Carpenter 2000).

Several physiological results provide qual-

ified support for the LATER model. First,

the rate of rise (r) in the activity of FEF

movement cells (Bruce & Goldberg 1985)

prior to a saccade is variable and predicts RT,

whereas the final level of activation (ST ) is rel-

atively fixed regardless of RT (Hanes & Schall

1996). However, other studies of the FEF,

the SC, and primary motor cortex have found

that prestimulus activity (S0) is more predic-

tive than r of trial-to-trial variability of RTs

(Connolly et al. 2005, Dorris et al. 1997,

Dorris & Munoz 1998, Everling & Munoz

2000, Lecas et al. 1986, Riehle & Requin

1993). Second, priors affect the responses of

build-up cells in the SC (Basso & Wurtz 1997,

1998; Dorris & Munoz 1998). In general, the

higher the probability is of making a saccade

to a particular target, the higher the level

is of activity that occurs just before the tar-

get appears (S0) and the shorter the RT is.

Third, behavior on a countermanding task,

in which the subject must occasionally with-

hold a planned saccade, is consistent with a

race between two independent LATER pro-

cesses representing “stop” and “go” (Hanes

& Carpenter 1999, Logan et al. 1984). These

two processes have correlates in the activity

of fixation- and saccade-related cells, respec-

tively, in the FEF and SC (Hanes et al. 1998,

Munoz & Wurtz 1993, Paré & Hanes 2003).
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Value-Based Decisions

Decisions that are based primarily on the

subjective value associated with each of the

possible alternatives are the focus of the

nascent field of neuroeconomics (for reviews

see Glimcher 2005, Sanfey et al. 2006, Sugrue

et al. 2005). A multitude of approaches, in-

cluding behavior and imaging in human sub-

jects and behavior and electrophysiology in

non-human primates, are being used to ex-

amine how the brain assigns, stores, retrieves,

and uses value to make decisions. Here we

limit our remarks to a few key concepts from

perceptual decisions that seem relevant to the

study of value-based decisions.

Neurobiological correlates of value have

been described in orbitofrontal and cingulate

cortex and the basal ganglia, areas of the brain

traditionally associated with reward-seeking

behavior (Kawagoe et al. 2004; Lauwereyns

et al. 2002; McCoy et al. 2003; Schultz 1992,

1998; Schultz et al. 1997; Tremblay & Schultz

1999, 2000; Watanabe 1996; Watanabe et al.

2003). Some neurons in orbitofrontal cor-

tex appear to represent value independently

from evidence, choice, and action (Padoa-

Schioppa & Assad 2006). Anterior cingulate

cortex is thought to represent negative value

(Carter et al. 1998, Gehring & Willoughby

2002, Yeung & Sanfey 2004). Recent stud-

ies have shown additional representations of

reward size or probability in parietal and pre-

frontal association areas in the same neu-

rons implicated in perceptual decision mak-

ing (Kobayashi et al. 2002, Leon & Shadlen

1998, Platt & Glimcher 1999). In LIP and

dlPFC, the representation of value seems to

be dynamic, adjusted on the basis of the re-

cent history of choices and their consequences

(Barraclough et al. 2004, Dorris & Glimcher

2004, Sugrue et al. 2004).

It is tempting to try to analyze these phe-

nomena in the context of the elements of a de-

cision listed above. An obvious place to start

would be to try to distinguish representations

of the DV from representations of its raw

materials (reward/value/utility). Regions like

LIP that represent the DV on perceptual tasks

might represent the DV on value-based tasks,

as well. Indeed, according to SDT and SA,

value can, in principle, be treated the same

way as priors and sensory evidence in forming

a decision and can be applied to either the DV

or the criterion. Thus a neural circuit that rep-

resents a DV by integrating sensory evidence

on a perceptual task might be equally suited

to integrate value in a different context.

Of course, this line of inquiry has serious

challenges. Little is known about the units in

which value is represented in the brain, al-

though some studies suggest that quantities

like expected utility—the product of subjec-

tive reward value and probability—might be

represented directly (Breiter et al. 2001, Dor-

ris & Glimcher 2004, Knutson et al. 2005,

Padoa-Schioppa & Assad 2006, Platt & Glim-

cher 1999, Schultz 2004). Moreover, unlike

for sensory evidence on a perceptual task, the

time course of a value representation is not

easily defined or manipulated, making it dif-

ficult to identify.

Scholars also debate whether the basic

mechanisms we have described for perceptual

decisions even apply to value-based decisions.

This debate is concerned with randomness.

Choices on both perceptual and value-based

tasks often appear to be governed by a random

process. For perceptual tasks, this randomness

is typically explained by considering the evi-

dence as a mixture of signal plus noise. The

DV and decision rule are both formulated to

minimize the effects of this noise in pursuit

of a particular goal. However, for value-based

decisions, the randomness is often assumed to

be part of the decision process itself. That is, a

subjective measure like utility is used to assign

the relative desirability of each choice. The

decision rule is then probabilistic: a random

selection weighed by these relative measures

(Barraclough et al. 2004, Corrado et al. 2005,

Glimcher 2005, Lee et al. 2005, Sugrue et al.

2005).

One argument supporting this idea comes

from the theory of games (Glimcher 2005,

von Neumann & Morgenstern 1944). In
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competitive games, subjects outsmart their

opponents by making choices that appear to

an opponent as random. Not doing so would

make them vulnerable to an opponent able to

exploit predictability. A second argument is

that randomness facilitates exploration, which

is essential for discovery of nonstationary fea-

tures of the environment and is thus found

in many learning algorithms (Kaelbling et al.

1996). A third argument comes from the sim-

ple observation that average behavior is ap-

parently random under many circumstances,

such as when following a matching law in for-

aging (Herrnstein 1961).

A recent study provided an intriguing anal-

ysis to support this idea (Corrado et al. 2005).

The study examined the sequences of choices

made by monkeys on a simple oculomotor

foraging task (Sugrue et al. 2005). The mon-

keys made eye movements to one of two vi-

sual targets, each of which was rewarded on a

dynamic, variable-interval schedule. Consis-

tent with previous reports, the monkeys typ-

ically exhibited matching behavior, in which

the fraction of choices to one of the targets

matched the fraction of total rewards they

earned for that choice. A model that suc-

cessfully described the monkeys’ behavior and

could generate realistic choice sequences was

based on a deterministic, noise-free calcula-

tion of the DV (in this case describing ex-

pected reward) based on the recent history

of rewards, followed by a random (Poisson)

process that generates a choice based on the

DV. Critically, the values of the parame-

ters of the model that provided the best fit

to the data were very close to optimal in

terms of maximizing the average reward re-

ceived per trial. However, alternative mod-

els that assumed that noise was present in

the DV instead of (or in addition to) the

decision rule were not tested, so it is diffi-

cult to assess which model is the more likely

implementation.

In general, it is not clear why core princi-

ples of decision making that apply to percep-

tual tasks should be abandoned to account for

these phenomena. The key issue is whether

behavior that appears, on average, to be ran-

dom reflects a decision mechanism that ex-

plicitly generates randomness or instead en-

acts a rule to achieve a goal but is faced with

noisy input (Herrnstein & Vaughan 1980, Lau

& Glimcher 2005). The former is certainly

possible: We can explicitly decide to try to

generate random behavior. However, the lat-

ter mechanism is central to our perceptual

abilities. It can, in principle, deal with the

appropriate kind of input—in this case infor-

mation about value, expected outcomes, and

dividends/costs associated with exploration—

and produce the best possible choice. Thus,

a series of value-based choices might appear

random for the same reason that a series of

perceptual decisions appears random under

conditions of uncertainty.

Reconsider the speed-accuracy trade-off.

It arises because each observation, e, is equiv-

ocal; e by itself cannot be used to distinguish

perfectly the alternative hypotheses. Thus,

the decision maker is left in a quandary. Gath-

ering more observations might improve accu-

racy, but at the cost of speed. What is the right

thing to do? The correct answer is, it depends.

If speed is valued, gather less evidence. If ac-

curacy is valued, gather more evidence. If both

are valued, attempt to maximize quantities like

the rate of reward (Gold & Shadlen 2002).

The point is that even perceptual decisions

have, at their core, value judgments. Noisy in-

put leads to imperfect output. Because no uni-

versal prescription exists for which imperfec-

tions are acceptable and which are not, their

relative values must be weighed and then used

to shape the decision process. It thus seems

reasonable to posit that value-based decisions

can exploit these same mechanisms. This re-

mains to be seen.

CONCLUSIONS

In this review we have evaluated progress in

understanding how the brain forms decisions.

Our focus was intentionally narrow, consider-

ing only decisions on simple sensory-motor

tasks that are amenable to behavioral and
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neurophysiological studies in the laboratory.

We have presented a theoretical framework

from statistical decision theory that describes

how to form decisions using priors, evi-

dence, and value to achieve certain desir-

able goals. We have used the elements of

this framework—particularly the distinction

between evidence and the DV—to analyze

experimental results from tasks requiring

perceptual decisions (discrimination and de-

tection), simple motor decisions, and value-

based decisions.

Even these simple sensory-motor tasks re-

quire nuanced and flexible mechanisms that

seem likely to play general roles in decision

making. However, one must consider sev-

eral qualifying factors. First, there is a strong

degree of automaticity in subjects perform-

ing these tasks over and over, in some cases

for weeks or months at a time. This is in

stark contrast to many of the decisions we en-

counter in real life, such as deciding whom to

marry, which require more deliberation and

often have few or no similar experiences from

which to draw. In fact, the case has been made

for two distinct decision-making systems: one

“intuitive,” which controls simple behaviors

learned through repeated experience, and the

other “deliberative,” which is designed to

achieve goals in a dynamic environment (Kah-

neman 2002). However, there is little evidence

for these distinct mechanisms in the brain

(Sugrue et al. 2005). As we have argued, even

the simplest sensory-motor decisions seem to

be based on deliberative elements.

A second qualifying factor is that many

tasks require a selection between two alter-

natives. This design, long favored by psy-

chophysicists, allows for rigorous quantifica-

tion of the relationship between stimulus and

response. It is also consistent with decision al-

gorithms, such as SPRT, that are based on the

value of a ratio (e.g., logLR) that is an explicit

comparison of the two alternatives (see The

Sequential Probability Ratio Test). However,

it is unclear how or even if the mechanisms

responsible for these simple comparisons can

generalize to more complex decisions in-

volving many alternatives. Recent theoretical

work has begun to explore algorithms to solve

these decisions [e.g., the multiple sequential

probability ratio test (MSPRT); McMillen &

Holmes 2006] and how they might be imple-

mented in the brain (Gurney & Bogacz 2006,

Roe et al. 2001, Usher & McClelland 2001),

but much work remains to be done.

A third qualifying factor is the explicit link

between the decision and a specific course of

action (e.g., an eye or hand movement) en-

forced in most tasks. As described above, many

neurophysiological studies exploit this design

by treating the decision process as a problem

of movement selection. The search for neu-

ral correlates of the decision can thus focus

on parts of the brain known to select and pre-

pare the associated movement. This approach

has shown that the mechanisms of movement

selection appear to incorporate all the ele-

ments of a deliberative decision. However, it

leaves open the question of how and where

the brain forms decisions that are not used to

select a particular movement. One possibility

that maintains this intention-based architec-

ture is that abstract decisions are formed by

circuits involved in abstract forms of behav-

ioral planning, e.g., flexible rules that involve

future contingencies, of the sort thought to

be encoded in areas of the prefrontal cortex

(Wallis et al. 2001).

The path from simple decisions to com-

plex ones may be more straightforward than

it appears. Consider a simple decision about

the direction of RDM that is not tied to a par-

ticular action (Gold & Shadlen 2003, Horwitz

et al. 2004). For this abstract decision, the DV

and decision rule are likely recognizable but

are carried out in circuits linked to working

memory, long-term planning, or behavioral

contingencies (e.g., the context/motivation

boxes in Figure 1) as opposed to specific ac-

tions. Other complex decisions are made us-

ing sources of evidence that, like priors and

value, do not come from the senses but in-

stead derive entirely from memory (Wagner

et al. 1998). Indeed, the speed and accu-

racy of certain decisions that require memory

562 Gold · Shadlen

A
n
n
u
. 
R

ev
. 
N

eu
ro

sc
i.

 2
0
0
7
.3

0
:5

3
5
-5

7
4
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 U

N
IV

E
R

S
IT

Y
 O

F
 W

A
S

H
IN

G
T

O
N

 -
 H

E
A

L
T

H
 S

C
IE

N
C

E
S

 L
IB

R
A

R
IE

S
 o

n
 0

7
/0

8
/0

7
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



retrieval are consistent with the framework of

SA (Ratcliff 1978). These considerations may

one day allow us to extend insights obtained

from simple sensory-motor paradigms to the

kind of complex decisions that comprise the

fabric of cognition.

SUMMARY POINTS

1. A decision is a process that weighs priors, evidence, and value to generate a commit-

ment to a categorical proposition intended to achieve particular goals.

2. Signal detection theory and sequential analysis provide a theoretical framework for

understanding how decisions are formed. They describe specific, mathematical oper-

ations that correspond to key decision elements including deliberation and commit-

ment.

3. Studies that combine behavior and neurophysiology, typically in monkeys, have begun

to uncover how the elements of decision formation are implemented in the brain.

4. Perceptual tasks have been particularly useful for distinguishing between sensory

evidence, which transiently encodes information from the senses, and a decision vari-

able, which accumulates and stores evidence over time until the final commitment is

reached.

5. The speed-accuracy trade-off on perceptual tasks and variable reaction times on simple

motor tasks can be explained by a basic mechanism that appears to be central to many

forms of decision making: a decision rule equivalent to comparing an evolving decision

variable to a fixed criterion.

FUTURE ISSUES

1. How and where in the brain does information pertaining to priors, sensory evidence,

and/or values combine? Which units are used?

2. Is the decision variable simply a useful abstraction or an explicitly represented quantity

that is critical for decision formation?

3. How do neural circuits integrate information as a function of time?

4. How and where in the brain is the decision rule (e.g., a bound crossing) implemented?

5. How does the brain form decisions that involve more than two alternatives?

6. Under which conditions does the decision rule explicitly invoke randomness when

making the final choice?

7. How and where are decisions formed that are not tied to specific behavioral output?

8. How does experience optimize decision mechanisms to achieve particular goals?

ACKNOWLEDGMENTS

We thank many colleagues for helpful discussions of the issues in this paper: Ken Britten, Roger

Carpenter, Eric Cook, Greg DeAngelis, Paul Glimcher, Tim Hanks, Ben Heasly, Bharathi

Jagadeesh, Roozbeh Kiani, Victor de Lafuente, Brian Lau, Jeff Law, John Maunsell, Bill

Newsome, Ranulfo Romo, Xiao-Jing Wang, and Tianming Yang.

www.annualreviews.org • Decision Making 563

A
n
n
u
. 
R

ev
. 
N

eu
ro

sc
i.

 2
0
0
7
.3

0
:5

3
5
-5

7
4
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 U

N
IV

E
R

S
IT

Y
 O

F
 W

A
S

H
IN

G
T

O
N

 -
 H

E
A

L
T

H
 S

C
IE

N
C

E
S

 L
IB

R
A

R
IE

S
 o

n
 0

7
/0

8
/0

7
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



LITERATURE CITED

Abraham NM, Spors H, Carleton A, Margrie TW, Kuner T, Schaefer AT. 2004. Maintaining

accuracy at the expense of speed: Stimulus similarity defines odor discrimination time in

mice. Neuron 44:865–76
Afraz SR, Kiani R, Esteky H. 2006. Microstimulation of inferotemporal cortex influences face

categorization. Nature 442:692–95
Allred S, Liu Y, Jagadeesh B. 2005. Selectivity of inferior temporal neurons for realistic pictures

predicted by algorithms for image database navigation. J. Neurophysiol. 94:4068–81
Andersen RA, Asanuma C, Essick G, Siegel RM. 1990. Corticocortical connections of anatom-

ically and physiologically defined subdivisions within the inferior parietal lobule. J. Comp.

Neurol. 296:65–113
Andersen RA, Brotchie PR, Mazzoni P. 1992. Evidence for the lateral intraparietal area as the

parietal eye field. Curr. Opin. Neurobiol. 2:840–46
Asanuma C, Andersen RA, Cowan WM. 1985. The thalamic relations of the caudal inferior

parietal lobule and the lateral prefrontal cortex in monkeys: divergent cortical projections

from cell clusters in the medial pulvinar nucleus. J. Comp. Neurol. 241:357–81
Assad J, Maunsell J. 1995. Neuronal correlates of inferred motion in primate posterior parietal

cortex. Nature 373:518–21
Audley RJ, Pike AR. 1965. Some alternative stochastic models of choice. Br. J. Math. Stat.

Psychol. 18:207–55
Barraclough DJ, Conroy ML, Lee D. 2004. Prefrontal cortex and decision making in a mixed-

strategy game. Nat. Neurosci. 7:404–10
Basso MA, Wurtz RH. 1997. Modulation of neuronal activity by target uncertainty. Nature

389:66–69
Basso MA, Wurtz RH. 1998. Modulation of neuronal activity in superior colliculus by changes

in target probability. J. Neurosci. 18:7519–34
Baylis V, Salter L, Locke R. 2003. Pathways for continence care: an audit to assess how they

are used. Br. J. Nurs. 12:857–63
Bisley JW, Krishna BS, Goldberg ME. 2004. A rapid and precise on-response in posterior

parietal cortex. J. Neurosci. 24:1833–38
Blatt GJ, Andersen RA, Stoner GR. 1990. Visual receptive field organization and cortico-

cortical connections of the lateral intraparietal area (area LIP) in the macaque. J. Comp.

Neurol. 299:421–45
Bradley DC, Chang GC, Andersen RA. 1998. Encoding of three-dimensional structure-from-

motion by primate area MT neurons. Nature 392:714–16
Breiter HC, Aharon I, Kahneman D, Dale A, Shizgal P. 2001. Functional imaging of neural

responses to expectancy and experience of monetary gains and losses. Neuron 30:619–39
Bremmer F, Duhamel JR, Ben Hamed S, Graf W. 2002a. Heading encoding in the macaque

ventral intraparietal area (VIP). Eur J. Neurosci. 16:1554–68
Bremmer F, Klam F, Duhamel JR, Ben Hamed S, Graf W. 2002b. Visual-vestibular interactive

responses in the macaque ventral intraparietal area (VIP). Eur J. Neurosci. 16:1569–86
Britten KH. 1998. Clustering of response selectivity in the medial superior temporal area of

extrastriate cortex in the macaque monkey. Vis. Neurosci. 15:553–58
Britten KH, Newsome WT, Shadlen MN, Celebrini S, Movshon JA. 1996. A relationship

between behavioral choice and the visual responses of neurons in macaque MT. Vis.

Neurosci. 13:87–100
Britten KH, Shadlen MN, Newsome WT, Movshon JA. 1992. The analysis of visual motion:

a comparison of neuronal and psychophysical performance. J. Neurosci. 12:4745–65

564 Gold · Shadlen

A
n
n
u
. 
R

ev
. 
N

eu
ro

sc
i.

 2
0
0
7
.3

0
:5

3
5
-5

7
4
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 U

N
IV

E
R

S
IT

Y
 O

F
 W

A
S

H
IN

G
T

O
N

 -
 H

E
A

L
T

H
 S

C
IE

N
C

E
S

 L
IB

R
A

R
IE

S
 o

n
 0

7
/0

8
/0

7
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



Britten KH, Shadlen MN, Newsome WT, Movshon JA. 1993. Responses of neurons in

macaque MT to stochastic motion signals. Vis. Neurosci. 10:1157–69

Britten KH, van Wezel RJ. 2002. Area MST and heading perception in macaque monkeys.

Cereb. Cortex 12:692–701

Britten KH, van Wezel RJ. 1998. Electrical microstimulation of cortical area MST biases

heading perception in monkeys. Nat. Neurosci. 1:59–64

Brody CD, Hernandez A, Zainos A, Romo R. 2003. Timing and neural encoding of somatosen-

sory parametric working memory in macaque prefrontal cortex. Cereb. Cortex 13:1196–207

Bruce CJ, Goldberg ME. 1985. Primate frontal eye fields. I. Single neurons discharging before

saccades. J. Neurophysiol. 53:603–35

Bruce CJ, Goldberg ME, Bushnell MC, Stanton GB. 1985. Primate frontal eye fields. II. Phys-

iological and anatomical correlates of electrically evoked eye movements. J. Neurophysiol.

54:714–34

Buck L, Axel R. 1991. A novel multigene family may encode odorant receptors: a molecular

basis for odor recognition. Cell 65:175–87

Buck LB. 1996. Information coding in the vertebrate olfactory system. Annu. Rev. Neurosci.

19:517–44

Busemeyer JR, Townsend JT. 1993. Decision field theory: a dynamic-cognitive approach to

decision making in an uncertain environment. Psychol. Rev. 100:432–59

Carpenter RHS. 1981. In Eye Movements: Cognition and Visual Perception, ed. DF Fischer, RA

Monty, JW Senders, pp. 237–46. Hillsdale, NJ: Lawrence Erlbaum

Carpenter RHS. 1988. Movements of the Eyes. London: Pion

Carpenter RHS, Williams MLL. 1995. Neural computation of log likelihood in control of

saccadic eye movements. Nature 377:59–62

Carter CS, Braver TS, Barch DM, Botvinick MM, Noll D, Cohen JD. 1998. Anterior cingulate

cortex, error detection, and the online monitoring of performance. Science 280:747–49

Chafee MV, Goldman-Rakic PS. 2000. Inactivation of parietal and prefrontal cortex re-

veals interdependence of neural activity during memory-guided saccades. J. Neurophysiol.

83:1550–66

Cisek P. 2007. Cortical mechanisms of action selection: the affordance competition hypothesis.

Philos. Trans. R. Soc. B. In press

Clark A. 1997. Being There: Putting Brain, Body, and World Together Again. Cambridge, MA:

MIT Press. 269 pp.

Colby CL, Duhamel JR, Goldberg ME. 1993. Ventral intraparietal area of the macaque:

anatomic location and visual response properties. J. Neurophysiol. 69:902–14

Connolly JD, Goodale MA, Goltz HC, Munoz DP. 2005. fMRI activation in the human frontal

eye field is correlated with saccadic reaction time. J. Neurophysiol. 94:605–11

Cook EP, Maunsell JH. 2002a. Attentional modulation of behavioral performance and neu-

ronal responses in middle temporal and ventral intraparietal areas of macaque monkey. J.

Neurosci. 22:1994–2004

Cook EP, Maunsell JH. 2002b. Dynamics of neuronal responses in macaque MT and VIP

during motion detection. Nat. Neurosci. 5:985–94

Corrado GS, Sugrue LP, Seung HS, Newsome WT. 2005. Linear-nonlinear-Poisson models

of primate choice dynamics. J. Exp. Anal. Behav. 84:581–617

DeAngelis GC, Cumming BG, Newsome WT. 1998. Cortical area MT and the perception of

stereoscopic depth. Nature 394:677–80

DeAngelis GC, Ghose GM, Ohzawa I, Freeman RD. 1999. Functional micro-organization of

primary visual cortex: receptive field analysis of nearby neurons. J. Neurosci. 19:4046–64

www.annualreviews.org • Decision Making 565

A
n
n
u
. 
R

ev
. 
N

eu
ro

sc
i.

 2
0
0
7
.3

0
:5

3
5
-5

7
4
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 U

N
IV

E
R

S
IT

Y
 O

F
 W

A
S

H
IN

G
T

O
N

 -
 H

E
A

L
T

H
 S

C
IE

N
C

E
S

 L
IB

R
A

R
IE

S
 o

n
 0

7
/0

8
/0

7
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



DeAngelis GC, Gu Y, Angelaki DE. 2006. Role of area MSTd in cue integration for head-

ing discrimination: II. Analysis of correlations between neural responses and perceptual

decisions. J. Vis. 6(Abstr. 408):408a

DeAngelis GC, Newsome WT. 2004. Perceptual “read-out” of conjoined direction and dis-

parity maps in extrastriate area MT. PLoS Biol. 2:E77

de Lafuente V, Romo R. 2005. Neuronal correlates of subjective sensory experience. Nat.

Neurosci. 8:1698–703

Diederich A. 2003. MDFT account of decision making under time pressure. Psychon. Bull. Rev.

10:157–66

Ditterich J, Mazurek M, Shadlen MN. 2003. Microstimulation of visual cortex affects the speed

of perceptual decisions. Nat. Neurosci. 6:891–98

Dodd JV, Krug K, Cumming BG, Parker AJ. 2001. Perceptually bistable three-dimensional

figures evoke high choice probabilities in cortical area MT. J. Neurosci. 21:4809–21

Dolan RJ, Fink GR, Rolls E, Booth M, Holmes A, et al. 1997. How the brain learns to see

objects and faces in an impoverished context. Nature 389:596–99

Dorris MC, Glimcher PW. 2004. Activity in posterior parietal cortex is correlated with the

relative subjective desirability of action. Neuron 44:365–78

Dorris MC, Munoz DP. 1998. Saccadic probability influences motor preparation signals and

time to saccadic initiation. J. Neurosci. 18:7015–26
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Paré M, Hanes DP. 2003. Controlled movement processing: superior colliculus activity asso-

ciated with countermanded saccades. J. Neurosci. 23:6480–89
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