
The Neural Basis of Error Detection: Conflict Monitoring and
the Error-Related Negativity

Nick Yeung
Princeton University

Matthew M. Botvinick
University of Pennsylvania

Jonathan D. Cohen
Princeton University and University of Pittsburgh

According to a recent theory, anterior cingulate cortex is sensitive to response conflict, the coactivation

of mutually incompatible responses. The present research develops this theory to provide a new account

of the error-related negativity (ERN), a scalp potential observed following errors. Connectionist simu-

lations of response conflict in an attentional task demonstrated that the ERN—its timing and sensitivity

to task parameters—can be explained in terms of the conflict theory. A new experiment confirmed

predictions of this theory regarding the ERN and a second scalp potential, the N2, that is proposed to

reflect conflict monitoring on correct response trials. Further analysis of the simulation data indicated that

errors can be detected reliably on the basis of post-error conflict. It is concluded that the ERN can be

explained in terms of response conflict and that monitoring for conflict may provide a simple mechanism

for detecting errors.

Errors are an important source of information in the regulation

of cognitive processes. The mechanism by which people detect and

correct their errors has been the object of study for many years, but

research interest has increased in recent years following the dis-

covery of neural correlates of performance monitoring. In partic-

ular, studies of event-related brain potentials (ERPs) have revealed

a neural response following errors that has been labeled the error-

related negativity (ERN or Ne; Falkenstein, Hohnsbein, Hoorman,

& Blanke, 1990, 1991; Gehring, Goss, Coles, Meyer, & Donchin,

1993). The most likely neural generator of the ERN is anterior

cingulate cortex (ACC), an area that in recent years has been

implicated in another function related to the evaluation of perfor-

mance, monitoring for competition (or conflict) during information

processing. The present research attempts to provide an integrative

account of error- and conflict-related activity observed in anterior

cingulate cortex. Specifically, we propose a new account of the

ERN and error processing in terms of the conflict monitoring

theory of anterior cingulate function.

Background

Behavioral Studies of Error Monitoring

Participants in reaction time (RT) experiments are typically

aware of their errors, reacting to them with visible or audible

frustration. When asked, they are also able to signal their errors

more systematically with an appropriate key-press (Rabbitt, 1966,

1967, 1968). Using this method, Rabbitt and colleagues have

found that participants can detect most, though rarely all, of the

errors they make in simple choice RT tasks (Rabbitt, 1968, 2002).

However, these error-signaling responses can be quite slow and

unreliable. In a study by Rabbitt (2002), for example, young adults

detected 79% of their errors, taking an average of about 700 ms to

do so, when they were given a second to respond before the next

stimulus appeared. However, when the subsequent stimulus ap-

peared 150 ms after an incorrect response, the same participants

showed a limited ability to ignore this stimulus, as they were

instructed to do, and their error-detection rate dropped to 56%.

Whereas explicit error detection and signaling appear to be slow

and effortful, error correction is fast and relatively automatic.

Participants deal with errors more quickly and efficiently by pro-

ducing a correcting response—that is, making the response they

should have made—than by making a common detection response

to all errors (Rabbitt, 1968, 1990, 2002). Indeed, errors are often

immediately followed by a correcting response even when partic-

ipants are instructed to suppress such responses (Maylor & Rab-
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bitt, 1987; Rabbitt & Rodgers, 1977). These error-correcting re-

sponses can be extremely fast: Corrections are often observed

within 20 ms of the original incorrect response (Rabbitt, Cum-

ming, & Vyas, 1978), and in Rabbitt’s (2002) study, the mean time

to correct errors was around 250 ms.

Rabbitt and colleagues (Rabbitt et al., 1978; Rabbitt & Vyas,

1981) have explained fast, automatic error corrections in terms of

the continuous flow of perceptual information into the response

selection process (cf. C. W. Eriksen, Coles, Morris, & O’Hara,

1985; B. A. Eriksen & Eriksen, 1974; Gratton, Coles, Sirevaag,

Eriksen, & Donchin, 1988). They describe response selection as

involving accumulation of information over time, and they liken

this to the votes of a committee. On occasion, they suggest, an

incorrect decision will be made on the basis of incomplete infor-

mation, but “as subsequent votes come in, a more accurate con-

sensus will accumulate and the earlier mistake will become appar-

ent” (Rabbitt & Vyas, 1981, p. 225). An implication of this

hypothesis is that error correction (and detection) should depend

crucially on continued information processing after the initial

error. To test this hypothesis, Rabbitt and Vyas (1981) measured

error correction rate as a function of stimulus duration: As stimulus

duration is increased, and hence also the opportunity for further

processing, the rate of error correction should increase, and this is

exactly what Rabbitt and Vyas observed. Thus, participants’ abil-

ity to detect and correct errors appears to be critically linked to

their ability to continue processing the stimulus even after they

initiate a response.

The Error-Related Negativity

The behavioral findings reviewed above have been comple-

mented in recent years by data from neuroimaging techniques. In

particular, a great deal of interest has focused on the ERN, a

component of the ERP that is observed in association with incor-

rect responses (Falkenstein et al., 1990, 1991; Gehring et al.,

1993). The term error-related negativity has in fact been used to

label ERP components observed in at least three situations: fol-

lowing overt response errors in choice RT tasks (Falkenstein et al.,

1990, 1991; Gehring et al., 1993); following feedback about re-

sponse accuracy (Holroyd & Coles, 2002; Miltner, Braun, &

Coles, 1997); and following late responses in deadline RT tasks

(Johnson, Otten, Boeck, & Coles, 1997; Luu, Flaisch, & Tucker,

2000; Pailing, Segalowitz, & Davies, 2000). In this article, we are

concerned with the issue of how the cognitive system is able to

monitor its own performance in the absence of explicit feedback

(e.g., regarding accuracy or timing). That is, we are concerned with

the first of these situations, the observation of an ERP negativity

immediately following incorrect responses. Henceforth we use the

term ERN to refer specifically to this component. Thus defined, the

ERN is a negative deflection in the ERP that begins around the

time of incorrect responses, often slightly before, and peaks

roughly 100 ms thereafter (see Coles, Scheffers, & Holroyd, 1998;

Falkenstein, Hoorman, Christ, & Hohnsbein, 2000, for recent

reviews). We return in the General Discussion to the relationship

between this component and the related negativities observed

following feedback and late responses.

Although the ERN varies in amplitude across experimental condi-

tions, its latency seems to be very consistent (Falkenstein et al., 2000;

Leuthold & Sommer, 1999). The ERN has been observed following

errors regardless of the modality in which the stimulus is presented

(Falkenstein et al., 2000) and regardless of the modality in which the

response is made (Holroyd, Dien, & Coles, 1998). A number of

features of the ERN have been taken to suggest that it indexes some

form of error processing: Its amplitude is correlated with subjective

judgments of response accuracy (Scheffers & Coles, 2000), is in-

creased when response accuracy is emphasized over speed (Falken-

stein et al., 1990; Gehring et al., 1993), and is reduced following

incorrect responses to stimuli that are presented relatively infre-

quently, conditions in which errors are particularly likely (Holroyd &

Coles, 2002). The ERN also appears related to aspects of error

correction: Gehring et al. (1993) found that ERN amplitude correlates

positively with the probability that an error is immediately corrected,

and Rodrı́guez-Fornells, Kurzbuch, and Münte (2002) reported a

larger ERN when an error is corrected quickly than when the error

correction response is slow. There have also been attempts to correlate

ERN amplitude with the force with which the error is produced:

Gehring et al. (1993) found a negative correlation between these

measures, with a larger ERN following weakly produced errors.

However, a subsequent study found the opposite pattern, with larger

ERN amplitude associated with more forceful errors (Scheffers,

Coles, Bernstein, Gehring, & Donchin, 1996), a discrepancy that is

not currently well understood.

A commonly held view is that the ERN reflects a monitoring

process that signals errors whenever it detects a mismatch between

the response produced and the correct, or intended, response, as

determined by the state of the response system after the response

is executed (Coles, Scheffers, & Holroyd, 2001; Falkenstein et al.,

1990, 1991, 2000; Falkenstein, Hohnsbein, & Hoorman 1995;

Gehring et al., 1993; Scheffers & Coles, 2000; Scheffers et al.,

1996). This view is consistent with the error monitoring model

proposed by Rabbitt and colleagues (Rabbitt & Rodgers, 1977;

Rabbitt & Vyas, 1981). However, there is currently disagreement

as to whether the ERN reflects the error-detection process itself

(Coles et al., 1998; Falkenstein et al., 1991, 2000; Nieuwenhuis,

Ridderinkhof, Blom, Band, & Kok, 2001; Scheffers et al., 1996),

the arrival of the error signal at a remedial action system (Coles et

al., 2001; Holroyd & Coles, 2002), or an emotional response to the

error (Bush, Luu, & Posner, 2000; Gehring & Willoughby, 2002;

Pailing, Segalowitz, Dywan, & Davies, 2002). Moreover, there is

disagreement as to whether the representation of the correct or

intended response depends on the final outcome of the response

selection process (Falkenstein et al., 1990, 2000) or is determined

by the state of the response system at the time of response execu-

tion (Coles et al., 2001).

The ERN has a frontocentral distribution that is symmetrical to

the midline. Dipole modeling has consistently located its neural

source in medial frontal cortex, consistent with a neural generator

in ACC or the supplementary motor area (SMA; Dehaene, Posner,

& Tucker, 1994; Gehring, Himle, & Nisenson, 2000; Holroyd et

al., 1998). Convergent evidence favors ACC over SMA as the

most likely source. First, recordings in behaving monkeys have

found error-related activity in ACC and not SMA (Gemba, Sasaki,

& Brooks, 1986; although Stuphorn, Taylor, & Schall, 2000, have

observed error-related activity in the supplementary eye field dur-

ing an eye-movement task). Second, fMRI studies have found

error-related activity in ACC (e.g., Carter et al., 1998; Kiehl,

Liddle, & Hopfinger, 2000; Menon, Adleman, White, Glover, &

Reiss, 2001). Finally, it has been noted that the orientation of
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pyramidal cells in the anterior cingulate sulcus could generate a

frontocentral negativity such as the ERN, whereas SMA cells on

the medial wall are oriented tangentially to the scalp and hence

would not be expected to produce a corresponding scalp potential

(Coles et al., 1998; Holroyd & Coles, 2002). Thus, these localiza-

tion studies have led to the hypothesis that ACC is involved in

detecting or responding to errors.

Response Conflict Monitoring

Although ACC activity has been observed in association with

errors, fMRI studies have found that caudal ACC regions activated

on error trials are typically also activated on trials when the

participant responded correctly (e.g., Carter et al., 1998; Kiehl et

al., 2000; Menon et al., 2001). More specifically, on trials with

correct responses, ACC activity has been observed in conditions in

which multiple responses compete for the control of action—that

is, when there is response conflict. In the flanker task (B. A.

Eriksen & Eriksen, 1974), for example, participants are required to

make a discriminative response to a target stimulus, such as

responding to H with the left hand and S with the right hand. The

target is flanked by distractor stimuli that are associated either with

the same response as the target (congruent stimuli, e.g., HHHHH),

or with the opposite, conflicting response (incongruent stimuli,

e.g., SSHSS). RTs and error rates are typically higher in the

incongruent condition, the result of conflict during response se-

lection between the responses afforded by the target and distrac-

tors—that is, between the correct and incorrect responses (Coles,

Gratton, Bashore, Eriksen, & Donchin, 1985; Gratton et al., 1988).

Botvinick, Nystrom, Fissell, Carter, and Cohen (1999) used a

version of the flanker task in which participants were required to

respond to the orientation of an arrow stimulus flanked by arrows

pointing in the same direction (congruent stimuli, e.g., �� � ��) or

in the opposite direction (incongruent stimuli, e.g., �� � ��). They

observed ACC activity even on trials with correct responses, and this

activity was greater for high-conflict, incongruent trials than for

low-conflict, congruent trials. Findings such as these have led to the

development of the conflict monitoring theory of ACC function

(Botvinick, Braver, Carter, Barch, & Cohen, 2001; Botvinick et al.,

1999; Carter et al., 1998). According to this theory, ACC is respon-

sible for detecting conflict during response selection and conveying

this information to brain regions directly responsible for the control of

cognitive processing (e.g., lateral prefrontal cortex, Cohen, Botvinick,

& Carter, 2000). Dealing with conflict, or crosstalk, in information

processing has been proposed to be a central function of cognitive

control (Allport, 1980, 1987; Neumann, 1987; Norman & Shallice,

1986): The presence of response conflict indicates situations in which

errors are likely and, hence, in which attention is required. Thus,

conflict monitoring may provide crucial information in regulating

cognitive processing (Cohen et al., 2000). In addition, conflict mon-

itoring is computationally straightforward, simply requiring the de-

tection of concurrently active incompatible responses.

The conflict monitoring theory provides a unified account of

neuroimaging findings of ACC activation in a wide range of task

conditions associated with increased task difficulty (cf. Paus, Ko-

ski, Caramanos, & Westbury, 1998). For example, ACC is acti-

vated when participants perform the Stroop task (e.g., Bench et al.,

1993; MacDonald, Cohen, Stenger, & Carter, 2000; Pardo, Pardo,

Janer, & Raichle, 1990), when participants are required to produce

infrequent responses in the face of more habitual ones (e.g.,

Braver, Barch, Gray, Molfese, & Snyder, 2001; Bush et al., 2000;

Carter et al., 1998; Garavan, Ross, Murphy, Roche, & Stein, 2002;

Kiehl et al., 2000; Menon et al., 2001; Paus, Petrides, Evans, &

Meyer, 1993; Rubia et al., 2001; Taylor, Kornblum, Minoshima,

Oliver, & Koeppe, 1994), and when they are required to choose

between many valid responses in word generation tasks (Barch,

Braver, Sabb, & Noll, 2000; Crosson et al., 1999; Thompson-

Schill et al., 1997).

Conflict Monitoring and the ERN

The research reviewed above provides converging evidence that

ACC is involved in some way in the evaluation of performance.

However, the relationship between the error-detection function

suggested by ERP data and the conflict monitoring function sup-

ported by fMRI studies remains a matter of debate. With regard to

this issue, Carter et al. (1998) and Botvinick et al. (2001) have

suggested that the conflict monitoring theory may be extended to

explain ERP data as well as fMRI findings. Carter et al. (1998)

noted that errors are particularly likely in conditions of response

conflict, and they offered this as an account of ACC activity on

error trials measured in electrophysiological recordings. Botvinick

et al. (2001) later refined this hypothesis. In their connectionist

model of conflict monitoring in the flanker task, the dynamics of

response activation and conflict were very different on correct and

error trials: Response conflict was larger on error trials than on

trials with correct responses, particularly in the period following

the response. Taking this finding of increased conflict following

errors in a model of human performance, together with fMRI

evidence that ACC is activated by conflict, Botvinick et al. sug-

gested that the ERN may be explained by the response conflict

monitoring theory.

The conflict monitoring theory thus promises to provide a

unified account of ERP and fMRI findings concerning the role of

ACC in performance monitoring. However, a number of objec-

tions have already been raised to the proposal that the ERN can be

explained in terms of response conflict. A first criticism runs as

follows: If the ERN reflects response conflict, then we should see

an analog of the ERN—that is, a negativity following the re-

sponse—on correct trials with high conflict. For example, one

might expect there to be a larger negativity following correct

responses on incongruent than congruent trials in the flanker task,

because there is greater conflict on incongruent trials. However,

such post-response negativities are typically not observed, and

hence it is concluded that the conflict account of the ERN must be

wrong (Pailing et al., 2000; Scheffers & Coles, 2000; Ullsperger &

von Cramon, 2001).

Findings reported by Scheffers and Coles (2000) seem similarly

difficult for the conflict theory to explain. These authors had partici-

pants perform the flanker task, but varied stimulus discriminability

such that there were an appreciable number of errors to congruent as

well as incongruent stimuli. When they measured the amplitude of the

ERN as a function of stimulus congruence, they found a larger ERN

following errors on congruent trials than on incongruent trials. Again,

this result seems problematic for the conflict theory: The obvious

expectation is that there should be more conflict, and hence a larger

ERN, on high-conflict incongruent trials.

933RESPONSE CONFLICT AND ERRORS



One goal of the present research is to address these empirical

objections to the response conflict account of the ERN. Our

strategy is to use a detailed model of the dynamics of response

conflict in the flanker task to investigate how the conflict theory

might explain these apparently troubling findings. To look ahead

briefly, our simulation results demonstrate that, despite initial

appearances, each of the empirical observations described above is

entirely consistent with the conflict monitoring theory. Extending

this investigation, we show that monitoring for response conflict

could in principle provide a simple method for detecting errors.

This demonstration begins to address a further objection to the

conflict theory that is more theoretical in nature. That is, in seeking

to explain the ERN in terms of conflict monitoring rather than in

terms of an explicit error detection function, the conflict theory

appears to leave unanswered the question of how participants are

able to detect their errors (e.g., Rabbitt, 1966, 1968) and of why the

ERN correlates with many aspects of human error processing

(Falkenstein et al., 2000; Gehring et al., 1993). An aim of the

present research is to demonstrate that the conflict monitoring

theory can in fact provide answers to these questions. To this end,

we demonstrate that conflict monitoring may provide a computa-

tionally simple method for detecting response errors.

Research Overview

In the present research, we develop the response conflict ac-

count of the ERN outlined by Botvinick et al. (2001) and extend

this work to provide a new theory of how errors are detected in the

brain. The research is presented in three sections.

Section 1. We first take a connectionist model of conflict

monitoring in the flanker task previously developed in our labo-

ratory (Botvinick et al., 2001; Cohen & Servan-Schreiber, 1992)

and apply it to a range of ERN data. The aim is to demonstrate in

a formally explicit manner how the conflict monitoring theory can

explain the empirical phenomena of interest. We present five

simulations concerned with:

1. The dynamics of response conflict on correct and error

trials (Pailing et al., 2000; Scheffers & Coles, 2000;

Ullsperger & von Cramon, 2001).

2. The effect of stimulus congruence on the ERN (Scheffers

& Coles, 2000).

3. The impact of speed–accuracy instruction on the ERN

(Falkenstein et al., 1990; Gehring et al., 1993).

4. Stimulus frequency and the ERN (Holroyd & Coles,

2002).

5. The relationship between ERN amplitude and error force

(Gehring et al., 1993; Scheffers et al., 1996).

The first two simulations outline how the conflict monitoring

theory deals with the two apparently troubling empirical findings

described above. The third and fourth simulations demonstrate that

our theory can account for other findings that are typically inter-

preted in terms of the properties of the error-detection system. The

final simulation illustrates the utility of the model in providing

insights into possible causes of discrepant results (concerning the

ERN and error force).

Section 2. We next report the results of a new ERP experiment

designed to test predictions of the conflict monitoring theory that

arise from our simulations. To foreshadow the simulation results,

an insight provided by the modeling work is that the dynamics of

response selection and response conflict may be very different on

correct and error trials. Specifically, our model suggests that error

trials are characterized by response conflict in the period following

the response, whereas when conflict occurs on correct trials, it is

seen almost exclusively prior to the response. An implication of

this point is that previous researchers may have failed to find ERP

correlates of conflict monitoring on correct trials because they

looked in the wrong latency range: Conflict-related activity should

be observed prior to the response on correct trials, not in the

latency range of the ERN (cf. Pailing et al., 2000; Scheffers &

Coles, 2000; Ullsperger & von Cramon, 2001). We argue that the

N2 component of the ERP (e.g., Pritchard, Shappell, & Brandt,

1991) is the electrophysiological correlate of this pre-response

conflict on trials with correct responses. Section 2 presents an ERP

experiment that tests predictions about the timing and neural

source of the N2 that follow from this hypothesis.

Section 3. In the final section, we introduce a new theory of

how error detection is implemented in the brain, based on the

conflict monitoring theory. Although we propose that the ERN

reflects conflict monitoring rather than a process that directly

evaluates response accuracy, we do not intend to imply that the

ERN is unrelated to error processing. Instead, we argue that

conflict monitoring may provide a sufficient basis for detecting

errors: Given that the response conflict model replicates many

properties of the ERN, and that the ERN demonstrates many

properties expected of an error-detection system, it seemed plau-

sible to us that monitoring for response conflict might represent a

simple method for detecting errors. In Section 3 we demonstrate

that a conflict-based mechanism of error detection can perform

with a reliability comparable to that exhibited by human partici-

pants in previous empirical studies.

1. The Response Conflict Theory of the ERN

In this section, we use a connectionist model of conflict moni-

toring in the flanker task to demonstrate that our theory can explain

a variety of observed properties of the ERN. The use of a formal

model allows us to explore in a principled way the properties and

predictions of our theory. The benefits of this approach are two-

fold. First, the formal model makes explicit the structure and

assumptions of the theory, allowing a more rigorous check of its

internal consistency. Second, having a working model allows one

to demonstrate the implications of the theory that, because of the

complexities of the system described, may not be obvious on the

basis of one’s verbal theory or intuition alone. This property is

particularly important because it allows the model to generate

novel, testable predictions, and to suggest new explanations of

existing findings.

Given that our theory of the ERN is based on the dynamics of

response selection and response conflict, it is critical to have a

good model of these dynamics. Fortunately, ERN researchers have

typically used the flanker task described above, and the dynamics

of response selection are perhaps better understood in this task
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than in any other, following the work of Eriksen and colleagues

(Coles et al., 1985; B. A. Eriksen & Eriksen, 1974; C. W. Eriksen

et al., 1985; Gehring, Gratton, Coles, & Donchin, 1992; Gratton,

Coles, & Donchin, 1992; Gratton et al., 1988). The empirical data

generated by this research have led to the development of a

computational model of response selection in this task that has

been successful in accounting for findings from behavioral exper-

iments (Cohen, Servan-Schreiber, & McClelland, 1992; Servan-

Schreiber, Bruno, Carter, & Cohen, 1998; Servan-Schreiber,

Carter, Bruno, & Cohen, 1998), ERP studies (Spencer & Coles,

1999), and fMRI studies (Botvinick et al., 2001). This model forms

the basis for the present simulations.

Model Details

Model structure. The model is illustrated in Figure 1 and is

described in more detail in the Appendix. It simulates performance

in a task requiring a key-press response indicating whether the

letter H or S appears in the center of a three-letter array, in which

the flanking letters may be congruent or incongruent with the

target letter. The basic model consists of three layers of units.

There is an input layer consisting of an array of six position-

specific letter units, a response layer with one unit for each

response, and an attention layer with units corresponding to each

location in the letter array. There are bidirectional excitatory

weights between layers (information flow) and inhibitory links

between all of the units within each layer (competition).

Botvinick et al. (2001) extended this model to implement the

conflict monitoring theory of ACC function, adding a unit that is

sensitive to the degree of conflict in the response layer. Conflict is

calculated as the energy (Hopfield, 1982) of the response layer:

Conflict � � �
i�1

N

�
j�1

N

aiajwij,

where a denotes the activity of a unit, w the weight of the connection

between a pair of units, and the subscripts i and j are indexed over the

units of interest. In the present model, the units of interest are the two

response units, so the equation reduces to being the product of the

activations of these units, scaled by the strength of the inhibitory

connection between them. It is also important to note that each unit

only sends activation to other units when its own activation level is

positive, so that response conflict is effectively bounded at zero. Thus,

when one response unit is active and the other inhibited, conflict is

low or zero. However, when both units are active together, the product

of their activations (and hence the degree of conflict) is large—

capturing in a simple way the central notion of conflict. Thus, the

level of conflict in the model is not a parameter of the model that is

set by the experimenter. Rather, conflict is a measured property of the

model; it depends only on the relative activation levels of the com-

peting response units.

Although not crucial for the present purposes, Botvinick et al.

(2001) used simulated ACC activity to vary the allocation of

attention across trials. This feature of the model implements the

proposal that ACC forms part of a control loop that is responsible

for the flexible control of behavior and is not essential to the

results reported here.

Model dynamics. Inputs corresponding to the four possible

stimuli (the congruent stimuli, HHH and SSS; the incongruent

stimuli, HSH and SHS) are simulated as patterns of activity across

position-specific letter units of the model. When an input pattern is

applied to the letter units, activation flows through their connec-

Figure 1. Illustration of the model of the flanker task used in the present simulations. The input, attention, and

response layers are taken from the original model proposed by Cohen et al. (1992). The conflict monitoring

feedback loop was added by Botvinick et al. (2001) to simulate the role of ACC in performance monitoring and

adjustment of attentional control.
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tions to the response units such that activation builds up in the

response layer. A biasing input from the attention layer favors the

letter in the center of the array, simulating the effect of visual

attention to the target. Over the course of a few processing cycles,

the network tends to settle into a state in which the target stimulus

dominates the input layer and the corresponding response is acti-

vated in the response layer. The number of cycles required for the

first response unit to reach a prespecified threshold is used to

simulate RTs in the model. Following Botvinick et al. (2001), we

calculate the simulated RT as:

RT�ms� � 200 � �16 * cycles�.

The 200 ms constant is used to account for processes that are not

part of the model. In particular, the model is intended to capture

properties of the central response selection process, not the early

perceptual processes that lead to stimulus identification. Spencer and

Coles (1999) have shown that the model accounts well for ERP

findings concerning response preparation in the flanker task, assum-

ing that a response threshold crossing in the model corresponds to the

onset of EMG activity. We follow this conclusion and, therefore,

attribute the 200 ms constant to perceptual processes.

To simulate processing variability, we added noise to each unit at

each time step (processing cycle). Because of this noise, the model

occasionally responds before the stimulus is fully processed, simulat-

ing the impulsive responses that are observed empirically in this task

(Cohen et al., 1992; Coles et al., 1985; Pailing et al., 2002). Impulsive

responding leads to occasional errors. Such errors are particularly

likely on incongruent trials because the flanking letters produce partial

activation of the incorrect response unit that, together with noise in the

system, push the activation of this unit above threshold. However,

even on error trials, continued processing of the stimulus following

the response, coupled with increasing attentional focus on the target

letter, may eventually lead to activation of the correct response unit. If

this activity is sufficient, the model will produce an error-correcting

response. As becomes apparent, this tendency of the model to auto-

matically correct its own errors provides the basis for our simulation

of the ERN.

Simulation details. The results of the simulations reported here

are based on 10 runs of 1,000 trials each, with randomized order-

ing of the stimuli. Except as noted, the parameters of the model are

those used by Botvinick et al. (2001) to model behavioral and

fMRI data. This is in line with our aim of investigating the

qualitative features of the conflict theory of the ERN, rather than

attempting to make detailed quantitative fits to specific data

through an exhaustive parameter search. Where the model was run

with different parameters to simulate the ERN in different exper-

imental conditions, the parameters were chosen so that the perfor-

mance of the model matched the relevant behavioral data. That is,

parameters were not chosen to fit the electrophysiological data.

Qualitatively similar patterns of results were found using a range

of parameter values, demonstrating that the simulation results

followed from the processing principles incorporated into the

model rather than the particular parameters used.

Simulation 1: Response Conflict on Correct and Error

Trials

The ERN is typically observed to begin around the time of error

responses, often slightly before, and to peak around 100 ms later

(see e.g., Coles et al., 1998; Falkenstein et al., 2000). The present

simulation is concerned with this basic finding. To this end, Figure

2 shows the dynamics of response activation and conflict in the

model on correct and error trials (averaging across congruent and

incongruent trials). As is evident from the top panels of Figure 2,

response conflict is larger and more sustained on error trials than

on correct response trials. Figure 3 plots the difference in conflict

between correct and error trials for the response-locked averages.

The difference in conflict emerges around the time of the response

and peaks 80 ms (five cycles) later. The post-error conflict signal

thus replicates the primary features of the ERN. Henceforth, we

refer to this difference in conflict between correct and error trials

in the period immediately following the response as the simulated

ERN.

Conflict on error trials. The simulated ERN can be explained

in terms of the activation patterns of the two response units, which

are given in the lower panels of Figure 2. As described above, the

model produces errors when noise causes the incorrect response

unit to cross threshold before the stimulus has been adequately

processed (see Figure 2, lower panels). However, continued pro-

cessing of the stimulus following the error causes the target stim-

ulus unit eventually to dominate the competition between units in

the input layer. As a consequence, activation of the correct re-

sponse unit increases following the error (see Figure 2, middle

panels). There is thus a brief period following incorrect responses

Figure 2. Activity in the network on correct and error trials of Simulation

1. Response conflict (simulated anterior cingulate cortex activity), upper

graphs, is the scaled product of the activity in the correct response unit

(middle graphs) and the incorrect response unit (lower graphs), bounded at

zero. Left panels show the activity in the model averaged across trials

aligned to stimulus onset. Right panels show corresponding response-

synchronized averages, where trials are aligned with the response.
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during which both response units are activated, leading to a large

conflict signal.1

A different pattern of activity is observed on correct trials. On

these trials, activation of the correct response unit elicits the

response and continued processing of the stimulus after the re-

sponse simply reinforces the response decision made, with the

correct response unit increasingly activated and the incorrect re-

sponse unit becoming further inhibited (until external inputs to the

network are removed). Response conflict is therefore largely re-

stricted to the period prior to the response on correct trials, before

inhibition from the correct response unit totally suppresses incor-

rect response activity. Thus, conflict following the response is

observed only on error trials, and it is this post-error conflict that

we associate with the ERN.

In summary, we explain the ERN in terms of response conflict

that develops in the period following errors, a consequence of

continued processing of the stimulus that leads to post-error acti-

vation of the correct response and hence conflict with the incorrect

response just produced. A prediction of this hypothesis is that the

ERN should be closely related to error-correcting activity. Gehring

and Fencsik (1999) have reported empirical findings consistent

with this prediction, showing that the ERN coincides with periods

of coactivation of the correct and incorrect responses as measured

through electromyography (EMG). More recently, Rodrı́guez-

Fornells et al. (2002) have reported that the amplitude of the ERN

is larger on trials for which the error-correcting response occurs

quickly than on trials for which the error-correcting response is

delayed, again consistent with the present theory.2

Conflict on correct trials. The simulation results suggest that

conflict on correct trials is largely seen before the response. This

point is illustrated further in Figure 4, which replots the simulation

data separately for congruent and incongruent trials. For now, we

draw attention to the pattern of response conflict observed on

correct trials only (see Figure 4, upper middle panel, dotted lines).

The difference in conflict between congruent and incongruent

correct trials is largest in the period before the response, with little

or no difference in conflict apparent afterward in the latency range

of the ERN. Thus, the simulation results suggest that previous

criticisms of the conflict theory may be misplaced: The theory

does not predict that there should an analog of the ERN following

the response on high-conflict correct trials (cf. Pailing et al., 2000;

Scheffers & Coles, 2000; Ullsperger & von Cramon, 2001). In-

stead, the theory predicts that any negativity in the ERP associated

with such conflict should be observed before the response. As

discussed in detail below, we hypothesize that the N2 component

of the ERP is the electrophysiological correlate of this pre-

response conflict. This proposal forms the basis for the ERP

experiment described in Section 2.

Because the simulation data show essentially no conflict in the

period following correct responses, the model in its present form

cannot account for recent observations of negative potentials fol-

lowing correct responses, with timing similar to that of the ERN

(Vidal, Hasbroucq, Grapperon, & Bonnet, 2000). This may not be

surprising: Coles et al. (2001) have argued that these correct-trial

negativities may result from either evaluation of the timing of the

response (cf. Luu et al., 2000) or from artifacts from stimulus-

related negative components contaminating response-locked aver-

ages (cf. Vidal et al., 2000), neither of which is modeled in the

present simulations.

1 A salient feature of the response-locked data is the spike in conflict that

occurs at the time of error commission (see Figure 2, top right panel). This

spike is not observed in the stimulus-locked averages and can be under-

stood in terms of a selection bias introduced by the interaction between

noise variability in the simulations and the response-locking analysis

procedure. Response-locking entails that activity in the incorrect response

unit varies below threshold (by definition) at all points prior to error

commission and varies above threshold (by definition) at the time of the

incorrect response. Thus, activity in the incorrect response unit is always

higher at the time of the response than on immediately preceding process-

ing cycles, and hence, response conflict increases sharply at this point.

Moreover, on processing cycles immediately following error commission,

the high degree of activation of the incorrect response unit causes, via

lateral inhibition, a temporary reduction in the activity of the correct

response unit. As a consequence, conflict is reduced in the period imme-

diately following the error.
2 Coles et al. (2001) have reported findings relating the ERN to EMG

activity that initially appear to present a challenge to our theory. They

computed a measure of response conflict by multiplying together the

maximum EMG activity of the two response hands, then selected subsets

of correct and error trials that were matched according to this measure of

conflict (Scheffers, 1999). Critically, even though the trials were matched

for conflict in this way, ERN amplitude was greater on error trials than on

correct trials, apparently challenging the present hypothesis. However, the

method for calculating conflict used by Coles et al. may not be ideal. In

particular, whereas response conflict is defined as the simultaneous acti-

vation of competing responses, Coles et al. estimated conflict by multiply-

ing together two measures (maxima of EMG activity in the two response

hands) that occur asynchronously. Moreover, in estimating conflict on the

basis of peaks of EMG activity across entire trial epochs, their method does

not specifically match for conflict in the post-response period that our

theory associates with the ERN. Therefore, Coles et al.’s analysis method

may not accurately match trials for the degree of conflict at the latency of

the ERN. A reanalysis of the data from Simulation 1 produced results

consistent with this interpretation. We followed Coles et al.’s procedure,

selecting correct and error trials that were matched according to the product

of activation maxima of the two response units. Although matched in this

way, post-response conflict—the simulated ERN—was substantially larger

following errors than following correct responses. These simulation results

are consistent with the empirical findings and lead to a refinement of the

prediction tested by Coles et al.: Our theory predicts that there should be

no difference in ERN amplitude for correct and error trials that are matched

for conflict in the post-response period when conflict is measured as the

product of synchronous EMG activations.

Figure 3. Difference in response conflict between correct and error trials

of Simulation 1. The increased conflict on error trials in the period

following the response (at time 0 ms) is the simulation of the error-related

negativity.
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Simulation 2: ERN and Stimulus Congruence

The results of our second simulation demonstrate further the

ability of the conflict monitoring theory to explain findings that

initially appear troubling. The finding of interest is Scheffers and

Coles’s (2000) report of a larger ERN following errors to congru-

ent stimuli than following errors to incongruent stimuli. At first

glance, the conflict theory would appear to predict the opposite,

because one might expect there to be greater post-error conflict,

and hence a greater ERN, on high-conflict incongruent trials.

However, a detailed simulation of the dynamics of response con-

flict on congruent and incongruent trials shows that the conflict

theory in fact makes the opposite prediction, as shown in Figure 4.

The top panel shows the simulated ERN—the difference in con-

flict between error trials and correct trials, shown in the upper

middle panel—and the lower panels show activity in the correct

and incorrect response units. An immediately striking feature of

the simulation results is that post-error conflict is larger on con-

gruent trials than on incongruent trials. That is, the simulated ERN

is larger on congruent trials than on incongruent trials, with no

difference in peak latency, consistent with the empirical findings

of Scheffers and Coles (2000).

As described above, the simulated ERN is the result of post-

error conflict between the incorrect response unit (that just led to

the error response) and the correct response unit (that becomes

activated because of continued stimulus processing). A crucial

determinant of the amplitude of the simulated ERN is therefore the

rate at which activation builds up in the correct response unit

following the error. As is evident from the lower middle panel of

Figure 4, there is more activation of the correct response unit on

congruent error trials than on incongruent error trials—a straight-

forward consequence of the unambiguous nature of congruent

stimuli. The result is a greater ERN on congruent trials. (It will be

noticed also that activity in the incorrect response unit falls more

quickly following the response on congruent trials than on incon-

gruent trials. This lower level of post-response activity on congru-

ent trials would tend to reduce the conflict signal. However, the

reduction is proportionately smaller than the corresponding in-

crease in post-response activity in the correct response unit.)

A further analysis of the simulation results demonstrates that the

conflict theory can explain other aspects of Scheffers and Coles’s

(2000) results that initially seem troubling. In particular, Scheffers

and Coles computed ERN amplitude for trials on which only one

response was activated (as measured through EMG recordings). It

seems that our theory might have difficulty in explaining why an

ERN was observed at all on these trials, because only one response

was activated. To address this issue, Figure 5 presents simulated

ERN amplitude following congruent and incongruent stimuli for

two sets of trials. The left-hand bars show the results for all trials

(i.e., summarizing the results of Figure 4). The right-hand bars

show the results for error trials on which correct response unit

activation remained subthreshold throughout the trial. Evidently,

for both congruent and incongruent conditions, a significant sim-

ulated ERN was observed even for trials in which error-correcting

activity remained subthreshold. On these trials, the simulated ERN

reflects conflict between the initial error and error-correcting ac-

tivity that remains below the threshold for generating an overt

response (as would be measured through EMG).

Simulation 3: ERN and Speed–Accuracy Instruction

Gehring et al. (1993) reported that the amplitude of the ERN is

increased when accuracy is emphasized over speed, a result con-

Figure 4. Results of Simulation 2, showing response-locked behavior of

the model on congruent and incongruent trials, separately for correct and

error responses. The top panel shows the simulated error-related negativity

(ERN), calculated as the difference in conflict between the correct and

error trials of each condition (shown in the panel below). The lower panels

show activity in the correct and incorrect response units, from which the

conflict measure is calculated. The vertical dotted line indicates the time of

the response (labeled R). Cong � congruent; Incong � incongruent;

Corr � correct trials; Err � error trials.

Figure 5. The amplitude of the simulated error-related negativity (ERN)

on congruent and incongruent trials of Simulation 2. The results are shown

for the average of all trials (left bars) and for the subset of trials in which

activation of the correct response remained subthreshold throughout the

trial (right bars).
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firmed independently by Falkenstein and colleagues (Falkenstein

et al., 1990, 2000). Gehring et al. accounted for their finding by

proposing that errors are more salient to participants striving for

accuracy than to participants for whom speed is the primary

concern. That is, they explained their findings in terms of changes

to the monitoring system—its sensitivity to the salience of errors—

across conditions. It may not be initially obvious why a response

conflict signal should be similarly sensitive to changes in accuracy

instruction. However, a detailed simulation of Gehring et al.’s

experiment not only demonstrates that the conflict monitoring

theory can explain the empirical results, but also shows that our

theory can provide a new explanation of these findings.

To model the results, we assumed that speed–accuracy instruc-

tions have two effects on the way participants perform the task.

Specifically, participants striving for accuracy will adopt a more

strict response criterion and will focus attention more strongly on

the target letter to prevent errors on incongruent trials. Three

speed–accuracy conditions were simulated. In the neutral condi-

tion, we used the parameters described in Simulation 1. An accu-

racy condition was modeled by increasing the threshold on the

response units (from 0.18 to 0.20) and increasing the external input

to the center attention unit (by a factor of 1.5). A speed condition

was modeled by reducing the threshold on the response units (to

0.16) and reducing the external input to the center attention unit

(by a factor of 0.75). With these parameters, error rates in the

neutral condition were twice as large as in the accuracy condition,

and in the speed condition they were three times as large, matching

the behavioral results of Gehring et al.’s (1993) experiment. By

this choice of parameters, we do not imply that it is not necessary

to pay attention to the central target when performing under

speeded task conditions. Our point is simply that attention to the

central target is more necessary under conditions in which accu-

racy is stressed; under speeded conditions, a less focused atten-

tional state can be beneficial because it allows participants to use

flanker information and thereby reduce RTs on congruent trials.

The simulation results are shown in Figure 6. Consistent with

the empirical findings of Gehring et al. (1993), the simulated ERN

varied as a function of speed–accuracy condition, increasing in

amplitude with more accurate performance. Despite changes in

amplitude, the time at which the simulated ERN reached its peak

did not vary across conditions, again consistent with empirical

data. The difference in simulated ERN amplitude across conditions

results from differences in post-error activation of the correct

response unit (see Figure 6, third panel): Error-correcting activity

is strongest in the accuracy condition, intermediate in the neutral

condition, and weakest in the speed condition. These differences in

post-error activity in the correct response channel are the direct

result of the parameters that implement the changes in speed–

accuracy condition: Greater attentional focus in the accuracy con-

dition leads to more rapid post-error build-up of activity in the

correct response unit and, hence, a larger simulated ERN.

In this way, the response conflict model simulates empirically

observed properties of the ERN, while suggesting a different set of

mechanisms by which these properties arise. Specifically, the

simulation results suggest that processing changes required to

increase accuracy may directly and necessarily lead to an increased

ERN. The model does not require an additional assumption that the

ERN is modulated by the salience of errors to the participant.

Simulation 4: ERN and Stimulus Frequency

Holroyd and Coles (2002; Holroyd, Praamstra, Plat, & Coles,

2002) have studied the ERN in a modified version of the flanker

task. Participants were presented with letter strings (HHHHH,

SSHSS, SSSSS, and HHSHH), but stimuli with one target letter

(e.g., H) were presented on 80% of trials, whereas stimuli with the

other target letter (S) were presented on only 20% of trials. They

labeled the highly probable target the frequent (F), and the less

probable target the infrequent (I). The two letters were presented

equally often as flankers. There were thus four conditions, infre-

quent congruent (III, 10% of trials), infrequent incongruent (FIF,

10% of trials), frequent incongruent (IFI, 40% of trials), and

frequent congruent (FFF, 40% of trials). The participants were

sensitive to the frequency manipulation, responding more quickly

and accurately to frequent targets than to infrequent ones. There

were too few errors to measure the ERN on frequent congruent

trials (FFF), but otherwise ERN amplitude was found to vary

across conditions: It was largest on frequent incongruent trials

(IFI), intermediate on infrequent congruent trials (III), and smallest

on infrequent incongruent trials (FIF).

Holroyd and Coles (2002) explained their findings in terms of

their theory that the ERN is a signal indicating that the conse-

quences of an action are worse than expected. In the case of

infrequent incongruent trials, for example, participants made errors

on nearly 70% of the trials. Holroyd and Coles suggest that

Figure 6. Results of Simulation 3, showing response-locked averages of

network behavior separately for the accuracy, neutral, and speed instruc-

tion conditions. The top panel shows the simulated error-related negativity

(ERN), calculated as the difference in conflict between the correct and

error trials of each condition (shown in the panel below). The lower panels

show activity in the correct and incorrect response units, from which the

conflict measure is calculated. The vertical dotted line indicates the time of

the response (labeled R). Corr � correct trials; Err � error trials.
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participants therefore expected to make errors in this condition,

and hence, a small ERN was observed when they actually did so.

In contrast, participants made errors on less than 5% of trials in the

frequent incongruent condition (IFI). They therefore expected to

be correct on these trials. When they were not, and hence the

outcome was worse than expected, a large ERN was observed.

Holroyd and Coles (2002) therefore proposed that the error-

monitoring system is sensitive to whether or not errors are pre-

dicted. The present model does not include any mechanism for

predicting errors, yet a detailed simulation of response conflict in

Holroyd and Coles’s experiment demonstrates that our theory can

explain their findings. To simulate the experimental results, we

assumed that participants are sensitive to the relative probabilities

of both stimuli and responses. In the experiment, one stimulus

letter appeared in the target location four times as frequently as the

other letter, and hence, one response was made at least four times

as often as the other. We simulated the effects on processing of

these differences in stimulus and response probabilities by increas-

ing the gain of the stimulus unit coding the frequent target stimulus

(by a factor of 1.5) and increasing the gain of the response unit

coding the frequent response (by a factor of 1.2), with parameter

values chosen so that the error rates in the model matched those

found empirically by Holroyd and Coles. Thus, the model had a

bias toward coding the target stimulus as the more frequent letter

and a bias toward producing the more frequent response.

The results of the simulation are shown in Figure 7. The simu-

lated ERN (see Figure 7 top panel) captures the pattern of the

empirical data reported by Holroyd and Coles (2002): It is largest

following errors on frequent incongruent (IFI) trials, intermediate

on infrequent congruent trials (III), and lowest in the infrequent

incongruent condition (FIF). As is evident from the lower middle

panel of Figure 7, post-error activation of the correct response unit

occurred most rapidly and most strongly in the frequent incongru-

ent condition and was greatly reduced following errors to infre-

quent targets. This result is a straightforward consequence of the

bias toward the frequent response used in the simulation. Thus, as

in the previous simulations, the amplitude of the simulated ERN

varied across conditions depending on how strongly the correct

response unit competed with the activation of the incorrect re-

sponse unit following the error.

Figure 8 plots simulated ERN amplitude as a function of response

accuracy across conditions, contrasted with the empirical data ob-

tained by Holroyd and Coles (2002; cf. their Figure 10). Although the

model somewhat underestimates the ERN observed in the infrequent

incongruent condition, the overall quantitative fit is good given that

few parameter changes were made from the original model. As in the

previous simulation, differences in simulated ERN amplitude across

conditions are a direct consequence of changes in the dynamics of

task processing according to task demands.

Simulation 5: ERN and Error Force

As mentioned briefly in the Introduction, attempts to relate ERN

amplitude to the force with which errors are committed have

produced seemingly contradictory results. Gehring et al. (1993)

reported a negative correlation between these measures, with

larger ERNs associated with smaller error force. By contrast,

Scheffers et al. (1996) found the opposite pattern, with a larger

ERN for motor (squeeze) errors than on trials with incorrect EMG

activation but no overt error activity. There were many differences

between the methods of Gehring et al. and Scheffers et al., includ-

ing the experimental task used. However, of particular interest here

are the differing rates of error correction observed in the two

experiments. Gehring et al., using the flanker task, reported that

roughly 70% of errors were corrected by their participants. Schef-

fers et al. used a hybrid choice–RT/go–nogo task. Participants

responded to the direction of an arrow stimulus but were required

to withhold responding on some trials depending on the orientation

of a frame surrounding the arrow. Thus, participants could make

“errors of action,” responding on nogo trials—errors that could not

be corrected with a further response. Participants could also re-

spond with the wrong hand on go trials. It is these “errors of

choice” that we are interested in here, and all such errors were

corrected in their experiment.

The response conflict model predicts a very close relationship

between the ERN and error correction. We therefore investigated

whether the discrepant results of Gehring et al. (1993) and Schef-

fers et al. (1996) might be explained by the differing rates of error

correction observed in their experiments. We defined error correc-

tion in the model as occurring when a threshold crossing in the

incorrect response unit was followed by threshold crossing in the

correct response unit. In Simulation 1, 63% of errors were cor-

rected in this way, so the results of this simulation were taken as

a reasonable model of the results of Gehring et al. To simulate the

Figure 7. Response-synchronized averages for the frequent incongruent,

infrequent congruent, and infrequent incongruent conditions of Simulation

4. The simulated error-related negativity (ERN), shown in the top panel, is

derived from the conflict signals on correct and error trials that are given

in the panel below. The lower panels show activity in the correct and

incorrect response units. The vertical dotted line indicates the time of the

response (labeled R). Freq Inc � frequent incongruent trials; Infreq Con �

infrequent congruent trials; Infreq Inc � infrequent incongruent trials;

Corr � correct trials; Err � error trials.
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results of Scheffers et al., we required parameters for which all

errors would be corrected. This was achieved by increasing the

external input to the center attention unit (by a factor of 1.25) and

reducing the strength of the mutual inhibition between the two

response units (from –3.0 to –1.5). This choice of parameters

makes the general point that error-correction rates will vary as a

function of at least two factors: the degree to which attention is

effectively allocated to target information and the degree to which

participants commit to their first response (captured by the level of

inhibition between the two responses).

For each simulation, error trials were divided into four quartiles

according to ERN amplitude. The error force on each trial was

taken as the maximum activation in the incorrect response unit,

and mean error force was calculated separately for each ERN

quartile. The results are shown in Figure 9. The simulation with

63% of errors corrected replicates Gehring et al.’s (1993) finding

of a negative correlation between ERN amplitude and error force,

with ERN amplitude reduced on trials with strong activation of the

incorrect response. The explanation for this finding is that trials

with high error activity tend to be those on which the error is not

subsequently corrected: The greater the activity in the incorrect

response unit, the less likely it is that the correct response unit will

overcome lateral inhibition and correct the error. Thus, trials with

high error activation have little post-error activity in the correct

response unit and hence little conflict. The result is a negative

correlation between simulated ERN size and error force. By con-

trast, under simulation conditions in which all errors were cor-

rected, a positive correlation between simulated ERN amplitude

and error force is observed, replicating Scheffers et al.’s (1996)

findings. In this case, post-error activation of the correct response

unit occurs on every trial (because all errors are corrected). The

primary determinant of ERN amplitude is therefore the degree of

activation of the incorrect response unit: the greater the activation,

the larger the conflict signal, and hence the positive correlation

between error force and ERN amplitude.

The model is therefore able to explain apparently discrepant

findings concerning ERN amplitude and error force and makes the

general prediction that factors affecting the rate of error correction

should influence the relationship between ERN amplitude and

error force. Once again, our explanation of the empirical findings

is in terms of the parameters in the processing mechanisms re-

sponsible for task performance, rather than the properties of a

mechanism dedicated to error detection.

Discussion of Simulation Results

The conflict monitoring theory has previously been used to

explain ACC activity observed in PET and fMRI studies. The aim

of our simulations was to provide a formal investigation of the

ability of this theory to explain observed properties of the ERN, a

brain potential thought to be generated in ACC. According to our

hypothesis, the ERN reflects conflict that develops in the period

following errors. The simulation results demonstrate that this hy-

pothesis can explain the timing of the ERN and its sensitivity to

stimulus congruence, speed–accuracy instruction, stimulus fre-

quency, and error force.

The simulation results first provided insight into the way in

which our theory can explain findings that initially appear chal-

lenging. Simulation 1 showed that response conflict should be

restricted to the period prior to the response on trials with correct

responses, explaining why correlates of conflict monitoring are not

observed after the response on correct trials (cf. Pailing et al.,

2000; Scheffers & Coles, 2000; Ullsperger & von Cramon, 2001).

Simulation 2 showed that conflict may be higher following errors

on congruent trials than on incongruent trials because post-error

activation of the correct response, and hence post-error conflict, is

larger on congruent trials (cf. Scheffers & Coles, 2000).

The simulations also demonstrated that the conflict monitoring

theory can offer alternative explanations of results that have pre-

viously been interpreted in terms of properties of the error-

detection system. Thus, Gehring et al. (1993) explained their

finding that ERN amplitude increases with response accuracy by

proposing that “the ERN is associated with an error-related pro-

Figure 8. Error-related negativity (ERN) amplitude as a function of

response accuracy across the stimulus conditions of Simulation 4. The

results are shown alongside the empirical data from Holroyd and Coles

(2002). The simulated ERN was fit to the data by multiplying the peak

value of the simulated ERN (at Cycle 5 post-response) by 190. IFI �

frequent incongruent trials; III � infrequent congruent trials; FIF � infre-

quent incongruent trials; data � empirical results; sim � simulation results.

Figure 9. Results of Simulation 5, showing the error force associated

with each error-related negativity (ERN) quartile as a function of the

percentage of errors that were corrected. Max act. � maximum activation.
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cessing system, whose activity is modulated by the degree to

which accuracy is important to the subject” (p. 387). Meanwhile,

Holroyd and Coles (2002) explained their finding of reduced ERN

amplitude following errors to infrequent stimuli in terms of the

sensitivity of the error-processing system to the expectedness of

errors. By contrast, we explain both of these findings in terms of

changes in task processing engendered by the task context. In

Simulation 3, for example, we assumed that participants striving

for accuracy would attempt to focus their attention more effec-

tively on the central target letter. In the model, post-error activa-

tion of the correct response unit was increased as a consequence of

increased attention, resulting in a high level of post-error conflict

and a large simulated ERN. Of course, it may be possible to adapt

existing theories to incorporate the idea that changes in task

processing directly affect performance monitoring. Nonetheless,

this possibility does not detract from the value of the present work

in suggesting this novel account of the empirical data.

The final simulation demonstrated that the conflict monitoring

theory can provide insight into the cause of apparently discrepant

empirical findings. Gehring et al. (1993) found that ERN amplitude

was negatively correlated with error force, leading them to suggest

that the ERN reflects participants’ attempts to “brake” the erroneous

response—that is, they linked the ERN to mechanisms of error com-

pensation. In contrast, Scheffers et al. (1996) found that ERN ampli-

tude increased with error force, suggesting to them that the ERN

relates to the magnitude of the error—that is, they linked the ERN to

error detection. Our simulations offer a unified account of these

findings, explaining the discrepant results in terms of the differing rate

of error correction observed in the two experiments.

Overall, therefore, our model of conflict monitoring in the

flanker task was able to simulate a range of empirically observed

properties of the ERN, a formal demonstration that the conflict

monitoring theory can explain these properties. The simulations

were run without adjustments to the parameters associated with the

monitoring process, reflecting the power of this simple mechanism

to account for a wide range of empirical data. Furthermore, fits to

empirical ERP data were achieved without reparameterization of

the model for each simulation, evidence of the robustness of the

results obtained. Nevertheless, an important goal for future re-

search will be to refine the model in order to provide detailed

quantitative comparisons with empirical data (and with competing

theories when they are specified in comparable detail). However,

perhaps the most stringent test of any model is its ability to

generate testable predictions. In the next section we test one such

prediction of the model, concerning ERP correlates of conflict

monitoring on trials with correct responses.

2. ERP Correlates of Conflict on Correct and Error Trials

The simulation results suggest that response conflict should be

limited to the period before the response on trials with correct

responses. The simulation results therefore lead to the novel pre-

diction that we should be able to measure conflict-related ERPs

prior to the response on these trials. In fact, a good candidate for

this conflict-related ERP, the N2, is already widely studied. In the

flanker task, the N2 emerges around 250 ms after the presentation

of the stimulus, has a frontocentral scalp topography, and is larger

on incongruent trials than congruent trials (Heil, Osman,

Wiegelmann, Rolke, & Henninghausen, 2000; Kopp, Rist, & Mat-

tler, 1996; Liotti, Woldorff, Perez, & Mayberg, 2000). Kopp et al.

(1996) have shown that N2 amplitude increases with the degree of

activation of the incorrect response, as measured through EMG.

Moreover, Liotti et al. (2000), using the Stroop task, localized the

N2 component to ACC (see also Lange, Wijers, Mulder, & Mul-

der, 1998). The N2 therefore has all of the properties expected of

a conflict-related ERP. However, none of the existing studies of

the N2 observed in the flanker task have compared this component

directly with the ERN, nor have they assessed the timing of the N2

with regard to the response. These questions are addressed in the

present experiment.

The predictions tested in the experiment are as follows:

1. The N2 should be similar to the ERN in terms of scalp

topography and neural source.

2. The N2 and ERN should differ in latency: The N2 should

precede the response, whereas the ERN should follow it.

The first prediction is a straightforward implication of the theory

that the ERN and N2 are both correlates of response conflict

monitoring in ACC. The second prediction follows from our

simulation results suggesting that conflict on correct trials should

be limited to the period before the response, whereas error trials

are characterized by post-response conflict.

Method

Participants. Nine female and 7 male undergraduate students from

Princeton University (Princeton, NJ) participated in a single 2-hr session

for course credit. All were right-handed and between 18 and 23 years old,

and all had normal or corrected-to-normal vision. Informed consent was

obtained from each participant at the start of the session.

Procedure. The participants were seated in front of a screen in a dimly

lit room. They performed a version of the flanker task in which they

responded by key-press to indicate the direction of a central arrow that was

surrounded by flanker arrows. There were four stimuli, the congruent

stimuli ����� and ����� and the incongruent stimuli �� � ��

and �� � ��. The four stimuli were presented in pseudo-random order

with the constraint that each stimulus appeared equally often in each block.

On each trial, the participant was first presented with a fixation cross in the

center of the screen. The cross was replaced after 500 ms with an imper-

ative stimulus. The stimulus was presented for 100 ms and then the screen

was cleared, remaining clear until 500 ms after the participant’s response.

At this time the string “- -” appeared to mark the intertrial interval, the

duration of which varied randomly from 1,000 to 1,100 ms. All stimuli

were presented in white on a black background. At a viewing distance of

roughly 110 cm, the arrow stimuli each subtended 0.4° of visual angle

vertically and 0.6° horizontally, and they were spaced 0.3° apart.

Participants first performed 2 or 3 practice blocks of 36 trials each. They

then performed 12 blocks of 68 trials each during which behavioral and

ERP data were collected. The participants were allowed to rest between

blocks, at which time they were given feedback showing their mean correct

RT and error rate in the previous block and for the whole session. If their

error rate fell below 8%, they were encouraged to respond more quickly. If

they made greater than 16% errors, they were told to respond more

carefully. Participants were also encouraged through verbal instruction to

sit in a relaxed position, to minimize eye movement, and to blink as seldom

as possible while they performed the task.

Recording. The electroencephalogram (EEG) was recorded with Ag–

AgCl electrodes from 64 locations arranged an extended 10–20 system

montage in a fabric cap (Neurosoft, El Paso, TX), referenced to linked

mastoids. The electrooculogram (EOG) was recorded from electrodes
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placed above and below the left eye and to the sides of each eye to monitor

eye movements. The ground electrode was placed on the chin. The elec-

trode impedance for all electrodes was less than 50 k�. The EEG and EOG

signals were amplified (Sensorium model EPA-6, Charlotte, VT; input

impedance � 1 G�) by a gain of 20,000 with a 12-bit processor, filtered

through a pass-band of 0.1–300 Hz (half-amplitude cutoff). The signals

were digitized at 250 Hz.3

Data analysis. Stimulus- and response-synchronized epochs were ex-

tracted from the EEG off-line. Trials with blinks, large eye movements,

instrument artifacts or amplifier saturation were rejected off-line through

manual editing. For the ERN, we computed response-locked average

waveforms for correct and error trials in an epoch beginning 200 ms prior

to key-press and lasting 700 ms. The baseline window ran from –100 ms

to 0 ms relative to the response. For the N2, we analyzed data only for trials

with correct responses, computing stimulus-locked averages for congruent

and incongruent trials separately. The epoch ran for 800 ms, beginning 200

ms prior to stimulus onset, with a 100 ms pre-stimulus baseline.

To compare the timing of conflict- and error-related ERP components,

we extracted a second set of response-synchronized epochs from the EEG.

These epochs ran from 800 ms prior to the response until 200 ms after, with

the baseline period from 800 to 700 ms before the response. Response-

locked waveforms were computed separately for correct congruent, correct

incongruent, and error trials.

Component scalp topographies were analyzed using an analysis of variance

(ANOVA) comparing voltage across 15 electrode sites (chosen to cover

midline scalp areas known from previous studies to be the focus of the ERN

and N2). Degrees of freedom were corrected using Greenhouse–Geisser ep-

silon values. Data from all 64 electrodes were then used in computing the most

likely dipole source of each component. Dipole models were computed sep-

arately for the ERN difference wave (error – correct) and the N2 difference

wave (incongruent – congruent).4 Modeling was performed on unfiltered data,

rereferenced to the average reference, across a 24-ms window around the

component peak. The reported dipole solutions were stable across different

seeding locations and were stable to the addition of further dipoles to the

solution model. The validity of the dipole solutions was further assessed by

applying them to the error grandaverage and incongruent correct grandaverage

waveforms. These waveforms were first digitally high-pass filtered (�2 Hz) to

remove the effects of slow parietal positivities seen around the time of the

response. Fits to the resulting waveforms were comparable to those reported

for the difference waveforms.

Results

Behavioral data. Mean correct RT was greater on incongruent

trials than on congruent trials, averaging 421 ms and 352 ms,

respectively, a reliable difference, t(15) � 10.2, p � .01. Error

rates were also higher for incongruent stimuli (18.7%) than for

congruent stimuli (2.1%), again a reliable difference, t(15) � 10.5,

p � .01. Mean RT was higher on correct trials (386 ms) than on

error trials (313 ms), t(15) � 9.88, p � .01. These findings are

consistent with those of previous studies using the flanker task

(e.g., Coles et al., 1985; B. A. Eriksen & Eriksen, 1974; C. W.

Eriksen et al., 1985).

The ERN and N2. The upper panel of Figure 10 plots

response-synchronized grandaverage waveforms for correct and

error trials at electrode location FCz. An ERN is clearly evident as

a negative deflection in the waveform on error trials that emerged

just prior to the response and peaked 56 ms later. The ERN was

followed by a large sustained positivity over posterior scalp re-

gions, the error positivity (Pe; Falkenstein et al., 1995; Falkenstein

et al., 2000). The lower panel of Figure 10 shows the scalp

topography of the correct and error trial waveforms, along with the

difference wave, at the time of peak ERN amplitude (56 ms after

the response). A midline frontocentral topography is clear for error

trials and for the difference wave.

To quantify the ERN, we performed a three-way repeated mea-

sures ANOVA using the average voltage in the 100 ms following

the response. The factors were response accuracy (correct, error),

anterior-posterior electrode location (F, FC, C, CP, P), and later-

ality (3, z, 4). A reliable main effect of response accuracy indicated

that the waveform on error trials was more negative than that seen

on correct trials, F(1, 15) � 35.6, MSE � 99.3, p � .01. That is,

a robust ERN was observed. The ERN was largest at FCz and

reduced in amplitude for electrodes away from this site, resulting

in reliable interactions between response accuracy and anterior-

posterior location, F(4, 60) � 22.5, MSE � 4.0, � � 0.45, p � .01,

and between accuracy and laterality, F(2, 30) � 14.6, MSE � 4.0,

� � 0.94, p � .01, and a reliable three-way interaction, F(8,

120) � 4.4, MSE � 0.4, � � 0.51, p � .01. Taking the amplitude

difference between correct and error trials as a measure of the

ERN, pairwise comparisons revealed that the ERN was reliably

larger at FCz than at the other electrode sites (all ps � .01).

The upper panel of Figure 11 plots stimulus-locked grandaver-

age waveforms for correct congruent and correct incongruent trials

at electrode site FCz. An enhanced N2 was evident on incongruent

trials. The difference between congruent and incongruent trial

waveforms peaked 344 ms after stimulus onset. The lower panel of

Figure 11 shows the scalp topography at this time for congruent

trials, incongruent trials, and the difference between these condi-

tions. A midline frontocentral topography is apparent for incon-

gruent trials and for the difference wave. A smaller and more

frontal negativity was present on congruent trials.

A three-way repeated measures ANOVA was performed us-

ing the average amplitude of the waveforms in a window

running from 300 to 400 ms after stimulus onset. The factors

were stimulus congruence (congruent, incongruent), anterior-

posterior electrode location, and laterality. N2 amplitude was

greater for incongruent trials than for congruent trials, F(1,

15) � 25.19, MSE � 57.6, p � .01. The amplitude of the

congruence effect was largest at site FCz, indicated by reliable

interactions between congruence and anterior-posterior loca-

tion, F(4, 60) � 5.3, MSE � 1.34, � � 0.39, p � .05, and

between congruence and laterality, F(2, 30) � 9.2, MSE � 0.7,

� � 0.96, p � .01, although the three-way interaction did not

reach significance, F(8, 120) � 1.6, p � .1. Using the amplitude

3 The use of a high cutoff frequency (300 Hz) raises the possibility that

aliasing of high-frequency signals contributed to our results. However, in

system tests we found that signals above 30 Hz simply consisted of noise

that was orders of magnitude weaker than the low-frequency signals of

interest in the present research, suggesting that the effects of aliasing of

high-frequency activity were negligible.
4 Dipoles were fit using EMSE v4.2 (Source Signal Imaging, San Diego,

CA) with a three-shell sphere model. Using the method described in

Greenblatt and Robinson (1994), the algorithm used a three-shell sphere for

each electrode to correct for nonspherical head shapes. The conductivity

ratios for the sphere model were scalp:skull:brain � 1:0.0125:1 (Rush and

Driscoll, 1968). The dipole fitting algorithm minimizes a chi-square cost

function, using the iterative Nelder–Mead simplex algorithm (Press, Flan-

nery, Teukolsky, & Vetterling, 1992) for the nonlinear components, with a

minimum norm pseudoinverse solution for the linear components at each

step.
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difference between congruent and incongruent trials to measure

the effect of response conflict, pairwise comparisons revealed

that the effect of congruence was larger at FCz than at other

electrode sites (although only marginally so at Cz, p � .06; p �

.01 at all other electrodes).

Thus, both the ERN and N2 are clear in the data. We now turn

to direct comparisons between these components. Our first predic-

tion is that the ERN and N2 should share a similar topography and

neural source. Our second prediction is that the N2 should precede

the response whereas the ERN should follow it.

Figure 10. The error-related negativity (ERN). Top: Response-synchronized waveforms for correct and error

trials at FCz in an epoch running from 200 ms before until 500 ms after the response. The ordinate indicates the

time of the response. Bottom: Scalp voltage maps at the time of the peak of the ERN (56 ms after the response),

separately for correct trials, error trials, and the difference between these conditions.

Figure 11. The N2. Top: Stimulus-locked waveforms for correct trials, separately for congruent and incon-

gruent stimuli. Data are shown for electrode FCz, in an epoch running from 200 ms before until 600 ms after

the stimulus. Bottom: Scalp topography for congruent and incongruent trials, and the difference between these

conditions observed 344 ms after stimulus presentation. The scalp topography data for congruent and incon-

gruent trials were high-pass filtered above 2 Hz to remove the contribution of slow parietal positivities that

otherwise mask the effects of interest. Incong � incongruent; Cong � congruent.
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Comparison of scalp topography and neural source. As de-

scribed above, and as shown in Figures 10 and 11, the ERN and N2

share a similar scalp topography with peak amplitude at FCz. To

compare the topographies more directly, we first scaled the data so

that the ERN and N2 were equated for amplitude (McCarthy &

Wood, 1985). To this end, we calculated the best fitting regression

line between voltage amplitude for the ERN and N2 difference

waves across electrodes. This analysis indicated that there was a

high degree of similarity in topography between the two compo-

nents, r(63) � .80, p � .01, and that ERN amplitude was 1.9 times

as large as N2 amplitude. This value was used to equate the

amplitude of the N2 and ERN when comparing their scalp

distributions.

An ANOVA performed on the scaled data revealed that the N2

had a slightly more posterior and right-lateralized topography than

the ERN, reflected in significant interactions between component

and anterior-posterior location, F(4, 60) � 11.9, MSE � 4.0, � �

0.41, p � .01, and between component and laterality, F(2, 30) �

4.97, MSE � 3.95, � � 0.90, p � .05, although the three-way

interaction was not reliable, F(8, 120) � 1.84, p � .1. Inspection

of the scalp voltage maps (Figures 10 and 11), however, indicated

that these topography differences were not consistent across con-

ditions. In particular, the N2 observed on incongruent trials

showed no evidence of a focus lying posterior to FCz, and little

evidence of right-lateralization. Indeed, a comparison of the ERN

and the incongruent trial N2, r(63) � .93, p � .01, scaling factor �

2.3, revealed a marginally reliable trend for a more frontal focus

for the N2 compared with the ERN, F(4, 60) � 2.79, MSE � 3.27,

� � 0.35, p � .1.

A general problem when comparing scalp topographies across

conditions is that any given voltage distribution is likely to be the

result of many overlapping components, each reflecting the activ-

ity of a different neural source (Coles, Gratton, & Fabiani, 1990).

One method for dealing with this problem is to compare dipole

source models of the observed scalp voltage distributions that are

stable to the addition of further dipoles to the solution (for a similar

logic, see Miltner et al., 1997). We therefore performed such an

analysis for the N2 and ERN. As one would expect given their

similar topographies, the best fitting dipoles for the two compo-

nents lay very close together in medial frontal cortex, as shown in

Figure 12. The single dipole models explained most of the variance

in the data for the ERN (dipole location: x � �0.4 cm, y � 1.1 cm,

z � 5.7 cm; residual variance [RV] � 7.2%), and for the N2

difference wave (dipole location: x � �0.5 cm, y � 1.1 cm, z �

4.6 cm; RV � 6.8%).5 Although the ERN and N2 dipole locations

were not identical, the observed difference of 1.1 cm is well within

the range of variability seen in estimates of the dipole source of the

ERN across experimental conditions (e.g., Dehaene et al., 1994;

Holroyd et al., 1998). Even greater variability is observed in the

localization of the N2 across conditions of the same experiment

(Lange et al., 1998; Liotti et al., 2000). In addition, the data from

both conditions were well fit by a single dipole located halfway

between the best fitting locations (ERN: RV � 7.2%; N2: RV �

8.4%). The present results are therefore consistent with the hy-

pothesis that the ERN and N2 have a common neural source within

medial frontal cortex.

Relative timing. The upper panel of Figure 13 plots response-

synchronized waveforms for correct congruent, correct incongru-

ent, and error trials at electrode FCz, with a baseline taken from

800 to 700 ms prior to the response. The data were high-pass

filtered with a low cutoff of 2 Hz so that the frontocentral nega-

tivities of interest are not masked by large, slow positive waves

apparent around the response. Figure 13 shows that there was a

period, just prior to the response, of enhanced negativity on in-

congruent trials compared with congruent trials. To quantify this

effect, we calculated the average voltage in a 100-ms window

centered on –100 ms pre-response, separately for the 15 electrode

locations used in the earlier analyses. This analysis revealed that

the waveform on incongruent trials was significantly more nega-

tive than on congruent trials, F(1, 15) � 5.11, MSE � 5.97, p �

.05. The amplitude of this congruence effect was largest at site

FCz, indicated by reliable interactions between congruence and

anterior-posterior location, F(4, 60) � 35.3, MSE � 0.49, � �

0.29, p � .01, between congruence and laterality, F(2, 30) � 7.77,

MSE � 0.28, � � 0.92, p � .01, and between congruence,

anterior-posterior location, and laterality, F(8, 120) � 4.93,

MSE � 0.02, � � 0.37, p � .01. Pairwise comparisons revealed

that the effect of congruence at FCz was highly reliable ( p � .01)

and was larger than the effect of congruence at other electrode

locations ( p � .01 at all electrodes except Fz, at Fz p � .20).

The difference between congruent and incongruent trial wave-

forms was largest 88 ms prior to the response. The middle panel of

Figure 13 shows the scalp topography of each waveform at this

time. A frontocentral negativity was apparent on incongruent trials

5 The coordinates of dipole locations are given in a reference frame

based on the location of the nasion and preauricular points. The x value

indicates laterality relative to the midpoint of an axis joining the two

preauricular points (with negative values indicating points to the left of the

midline). The y value gives the distance of the dipole from this axis toward

the nasion (with positive points lying anterior to the preauricular line). The

z value gives the distance of the dipole in the dorsal-ventral direction,

orthogonal to the plane formed by the nasion and preauricular points (with

positive points lying above this plane).

Figure 12. Dipole models of the sources of the error-related negativity

(ERN) and N2 difference waves.
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and, to a lesser extent, on congruent trials also. Consistent with this

being the N2 as observed in the stimulus-locked averages, the

common dipole solution derived above gave a good fit to the scalp

distribution observed on incongruent trials (RV � 10.9%).

The lower panel of Figure 13 shows voltage maps for each

condition at the peak of the ERN, 56 ms after the response. The

waveforms on congruent and incongruent correct trials differed

little in the period following the response and showed no evidence

of a negative component at the latency of the ERN (cf. Pailing et

al., 2000; Scheffers & Coles, 2000; Ullsperger & von Cramon,

2001). In contrast, a frontocentral negativity was observed on error

trials at this latency. The scalp topography of this negativity

resembles closely that observed on incongruent trials 144 ms

earlier.

Figure 14 shows a direct comparison between the predictions of

the model and the empirical data at FCz. The simulated N2 is the

difference between correct incongruent and correct congruent tri-

als, the simulated ERN is the error-minus-correct difference wave.

The model provides a good account of the relative timing of the

two components. The difference in peak latency for the empirically

observed N2 and ERN was 144 ms. The corresponding value in the

simulation data was 9 cycles (�144 ms), a strikingly good fit given

that the model was not parameterized specifically to fit these data.

The model gives a less accurate simulation of the relative ampli-

tudes of the two components, however, failing to reproduce the

large asymmetry seen in the data, and also overestimates the

duration of the two components, discrepancies that might be ad-

dressed in future research.

Further properties of the N2. It might be objected that the

appearance of the N2 in the response-locked waveforms was

simply an artifact of averaging across trials in which a stimulus-

locked N2 occurred just prior to the mean RT. To demonstrate that

this is not the case, and to illustrate further properties of the N2, in

Figure 15 (left panel) we present stimulus-locked waveforms for

correct trials divided into sequential RT bins of 50 ms (cf. Ritter,

Simson, Vaughan, & Friedman, 1979). An N2 is apparent in all but

the fastest RT bins, with a latency and amplitude that vary sys-

tematically as a function of RT. Specifically, the N2 increased in

Figure 13. The relative timing of the N2 and error-related negativity. The upper panel shows response-

synchronized waveforms at FCz for correct congruent, correct incongruent, and error trials. The ordinate

indicates the time of the response. The data were high-pass filtered above 2 Hz to remove the contribution of

slow parietal positivities. The other panels show scalp voltage maps for error trials, correct congruent trials, and

correct incongruent trials at 88 ms before the response (middle panel) and 56 ms after it (lower panel).
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amplitude and latency with increasing RT. N2 amplitude was only

slightly larger for incongruent than for congruent trials within each

RT bin: The overall difference in N2 amplitude between the

conditions evident in Figure 11 reflects the fact that congruent

trials fell largely in the faster RT bins (with small N2 amplitude),

whereas incongruent trials tended to have longer RTs (and large

N2s).

Quantification of these properties was complicated by the fact

that not all participants produced RTs in every 50 ms bin. We

instead selected three consecutive RT bins for each participant so

that there were appreciable numbers of trials, both congruent and

incongruent, in each bin. For 9 of the participants, the bins ran

from 350 to 500 ms, for 4 of the participants, the bins ran from 300

to 450 ms, and for 3 participants the bins covered 250 to 400 ms.

For each bin—fast, medium, and slow—we calculated N2 ampli-

tude and latency separately for the congruent and incongruent trial

waveforms (that were first low-pass filtered below 20 Hz). N2

latency was defined as the time of the most negative peak in a

window from 200 to 400 ms after the stimulus, and N2 amplitude

was defined as the difference in voltage between this peak and the

immediately preceding most positive peak. For 3 participants, no

negative peak was apparent in the waveforms in one or more

conditions. In these cases, the amplitude of the N2 was defined as

zero. In addition, because the latency is undefined for conditions

with no negative peak, we did not include the data from these 3

participants in the latency analysis.

N2 amplitude varied significantly as a function of RT, F(2,

30) � 8.84, MSE � 11.0, � � 0.74, p � .01, with a significant

linear trend, F(1, 30) � 14.8, MSE � 162.1, p � .01. Pairwise

comparisons revealed that N2 amplitude was significantly ( p �

.01) larger for trials in the slow RT bin (�8.0 �V) than for trials

in the medium (�5.2 �V) and fast (�4.8 �V) bins, which did not

themselves differ. In addition, even though the conditions were

matched for RT, N2 amplitude was somewhat larger for incongru-

ent trials (�6.9 �V) than for congruent trials (�5.1 �V), F(1,

15) � 12.3, MSE � 6.8, p � .01.6

N2 latency increased with RT, F(2, 24) � 5.2, MSE � 685.2, �

� 0.73, p � .05, with a reliable linear trend, F(1, 24) � 7.0,

MSE � 4,807.7, p � .05. Pairwise comparisons revealed that the

N2 peaked significantly later on slow trials (320 ms) than on

medium RT (299 ms, p � .01) or fast RT (300 ms, p � .05) trials,

which did not differ. N2 latency was also slightly increased for

incongruent trials (312 ms) relative to congruent trials (301 ms),

again a reliable difference, F(1, 12) � 6.7, MSE � 356.6, p � .05.

Importantly, interparticipant variability in N2 latency did not in-

6 An analysis excluding the 3 participants for whom no N2 peak was

evident in one or more of their ERP waveforms found essentially identical

results to those reported above. Thus, the reported effects are not an artifact

of base-to-peak measure that we used, in which N2 amplitude was set to

zero when there was no peak in the ERP waveform. It is also important to

demonstrate that the apparent increase in N2 amplitude with RT is not an

artifact of differential overlap with the P3 component across RT bins. If the

observed effects of RT reflected changes in the P3 component, then such

effects should be even more marked at posterior scalp sites where the P3

is maximal. However, this was not the case: Voltage differences between

RT bins at the peak latency of the N2 were larger at FCz than at parietal

site POz, F(2, 30) � 4.4, MSE � 8.5, � � 0.71, p � .05. We also conducted

a temporal principal-components analysis (PCA) with varimax rotation to

separate the contributions of the N2 and P3 to the ERP. The PCA was

conducted on averaged ERP waveforms at electrodes FCz and POz, with

separate waveforms for each participant, for congruent and incongruent

Figure 14. Comparison of observed (top) and predicted (bottom) laten-

cies of the N2 and the error-related negativity (ERN).

Figure 15. The left column shows event-related brain potential (ERP)

waveforms for correct congruent and incongruent trials, separated into

sequential reaction time (RT) bins from 300–350 ms (top panel) through to

500–550 ms (bottom panel). The dotted line indicates the time of the

stimulus (Stim), and the average RT for each bin is indicated with a circle.

The right column shows plots of simulated response conflict, with trials

separated into sequential RT bins of 3 cycles (	48 ms). Note that there

were too few trials to obtain reliable ERPs for congruent trials in the

500–550 ms bin. In addition, 4 participants produced no responses on

incongruent trials in the 300–350 ms bin, and 2 participants produced no

responses in the 450–500 ms bin on congruent trials: The waveforms for

these conditions are based on the data of the remaining participants.
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crease with RT (fast RTs, SD � 39 ms; medium RTs, SD � 30 ms;

slow RTs, SD � 25 ms). Thus, the broadening of the N2 peak with

increasing RT was not an artifact of increased variability in peak

latency, but instead reflected a real increase in the amplitude of the

N2 component with increasing RT.

In a third analysis, we calculated the latency difference between

the peak of the N2 and the average RT, separately for each RT bin.

This analysis revealed that the N2 peak occurred reliably earlier

than the key-press response (mean latency difference � 87 ms),

F(1, 12) � 65.1, MSE � 4,530.1, p � .01. The interval between

the N2 peak and the response increased reliably with RT, F(2,

24) � 44.5, MSE � 746.6, � � 0.72, p � .01, with a significant

linear trend, F(1, 24) � 87.2, MSE � 65,107.7, p � .01: The

N2–RT interval was larger for trials in the slow RT bin (120 ms)

than in the medium bin (93 ms), and was smallest in the fast RT

bin (49 ms). These latency differences across RT bins were all

reliable ( p � .01). The N2–RT interval did not differ between

congruent and incongruent trials, F(1, 24) � 1.

To determine whether the conflict monitoring theory can ac-

count for these detailed properties of the N2, we reanalyzed the

results of Simulation 1, calculating response conflict on correct

trials in sequential RT bins of 3 cycles (	48 ms). The results of

this analysis, shown in the right-hand panel of Figure 15, accu-

rately replicate a number of features of the empirically observed

N2. First, the conflict signal, like the N2, becomes larger and

broader as RT increases. This feature is present in the model

because conflict between the two response units delays production

of the response, so that RT increases with the degree of conflict

observed. A second feature of the simulation results is that re-

sponse conflict is only slightly larger on incongruent trials than on

congruent trials when the conditions are matched for RT: In the

model, slow responses to congruent stimuli are marked by high

conflict (because of noise in processing) in just the same way as

are slow responses to incongruent stimuli. The overall difference

in conflict between congruent and incongruent trials reflects the

fact that a greater proportion of congruent trials fall in the faster

RT bins (as a result of low conflict), whereas incongruent trials

tend to have greater RTs (as a result of high conflict). Finally, the

interval between the peak of the conflict signal and the response

increases with RT. This property of the model replicates the

observation that the N2–RT interval increases with RT. The

present theory provides a simple explanation of this finding: The

greater the conflict at any given time, the longer it should take

to resolve this conflict and execute one of the competing

responses.

Thus, the simulated data replicate quite closely the patterns

observed in the empirical data, and particularly so in the faster RT

bins. In the 450–500-ms bin, the relationship between empirical

and simulated data is less good: Although empirical N2 amplitude

is similar for congruent and incongruent trials when measured base

to peak, as is the simulated conflict signal, the latency of the

empirical N2 is increased on incongruent trials, a finding not seen

in the simulation data. This discrepancy is worthy of note, but

should be interpreted with caution because there were very few

trials in the empirical data for each participant in the slower RT

bins, particularly for the congruent condition. In the faster RT bins,

for which there were many more trials per condition and hence for

which the ERP waveforms were more stable, the patterns in the

empirical N2 data are very similar to those predicted by the

conflict theory.

Discussion of ERP Results

On the basis of the simulation results, we made two predictions

that were tested in the present experiment. These predictions

concerned the relationship between the ERN and the N2, a com-

ponent that we hypothesize to be a correlate of conflict monitoring

on trials with correct responses. Both of the predictions were

supported by the data. First, the ERN and N2 shared a very similar

scalp topography and neural source (converging results have re-

cently been reported independently by van Veen & Carter, 2002).

Second, the two components differed in their timing, with the N2

preceding the response and the ERN following it. A further com-

parison between the N2 and the simulated conflict signal revealed

that detailed properties of the N2 can be explained by the conflict

monitoring theory.

Conflict, errors, and ACC function. The present findings may

help to interpret findings from fMRI studies of ACC function by

Kiehl et al. (2000) and Menon et al. (2001). These studies found a

common region in caudal ACC that was activated on error trials

and on correct trials with conflict. However, they also found a

region of rostral ACC that activated only on error trials. Both Kiehl

et al. and Menon et al. linked this rostral ACC activation with the

ERN. However, our results, together with converging findings

from van Veen and Carter (2002), suggest that the ERN is gener-

ated in a region of ACC that is sensitive to conflict, most likely

caudal ACC. It is possible that rostral ACC activation following

errors reflects further, perhaps affective, processing of the error,

because this part of ACC is thought to be associated with affective

function (Bush et al., 2000; Devinsky, Morrell, & Vogt, 1995).

Van Veen and Carter have provided evidence in favor of this

hypothesis: Their dipole models of the Pe included a source in

rostral ACC that became active some 200 ms after the initial error.

Another issue to address concerns a recent report from Davies,

Segalowitz, Dywan, and Pailing (2001) of a dissociation between

the ERN and N2. They reasoned that if the ERN and N2 are

related, then participants with a large ERN should also show a

large N2. Davies et al. performed separate correlations between

ERN amplitude and N2 amplitude on congruent trials and between

the ERN and N2 amplitude on incongruent trials and found no

significant correlations. However, of more relevance to the present

hypothesis is the relationship between the ERN and the N2 differ-

ence wave—that is, the difference between incongruent and con-

gruent trials. This difference measure would seem to be a purer

measure of response conflict on correct trials. When we analyzed

our data in this way, we found a reliable correlation between the

trials, and for the fast, medium, and slow RT bins (a total of 192 ERPs).

The first two components revealed by the PCA corresponded to the P3 and

N2, respectively. Critically, the weighting of the N2 component varied

significantly as a function of RT, F(2, 30) � 14.9, MSE � 6,260.3, � �

0.65, p � .01, and more so at FCz than at POz, F(2, 30) � 5.08, MSE �

1,588.3, � � 0.74, p � .05. Pairwise comparisons revealed that N2

amplitude at FCz was larger for slow trials than for medium trials ( p � .01)

and was larger for medium trials than for fast trials ( p � .01), consistent

with the results of our analysis of the raw ERP waveforms. Thus, we

conclude that the effects of RT on N2 amplitude reflect real changes in the

N2 component, not changes in the overlap between N2 and P3.
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amplitudes of the ERN and N2 difference wave across subjects,

r(15) � .60, p � .05. That is, participants with a greater sensitivity

to conflict showed a corresponding greater sensitivity to errors.

Although it may be possible to generate alternative accounts of this

finding, the results are certainly consistent with our theory that

both components reflect a common function, conflict monitoring.

Relation to existing theories of N2 function. We hypothesize

that the N2 component observed in the flanker task may be a

correlate of conflict monitoring. This hypothesis leads us to predict

that conflict-related N2 components should be apparent in other

situations characterized by high response conflict. It is therefore of

interest that N2 components are apparent in the oddball (Ritter et

al., 1979; Ritter, Simson, Vaughan, & Macht, 1982) and go–nogo

tasks (Kok, 1986; Pfefferbaum, Ford, Weller, & Kopell, 1985). In

the oddball task, participants respond to infrequent targets and

withhold responses to frequent distractors; in the go–nogo task,

participants are required to withhold the prepotent go response to

a subset of the stimuli (nogo condition). As noted by Braver et al.

(2001), both oddball and go–nogo tasks should produce high

response conflict, because both require participants to overcome a

prepotent response tendency. Thus, we suggest that N2 compo-

nents observed in the oddball and go–nogo tasks may have a

common origin in conflict monitoring by ACC.

The conflict monitoring theory is broadly consistent with the

proposal of Ritter and colleagues (Ritter et al., 1979, 1982) that the

oddball N2 is related to decision or categorization processes. The

present theory extends this earlier account by specifying precisely

which aspect of the decision process—response conflict—is re-

flected in the N2. In this way, the conflict monitoring theory

provides a natural account of previous findings relating the N2 to

response selection. For example, Ritter et al. (1979) have shown

that the oddball N2 peaks around 100 ms prior to the response and

that its amplitude is increased on trials with longer RTs, consistent

with our simulation and empirical data from the flanker task.

Our theory contrasts with previous accounts of the nogo N2,

which typically associate this component with response inhibition

(e.g., Kok, 1986; see also Kopp et al., 1996). Nieuwenhuis, Yeung,

van den Wildenberg, and Ridderinkhof (2003) have recently com-

pared the inhibition and conflict monitoring accounts of the nogo

N2. They reasoned that if the nogo N2 reflects response conflict,

then it should have a similar neural source and timing to the

oddball N2. Following up the present findings, they also predicted

that the oddball and nogo N2 components would share a neural

source with the ERN. The results were consistent with these

predictions. Thus, the conflict monitoring theory not only provides

an integrative account of the ERN and N2, but also provides a

unified account of N2 components observed in a variety of exper-

imental tasks.

3. Error Detection Through Response Conflict

The previous sections have outlined in detail our hypothesis that

the ERN can be explained in terms of the conflict monitoring

theory. According to this hypothesis, the ERN is not an explicit

signal that an error has occurred, but is rather a signal that there is

response conflict. In this regard, our theory contrasts with existing

accounts of the ERN that associate this component with an explicit

error detection process (e.g., Coles et al., 2001; Falkenstein et al.,

1991, 1995, 2000; Gehring et al., 1993). However, in seeking to

explain the ERN in terms of conflict monitoring rather than ex-

plicit error detection, our theory appears to leave open the question

of how people are able to detect their errors. To answer this

question, we now introduce a new theory of how errors may be

detected in the brain. The basis for this theory is the observation in

our simulations that error trials are characterized by conflict that

develops in the period following the response. Given that this

post-error conflict replicates many properties of the ERN, and

given that the ERN demonstrates many properties expected of an

error-detection system, it seems possible that monitoring for re-

sponse conflict might represent a simple method for detecting

errors. To evaluate this hypothesis, we next present an analysis of

the performance of a simple system that detects errors on the basis

of the total amount of conflict observed in the period following the

response. We then compare the performance of this system with

empirical findings about human error-detection performance.

Performance of a Conflict-Based Error Detector

Consider a system that signals an error has occurred whenever

the amount of conflict in the post-response period exceeds some

threshold. On some proportion of error trials, continued stimulus

processing will lead to post-response activation of the correct

response, resulting in enough post-response conflict to exceed the

detection threshold. This will result in the system correctly detect-

ing the error—these are hit trials. On other error trials, however,

the incorrect response will continue to dominate even after the

response has been produced. The conflict signal would remain

below threshold, and the monitoring system would incorrectly

signal the trial to be correct—these are miss trials. The proportion

of error trials for which the monitor signals an error is given by

P(d�error) � ¥ hits / (¥ hits 
 ¥ misses), where d stands for

“detection of an error signaled”—that is, a threshold crossing in

the post-response conflict signal. The sum, ¥, is simply the number

of the relevant events in the experiment. Similarly, we can calcu-

late P(d�correct) � ¥ FA / (¥ FA 
 ¥ CR), where FA stands for

false alarm and CR stands for correct rejection. False alarms would

occur when activation of the incorrect response unit followed a

correct response, leading to a suprathreshold conflict signal fol-

lowing the response on a correct trial. Correct rejections would

occur under more normal circumstances, where continued stimulus

processing simply reinforced the correct response decision, and

little or no conflict followed the response.

It is possible to assess the performance of the model by com-

paring P(d�error) and P(d�correct) for a given detection threshold.

Good performance is indicated by a high value of P(d�error),

indicating that most errors are detected, accompanied by a low

value of P(d�correct), indicating few false alarms. Plotting

P(d�error) against P(d�correct) for a range of detection thresholds

gives the receiver operating characteristic (ROC) curve for the

model. Figure 16 (left panel) plots ROC curves for the three

speed–accuracy conditions of Simulation 3. This analysis shows

that error detection based on post-response conflict is most reliable

in the accuracy condition and is least reliable in the speed condi-

tion. Detection in the accuracy condition appears to be quite

reasonable. The point marked on the graph, for example, indicates

that a conflict monitor could detect 75% of all errors, while giving

false alarms on just 4.5% of correct response trials.
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However, given the very different base rates of errors and

correct responses, this detection performance would represent a

very unreliable error signal. In 1,000 trials of the accuracy condi-

tion, for example, the model made 910 correct responses and only

90 errors. Thus, of the error signals produced by the model using

this detection threshold, 41 (� 910 * 0.045) would be false alarms

and only 68 (� 90 * 0.75) would be hits. Thus, of the 109 “error

signals” produced by the model, only 62% would accurately signal

an error. To illustrate this point, the right-hand panel of Figure 16

gives P(d�error) as a function of P(error�d) for a range of conflict

threshold values, where P(error�d) � ¥ hits / (¥ hits 
 ¥ FA), the

probability that a threshold crossing correctly signals an error.

Good error-detection performance is indicated by points toward

the top right of the graph (i.e., most errors being detected and most

threshold crossings corresponding to errors). According to this

analysis, the post-response conflict signal is a poor error signal,

with no points lying in the top right-hand corner of the graph for

any of the three speed–accuracy simulations. With a simple mod-

ification, however, error-detection performance can be dramati-

cally improved.

The reason for the poor performance described above is that,

even for correct trials, conflict is not completely resolved by the

time of the response, but rather continues to be present for a few

cycles afterward. It is therefore possible to improve the sensitivity

of the error monitor by measuring conflict only after some delay

following the response, by which time the correct-trial conflict is

completely resolved and any persisting conflict more specifically

signals an error. Figure 17 presents a plot of P(d�error) as a

function of P(error�d) for the neutral condition of Simulation 3,

separately for analyses in which the measurement of post-response

conflict began 0, 2, 4, or 6 cycles after the response. The sensitivity

of the model is greatly improved by introducing a delay in this

manner. In the delay 6 condition, for example, the point marked x

on the graph indicates that a suitably thresholded conflict monitor

could detect 92% of errors, with over 80% of threshold crossings

corresponding to errors. Recall that this detection performance

holds in a condition with a high error rate (15%) and in which only

63% of errors were corrected. The corresponding calculation for

the accuracy simulation produced an optimal detection rate of 95%

of errors, with less than 3% of all threshold crossings being false

alarms. This excellent performance was obtained in a condition in

which errors were still quite frequent (error rate � 9.9%) and in

which 86% of errors were corrected. Thus, monitoring for post-

response conflict could in principle be a reliable method for

detecting errors. We next relate the results of this analysis to

existing data and theory concerning human error detection.

Comparison With Human Error Detection

Rabbitt (1967, 1968, 2002) has conducted a number of studies

of participants’ error-detection performance. In each of his exper-

iments, participants made errors on around 5% of the trials and

were able to detect 80%–95% of those errors given sufficient time.

The observed rate of error detection is comparable to the perfor-

mance of our conflict-based error detector, particularly for the

accuracy condition of Simulation 3 in which error rates were

similarly low (though still 9.9%). In addition, Rabbitt’s partici-

pants made occasional false alarms, signaling that they had made

an error when in fact they had not. These false alarms constituted

7%–9% of all signaled errors, again comparable to the perfor-

mance of our simple conflict-based error detector. Overall, the

quantitative performance of the model is comparable to that of

human participants.

The present theory is also consistent with findings from Rab-

bitt’s (1967, 1968, 2002) experiments concerning the relationship

between error detection and error correction. The model imple-

ments the idea that continued processing of the stimulus following

errors leads to activation of the correct response. That is, there is

a natural tendency for the model to correct its own errors, a

tendency that forms the basis for our theory of the ERN. In contrast

to automatic error correction, our theory holds that explicit error

detection involves the computation of conflict for some period

after an error is committed and, hence, will be a slower process.

This property of the model is consistent with Rabbitt’s (1968,

2002) finding that participants respond to errors more quickly and

efficiently with a correcting response than when making a com-

mon detection response to all errors.

Figure 16. Performance of a conflict-based error-detection mechanism

applied to data from the three speed–accuracy conditions of Simulation 3.

Left: The probability of error detection as a function of false alarm

proportion. Right: Error-detection rate as a function of the proportion of

threshold crossings that correspond to errors. The dotted line shows per-

formance for one threshold value in the accuracy condition.

Figure 17. Performance of the conflict-based error detector with delays

of 0, 2, 4 and 6 cycles between the response and the conflict monitoring

window. The probability that errors are detected is plotted as a function of

the probability that detection signals correspond to errors.
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As further evidence of the fast, automatic nature of error cor-

rection, Rabbitt et al. (1978) highlighted the very fast error-

correcting responses that are often observed in RT experiments.

Such responses can be observed to follow within 10–20 ms of the

error. Rabbitt et al. noted that it is unlikely that participants could

detect and then correct errors within such short intervals. Instead,

the finding seems more consistent with the idea that participants

sometimes initiate two separate responses in close succession. Of

interest in this regard, the model also corrects some errors very

quickly—within 1–3 cycles of the initial error—and does so, of

course, without having to detect the initial error. Thus, the model

is consistent with Rabbitt’s intuitions on two counts: First, error

correction may occur automatically in a system in which informa-

tion flow is continuous and increasingly accurate over time; and,

second, error correction may in some sense precede error

detection.

A prediction of our theory is that participants’ ability to detect

their own errors should depend systematically on the experimental

context. In the preceding analysis, for example, different speed–

accuracy conditions yielded distinguishable ROC curves for error

detection. We therefore predict that participants encouraged to be

more accurate will not only make fewer errors but will also more

accurately detect those errors that they make. Some preliminary

support for this prediction is provided by a reanalysis of the

error-detection data reported by Rabbitt (1967). Across the 12

conditions of the experiment, there was a reliable negative corre-

lation between error rate and rate of error detection, r(11) � .63,

p � .05, consistent with our prediction. Although it may be

possible to derive alternative explanations of this finding, the

results are at least in line with the predictions of our theory. Future

experiments could provide a more rigorous, quantitative test of this

prediction.

Discussion of Conflict-Based Error Detection

Taken together, our analyses demonstrate that monitoring for

conflict in the period following a response could serve as a method

for detecting errors. This is the case even though the underlying

process does not involve a direct evaluation of response accuracy,

nor does the process involve an explicit comparator mechanism.

Instead, it may be possible to detect errors on the basis of a feature

of processing—the occurrence of conflict following a response—

that is statistically associated with incorrect responses. Although

this account of error detection suggests additional mechanisms

beyond the conflict monitoring unit simulated in our model, the

required computation is very simple: Our analysis suggests that

adequate error detection can be performed using a straightforward

accumulator that signals an error has occurred whenever post-

response conflict exceeds a threshold.

The present theory shares with previous accounts the hypothesis

that error detection relies on the fact that continued stimulus

processing will tend to produce an increasingly reliable represen-

tation of the correct response within the task-processing system

responsible for the initial error (Falkenstein et al., 1991, 2000;

Rabbitt et al., 1978; Rabbitt & Vyas, 1981; Scheffers and Coles,

2000). However, our theory suggests a different view of the

relationship between the ERN and error detection than has been

proposed in previous theories. In particular, according to our

theory, the ERN does not index the process of error detection

itself, but rather reflects post-response conflict that develops fol-

lowing errors. However, as the present analysis demonstrates, this

hypothesis should not be taken to imply that the ERN has nothing

at all to do with error detection: Even if the ERN is generated by

conflict monitoring, it might nonetheless serve as an effective error

signal with little additional machinery. Thus, whereas existing

theories view the ERN as reflecting the output of an error detection

process, our theory suggests that the ERN may in fact reflect the

input to this process. Of course, the present demonstration does not

constitute proof that human error detection in fact relies on conflict

monitoring. Thus, an important goal for future research is to look

for more direct evidence that error detection involves monitoring

for response conflict. A critical step toward this goal will be to

implement contrasting theories of error detection in comparable

detail to ours, allowing predictions of the theories to be contrasted

in a formal, quantitative manner. Our ongoing research has begun

to address this issue (Holroyd, Yeung, Coles, & Cohen, 2004).

Another issue for future research is the extent to which conflict

monitoring may be used to detect errors in other processing sys-

tems. The proposed mechanism for detecting errors makes use of

a simple and quite general property of human information process-

ing: that representations tend to become increasingly accurate over

time. Hence, conflict monitoring may provide reliable information

about errors in processing in a wide range of processing domains.

For example, there are interesting parallels between the issues

considered in this article and issues discussed in the literature on

speech errors (Postma, 2000). Here again there is debate about

whether error detection requires a dedicated monitoring system

(e.g., Levelt, 1989) or whether mistakes can be detected on the

basis of the processing dynamics that characterize speech errors

(e.g., MacKay, 1992). We naturally favor the latter view and

speculate that conflict between representations of intended and

actual speech may be a reliable method for detecting speech errors.

General Discussion

The principal contributions of the present research may be

summarized as follows:

A new theory of the ERN. According to our theory, the ERN

reflects conflict that develops in the period following errors as a

consequence of continued processing of the stimulus. Continued

processing leads to post-error activation of the correct response

and hence conflict with the incorrect response just produced. The

simulation results demonstrate the ability of this theory to explain

findings that have previously been interpreted as challenging it

(Pailing et al., 2000; Scheffers & Coles, 2000; Ullsperger & von

Cramon, 2001), to provide new accounts of existing findings

(Gehring et al., 1993; Holroyd & Coles, 2002), and to provide

insight into the cause of apparently discrepant empirical results

(Gehring et al., 1993; Scheffers et al., 1996).

A new theory of the N2. We propose that the N2, like the ERN,

is a correlate of conflict monitoring. Specifically, we suggest that

the N2 reflects conflict in the period prior to the response on trials

with correct responses. In this way, the conflict monitoring theory

provides a unified account of the N2 components observed in the

flanker, oddball, and go–nogo tasks (Nieuwenhuis et al., 2003) and

provides an integrative account of the N2 and the ERN in terms of

a common underlying mechanism.
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A new theory of error monitoring. An analysis of the simu-

lated dynamics of response conflict suggests that errors may be

detected reliably by monitoring for conflict in the period following

the response. The quantitative performance of a simple conflict-

based error detector was comparable to that observed for human

participants in empirical studies (Rabbitt, 1967, 1968, 2002). We

therefore suggest that the brain may use conflict monitoring as a

computationally simple method for detecting errors.

Comparison With Existing Theories

We have introduced a new theory of the ERN and error detec-

tion in terms of the conflict monitoring theory of ACC function.

According to our theory, the ERN is not an explicit signal that an

error has occurred, but rather reflects the continuous evaluation of

response conflict that may, with simple additional mechanisms, be

used to detect errors reliably. In this regard, our theory stands as an

alternative to the view that error detection involves an explicit

comparison—between the executed response and a separate rep-

resentation of the correct or intended response—and that the ERN

reflects a mismatch signaled during this process. Our theory also

contrasts with a recent computational model of the ERN proposed

by Holroyd and Coles (2002), in which the ERN is held to be a

reinforcement learning signal conveyed to ACC. In what follows,

we directly compare these theories with our own. We then discuss

the issue of whether the ERN reflects directly the process of error

detection or, rather, is an emotional reaction to errors, as has

recently been suggested.

The ERN as a mismatch signal. The most common interpre-

tation of the ERN is that it reflects the outcome of a comparator

process that detects errors as mismatches between the actual re-

sponse and knowledge about the correct or intended response

(Coles et al., 2001; Falkenstein et al., 1991, 2000; Gehring et al.,

1993; Scheffers et al., 1996; Scheffers & Coles, 2000). The rep-

resentation of the actual response is presumed to rely on efference

copy, whereas the representation of the correct or intended re-

sponse is held to be derived from continued processing of the

stimulus after the incorrect response is produced: The notion is that

errors occur when response execution occurs impulsively, before

the stimulus is fully processed and hence before the response

selection system has settled on a final representation of the correct

response. It was initially proposed that the error detector waited

until this final outcome of the response selection process before

making the comparison (Falkenstein et al., 1991), consistent with

the intuitions of Rabbitt and colleagues (Rabbitt & Rodgers, 1977;

Rabbitt & Vyas, 1981). However, the latency of the ERN appears

to be relatively invariant with respect to the response (Leuthold &

Sommer, 1999; Rodrı́guez-Fornells et al., 2002), leading to the

suggestion that the mismatch process may be triggered by response

execution itself (Coles et al., 2001).

It is difficult to compare our theory directly with the mismatch

hypothesis, because this latter account has been described in dif-

ferent ways by different researchers and has yet to be formalized

in computational terms, making it difficult to draw precise predic-

tions from the theory. Nevertheless, there appear to be important

similarities between the mismatch hypothesis and the theory pro-

posed here. In particular, both accounts propose that errors are

detected on the basis of continued stimulus processing to provide

a representation of the correct response that conflicts, or is com-

pared, with a representation of the incorrect response. Moreover,

the conflict-based error detection mechanism we have proposed is

sensitive to conflict only after the response and is in this sense

triggered by response execution, just as is the mismatch detector in

Coles et al.’s (2001) account. Therefore, to the extent that the

conflict and mismatch accounts are part of the same class of

theories of performance monitoring (those that rely on continued

processing of the stimulus to detect errors), the present simulations

make a broad contribution: They represent the first attempt to

provide a formal analysis of what information relevant to error

detection might be present in the response system and of when this

information might become available to a monitoring system.

However, the existence of similarities between the conflict and

mismatch accounts should not be allowed to obscure the fact that

there are also important differences between them. In particular,

whereas the mismatch hypothesis proposes that the ERN reflects

the output of a system specifically devoted to error detection, the

present theory associates the ERN with a process—conflict mon-

itoring—that also occurs on correct trials and which may represent

the input to, rather than the output from, the error detection system.

Thus, there are critical differences in the properties and predictions

of the conflict and mismatch theories. In what follows, we discuss

the implications of two specific differences between the theories.

A first critical difference is that our theory explains the ERN in

terms of the continuous evaluation of response conflict, whereas

the mismatch hypothesis proposes that the ERN indexes the op-

eration of a discrete error-detection process. The proposal that

response conflict is monitored continuously allows our theory to

provide a unified account of the ERN and N2, thus explaining the

close relationship between these components that has been ob-

served in nogo and oddball tasks (Nieuwenhuis et al., 2003) as

well as in the flanker task (as in the present research, and by van

Veen & Carter, 2002). In contrast, mismatch detection is held to be

a discrete process that occurs only at the time of response execu-

tion (Coles et al., 2001) or at some point thereafter (Falkenstein et

al., 1991), raising the issue of whether this hypothesis can account

for the N2. Falkenstein and colleagues have proposed that mis-

match detection occurs only at the end of the response selection

process, and so this account does not seem able to explain the N2

(which occurs prior to the response). Coles et al.’s (2001) more

recent hypothesis may be able to explain the occurrence of the N2

if one assumes that the mismatch process is not only triggered by

response execution but also can be triggered by subthreshold

response activation, partial errors, occurring on trials with high

conflict. However, the notion of partial errors is not part of Coles

et al.’s theory as currently specified, suggesting the need for this

account to specify more precisely the conditions under which the

mismatch process is triggered.

A second difference between the theories is that response con-

flict occurs whenever there is coactivation of competing responses,

whereas a mismatch signal is held to be generated only when there

is an explicit representation of the correct or intended response

within the response selection system that differs from the repre-

sentation of the executed response derived from efference copy

(e.g., Scheffers and Coles, 2000). This property implies that, for a

mismatch to be detected and an ERN generated, at the time of

detection there must be more activation of the correct response

than the incorrect response in the response selection system; oth-

erwise, the intended response, according to the response selection
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system, is still the incorrect one, and there should be no mismatch

with efference copy of the executed response. However, this

property makes it difficult for the mismatch hypothesis to account

for the timing of the ERN: In our simulations, ERN onset is

observed at a time when the incorrect response unit continues to be

more active than the correct response unit (cf. Figure 2).

Rodrı́guez-Fornells et al. (2002) provided electrophysiological ev-

idence consistent with this aspect of the model: Their LRP data

suggest that the correct response becomes more active than the

incorrect response well after error commission, whereas the onset

of the ERN precedes error commission. Hence, at the time of the

ERN, the state of the response selection system—with greater

activation of the incorrect response—should not mismatch with the

efference copy representation of the executed (incorrect) response,

apparently inconsistent with the mismatch hypothesis. In contrast,

our simulations suggest that a small degree of correct response

activation may produce sufficient conflict immediately preceding

errors to begin generating an ERN, even if this activation remains

below that of the incorrect response, and can therefore account for

the timing of the ERN.

The present research thus raises a number of challenges for the

mismatch hypothesis in accounting for detailed properties of the

ERN and its relationship to the N2. It is possible that a formal

instantiation of this hypothesis will account for the empirical data

as well as does the conflict theory. Alternatively, the mismatch

hypothesis may in the future be revised to address the challenges

we have raised. For example, one might propose that the mismatch

process is continuous in nature or can be triggered by partial errors,

perhaps accounting for the N2. Additionally, one might propose

that the mismatch process does not require an explicit representa-

tion of the correct response to detect errors, thus accounting for the

early onset of the ERN. However, these changes would represent

significant departures from the mismatch hypothesis as currently

specified and would move this account closer to ours. In this

regard, an important avenue for future research will be to attempt

the kind of formal investigation of the properties and predictions of

the mismatch hypothesis that we have provided here for the

conflict monitoring theory. This endeavor will help to provide

detailed answers to the questions raised above—regarding how the

mismatch process is triggered, on what representations it depends,

and when this information might become available—so that this

theory can generate precise predictions that can be compared with

those of our theory.

The ERN as a reinforcement learning signal. Holroyd and

Coles (2002) have recently proposed another alternative to the

mismatch account of the ERN. They suggested that the ERN

reflects a reinforcement learning signal that is transmitted to ACC

from the basal ganglia via the mesencephalic dopamine system.

According to this theory, ACC does not itself monitor errors, but

rather receives a signal from the basal ganglia indicating that

outcomes of actions are better or worse than expected. The role of

ACC is then to use this learning signal to adapt the response

selection process. Thus, this reinforcement learning theory of the

ERN formally instantiates the notion, first proposed in association

with the mismatch hypothesis (Coles et al., 1998, 2001; Miltner et

al., 1997), that the ERN reflects the operation of generic error

processing system. However, a different mechanism of error de-

tection is proposed: Response errors are held to be detected as

conjunctions of stimuli and responses associated with negative

outcomes, rather than as mismatches between actual and intended

responses. Holroyd and Coles have implemented this idea using a

simple neural-network architecture based on the method of tem-

poral differences (Schultz, Dayan, & Montague, 1997; Sutton &

Barto, 1998) and used it to model the ERN in a reinforcement

learning task and in the modified flanker task described in Simu-

lation 4.

Support for the reinforcement learning theory comes from the

finding that negative feedback elicits a negative ERP component

that, like the ERN, has a frontocentral scalp topography and a

neural generator in the region of ACC (Miltner et al., 1997). The

co-localization of this feedback ERN and the ERN observed im-

mediately following error commission is consistent with the claim

of the reinforcement learning theory that the ERN reflects the

operation of a generic error processing system. In contrast, the

conflict monitoring theory cannot presently account for the obser-

vation of the feedback ERN, which may be observed even in the

absence of overt responses (Yeung, Holroyd, & Cohen, in press).

At the same time, however, the reinforcement learning theory does

not predict the observation of ACC activity on trials with correct

responses and, hence, cannot account for the co-localization of the

ERN and N2 that was observed in the present research (and also by

Nieuwenhuis et al., 2003; van Veen & Carter, 2002). Thus, al-

though both theories are currently supported by evidence from

dipole modeling suggesting that the ERN co-localizes with a

second component thought to provide an additional index of the

functioning of ACC, the identity of this second component differs

for the two theories, a discrepancy that remains for future research

to resolve.

Further work is therefore required to distinguish between or

reconcile the conflict monitoring and reinforcement learning ac-

counts of the ERN, N2, and feedback ERN. In this regard, it is

important to note that although the theories are superficially very

different, they are not necessarily mutually exclusive. In particular,

whereas our research has focused on how response errors might be

detected on-line, Holroyd and Coles’s (2002) model is primarily

concerned with the issue of how information about response errors

is integrated with other evaluative information and then used in

response selection. Indeed, in their simulation of the data from the

modified flanker task (cf. Simulation 4, above), Holroyd and Coles

did not model any explicit error detection process; instead, infor-

mation about response accuracy was simply provided to the model

as an external signal. Thus, it might be that errors are detected

through conflict monitoring, as we suggest, but that this informa-

tion guides response selection through the kind of reinforcement

learning framework envisioned by Holroyd and Coles. This inte-

gration of the conflict monitoring and reinforcement learning

models of the ERN would help to address outstanding issues with

each approach: For the response conflict theory, the reinforcement

learning framework provides a way of understanding how a

conflict-based error signal might be integrated with other evalua-

tive information—such as performance feedback—in the learning

process and the adaptation of behavior. For the reinforcement

learning theory, the conflict framework provides a computationally

simple method for generating reliable error signals and also pro-

vides a way of understanding why ACC should be so consistently

activated in conditions of response conflict, even in the absence of

overt response errors (as evident in fMRI studies, and from studies

of the N2).
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The complementary strengths of the theories should not, how-

ever, lead us to overlook an important difference between them, at

least as they are currently framed. Specifically, Holroyd and

Coles’s (2002) account of the ERN differs from ours in the

proposed role of the ACC: In the present model, the ERN is

explained in terms of conflict monitoring by ACC, implying that

this area is performing an evaluative function. In contrast, Holroyd

and Coles suggest that ACC is the recipient, rather than generator,

of evaluative information and that it plays a direct role in the

selection of responses. That is, their theory proposes that the ERN

reflects the arrival of an error-related learning signal in anterior

cingulate cortex and that the role of anterior cingulate is to use this

learning signal to improve performance. With regard to this issue,

neuroimaging studies have provided some evidence that ACC

plays an evaluative role, not an executive one (Botvinick et al.,

1999; MacDonald et al., 2000). Moreover, as reviewed above, a

large number of neuroimaging studies have reported ACC activity

on correct trials when there is response conflict, a finding that is

difficult to explain if one assumes that ACC is simply the recipient

of an error signal. Thus, our working hypothesis is that ACC

performs an evaluative role, monitoring for conflict during re-

sponse selection. We leave open the possibility that information

from conflict monitoring may be used in reinforcement learning.

The ERN as an emotional response. It has been proposed that

the ERN reflects an appraisal of the emotional or motivational

significance of errors, rather than reflecting the error-detection

process itself (Bush et al., 2000; Gehring & Willoughby, 2002;

Pailing et al., 2002). The present research has not addressed the

issue of whether the ERN is a cognitive or affective correlate of

errors, and our simulations do not speak directly to this question.

Indeed, given that this affective processing hypothesis leaves open

the issue of how errors are actually detected in the brain, it is

entirely consistent with the present theory. That is, the present

findings are consistent with the idea that error detection relies on

conflict monitoring and that the ERN is an affective correlate of

this conflict monitoring function (that is carried out in some other

part of the brain). Nevertheless, as mentioned above, our working

hypothesis is that ACC is responsible for error detection through

conflict monitoring and that the ERN is a direct correlate of the

conflict monitoring process.

Our working hypothesis is based, in part, on a consideration of

the likely neural source of the ERN. It has been proposed that there

are functional divisions within ACC, with dorsal-caudal regions

implicated in cognitive and motor functions and more ventral-

rostral regions associated with autonomic and affective function

(Bush et al., 2000; Casey, Yeung, & Fosella, 2002; Devinsky et al.,

1995). Previous fMRI studies have found that conflict-related

activity is typically restricted to the caudal part of ACC (e.g.,

Botvinick et al., 1999; Braver et al., 2001; Carter et al., 1998;

Kiehl et al., 2000; Menon et al., 2001), perhaps extending dorsally

into the pre-SMA (Ullsperger & von Cramon, 2001). Therefore, if

the ERN reflects conflict monitoring—as our theory predicts and

as the co-localization of the ERN and N2 suggests—then it should

be generated in caudal regions of ACC associated with cognitive

and motor function.

Also relevant to the issue of whether the ERN might reflect

affective consequences of errors are the findings of Nieuwenhuis

et al. (2001). In a task requiring fast saccades away from a visual

stimulus, participants typically make a number of errors—saccades

toward the stimulus—that are quickly corrected and of which the

participant remains unaware. Nieuwenhuis et al. compared ERN

amplitude following these unperceived errors with ERN amplitude

following errors that the participants correctly detected. This com-

parison is relevant to the present concerns: If the ERN reflects

emotional processing of errors, then it should be absent, or at least

greatly reduced, on trials in which participants remain unaware of

their error. In contrast, if the ERN reflects conflict between the

error and the correcting response, then an ERN should be observed

on trials with unperceived errors because those errors are always

corrected—a circumstance associated with high conflict. Nieuwen-

huis et al.’s results were clear: ERN amplitude was as large

following unperceived errors as following perceived errors, con-

sistent with the predictions of our theory.

However, neither of the preceding lines of evidence definitively

rules out the notion that the ERN is associated with affective

processing. For example, regarding the localization of the ERN in

caudal ACC, it might be argued that caudal ACC is involved in

affective appraisals of cognitive events such as conflict or error

detection (Gehring & Willoughby, 2002). Meanwhile, regarding

the findings of Nieuwenhuis et al. (2001), it might be argued that

participants may not be aware of their own affective responses and

that the ERN to unperceived errors reflects these subconscious

affective responses. Thus, although it seems plausible that partic-

ipants should have greater affective responses to errors of which

they are aware—particularly given how strongly they typically

express their frustration in such cases—because Nieuwenhuis et

al. did not directly measure affect or autonomic activity, it is

impossible to rule out the hypothesis that participants in their study

had strong, yet unperceived affective responses that might account

for the observed ERN.

Overall, therefore, existing evidence is equivocal as to whether

the ERN reflects cognitive or affective aspects of error processing.

Indeed, to the extent that error detection may be inextricably linked

to affective and motivational functioning, it may be impossible to

separate out cognitive and emotional correlates of error detection

(cf. Holroyd, Nieuwenhuis, Yeung, & Cohen, 2003; Yeung, 2004).

This notion is perhaps best illustrated in terms of the proposed

functional role of conflict monitoring. In particular, although the

present research has focused on conflict monitoring as it relates to

error detection and the ERN, an important aspect of the theory

concerns how information about response conflict might be used in

the adaptive control of behavior (Botvinick et al., 2001). Accord-

ing to the theory, detection of response conflict typically leads to

increased attentional focus. However, if conflict is sustained over

a long period—indicating that increased effort may be insufficient

to reduce conflict—participants may tend to disengage from

the task (Cohen et al., 2000; Usher, Cohen, Servan-Schreiber,

Rajkowski, & Aston-Jones, 1999).

One hypothesis worthy of future investigation is that the pro-

posed consequences of conflict detection provide an account of the

functional role of affective reactions (Yeung, 2004). For example,

an increase in attentional focus following conflict detection may be

expressed in terms of autonomic changes related to increased

alertness and arousal. Correspondingly, sustained conflict that

leads to disengagement from the task may be expressed in terms of

subjective feelings of frustration. On this view, it does not make

sense to ask whether the ERN reflects cognitive monitoring or

functions related to affect or motivation, as these are proposed to
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be one and the same process. That is, conflict monitoring should

not be considered to be separate from affective processing. Instead,

in providing information that has direct motivational significance,

conflict monitoring may provide the computational basis underly-

ing what are observed and experienced as affective reactions.

Extensions and Future Directions

An attractive feature of the conflict monitoring theory is its

computational simplicity: In our model, conflict was calculated

directly as the product of the activation levels of competing re-

sponse units. Much of the computational simplicity derives from

the proposal that performance monitoring can rely on detecting

features of processing that are reliably associated with poor per-

formance, instead of relying on a mechanism that uses explicit

information about the correct response or response accuracy. How-

ever, the feature of processing we have focused on here—the

occurrence of response conflict—does rely on there being an

established task set with mutually incompatible responses. The

establishment of a task set is a complex process, and investigation

of the mechanisms by which task sets are created, maintained, and

switched is the focus of ongoing research (Allport, Styles, &

Hsieh, 1994; Braver & Cohen, 2000; Gilbert & Shallice, 2002;

Logan & Gordon, 2001; Rogers & Monsell, 1995; Rubinstein,

Meyer, & Evans, 2001; Yeung & Monsell, 2003a, 2003b). Such

issues are beyond the scope of the present research: We have been

concerned solely with how one might monitor performance once a

task set is established. Nonetheless, an important avenue for future

research will be to determine how a task set is created such that

otherwise compatible responses (e.g., key-presses with the left and

right hands) are set in mutual opposition and how a conflict

monitoring mechanism might be sensitive to this aspect of task set.

These challenges notwithstanding, the present research demon-

strates that the conflict monitoring theory can account for observed

properties of the ERN and human error-detection performance. In

this way, the theory explains how findings from electrophysiolog-

ical studies can be reconciled with the growing literature from

neuroimaging studies showing activity in ACC associated with

conditions of response competition and errors (e.g., Braver et al.,

2001; Carter et al., 1998; Garavan et al., 2002; Kiehl et al., 2000;

MacDonald et al., 2000; Menon et al., 2001). These studies have

typically reported that caudal ACC shows the predicted sensitivity

to response conflict and errors, suggesting that this region is

involved in the continuous monitoring of response conflict. An

intriguing possibility suggested by recent research is that other

regions in the medial wall may perform more specialized conflict

monitoring functions. In particular, it has been suggested that

dorsal regions in SMA or pre-SMA might be selectively activated

by response conflict on trials with correct responses, whereas more

rostral areas in ACC might selectively respond on error trials

(Braver et al., 2001; Garavan et al., 2002; Garavan, Ross, Kauf-

man, & Stein, 2003; Kiehl et al., 2000; Menon et al., 2001;

Ullsperger & von Cramon, 2001). One possibility is that caudal

ACC performs a general conflict monitoring function—and is thus

activated by response conflict and errors—whereas pre-SMA and

rostral ACC selectively monitor for pre- and post-response con-

flict, respectively, and are thus selectively activated by conflict on

correct trials and by incorrect responses. This hypothesis warrants

attention in future research.

The conflict monitoring theory may thus provide a unifying

account of ACC activity observed in fMRI and ERP research.

However, as discussed above, the theory in its present form does

not attempt to explain the feedback ERN (Holroyd & Coles, 2002;

Miltner et al., 1997) or the related component that is observed

following late responses in experiments with response deadlines

(Johnson et al., 1997; Luu et al., 2000; Pailing et al., 2000). The

feedback and late-response ERNs have a similar scalp topography

to the response-related ERN and, likewise, appear to be generated

in the region of ACC (Miltner et al., 1997). Hence, the present

theory may need to be extended in order to account for these ERP

findings. We suggested above that the reinforcement learning theory

proposed by Holroyd and Coles (2002) might provide a framework

for understanding how information from conflict monitoring might be

integrated with information from external feedback and other

sources. On this account, conflict monitoring would provide just

one of many inputs into the reinforcement learning process occur-

ring in ACC, all of which generate ERN-like scalp potentials.

Any such attempt to provide a complete, unified account of

ACC function may, however, need to take into account recent

evidence of anatomical dissociations between regions of ACC

sensitive to response errors and negative feedback (Carter, van

Veen, Holroyd, Stenger, & Cohen, 2002; Gehring & Fencsik,

2001). Nevertheless, we speculate that different subregions of

ACC perform related functions, all of which are responsible for

evaluating internal states for evidence of breakdowns in processing

and all of which can guide adjustments in control needed to

improve performance. This broader view of ACC function can

account for the variety of conditions under which ACC activity is

observed, including response conflict and errors, negative feed-

back, and even pain (Craig, Reiman, Evans, & Bushnell, 1996;

Peyron, Laurent, & Garcia-Larrea, 2000; Rainville, Duncan, Price,

Carrier, & Bushnell, 1997; Vogt, Sikes, & Vogt, 1993). Such a

class of functions would complement those responsible for mon-

itoring the external environment for signs of threat, such as has

been ascribed to the amygdala (LeDoux, 1996).

In summary, according to a broader view of ACC function,

response conflict may be one valuable information source—that

can provide early information about breakdowns in processing in

the absence of explicit feedback—out of the many used by ACC

in the evaluation of ongoing performance. The contribution of the

present research is therefore to provide a computationally specified

theory of one specific aspect of ACC function: monitoring of

response conflict and its use in detecting errors. An important goal

for future research will be to provide correspondingly detailed

accounts of other proposed functions of ACC, which might include

monitoring for conflict in other aspects of information processing

and the processing of explicit performance feedback. One can then

begin to investigate how information from response conflict mon-

itoring might be integrated in ACC with information from these

other sources and then used in the control of cognitive processing.

Conclusion

The present research has introduced a new account of the ERN,

N2, and error detection in terms of the response conflict monitor-

ing theory of anterior cingulate function. Through simulation and

experiment, we have attempted to demonstrate that the conflict

monitoring theory can provide a detailed account of a large corpus
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of existing, and in some cases counterintuitive, findings regarding

behavioral and electrophysiological phenomena related to perfor-

mance monitoring. In providing an alternative to existing accounts

of these phenomena, our theory attempts to answer a number of

critical questions: Is the evaluative process indexed by the ERN a

continuous one or is it a discrete process triggered by response

execution (or some later event)? Does error detection require an

explicit representation of the correct response or can it be based on

detecting features of processing (such as post-response conflict)

that are reliably associated with error commission? At what time

might such information be available to the monitoring system, and

is this timing consistent with the observed properties of the ERN?

We have attempted to answer these questions by grounding our

theory in a mechanistically explicit model. An important goal for

future research will be to specify competing theories in compara-

ble detail in order to provide answers to the questions raised above.

Doing so will allow these accounts and ours to be compared in a

rigorous, quantitative manner. However, to the extent that ours is

currently the only theory that has been shown to account for the

timing of the ERN, its sensitivity to the range of manipulations we

simulate, and the properties of the ERP in the absence of errors, we

believe that it represents a plausible account of the relationship

between the ERN and error processing, one that needs to be

considered alongside existing theories as we seek to understand the

mechanisms underlying human performance monitoring.
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Appendix

Simulation Details

On each trial, the network was run for 3 preparatory cycles, then for 50

further cycles. On each cycle, the activation of each unit was calculated

according to its net input. The net input to each unit of the behavioral

network was given by:

net i � �exti * estr� � � actjwijs � noise,

where exti is the external input to the unit, estr is a constant scaling the

external input to each unit (set equal to 0.4), actj is the activation of the

sending unit on the previous time step, wij is the weight of the connection

between the two units, and s is a scaling parameter, set to 0.08 for

excitatory weights and 0.12 for inhibitory weights. Noise is normally

distributed with a mean of 0.00 and a standard deviation of 0.035.

Net inputs were initialized to zero at the start of each trial. An external

input of 0.03 was supplied to the response units during 3 preparatory

cycles. The network was then given external inputs corresponding to the

stimulus and attentional input (as well as maintaining exti � 0.03 for

response units). exti was set to 0.15 for all relevant stimulus units. The

input to the three attentional units was modulated across trials according to

the degree of conflict experienced on previous trials. Specifically, exti to

the center attentional unit was given by:

extcenter � �extcenter�t � 1� � �1 � ����E�t � 1� � ��,

where extcenter(t � 1) is the external input to the center attention unit on the

previous trial, �, �, and � are constants set to 0.5, 4.41, and 1.08,

respectively, and E(t � 1) is the total energy (Hopfield, 1982) in the

response layer on the previous trial. The energy (conflict) at each time step,

t, was calculated as �¥¥ acti * actj * wij, where i and j are indexed over

all units in the response layer, giving:

energy t � � 2 * (actr,H,t * actr,S,t * � 3),

where actr,H,t and actr,S,t are the activation levels of the response units

corresponding to the H and S stimuli, respectively, at time step t. Thus,

energy is calculated as the product of activation of the two response units

at time step t, multiplied by the strength of the lateral inhibition between

them. Energy, constrained to be 	 0, was summed across all time steps of

a trial to give E(t).

extcenter was constrained to lie between 1 and 3. exti to flanker attention

units was given by:

ext flanker � �3 � extcenter�/ 2.

The activation of a unit was calculated from its net input as follows:

If neti � 0, the change in activation on that time step was given by:

act i � ��actmax � acti� * neti� � ��acti � actrest� * decay�.

If neti � 0, the change in activation was given by:

act i � ��acti � actmin� * neti� � ��acti � actrest� * decay�,

where actmax, actmin, and actrest are the maximum, minimum, and resting

activations of the units, set to 1.0, �0.2, and �0.1, respectively. Decay was

a constant set to 0.1. If acti � actmax, acti was set equal to actmax. Similarly,

if acti � actmin, acti was set equal to actmin. The gain of a unit was

manipulated by multiplying its net input by a constant scaling factor.

Multiplying the net input by a constant value greater than 1 increases the

rate at which the unit approaches actmax (or actmin, if the net input to the

unit is inhibitory), thus capturing the notion that gain of the unit has

increased. Scaling the net input by a value less than 1 results in a

corresponding reduction in the rate at which actmax is approached, resulting

in reduced gain.

A response was recorded if the activation of either response unit ex-

ceeded a prespecified response threshold (0.18, except where noted). The

model continued to process until the end of the 50 cycle run, regardless of

the time at which the response was made. However, external input to the

model was stopped after a smaller number of cycles (M � 6.0 cycles; SD �

0.5 cycles). This was done to keep the amount of post-response processing

relatively constant across trials with different RTs and was also used to

simulate the idea that participants in experiments do not continue to

process indefinitely after they have responded.

There were excitatory connections between layers and inhibitory con-

nections within layers of the network. The connection weights, except

where noted in the text, were as follows: feedforward excitatory connec-

tions from stimulus to response units � 1.5; bidirectional excitatory

connections between the stimulus and attention units � 2.0; stimulus layer

lateral inhibition � �2.0; response layer lateral inhibition � �3.0; atten-

tion layer lateral inhibition � �1.0. Note that each stimulus unit had

mutual inhibitory connections with all other stimulus units. Similarly, each

attentional unit laterally inhibited both other attentional units.
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