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Learning novel skills involves reorganization and optimization of cognitive processing

involving a broad network of brain regions. Previous work has shown asymmetric costs

of switching to a well-trained task vs. a poorly-trained task, but the neural basis of these

differential switch costs is unclear. The current study examined the neural signature of

task switching in the context of acquisition of new skill. Human participants alternated

randomly between a novel visual task (mirror-reversed word reading) and a highly practiced

one (plain word reading), allowing the isolation of task switching and skill set maintenance.

Two scan sessions were separated by 2 weeks, with behavioral training on the mirror

reading task in between the two sessions. Broad cortical regions, including bilateral

prefrontal, parietal, and extrastriate cortices, showed decreased activity associated with

learning of the mirror reading skill. In contrast, learning to switch to the novel skill was

associated with decreased activity in a focal subcortical region in the dorsal striatum.

Switching to the highly practiced task was associated with a non-overlapping set of

regions, suggesting substantial differences in the neural substrates of switching as a

function of task skill. Searchlight multivariate pattern analysis also revealed that learning

was associated with decreased pattern information for mirror vs. plain reading tasks in

fronto-parietal regions. Inferior frontal junction and posterior parietal cortex showed a

joint effect of univariate activation and pattern information. These results suggest distinct

learning mechanisms task performance and executive control as a function of learning.
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INTRODUCTION

One of the hallmarks of skill acquisition is that a task that

initially requires substantial executive resources can come to be

performed in a manner that seems effortless (James, 1890). This

behavioral facilitation has been characterized as a development of

procedural or implicit memory (Roediger, 1990; Schacter et al.,

1993; Gupta and Cohen, 2002) that is dissociable from declarative

memory implicated in medial temporal structures (Cohen and

Squire, 1980; Martone et al., 1984). Learning novel skills involves

brain-wide reorganizations guiding optimal recruitments of

cognitive functions (Salmon and Butters, 1995; Petersen et al.,

1998; Dayan and Cohen, 2011). Importantly, any skill consists

of a series of cognitive processes governed via executive control

systems (Smith and Jonides, 1999; Miller and Cohen, 2001),

which are decreasingly necessary as expertise is acquired (Milham

et al., 2003; Kelley et al., 2006). However, it is unclear how

executive control interacts with the acquisition of a novel skill.

Flexibility of behavior is a fundamental function of fronto-

striatal pathways (Milner, 1963; Jones and Mishkin, 1972; Frank

and Claus, 2006; Stelzel et al., 2010). This function has been

examined in task-switching paradigms where different tasks

are alternated (Jersild, 1927; Allport et al., 1994; Rogers and

Monsell, 1995), in which response times are generally slower

when switching tasks as opposed to repeatedly performing the

same task (i.e. “switch cost”). Previous work has found evidence

for asymmetric switch costs as a function of task difficulty (Yeung

et al., 2006; see also Hikosaka and Isoda, 2010), and Yeung and

Monsell (2003) showed that switch costs can be modulated by

recent practice on a task. The degree to which these asymmetric

switch costs are associated with different neural mechanisms is

currently unknown.

To address these questions, the current fMRI study examined

task switching in the context of learning a new cognitive skill.

Participants unexpectedly alternated two tasks, one demanding a

novel visual skill (mirror-reversed word reading), and the other

involving a well-learned skill (plain word reading) (Figure 1;

Kolers, 1968; Poldrack et al., 1998; Poldrack and Gabrieli, 2001;

Pegado et al., 2011). They then received three behavioral training

sessions on mirror reading over 2 weeks before the second fMRI

session. A combination of univariate and multivariate fMRI anal-

yses were used to examine the neural correlates of task switching

over the course of training.

MATERIALS AND METHODS

PARTICIPANTS

Fourteen healthy human participants completed the study (mean

age 22.4 years, range 19–35; 10 females). All volunteers gave

informed consent according to procedures approved by the
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FIGURE 1 | Behavioral paradigm. Participants performed a

living/non-living semantic judgment task for visually presented words. In

some trials, words are mirror-reversed, in which they had to read the words

in a novel (untrained) way, whereas non-reversed canonical forms (plain) of

words are presented in other trials. These trials can also be classified as to

whether the current trial type were repeated or switched from the

preceding trial. The switch trials require immediate and flexible change of

task skill from one to another, whereas repeat trials do not. Participant

performed the identical paradigm during pre- and post-training sessions.

UCLA Office for Protection of Research Subjects. They were

native English speakers, and right-handed as determined by the

Edinburgh handedness inventory to ensure consistency of lateral-

ized language representation without history of neuropsychiatric

disorders or currently taking psychoactive medications.

BEHAVIORAL PROCEDURES

Subjects took part in two MRI scanning sessions separated by 2

weeks; during the intervening period they received three training

sessions on the mirror-reading task.

fMRI task

Participants performed living-non-living judgments on words

that were presented in either plain or mirror-reversed text, across

six fMRI scanning runs in each of the two sessions. The task

was based on previous studies of skill acquisition in the mirror-

reading task (Poldrack et al., 1998; Poldrack and Gabrieli, 2001)

but modified such that plain and mirror-reversed trials were ran-

domly intermixed, allowing the examination of task switching

effects. On each trial, subjects were presented with a word and

asked to decide whether the word named a living or non-living

entity, and to press the corresponding button as quickly as possi-

ble (Figure 1). No warning was presented before the presentation

of the word. Each run included 32 plain and 32 mirror-reversed

words. There were a total of 12 word lists (6 runs in 2 sessions);

order of presentation of the 12 word lists was counterbalanced

across participants/sessions, and word length was equated within

each list. This ensures that no words are repeated from the first

to second training session, such that any learning effects reflect

general skill rather than item-specific learning.

The timing and order of stimulus presentation was optimized

for estimation efficiency using custom MATLAB code (Dale,

1999); the response window was 3.25 s, and the stimulus-onset

asynchrony (SOA) varied across trials from 4 to 11.5 s (mean

SOA = 6.28 s). These stimulus onset lists were also counterbal-

anced across runs over participants. Because the plain and mirror-

reversed words were pseudorandomly presented, trials were split

according to whether the stimulus condition presented imme-

diately before the current trial was the same or different. This

resulted in four types of trial: Mirror-Repeat (MR-RP), Mirror-

Switch (MR-SW), Plain-Repeat (PL-RP), and Plain-Switch (PL-

SW). Switching between the two stimulus types occurred on 34%

of trials.

Stimulus presentation and timing of all stimuli and response

events were achieved using the MATLAB Psychophysics

Psychtoolbox (http://www.psychtoolbox.org/). Visual stimuli

were presented using MRI-compatible goggles (Resonance

Technologies, Van Nuys, CA), and the computer was synchro-

nized with the onset of each functional run to ensure accuracy of

event timing.

Training

Following the initial scan, participants participated in three

behavioral training sessions, during each of which they were pre-

sented with 10 passages written entirely in mirror-reversed text.

The participants were instructed to read the passages, each of

which was several paragraphs long, as quickly as possible, and

time taken to read each passage was recorded. After each passage,

participants were given a multiple-choice question related to the

content of the passage, to ensure reading for comprehension. The

three training sessions were spaced over a period of 2 weeks, with

no more than one session on any single day.

IMAGING PROCEDURES

Scanning was performed using a 3T Siemens (Erlangen,

Germany) Allegra MRI scanner at the UCLA Ahmanson-Lovelace

Brain Mapping Center. Functional images were acquired using

T2∗-weighted EPI [slice thickness: 4 mm; 30 slices; TR (repeti-

tion time) = 2 s; TE (echo time) = 30 ms; FA (flip angle) =

90◦; matrix size: 64 × 64; FOV (field of view) = 200 mm].

Each functional run consisted of 205 functional volumes. For

registration, a T2-weighted matched-bandwidth high-resolution

anatomical scan (same slice prescription as EPI, but higher in-

plane resolution) was acquired in both of the two sessions.

Additionally, a magnetization-prepared rapid-acquisition gradi-

ent echo (MPRAGE) image was acquired for each participant

in the first session (TR = 2.3; TE = 2.1; FOV = 256 mm;

matrix size: 192 × 192; saggital plane; slice thickness = 1 mm; 160

slices).

PREPROCESSING

Preprocessing was performed using the FSL suite (http://www.

fmrib.ox.ac.uk/fsl/) (ver. 4.1.5). Brain extraction and motion cor-

rection were first performed for each of the functional runs.

Functional images were then spatially smoothed using 5-mm

full-width-half-maximum Gaussian kernel. For each functional

run, registration was performed through a non-linear 3-step

procedure implemented by FNIRT in FSL, whereby EPI images

were first registered to slice-matched high-resolution T1 struc-

tural image, then to the high resolution MPRAGE structural

image, and finally into 2 × 2 × 2-mm MNI standard space, using

linear affine transformations by 12 parameters and non-linear

displacement based on deformation fields.

UNIVARIATE ANALYSIS

Voxel-wise GLM analysis was performed with FSL using a three-

stage approach to implement a mixed effects model treating

participants as a random effect. Individual functional runs were

independently modeled at the first level. Four types of trial were

modeled as effects of interest (MR-SW, MR-RP, PL-SW, and PL-

RP). Each trial was coded by a delta function time-locked to the
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onset of the stimuli, convolved with the double-gamma canonical

hemodynamic response function (HRF). Response times (RT) of

individual trials were also included as a nuisance parametric mod-

ulation for each condition, convolved with the double-gamma

canonical HRF. The RTs were mean-subtracted within each of

the conditions before the convolution, and orthogonalized to the

main effects. This procedure was intended to minimize general

RT effect that occurred on trial-by-trial basis, but note that it

does not remove effects that are correlated with RT differences

between conditions. Six movement parameters were also included

as nuisance effects. Temporal derivatives were included for all

regressors.

Parameters were estimated using FILM after 64-s high-pass

temporal filtering. A second-level analysis was then performed

based on a fixed-effects model where all six functional runs

per session were combined within each individual participant.

Group-level statistics were then estimated based on t-tests for

effects of interest. Finally, group level z-statistic images were

thresholded using a uncorrected cluster-forming threshold of

Z > 2.3 and a whole-brain corrected extent threshold of p <

0.05 based on Gaussian Random Field theory. Peak MNI coor-

dinates above Z > 3.0 within the significant clusters are listed in

the tables; if there were multiple peaks within 15 mm, the most

significant was reported.

MULTIVARIATE PATTERN ANALYSIS

Preprocessing

The identical data set was used as in the univariate analysis. The

data were first realigned across the 12 functional runs (6 runs

each in pre- and post-training sessions) to correct head move-

ments during and across runs (whereas in the univariate analysis,

each run was realigned only to itself, and then separately nor-

malized to standard space). The reference volume was the mean

image of the middle volumes across the runs that were aligned

prior to the cross-run realignment. This procedure was intended

to consistently realign functional volumes across all runs, since

the MVPA analysis required combination of un-normalized

data across runs. No spatial smoothing was applied to the EPI

images.

The first-level analysis used the same GLM model as univariate

analysis. Parameters were estimated using FILM after 64-s high-

pass temporal filtering in native space without spatial smoothing.

This estimation provided voxel-wise Z-maps for MR-SW, MR-RP,

PL-SW, and PL-RP for each of the 12 functional runs (i.e., 6 pre-

and 6 post-training sessions). Similarly to the univariate analy-

sis, RT was modeled across the conditions in a separate analysis,

and we confirmed this coding didn’t change our main findings

significantly.

Classification

Binary classification was performed using a searchlight procedure

with a 3-voxel radius. A support vector machine with a linear ker-

nel, as implemented in LibSVM (Chang and Lin, 2011) through

PyMVPA (http://www.pymvpa.org/; Hanke et al., 2009), was used

to classify trial types. Leave-one-out cross-validation was applied

across the 6 functional runs in each session (pre- or post-training)

in order to obtain the predicted classification for each left-out

run. Training and test were performed within each of the pre- and

post-training sessions.

Test and training signal data were normalized (i.e., mean sub-

tracted out and then divided by standard deviation) within each

region of interest (i.e., searchlight) (Misaki et al., 2010). Effects

of the epsilon parameter in the SVM were evaluated by system-

atically testing the model with epsilon values from 0.0001 to 1

with by powers of 10; the results were consistent across these

parameter values, and the current study reports the results with

epsilon = 0.01.

Group analysis

Classification accuracy was contrasted between pre- and post-

training sessions across the whole brain at the group level.

This voxel-by-voxel subtraction was intended to test whether

the regional pattern information of the trial types was changed

through behavioral training on mirror reading. Accuracy maps

of classification were first registered into MNI standard space

using the same method as the univariate analysis for individual

participants. The transformation parameters were estimated by

FNIRT in FSL based on three-stage procedure as in the univariate

analysis. Then, registered maps from all participants were sub-

jected to a group-mean one-sample t-test based on permutation

methods implemented the randomize tool in FSL (5000 per-

mutations), and then thresholded using clusters determined by

Z > 2.3. Each cluster was inspected for significance at P < 0.05

corrected for multiple comparisons for whole brain using the

maximum statistic approach (Nichols and Holmes, 2002).

Empirical estimations of false positive rate

Because of potential bias in SVM results (c.f., Cohen et al., 2010;

Jimura and Poldrack, 2012), we used randomization testing to

estimate the distribution of classifier accuracy under the null

hypothesis of no association between brain activity and the vari-

able of interest. For each participant, trial condition labels were

randomly shuffled within individual functional runs, and then

the same SVM and group-level analysis was performed. This pro-

cedure was repeated 100 times. Then, group-level statistics from

100 randomizations were collected to test whether the identified

regions in the original multivariate pattern analysis were above

95 percentile. The reported clusters in Table 3 all satisfied this

criterion.

Because of the significant computational requirements of ran-

domization with whole-brain searchlight analyses (more than

8000 processing hours), we conducted the analysis on the Ranger

Linux Cluster (62976 computing cores) developed and main-

tained by Texas Advanced Computing Center (http://www.tacc.

utexas.edu/).

CONJUNCTION OF UNIVARIATE AND MULTIVARIATE PATTERN

ANALYSIS

A conjunction analysis was then performed in order to identify

common brain regions that showed univariate and multivariate-

pattern effects. In order to test for a significant conjunction

compared to the conjunction null hypothesis (Nichols et al.,

2005), binarized thresholded maps (P < 0.05 corrected for mul-

tiple comparisons for the whole brain) were multiplied in a
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voxel-wise manner between univariate analysis and MVPA and

clusters with 8 or more continuous voxels are reported.

In order to more directly compare the univariate and mul-

tivariate analyses, we also performed a “univariate searchlight”

analysis (Jimura and Poldrack, 2012). In this analysis, using the

identical dataset of the MVPA, the mean levels of activation were

calculated across voxels within identical searchlight space used in

MVPA. Then, the mean univariate effect of learning [e.g., (MR-

RP-PRE minus PL-RP-PRE) minus (MR-RP-POST minus PL-RP-

POST)] was collected from all participants. Finally, group-level

statistics were estimated to test if group effects were significant

using the same procedure as in the MVPA.

RESULTS

BEHAVIORAL RESULTS

In pre-training session, reaction times (RT) were modulated by

the task types (mirror and plain reading) and switch of the

tasks (switch and repeat trials) (Figure 2). A repeated measures

Two-Way analysis of variances (ANOVA) with task and switch

as factors revealed significant main effect of the task [F(1, 13) =

194.3, P < 0.001], and task switch [F(1, 13) = 28.1, P < 0.001],

with a marginally significant interaction effect [F(1, 13) = 3.64,

P = 0.07]. Post-hoc t-tests revealed significant switch costs (dif-

ferences between switch trials relative to repeat trials) in both of

the mirror- and plain-reading conditions [Mirror: t(13) = 3.46,

P < 0.01; Plain t(13) = 2.40, P < 0.05]. Further post-hoc t-tests

revealed significant main effects of the task (Mirror vs. Plain)

in both of the switch and repeat trials [Switch: t(13) = 10.9, P <

0.001; Repeat: t(13) = 12.5, P < 0.001]. These results suggest dis-

sociable RT modulations specific to mirror and plain reading,

as well as switch to these tasks. Accuracy was modulated by the

task [F(1, 13) = 10.2, P < 0.01], but not by the switch condition

[F(1, 13) = 0.14, P = 0.72].

Performance of the mirror-reading task increased across the

three training sessions, with decreased paragraph reading times

FIGURE 2 | Behavioral results. Mean reaction times and accuracy across

participants are plotted for pre-training (PRE) and post-training (POST)

sessions. Black-filled squares and triangles indicate mirror switch (MR/SW)

and plain switch (PL/SW) trials, respectively. Open squares and triangles

indicate mirror repeat (MR/RP) and plain repeat (PL/RP), respectively.

244.8, 181.0, and 157.2 s in the first, second, and third practice

sessions respectively [F(2, 26) = 16.3, P < 0.001].

This training on the mirror-reading task resulted in improved

performance on the judgment task for mirror-reversed items,

demonstrating a skill transfer from the training task. A Three-

Way repeated measures ANOVA on RTs with stimulus type (mir-

ror, plain), switching (switch, repeat), and training (pre-, post-) as

factors revealed significant interaction effects of training and task

[F(1, 13) = 12.6, P < 0.01], training and task switch [F(1, 13) =

5.97, P < 0.05], switch and task [F(1, 13) = 13.0, P < 0.01],

along with main effects of task [F(1, 13) = 120.5, P < 0.001] and

task switch [F(1, 13) = 82.9, P < 0.001]. Post-hoc repeated mea-

sures Two-Way ANOVAs on plain and mirror-reversed items

(with training and task switch as factors) showed a significant

main effect of training for mirror-reading [F(1, 13) = 7.34, P <

0.05] but no effect for plain reading [F(1, 13) = 0.59, P = 0.73],

demonstrating that the effects of training were specific to mirror-

reversed items. Accuracy of the mirror-reading task was improved

accordingly [F(1, 13) = 4.92, P < 0.05], although plain-reading

performance was unchanged [F(1, 13) = 0.02, P = 0.87].

IMAGING RESULTS

Univariate analysis

We first identified brain regions that were significantly acti-

vated during mirror reading relative to plain reading (Figure 3A).

These regions included broad cortical areas across the brain,

including inferior, middle, and superior frontal gyri, anterior

FIGURE 3 | Statistical significance maps for the contrasts Mirror-Repeat

minus Plain-Repeat (A), Mirror-Switch minus Mirror-Repeat (B), and

Plain-Switch minus Plain-Repeat (C) trials in the pre-training session

(P < 0.05 cluster size corrected). The color scale reflects statistical

significance as shown by the color bar to the bottom (above Z > 2.3

uncorrected). Maps are displayed as transverse sections and are overlaid on

the top of the standard anatomical image. The levels of sections are indicated

by the Z coordinates of MNI space. R, Right.
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insula, posterior and superior parietal cortices, and extrastri-

ate cortices bilaterally. The region also included subcortical

regions, including bilateral thalamus and caudate. These activa-

tions are consistent with prior studies of mirror reading using

blocked designs (Poldrack et al., 1998; Poldrack and Gabrieli,

2001).

Next, the effects of switching between plain and mirror read-

ing were explored. As shown in Figure 3B and Table 1, switching

from plain text to mirror reading resulted in significant increases

in activations in medial wall areas (pre-supplementary motor

area, posterior dorsal part of anterior cingulate cortex), superior

and posterior parietal cortices, and caudate, consistent with prior

studies of task switching (e.g., Kimberg et al., 2000; MacDonald

et al., 2000; Rushworth et al., 2002; Braver et al., 2003; Sakai

and Passingham, 2003, 2006; Crone et al., 2006; Kim et al., 2011,

2012). Additionally, robust effects were observed in left dorsal

striatum (putamen) and bilateral temporo-parietal junctions, the

regions less common to conventional task switching paradigms

(Figure 3B and Table 1). In contrast, switching from mirror-

reading to plain reading showed increased activations in inferior

frontal junctions and posterior and superior parietal cortices

(Figure 3C and Table 1), regions commonly reported in previous

literature of task switching (e.g., Dove et al., 2000; Kimberg et al.,

2000; MacDonald et al., 2000; Braver et al., 2003; Koechlin et al.,

2003; Sakai and Passingham, 2003, 2006; Brass and von Cramon,

2004; Crone et al., 2006; Jimura and Braver, 2009; Kim et al., 2011,

2012). Interesting, there was no overlap between regions engaged

by switching from mirror-reading and those engaged by switching

to mirror-reading.

Table 1 | Brain regions showing significant activations during switch

trials relative to repeat trials in pre-training session.

Contrast Region x y z z-values

MR-SW vs. Right temporo-parietal junction 52 −32 22 3.80

MR-RP Anterior cingulate 4 −12 30 3.53

Right superior parietal 14 −54 62 3.38

Posterior cingulate 8 −40 24 3.35

Anterior cingulate/medial prefrontal 4 4 38 3.31

Left temporo-parietal junction −54 −40 32 3.25

Left putamen −20 4 −12 3.23

Left caudate −8 4 8 3.19

Right temporo-parietal junction 64 −34 12 3.15

Posterior cingulate −12 −32 38 3.14

Pre-supplementary motor area −4 −4 50 3.12

Superior temporal −60 −26 8 3.12

Right pre-central gyrus 50 −16 36 3.11

PL-SW vs. Lingual gyrus 6 −68 8 3.53

PL-RP Right superior parietal 36 −58 52 3.46

Right posterior parietal 36 −52 38 3.37

Right inferior frontal junction 48 8 32 3.25

Lingual gyrus −12 −82 2 3.21

Right superior frontal 40 2 56 3.16

The regions are listed in the order of z-value. MR-SW, mirror switch; MR-RP,

mirror repeat; PL-SW, plain switch; PL-RP, plain repeat.

Training effects of mirror reading were examined by com-

paring pre-training and post-training activation. As shown

in Figure 4A and Table 2, multiple frontal, parietal, tempo-

ral regions showed decreased activation in the post-training

session relative to pre-training session, consistent with prior work

FIGURE 4 | Statistical significance maps for training-related decreases

in the contrasts Mirror-Repeat minus Plain-Repeat (A) and

Mirror-Switch minus Mirror-Repeat (B) (P < 0.05 cluster size

corrected). The formats are similar to those in Figure 3.

Table 2 | Brain regions showing significant univariate activation

decrease after behavioral training.

Contrast Region x y z z-value

MR-RP vs. PL-RP Left extrastriate −42 −70 −8 4.19

Right posterior parietal 34 −70 38 4.12

Right extrastriate 48 −54 −14 3.98

Right superior parietal 28 −58 52 3.89

Left superior parietal −34 −62 60 3.85

Left posterior parietal −12 −78 52 3.82

Right lateral occipital 38 −82 10 3.77

Right superior frontal 32 0 60 3.74

Left inferior frontal −46 6 30 3.69

Left posterior parietal −30 −52 46 3.62

Left posterior parietal −24 −68 48 3.58

Left posterior parietal −26 −84 36 3.57

Left superior parietal 12 −72 50 3.54

Left intra-parietal sulcus −40 −38 36 3.53

Left lateral occipital −32 −88 12 3.50

Right superior frontal 24 2 46 3.46

Right extrastriate 54 −72 −2 3.45

Right superior parietal 42 −44 50 3.45

Right extrastriate 36 −92 −2 3.43

Left lateral occipital −28 −82 20 3.29

Left posterior parietal −24 −66 32 3.24

Right extrastriate 46 −80 −18 3.12

MR-SW vs. MR-RP Left putamen −22 6 −10 3.24

The regions are listed in the order of z-value. MR-SW, mirror switch; MR-RP,

mirror repeat; PL-RP, plain repeat.
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(Poldrack et al., 1998; Poldrack and Gabrieli, 2001). There were

no regions that showed increased activity from pre-training to

post-training.

We also examined how training altered the neural activity

associated with task switching. A focal region in dorsal stria-

tum (putamen) showed a significant decrease in switching-related

activity between pre- and post-training (Figure 4B and Table 2).

It is important that this dorsal striatum region also activated

in the mirror-switch trial in the pre-training session (Figure 3B

and Table 1), suggesting a training-related decrease in activation

specific to switching to mirror reading. There were no training-

related activation changes for switching to plain reading from

mirror reading.

MULTIVARIATE PATTERN ANALYSIS

We then examined whether pattern information associated with

the mirror-reading task changed with training. A searchlight

multivariate pattern analysis (MVPA) was first performed for

MR-RP and PL-RP trials within each of the sessions (see also

Methods). As shown in Figure 5A, most gray-matter regions

across the brain showed significant above-chance classification

performance in the pre-training session. In the post-training ses-

sion, many brain regions still showed significant accuracy, but the

extent of voxels showing significant classification was decreased

(Figure 5B). This decrease was significant in a direct comparison

between pre- and post-training, primarily in frontal and parietal

cortices (Figure 5C and Table 3). No regions showed increased

classification accuracy from pre- to post-training. These results

indicate that even after training broad areas still maintain regional

pattern information that can discriminate mirror reading and

FIGURE 5 | Statistical significance maps for searchlight MVPA for

Mirror-Repeat vs. Plain-Repeat trials (P < 0.05 cluster size corrected).

(A) Pre-training session. (B) Post-training session. (C) The difference in

classification accuracy between pre- and post-training session. Cool color

indicates decreased accuracy in post-training session. The formats are

similar to those in Figures 3, 4.

plain reading, but the amount of information decreased in fronto-

parietal regions.

We also examined classification of switch vs. non-switch trials.

As shown in Figure 6A, brain regions showed significant classi-

fication accuracy for mirror reading switch trials (i.e., MR-SW

and MR-RP) in the pre-training session. The extent of classifi-

cation accuracy was visually reduced in the post-training session

(Figure 6B), but the difference was not significant by direct

comparisons (Figure 6C). Switching to plain reading from mir-

ror reading also revealed smaller regions in the pre-training

session (Figure 7A). However, even lesser region showed signif-

icant effects in the post-training session (Figure 7B). Indeed, the

training-related comparison of classification accuracy did reveal

right fronto-temporal and left fronto-parietal regions showing

significant decrease in classification accuracy in the post-training

session (Figure 7C and Table 3).

In order to identify common signals between univariate and

MVPA analyses, we performed a conjunction analysis. Fronto-

parietal regions showed significant decreases in both pattern

information and univariate activation for mirror reading (i.e.,

MR-RP vs. PL-RP; conjunction of Figures 4A, 5C). The regions

included inferior frontal junction and posterior parietal cortex in

the left hemisphere (Figure 8 and Table 4). Thus, in these regions

the training of mirror reading decreased both local univariate

Table 3 | Brain regions that showed significant decrease in

classification performance in MVPA after behavioral training.

Contrast Region x y z z-value

MR-RP vs. PL-RP Left lateral occipitotemporal −32 −46 20 4.81

Right superior frontal 14 52 40 4.80

Pre-cuneus −4 −46 36 4.61

Left post-central gyrus −48 −22 52 4.52

Medial orbital cortex 18 28 −22 4.49

Pre-central gyrus −6 −30 68 4.40

Right inferior frontal 44 34 6 4.36

Left supramarginal gyrus −52 −26 30 4.32

Left superior frontal −20 34 54 4.10

Left posterior parietal −42 −50 48 4.06

Left anterior insula −34 28 4 4.03

Medial pre-frontal 0 50 34 3.87

PL-SW vs. PL-RP Left pre-central sulcus −62 2 34 4.56

Left central sulcus −54 −22 26 4.56

Left anterior temporal −46 −6 −28 4.38

Left posterior parietal −46 −38 48 4.32

Right inferior temporal 60 −4 −26 3.93

Right inferior temporal 24 0 −42 3.90

Right ventral pre-frontal 52 28 −8 3.80

Right anterior insula 44 2 −8 3.79

Left inferior pre-frontal −58 −2 16 3.79

Right inferior pre-frontal 50 18 24 3.67

Right anterior insula 20 26 −6 3.65

Left posterior parietal −38 −60 40 3.63

The regions are listed in the order of z-value. MR-RP, mirror repeat; PL-RP, plain

repeat; PL-SW, plain switch.
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FIGURE 6 | Statistical significance maps for searchlight MVPA for

Mirror-Switch vs. Mirror-Repeat trials (P < 0.05 cluster size corrected).

(A) Pre-training session. (B) Post-training session. (C) The difference in

classification accuracy between pre- and post-training session. The formats

are similar to those in Figure 5.

FIGURE 7 | Statistical significance maps for searchlight MVPA for

Plain-Switch vs. Plain-Repeat trials (P < 0.05 cluster size corrected).

(A) Pre-training session. (B) Post-training session. (C) The difference in

classification accuracy between pre- and post-training session. The formats

are similar to those in Figures 5, 6.

activity and discriminable voxel pattern information in MR-RP

and PL-RP trials. Because the spatial characteristics were different

between the two analyses, we performed a follow-up “search-

light univariate analysis” in which the same spatial exploration

FIGURE 8 | Conjunction maps of the univariate analysis and MVPA for

the contrast Mirror-Repeat vs. Plain-Repeat.

Table 4 | Brain regions that showed conjunction effects of decreasing

univariate activity and classification performance.

Contrast Region x y z Cluster

extent

MR-RP vs. Left supramarginal gyrus −39.5 −42.9 39.5 160

PL-RP Left inferior frontal junction −42.5 9.5 29.7 80

Superior parietal −28.1 −55.0 46.1 20

The regions are listed in the order of cluster extent size (voxel). MR-RP, mirror

repeat; PL-RP, plain repeat.

was used as in MVPA (see also Methods; Jimura and Poldrack,

2012). This analysis confirmed this conjunction effect in the infe-

rior frontal junction and posterior parietal cortex, ensuring that

the current conjunction effects may not be attributable to differ-

ent spatial characteristics between the standard univariate analysis

and MVPA.

DISCUSSION

The current study examined task switching in the context of

acquisition of novel visuospatial skill. Training on the mirror-

reading task led to decreased response times as well as decreased

cost of switching from plain reading to the mirror-reading task.

Neurally there was a widespread decrease in both activation

and pattern information from pre-training to post-training for

mirror-reversed compared to plain text items; no significant

increases were observed. Non-overlapping patterns of switching-

related activation were seen for the mirror-reading and plain-text

tasks; learning was associated with decreased switching-related

activation for mirror-reversed trials in the putamen, and for

decreased switching-related pattern information in right pre-

frontal and left parietal regions. A conjunction of activation and

MVPA analyses showed joint effects of training on activation and

information in the inferior frontal junction and posterior parietal

cortex, highlighting the consistency of these changes.

While previous work has examined the behavioral effects

of switching between tasks that differ in difficulty (Yeung and

Monsell, 2003), the degree to which they involve different neu-

ral systems has been unknown. The present results demonstrate

that switching from an easy task to a difficult task is associated

with a very different pattern of activation compared to switching
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from a difficult task to an easy task, and that these patterns are

modulated by training. Switching from mirror reading to plain

text was associated with activations in the inferior frontal junc-

tion (IFJ) and posterior parietal cortex; the IFJ in particular has

been implicated in the updating of task representations (Brass

and von Cramon, 2004; Derrfuss et al., 2004), which would be

necessary when switching from the difficult task to the easy task.

Conversely, switching from plain text to mirror-reading engaged

a large set of regions in the medial wall (including anterior cin-

gulate and pre-SMA) along with the striatum and right parietal

cortex. We propose that these regions register the need to switch

from the highly-practiced task and exert the control necessary to

engage the novel task set.

Previous work (Poldrack et al., 1998; Poldrack and Gabrieli,

2001) demonstrated increased activation in the inferior tempo-

ral cortex associated with training on the mirror-reading task,

whereas no increases in activation or pattern information were

observed in the present study. While this may reflect a lack of

power, it could also reflect differences in the training proce-

dures used in the studies. In the previous studies, subjects trained

on the same mirror-reading task used during scanning (lexi-

cal decision), whereas in the present study subjects performed a

living-non-living task in the scanner while the training involved

reading of paragraphs of mirror-reversed text. The behavioral

improvements observed in this study show that the paragraph

training procedure was effective at improving mirror-reading

skill on the task used during scanning, but it may be the case

that increases in activation (at least for the amount of train-

ing in this study) require greater overlap of training and test

tasks. Given the substantial current interest in the generaliza-

tion of training, this could be a fruitful avenue for further

exploration.

While many previous studies have used univariate activa-

tion analyses to examine learning-related changes, we are not

aware of any that have used MVPA approaches to examine how

pattern-information changes with learning of cognitive skills.

The present analyses suggest that pattern-information analyses

are much more sensitive to task-related differences as well as

to learning-related changes, compared to univariate approaches.

This is consistent with the results of previous analyses showing

substantially greater sensitivity of MVPA approaches (Jimura and

Poldrack, 2012). The source of these differences remains unclear.

In the present MVPA analyses, the mean activation across the

searchlight was removed in order to focus on distributed pattern

information. However, recent work (Davis et al., 2014) has shown

that such analyses may still be sensitive to univariate activation

effects when those effects vary across voxels within a searchlight,

which is highly likely to occur. Thus, we are reticent to make

strong claims that the different between MVPA and univariate

signals are reflective of different aspects of neural or cognitive

function.
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