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■ Abstract A complete understanding of sensory and motor processing requires
characterization of how the nervous system processes time in the range of tens to
hundreds of milliseconds (ms). Temporal processing on this scale is required for simple
sensory problems, such as interval, duration, and motion discrimination, as well as
complex forms of sensory processing, such as speech recognition. Timing is also
required for a wide range of motor tasks from eyelid conditioning to playing the piano.
Here we review the behavioral, electrophysiological, and theoretical literature on the
neural basis of temporal processing. These data suggest that temporal processing is
likely to be distributed among different structures, rather than relying on a centralized
timing area, as has been suggested in internal clock models. We also discuss whether
temporal processing relies on specialized neural mechanisms, which perform temporal
computations independent of spatial ones. We suggest that, given the intricate link
between temporal and spatial information in most sensory and motor tasks, timing and
spatial processing are intrinsic properties of neural function, and specialized timing
mechanisms such as delay lines, oscillators, or a spectrum of different time constants
are not required. Rather temporal processing may rely on state-dependent changes in
network dynamics.

INTRODUCTION

In his chapter “The Problem of Serial Order in Behavior,” Karl Lashley (1951)

was among the first neurophysiologists to broach the issue of temporal processing.

Temporal integration is not found exclusively in language; the coordination of

leg movements in insects, the song of birds, the control of trotting and pacing

in a gaited horse, the rat running the maze, the architect designing a house,

and the carpenter sawing a board present a problem of sequences of action

which cannot be explained in terms of succession of external stimuli.

Lashley emphasized the inherently temporal nature of our environment. He

explains that without an understanding of the neural mechanisms underlying our
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ability to process the order, interval, and duration of sensory and motor events,

it is not possible to gain insight into how the brain processes complex real-world

stimuli.

All sensory and motor processing ultimately relies on spatial-temporal pat-

terns of action potentials. For the purpose of this review it is useful to draw clear

distinctions between spatial and temporal processing. We use the former term to

refer to the processing of stimuli defined by which sensory neurons are activated.

For example, in the visual domain the orientation of a bar of light can be deter-

mined based on a static snapshot of active retinal ganglion neurons. Similarly,

the discrimination of the pitch of two high-frequency tones (that activate different

populations of hair cells in the cochlea), or the color of a bar of light, or the position

of a needle prick to the skin, can be discriminated solely upon the spatial patterns

of activation, that is, by which afferent fibers are active. In contrast, other stimuli,

such as the duration of a flashed bar of light or the interval between two tones,

cannot be characterized by a snapshot of neural activity. These stimuli require

the nervous system to process the temporal pattern of incoming action potentials.

We refer to the analysis of these stimuli as temporal processing. In contrast to these

simple examples, most sensory stimuli are not purely spatial or temporal but, like

speech and motion processing, require analysis of the spatial-temporal patterns of

activity produced at the sensory layers.

In the 50 years since Lashley’s chapter, much progress has been made on under-

standing the neural basis of sensory and motor processing; however, much of this

progress has been made regarding the spatial components of processing. Hebb’s

postulate, published two years before Lashley’s chapter on temporal integration,

plays a fundamental role in our understanding of spatial processing. Hebbian or

associative synaptic plasticity presents a means by which neurons can develop

selectivity to spatial input patterns, and it provides the underlying basis for the

emergence of self-organizing maps (e.g., von der Malsburg 1973, Bienenstock

et al. 1982, Miller et al. 1989, Buonomano & Merzenich 1998a). In contrast, as-

sociative plasticity alone cannot underlie the discrimination of a 100- or 125-ms

presentation of a vertical bar or a 2-kHz tone.

Here we review the behavioral, electrophysiological, and theoretical data on

temporal processing. We first define the different timescales over which the brain

processes information and then focus on temporal processing in the range of a few

milliseconds (ms) up to a second.

SCALES AND TYPES OF TEMPORAL PROCESSING

The terms temporal processing, temporal integration, and timing are used to de-

scribe a number of different phenomena. One source of ambiguity is that these

terms are used to refer to a wide range of timescales over which animals pro-

cess time or generate timed responses. This range spans at least 12 orders of

magnitude—from microseconds to circadian rhythms. Based on the relevant

timescales and the presumed underlying neural mechanisms, we categorize

A
n
n
u
. 
R

ev
. 
N

eu
ro

sc
i.

 2
0
0
4
.2

7
:3

0
7
-3

4
0
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 U

n
iv

er
si

ty
 o

f 
M

in
n
es

o
ta

- 
L

aw
 L

ib
ra

ry
 o

n
 0

2
/1

4
/0

7
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



TEMPORAL PROCESSING 309

Figure 1 Timescales of temporal processing. Humans process temporal information over

a scale of at least 12 orders of magnitude. On one extreme we detect the delay required for

sound to travel from one ear to the other. These delays are on the order of tens to hundreds

of microseconds. On the other extreme, we exhibit daily physiological oscillations, such

as our sleep-wake cycle. These circadian rhythms are controlled by molecular/biochemical

oscillators. Temporal processing on the scale of tens and hundreds of ms is probably the

most sophisticated and complex form of temporal processing and is fundamental for speech

processing and fine motor coordination. Time estimation refers to processing in the range of

seconds and minutes and is generally seen as the conscious perception of time.

temporal processing into four different time scales (Figure 1): microseconds (Carr

1993, Covey & Casseday 1999), milliseconds (Buonomano & Karmarkar 2002),

seconds (Gibbon et al. 1997), and circadian rhythms (King & Takahashi 2000).

These general classes are not meant to represent purely nonoverlapping types of

processing or indivisible categories. Rather, they probably reflect the minimal set
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of categories that serve different functions and rely on different mechanisms yet,

nevertheless, exhibit significant overlap. Although there are numerous issues of

interest at all these scales, here we focus on temporal processing on the scale of

tens to hundreds of ms.

Temporal Processing Versus Temporal Coding

Another important distinction and source of confusion is the difference between

temporal coding and temporal processing (Figure 2). We refer to temporal pro-

cessing as the decoding of temporal information or the generation of timed motor

responses. In its simplest form, temporal processing may consist of neurons that

respond selectively to the interval between two events. By definition, to process

temporal information, one must start with spike patterns in which information is en-

coded in the temporal domain. In the sensory domain we focus on cases in which

the temporally encoded information arises directly from external stimuli (e.g.,

duration discrimination, Morse code, rhythm perception, etc.). In addition to these

external temporal codes, theoretical and experimental data suggest that temporal

Figure 2 Temporal processing and temporal coding. (Upper panel) Temporal processing

refers to decoding of temporal information arriving from environmental stimuli such as music

(left). A stimulus such as a piece of music will generate temporal patterns of action potentials

that follow the beat of the music (middle). These action potential patterns must be decoded in

order to decide whether the stimulus was played at a fast or slow tempo (right). (Lower panel)

Spatial stimuli such as a statically flashed image of a letter (left) generate spatial patterns

of action potentials. Even in response to a rapid spatial stimulus, all neurons will not fire in

synchrony, and it is possible that temporal codes for spatial stimuli may be generated at early

states of sensory processing (middle). In principle, this temporal encoding of spatial stimuli

might be used by the brain for stimulus processing. However, the temporal code would also

have to be decoded (right) as with stimuli that are inherently temporal in nature.
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codes may also be internally generated. That is, static or steady-state stimuli may

be partially encoded in the temporal patterns of spikes (e.g., Richmond et al. 1990,

McClurkin et al. 1991, Middlebrooks et al. 1994, Laurent et al. 1996, Rieke et al.

1996, Mechler et al. 1998, Prut et al. 1998). For example, by taking into account

the temporal structure of neuronal responses to static Walsh patterns there is more

information about the stimuli than there is in the firing rate alone (McClurkin et al.

1991). Mechler et al. (1998) have shown that there is significant information about

the contrast of transient stimuli in the temporal pattern of V1 neuron firing. Inter-

nally generated temporal codes may provide a means to increase the bandwidth

(Rieke et al. 1996) or to perform computations such as invariant pattern recognition

(Buonomano & Merzenich 1999, Wyss et al. 2003).

Although the studies above suggest that in some cases there is information in

the temporal pattern of action potentials generated internally, there are few data

showing that the brain uses this information (see, however, Stopfer et al. 1997).

If internal temporal codes are generated by the brain, they must be decoded or

processed, like the external temporal patterns discussed here.

SENSORY TIMING

Temporal information in the range of tens to hundreds of ms is fundamental to

many forms of sensory processing. Motion processing is a ubiquitous example in

the auditory, somatosensory, and visual domains of a task that requires temporal

information. However, it is arguably in the auditory domain that timing is most

prominent, owing to its importance in vocalization and speech recognition.

A good example of the ability of the auditory system to process temporal

signals is Morse code, in which language is reduced to temporal code. First, Morse

code requires discriminating the duration of single tones (short versus long) and

the interval between them (element, letter, and word pauses). Second, it requires

perception of a sequence of tones, which represent auditory objects (letters and

words). Third, the timing of the stimuli is not absolute but rather a function of

the speed of transmission. At 15 words per minute (wpm), each dot and dash and

interelement and intercharacter pause are 80, 240, 80, and 240 ms, respectively.

Experts can understand Morse code at rates of 40–80 wpm; at 40 wpm the above

elements’ values are 30, 90, 30, and 90 ms, respectively. Thus, Morse code requires

discrimination of continuous streams of sounds and discrimination of the duration,

interval, number, and sequence of elements, as well as temporal invariance. The

complexity of this analysis provides an example of the sophistication of temporal

processing on the timescale of tens to hundreds of ms.

Speech Recognition

To nonexperts, Morse code at high speed sounds much like noise, and considerable

training is required to understand it. However, in many ways it is a simpler task

than speech recognition, which shares much of the temporal richness of Morse

code but exhibits additional features such as prosody, spectral information, and
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speaker-specific recognition. During continuous speech, syllables are generated

every 200–400 ms. The sequential arrangement of syllables is important in speech

recognition (e.g., “la-dy” × “de-lay”). The pauses between syllables or words

are also critical for parsing, as in “black bird” × “blackbird,” or for example, the

ambiguity in the mondegreen “kiss the sky” × “kiss this guy” can be decreased

by longer interword intervals. The temporal structure within each syllable and

phoneme also contributes to speech recognition. Specifically, temporal features

are fundamental for phoneme discrimination. These features include voice-onset

time (the time between air release and vocal cord vibration), which contributes

to the “ba” × “pa” discrimination (Lisker & Abramson 1964), the duration of

frequency transitions (e.g., “ba” × “wa”; Liberman et al. 1956), and the silent

time between consonants and vowels (e.g., “sa” × “sta”; Dorman et al. 1979).

Additionally, prosodic cues such as pauses and duration of speech segments are

used to determine semantic content (Lehiste et al. 1976).

Owing to the multiple levels and scales of temporal information in addition to

spatial information, speech is one of the most complex forms of pattern recognition

and requires both spatial and temporal processing (Shannon et al. 1995, Tallal 1994,

Doupe & Kuhl 1999). Various lines of evidence have revealed the degree to which

speech recognition relies on temporal information. Indeed, in some cases it can

rely primarily on the temporal structure. For example, experiments with cochlear

implants show it is possible to achieve good levels of speech comprehension with

2–4 electrodes (Dorman et al. 1989, Dorman et al. 1997). Additionally, Shannon

et al. (1995) showed that speech recognition could be achieved with relatively

little spectral information. Near-perfect recognition of vowels, consonants, and

sentences was observed with four broad spectral bands, and significant recognition

of consonants and vowels was seen with a single band, in which only temporal

and amplitude information was available.

Given the importance of temporal information in speech and language it would

be expected that deficits in temporal processing would produce language deficits.

Indeed, it has been suggested that certain forms of language-based learning dis-

abilities may be caused by generalized sensory deficits in temporal processing

(Livingstone et al. 1991, Eden et al. 1996, Tallal & Piercy 1973; for a review see

Farmer & Klein 1995). However, even if some forms of language-based learning

disabilities result from generalized sensory deficits, it is not yet clear whether those

deficits are specific to timing or to more general features such as complex stimuli

or rapidly changing stimuli.

MOTOR TIMING

Because movements involve changes in muscle length over time, motor control and

timing are inextricably related. Most movements involve the coordinated activation

of agonist muscles to initiate motion and antagonist muscles as a brake. These

activations require accurate timing on the order of tens of ms. Indeed, pathologies
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that disrupt the timing between agonist and antagonist actions lead to dysmetric or

inaccurate movements. Lesions of the cerebellum, for example, tend to delay the

activation of antagonist muscles, which causes movements to be hypermetric or to

overshoot (e.g., Hore et al. 1991). Cerebellar patients often display oscillating-like

tremors during movements as they make a series of overshoots and corrections. A

recent study shows that for saccade eye movements, which also involve agonist

muscles to initiate and antagonist muscles to brake, the activity of populations

of cerebellar Purkinje cells precisely encodes the onset and offset of a saccade

(Thier et al. 2000). Motor control represents a clear example of an inherently

timing-intensive computation in the range of tens to hundreds of ms.

Numerous studies focusing on timing have made use of repetitive movements

as their readout. In particular, Keele, Ivry, and others have used such movements

as rhythmic tapping of the finger to pursue the hypothesis that the cerebellum is

a general-purpose timer in the tens-to-hundreds-of-ms range (e.g., Ivry & Keele

1989). In the prototypical experiment, subjects are first asked to tap their finger in

time with a metronome (say at 400-ms intervals). After a brief training period, the

subject continues tapping without the metronome. The main dependent measure

is variability in the intertap intervals. This and similar paradigms have been used

as screens to find brain regions for which damage disturbs the timing of the taps.

These and related findings are discussed in more detail below in the section on the

cerebellum.

Timed Conditioned Responses

One of the more experimentally tractable forms of motor timing is seen in the

precise learned timing of classically conditioned eyelid responses. In a typical

eyelid-conditioning experiment, training consists of repeated presentation of a

tone paired with a reinforcing stimulus such as an air puff directed at the eye.

Over the course of 100–200 of such trials the animals acquire conditioned eyelid

responses: The eyelids close in response to the tone (Figure 3a). The time interval

between the onsets of the tone and the puff influences the nature of this learning

(Figure 3b). Conditioned responses are acquired only when the tone onset precedes

the puff by at least 100 ms and by less than ∼3 s. Within this range, the timing

of the conditioned responses is also affected by the tone-puff time interval. Short

intervals promote the learning of responses with short latencies to onset and fast

rise times. As the interval increases, the learned responses have longer latencies to

onset and slower rise times. The result is that, in general, the responses peak near

the time at which the puff is presented.

Several studies have demonstrated that these responses are a genuine example

of timing and exclude the previously generally accepted alternative that response

timing derives from response strength. For example, Millenson et al. (1977) and

Mauk & Ruiz (1992) trained animals by presenting the puff on alternate trials

at two different times during the tone. The responses the animals learn have two

peaks, each corresponding to one of the times at which the puff was presented.
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PSYCHOPHYSICAL STUDIES

The predominate working hypothesis in the psychophysical literature has been a

centralized internal clock model (Creelman 1962, Treisman 1963; for a review see

Allan 1979), in which an oscillator beating at a fixed frequency generates tics that

are detected by a counter. These models often assume that timing is centralized,

that is, the brain uses the same circuitry to determine the duration of an auditory

tone and for the duration of a visual flash. The alternate view is that timing is

distributed, meaning that many brain areas are capable of temporal processing

and that the area or areas involved depend on the task and modality being used.

In addition to the question of centralized versus distributed mechanisms, there

is the issue of timescale specificity. A universal clock (of which there could be

a single instantiation or multiple instantiations) could be the sole timing mecha-

nism for all intervals/durations, or there could be a set of dedicated circuits, each

specific to given lengths of time (referred to as interval-based mechanisms; Ivry

1996).

Interval and Duration Discrimination

The best-studied temporal tasks in humans are interval and duration discrimination

(Divenyi & Danner 1977, Getty 1975, Wright et al. 1997). In a typical interval dis-

crimination task two brief tones separated by a standard interval (T, e.g., 100 ms)

or longer interval (T + �T) are presented to the subject. The presentation order

of the short and long intervals is randomized. The subject may be asked to make a

judgment as to whether the longer interval was the first or second. �T can be varied

adaptively to estimate the interval discrimination threshold. Duration discrimina-

tion tasks are similar, except each stimulus is a continuous tone (filled interval).

The relationship between the threshold and the standard interval constrains

the underlying mechanisms. Figure 4 shows the relationship between threshold

and the standard interval for a compilation of interval and duration discrimination

studies in the range of tens of ms to one second. In untrained subjects the threshold

for a 100-ms standard interval is ∼20 ms (Weber fraction of 20%). Note that

although in absolute terms the threshold increases with increasing intervals, the

Weber fraction (threshold/standard interval) decreases for short intervals (50 to

200 ms). For intervals from 200 to 1000 ms, the Weber fraction is fairly constant,

perhaps suggesting that different neural mechanisms are responsible for interval

discrimination at these intervals.

INTERMODAL TIMING Psychophysical studies have attempted to address the is-

sue of centralized versus distributed timing by comparing performance on intra-

versus intermodal tasks. In the intermodal tasks a standard interval may be de-

marcated by a tone at 0 ms and a flash of light at 100 ms. Performance on the

intermodal condition is then compared to pure auditory and visual discrimination.

The first observation that comes from these studies is that interval discrimination
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in the auditory modality is better then that in the visual modality (Rousseau et al.

1983, Grondin & Rosseau 1991). Additionally, these studies show that interval dis-

crimination between modalities is significantly worse than that within modalities

(Rousseau et al. 1983, Grondin & Rousseau 1991, Westheimer 1999). Specifically

for standard intervals in the range of 100–250 ms, the threshold for tone-light

discrimination can be 50%–300% worse than for light-light discriminations. In-

terestingly, Rousseau et al. (1983) showed that intermodal discrimination was

significantly more effected for a 250-ms interval as compared to a 1-s interval.

Within a modality, changing stimulus features also decreases performance. If the

first tone is played at 1 kHz and the second tone is played at 4 kHz, interval dis-

crimination is significantly worse than if both tones were played at the same pitch

(Divenyi & Danner 1977).

These data are consistent with the notion of distributed timers. Specifically,

because the stimulus features that delimit the interval in a cross-modality task

are arriving at different timers, performance is decreased. However, an alternative

explanation is that timing is still centralized, but intermodal timing is simply a more

difficult task because it requires a shift of attention from one modality to the other.

Psychopharmacology of Temporal Processing

On the timescale of seconds, dopamine antagonists produce temporal overshoot,

and stimulants such as methamphetamine produce temporal undershoot (for a re-

view see Meck 1996). On the timescale of a second and below, Rammsayer (1999)

has shown in human psychophysical experiments that the dopaminergic antago-

nist, haloperidol, significantly impaired discrimination thresholds for 100-ms and

1-s intervals. Remoxipride, a dopamine antagonist more selective for D2 recep-

tors, impaired processing on the scale of a second but not for a 50-ms interval

(Rammsayer 1997). Experiments with benzodiazepines also support the dissocia-

tion between millisecond and second processing by showing that performance in a

50- or 100-ms task is unaffected, whereas performance in a 1-s task is significantly

worse (Rammsayer 1992, 1999). Together these results show that two distinct drug

classes (dopaminergic antagonists and benzodiazepines) can selectively interfere

with second but not with millisecond processing. Future experiments will be nec-

essary to determine whether the above results are due to direct action on a timing

mechanism or to more nonspecific actions on arousal and/or cognition.

Interval Discrimination Learning

Can temporal resolution improve with practice? One of the first studies on this

issue reported no perceptual learning (Rammsayer 1994). In this study, subjects

were trained on 50-ms intervals for 10 min a day for 4 weeks. Subsequent studies

revealed robust learning with training (Wright et al. 1997, Nagarajan et al. 1998,

Karmarkar & Buonomano 2003). In these studies subjects were generally trained

for an hour a day (400–800 trials) for 10 days.
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GENERALIZATION OF INTERVAL DISCRIMINATION The perceptual learning studies,

in addition to suggesting that the neural mechanisms underlying timing can be

fine-tuned with experience, provide a means to examine the issue of central versus

distributed timing. We can ask, after training on 100-ms intervals using 1-kHz

tones, if performance improves for different intervals and frequencies.

Generalization studies reveal that interval discrimination learning is specific

to the temporal domain, and generalization occurs in the spatial domain (Wright

et al. 1997, Nagarajan et al. 1998, Westheimer 1999, Karmarkar & Buonomano

2003). Figure 5 shows the results from a study in which subjects were trained on

a 100-ms–1-kHz interval discrimination task. Subjects were pre- and posttested

on conditions that varied across the temporal and spatial domain: 100-ms–4-kHz,

200-ms–1-kHz, and a 100-ms–1-kHz continuous tone condition. Generalization

to the 100-ms–4-kHz tone was virtually complete, and there was no generalization

to the 200-ms interval. This eliminates the possibility that learning was due to a

nonspecific improvement such as task familiarization.

Interval learning has also been reported to generalize across modalities.

Nagarajan et al. (1998) show that training on a somatosensory task can produce

Figure 5 Generalization of interval discrimination learning. A group of 10 subjects

underwent training on a 100-ms–1-kHz interval discrimination task. After 10 days

of training (an hour a day), they exhibited significant learning (left bars). Pre- and

posttests on 3 different conditions revealed generalization to the same interval played

at a different frequency, as well as to the duration discrimination task (continuous tone)

at the same absolute time (100 ms). However, no generalization to novel intervals was

observed. Modified from Karmarkar & Buonomano 2003.
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improvement on an auditory interval discrimination task similar to the interval

used for somatosensory training. Even more surprising, training on an auditory

task appears to result in an interval-specific improvement in a motor task requiring

that the subjects tap their fingers to mark specific intervals (Meegan et al. 2000).

The simplest interpretation of these data is that centralized circuits exist for

each interval, and with training, either the temporal accuracy or the downstream

processing of these circuits undergoes plasticity. In this interpretation, timing is

centralized but interval based. However, it is possible that in these tasks learn-

ing occurs as a result of interval-specific cognitive processes other than tempo-

ral processing per se. For example, because interval discrimination tasks require

comparing the test interval and a standard interval, improvement could rely on

better representation of the standard interval or improved storage or retrieval from

working or short-term memory. Such alternative explanations would be consistent

with the generalization across different stimulus markers and modalities, as well as

the lack of generalization to novel intervals. Alternatively, it could be argued that,

although many circuits are capable of temporal processing, the relatively simple

nature of these temporal tasks allows the brain to use multimodal pathways and a

single timing circuit.

TEMPORAL SELECTIVITY AND ANATOMICAL
LOCALIZATION

A fundamental step in understanding the neural basis of temporal processing is

finding neurons that are selective to the temporal features of sensory stimuli or

responsible for the generation of timed motor responses. To date, interval, duration,

or temporal-combination sensitive neurons have been described in a variety of

different systems. These findings range from simple interval or duration-sensitive

cells in bats and amphibians to more complex temporal-combination sensitive cells

involved in song-selectivity in birds. Below we examine the electrophysiological

and anatomical data that address the potential mechanisms and location of temporal

processing. We believe that the range of tasks and behaviors that rely on tempo-

ral processing, and the number of areas putatively involved, suggest that temporal

processing is distributed and a ubiquitous intrinsic property of neural circuits.

Brainstem: Frogs and Bats

To communicate, some anuran amphibians (frogs and toads) use vocalizations

rich in temporal information. The temporal structure of some frog calls is used to

discriminate between vocalizations (Klump & Gerhardt 1987, Rose & Brenowitz

2002). Specifically, calls can be distinguished based on the number and frequency

of pulses. Alder & Rose (1998, 2000) show that neurons in the auditory midbrain

can be tuned to both the frequency and the number of auditory pulses. Selectivity

was not sensitive to intensity. Neurons exhibited a preferred pulse frequency (e.g.,

80 Hz) at which they would produce their maximal number of spikes. Lower or
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higher frequencies elicited fewer or no spikes. These studies provide an elegant

example of temporal tuning curves, a temporal analog to orientation tuning curves

in V1 neurons. It is not yet known whether the temporal tuning arises primarily

from synaptic/cellular or network properties.

Neurons in the bat auditory brainstem also respond selectively to specific tem-

poral features such as the pulse-echo delay and sound duration (Covey & Cas-

sidy 1999). Neurons in the inferior colliculus can be tuned to pulse-echo delays

or to sounds of specific durations. Temporal tuning in these cells is known to

rely on inhibition (Casseday et al. 1994, Saitoh & Suga 1995). One hypothesis

is that stimulus onset produces inhibition, and the offset of inhibition causes re-

bound depolarization. If this rebound coincides with the second excitatory input

(produced by sound offset), a duration-specific response can be generated. How-

ever, this mechanism may be a specialized brainstem process, and it is not clear if

it will generalize to more complex patterns (see below).

Temporal Selectivity in Songbirds

One of the best-studied systems regarding temporal processing is in songbirds.

Similar to human language the songs of birds are rich in temporal structure and

composed of complex sequences of individual syllables. Each individual syllable

and the interval between syllables is on the order of tens of ms to 200 ms. The

areas involved in the generation and learning of song have been identified (Bottjer

& Arnold 1997, Doupe & Kuhl 1999). Song selectivity is often established by

comparing the response to the normal song against the same song in reverse or

reversing the syllable order. Recordings in the HVc (Margoliash 1983, Margoliash

& Fortune 1992, Mooney 2000) and in the anterior forebrain nuclei (Doupe &

Konishi 1991, Doupe 1997) reveal neurons that are selective to playback of the birds

own song, specifically syllable sequences played in the correct order. Additionally,

song selectivity of neurons in cmHV can be modified by a behavioral task requiring

song discrimination (Gentner & Margoliash 2003). Thus, experience can lead to

selectivity of complex temporal-spatial stimuli in adult birds.

Figure 6 shows an example of an order-sensitive cell in the HVc (Lewicki &

Arthur 1996). Two syllables (A and B) are presented in all combinations with a

fixed interval between them. The cell is selective to the AB sequence, and it does

not respond well to either syllable individually or to BA. The order selectivity

in neurons from HVc has been well established. Interval and duration selectivity

have been less studied. Although, in some cases the neurons are also sensitive

to the interval between sounds (Margoliash 1983, Margoliash & Fortune 1992).

The mechanisms underlying this selectivity are not understood. Unlike simple

detection of the interval between two tones, these cells are selective to both the

spatial-temporal structure within each syllable, as well as to the sequence in which

these elements are put together. This selectivity emerges in stages because neurons

in earlier auditory areas of the songbird respond selectively to syllables but not to

the sequence (Lewicki & Arthur 1996).
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Because HVc neurons can respond selectively to the auditory presentation of

songs (these studies are generally done under anesthesia), these neurons are clearly

sensitive to temporal information in the sensory domain. However, these same cells

are also active during singing and can be activated at precise times during song

production. A subset of HVc neurons may be responsible for generating the timed

responses that drive the sequence of syllable production (Hahnloser et al. 2002).

Whether or not this is true, it is clear that the song circuity is capable of temporal

processing because cross correlations with peaks in the tens-to-hundreds-of-ms

range have been reported (Hahnloser et al. 2002, Kimpo et al. 2003).

Basal Ganglia

There are numerous studies suggesting the basal ganglia is involved in timing;

however, most of the data focus on the timescale of seconds rather than in the

range of tens to hundreds of ms. Much of these data relies on pharmacology

studies. Specifically, drugs that act on the dopaminergic system interfere with

timing. Because the basal ganglia is important in the dopaminergic system, the

basal ganglia is likely involved in temporal processing (for a review, see Meck

1996). Studies of Parkinson patients, who in some cases have shown specific

deficits in temporal tasks, support this claim (Artieda et al. 1992, Harrington et al.

1998a, Riesen & Schnider 2003).

Imaging studies have reported changes in BOLD signals in the basal ganglia.

Rao et al. (2001) showed an increase in the BOLD signal in the basal ganglia during

a duration discrimination task of 1.2 s. No significant basal ganglia activation was

observed during a control frequency discrimination task using a similar stimulus

protocol. Similarly, an fMRI study by Nenadic et al. (2003) revealed activation of

the basal ganglia (putamen) during a 1-s duration discrimination task compared

to a frequency discrimination task. This study also revealed activation of the ven-

trolateral prefrontal and insular cortex, but not the cerebellum, in the temporal

condition.

Thus the basal ganglia likely plays a role in timing of sensory and motor events

on the timescale of seconds. However, to date, there are few data that suggests

involvement of the basal ganglia in temporal processing in the range of tens to

hundreds of ms.

Cerebellum

Although the cerebellum is generally viewed as primarily a motor structure, it has

also been proposed to be a general-purpose interval timer in the range of tens to

hundreds of ms. “General purpose” in this sense encompasses both sensory and

motor timing. One advantage of such a theory is that the synaptic organization and

physiology of the cerebellum are known. Much is known about the relationships

between the cerebellum and forms of motor learning such as eyelid conditioning

and adaptation of the vestibulo-ocular reflex (Raymond et al. 1996; Boyden et al.

2004, in this volume).
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Support for the role of the cerebellum in timing is based on both motor and

sensory timing experiments. Ivry and others presented a variety of evidence demon-

strating cerebellar involvement in timing tasks. The fundamental observation was

made in experiments in which the task required human subjects to make rhythmic

taps with their finger. Analysis was based on a hypothetical construct that divides

errors (tapping at the wrong time) into those attributable to motor execution versus

those attributable to a timer (Wing & Kristofferson 1973). Ivry et al. (1988) showed

that patients with lesions of the medial cerebellum have increased motor errors,

whereas lesions that were more lateral increased timer errors. Cerebellar patients

also display deficits in interval discrimination (Ivry & Keele 1989) and are im-

paired at judging the speed of moving visual targets (Ivry & Diener 1991, Nawrot

& Rizzo 1995). Ackermann and colleagues (1997) observed that patients with lat-

eral cerebellar lesions are impaired in their ability to discriminate phonemes that

differ only in the timing of consonants. Imaging studies also suggest a potential

connection between timing and the lateral neo-cerebellum in humans. PET imag-

ing was used to detect activation in lateral portions of the cerebellum during an

interval discrimination (Jueptner et al. 1995).

The timing hypotheses of cerebellar function attempt to explain the various tasks

for which the cerebellum is engaged or is necessary in terms of the need to gauge the

explicit timing between events in the hundreds-of-ms range. Despite the intent that

these theories build on a computational base, supporting data remain mostly task-

based. Most data involve demonstrations that the cerebellum is activated during,

or is required for, tasks that we view as examples of timing.

CEREBELLUM IN TIMING OF CONDITIONED RESPONSES Lesions and reversible in-

activation studies have shown that learned response timing of conditioned eyelid

responses is mediated by the cerebellar cortex. Perrett et al. (1993) used a within-

subject design to demonstrate the effect of cerebellar cortex lesions on eyelid

response timing. Animals were trained to make a fast response to one tone and a

slower response to a second tone. Using this two-interval procedure, it was demon-

strated that lesions of the cerebellar cortex in already trained animals spare condi-

tioned responses but abolish response timing (Figure 3c). The results demonstrated

that the lesions do not produce a fixed shift in timing. Rather, the postlesion timing

defaults to a short, fixed latency independent of the prelesion timing. Subsequent

studies have replicated this effect on response timing using reversible inactivation

techniques. Garcia & Mauk (1998) showed that disconnection of the cerebellar

cortex with infusion of a GABA antagonist into the cerebellar interpositus nucleus

(the downstream target of the relevant region of cerebellar cortex) also cause re-

sponse timing to default to very short latency (Figure 3d). Recent studies have

demonstrated similar results with infusions of lidocaine in the cerebellar cortex

(W.L. Nores, T. Ohyama & M.D. Mauk, manuscript in preparation).

The implications of conditioned eyelid response timing involve much more than

the finding that the cortex of the cerebellum is necessary. Eyelid conditioning is an

especially useful tool for studying the input/output computations of the cerebellum,
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owing to the relatively direct ways in which eyelid conditioning engages the cere-

bellum. Several decades of research, beginning with the studies of Thompson and

his colleagues (e.g., Thompson 1986) have solidified three important findings in

this regard (see Figure 7):

1. During eyelid conditioning the conditioned stimulus, often a tone, is con-

veyed to the cerebellum via activation of mossy fiber afferents from the

pons.

2. Similarly, the reinforcing or unconditioned stimulus, usually a mild shock

around the eye from a puff of air directed at the eye, is conveyed to the

cerebellum via climbing fiber afferents from the inferior olive.

3. Output from the cerebellum, in the form of increased activity of particular

neurons in the cerebellar interpositus nucleus, drives the efferent pathways

responsible for the expression of the learned responses.

Because of these three findings, the extensively characterized behavioral prop-

erties of eyelid conditioning can be applied as a first approximation of what the

cerebellum computes (Mauk & Donegan 1997, Medina et al. 2000, Medina &

Mauk 2000, Ohyama et al. 2003).

The involvement of the cerebellum in both interval timing tasks and in the

timing of learned responses raises the question: Is the computation performed by

the cerebellum best understood as an interval timer or clock, or does cerebellar

involvement in eyelid conditioning reveal a more learning-related computation?

Based on recent evidence we support the latter. Specifically, cerebellar involvement

in both tasks can be explained by the hypothesis that the computation performed

by the cerebellum is a learned, feed-forward prediction. Additionally, the temporal

portion of the computation would not rely on fixed timers or clocks but instead

on network mechanisms that can perform both temporal and spatial computations.

Several authors have argued that the cerebellum makes a feed-forward prediction,

or generates forward models (e.g., Ito 1970, Kawato & Gomi 1992). Here we focus

on the feed-forward computation itself and implications of its temporal specificity.

Although it is easier to introduce the feed-forward prediction idea in the context

of motor control, the computation is presumably applicable to nonmotor tasks

influenced by the cerebellum as well (see Schmahmann 1997).

FEED-FORWARD PREDICTION AND THE CEREBELLUM To help make movements ac-

curate, sensory input can be used in two general ways: feedback and feed-forward.

Feedback is like a thermostat; outputs are produced by comparing sensory input

with a target. When input from its thermometer indicates the room is too cold, a

thermostat engages the heater. Although accuracy is easily achieved with feedback,

it has the inherent disadvantage of being slow. Adjustments are only possible once

errors have already occurred.

In contrast, feed-forward use of sensory input can operate quickly but at the

cost of requiring experience through learning. To react to a command to change
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room temperature quickly, a hypothetical feed-forward thermostat would predict

the heater blast required from current sensory input. This prediction would draw

upon previous experience and require associative learning in which error signals

were used to adjust decision parameters for errant outputs. If our hypothetical

feed-forward thermostat undershoots the target temperature, then learning from

the error signal should adjust the connections of recently activated inputs so that in

subsequent similar situations the heater is activated a little longer. Thus, through

associative, error-driven learning it is possible to acquire the experience necessary

to make accurate feed-forward predictions.

Eyelid conditioning reveals that cerebellar learning displays precisely these

properties (see Mauk & Donegan 1997, Ohyama et al. 2003). Learning associated

with feed-forward prediction should be associative, and there should be a precise

timing to the association. An error signal indicates that the prediction just made

was incorrect. For example, an error signal activated by stubbing one’s toe when

walking indicates that in similar circumstances the leg should be lifted higher.

Thus, error signals should modify feed-forward predictions for the inputs that

occurred approximately 100 ms prior (Figure 8a). This means the results of the

learning will be timed to occur just prior to the time error signals arrive. Eyelid

conditioning displays these properties. The conditioned responses are timed to

occur just before the time at which the error signal (puff to the eye) normally occurs

(Figure 8b).

The timing displayed by conditioned eyelid responses reveals both temporal

specificity and flexibility to this associative learning, both in ways that are useful

for feed-forward prediction. Timing specificity is revealed in the way conditioned

eyelid responses are time locked to occur just before the arrival of the puff. This is

consistent with what feed-forward associative learning must accomplish. When a

climbing fiber error signal arrives, learning should selectively alter the cerebellar

output that contributed to the faulty movement. Thus, learning should produce

changes in output that are time locked to occur around 100 ms prior to the climbing

fiber input, as is seen in the timing of eyelid responses. The flexibility of the timing

is revealed by the way in which eyelid conditioning can occur with a range of time

intervals between the onsets of the tone and puff. Even though learning can occur

for mossy fiber inputs that begin 100 to ∼2500 ms prior to the climbing fiber input,

the changes in output remain time locked to occur just before the climbing fiber

input (Figure 8b). To accomplish this, the learning must have the capacity to delay

the responses with respect to the onset of the mossy fiber input—again, as eyelid

conditioning reveals. These examples show the utility for feed-forward control of

learning that is time locked to occur just before error signals (when the decisions

actually have to be made) but that can vary with respect to the timing of predictive

sensory signals (see Ohyama et al. 2003).

TEMPORALLY SPECIFIC FEED-FORWARD PREDICTION AND TIMING Considering

cerebellar function in terms of its feed-forward computation provides an exam-

ple of the cerebellum’s role in timing. Feed-forward prediction helps determine

the force required for agonist muscles and the force and timing of activating
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Figure 8 Feed-forward learning is enhanced by temporal specificity. (A) A schematic

representation of the timing required for error-driven associative learning supporting

feed-forward predictions. A climbing fiber input to the cerebellum (gray) signals move-

ment error as detected by an inappropriate consequence (e.g., stubbing the toe while

walking). The cerebellar output that contributed to this errant movement (black) oc-

curred approximately 100 ms prior, owing to the time required to execute the movement

(white) and the time required to detect the error and convey the signal to the cerebel-

lum. To improve subsequent performance, learning must alter cerebellar output for the

time indicated by the black region. Because mossy fiber inputs that predict this error

may occur at varying intervals prior to the output commands (light gray, black, and

dark gray), the cerebellar learning mechanism must be able to delay learned responses

elicited by the mossy fiber input so that they can be time locked to occur just before ar-

rival of the error signal (corresponding light gray, black, and dark gray traces). (B) The

learned timing of eyelid responses indicates that cerebellar learning displays temporal

specificity in its learning. Response timing is delayed with respect to the tone (mossy

fiber) onset so that it can be time locked to peak when the puff (climbing fiber) occurs.
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antagonist muscles. Deficits from the absence of this contribution would be es-

pecially notable for movements that involve stopping and starting, as in the tim-

ing experiments that require finger tapping. This is consistent with the deficits

seen from medial cerebellar damage (vermal and intermediate cerebellum), whose

outputs contribute relatively directly to movement execution through descending

pathways.

This view is also consistent with recent findings that apparent timing deficits are

specific to discontinuous timing tasks relative to continuous ones. Spencer et al.

(2003) tested cerebellar patients on two similar timing tasks. Two groups of subjects

were required to draw circles at regular intervals. The “discontinuous” group was

required to keep a beat by pausing at the top of each circle. The “continuous”

group was instructed to keep a beat by drawing circles using a steady continuous

motion. Cerebellar damage affected discontinuous drawing and not continuous.

The authors interpret these findings as evidence that the cerebellum is required for

tasks where timing is explicitly represented, as in the discontinuous task. In this

view, the cerebellum is not required by the continuous task because timing can

be implicit—that is, timing can be produced by maintaining a constant angular

velocity. Alternatively, such findings can be seen as examples of the contributions

of feed-forward prediction in the starting and stopping of movements. Holmes

(1939) made a similar observation (see also Dow & Moruzzi 1958). He asked a

patient to first draw squares with the hand affected by the cerebellar lesion and

then by the unaffected hand. Holmes found that the motor deficit of the affected

hand was most notable at the corners of the square, where stopping and starting

movements are required.

Although more speculative, the feed-forward computation of the cerebellum

may provide a way to understand the activation of the cerebellum in many timing

tasks and explain the timing deficits observed with lateral cerebellar damage.

Feed-forward prediction in lateral cerebellum may be a mechanism for predicting

when the next tap should occur in a timing experiment. The cerebellum therefore

underlies some forms of motor timing. This timing relies on distributed network

mechanisms as opposed to a dedicated clock or timer (see below).

CORTEX

The cortex has also been proposed to be the the primary site for temporal pro-

cessing. If the cortex is involved in timing, whether virtually all cortical areas

can processes time, or if specialized cortical areas devoted to temporal processing

exist, is a fundamental issue.

Anatomy

Based on data from stroke patients Harrington et al. (1998b) suggested the right

parietal cortex may be involved in temporal processing. Specifically, right

hemisphere, but not left hemisphere, lesions produced a deficit for 300- and 600-ms
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interval discrimination. Imaging studies also reported changes in blood flow dur-

ing temporal tasks in various cortical areas. In a PET study Belin et al. (2002)

report activity in the right fronto-parietal network and prefrontal cortex during a

300-ms duration discrimination task. However, this study did not include a control

task, and thus activation could be related to any form of processing. A second PET

study in the visual modality reported activation in a number of cortical areas dur-

ing a 700-ms duration discrimination task but no significant difference regarding

an intensity discrimination task (Maquet et al. 1996). Onoe et al. (2001) showed

activation of the dorsolateral prefrontal cortex in a monkey PET study. This study

used a visual duration discrimination task in the range of 400 to 1500 ms. They re-

port activation of the dorsolateral prefrontal cortex. Although there was no control

task, they did report that bicuculline administration to the dorsolateral prefrontal

cortex impaired duration discrimination more so than position discrimination.

Two fMRI studies revealed specific increases in BOLD signal, and both reported

activation of the right parietal and dorsolateral prefrontal cortex (Rao et al. 2001,

Nenadic et al. 2003). In both these studies the increases were in comparison to a

pitch discrimination task using stimuli in the 1-s range. As mentioned above, both

these studies also revealed increased signal attributed to temporal processing in

the basal ganglia but not in the cerebellum.

Electrophysiology

In addition to imaging data a few studies attempted to find, in the mammalian cor-

tex, neurons that respond selectivity to temporal features. Vocalization-sensitive

neurons were reported in primary auditory cortex of marmoset monkeys (Wang

et al. 1995). Neurons responded more robustly to conspecific vocalizations com-

pared to the same vocalization played in reverse. Additionally, vocalization-sen-

sitive neurons were also reported in early auditory areas of Rhesus monkeys

(Rauschecker et al. 1995). Creutzfeldt et al. (1989) described speech-specific neu-

ral responses in the human lateral temporal lobe. However, to date, no areas have

been described in which the neurons exhibit the same degree of selectivity to

vocalizations as that observed in songbirds. Other investigators have looked for

combination or interval-sensitive neurons using tone pairs or sequences. Selec-

tivity has been observed in primary auditory areas in cat (McKenna et al. 1989,

Brosch & Schreiner 1997) and monkey (Riquimaroux 1994). Kilgard & Merzenich

(1998, 2002) characterized the temporal selectivity of auditory cortical neurons

to sequences of tones. In one study three element sequences such as high tone

(H), low tone (L), noise burst (N) were paired with basal forebrain stimulation

in awake rats (Kilgard & Merzenich 2002). A significant increase was reported

in the number of sites that exhibited facilitated responses to the target sequence,

indicating experience-dependent plasticity. For example, after training in H-L-N

sequence, an enhanced response to N preceded by H–L was reported, as compared

to N alone. The enhanced responses often generalized to degraded stimuli such as

L-H-N. The temporal feature selectivity of cortical neurons undergoes experience-

dependent plasticity. However, future research is necessary to determine the degree
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of selectivity and whether these areas represent the primary locus for features such

as interval, duration, and order.

To date, one study has looked for neurons that may code for time in awake-

behaving monkeys. Leon & Shadlen (2003) recorded in the lateral intraparietal

cortex in two monkeys trained on a duration discrimination task in the visual

modality. Two standard durations were examined: 316 and 800 ms. The individual

neurons contained information about time from stimulus onset. Time from stimulus

onset was encoded in the instantaneous firing rate, which changed predictably with

time. The encoding was very dynamic; specifically, the same neuron would show

an upward or downward ramping of its firing rate depending on the location of

the short or long target used for the response. Additionally the rate of change was

slower for long durations than for short durations. Thus timing might be achieved

by complex network mechanisms capable of dynamically changing firing rates

in a context-specific manner. Whether the same neurons would contain temporal

information if the task was auditory, or whether neurons in other areas contained

the same information, has not been determined.

In Vitro Studies

It has been proposed that cortical neural networks are intrinsically capable of pro-

cessing temporal information (Buonomano & Merzenich 1995). If this is the case it

may be possible to observe timed responses in vitro. In vitro studies cannot address

whether the observed timing is behaviorally relevant. They can, however, establish

whether neurons and neural circuits are capable of processing temporal informa-

tion or whether specialized mechanisms are present. Long-latency timed action

potentials in response to continuous synaptic stimulation (Beggs et al. 2000), or in

response to single stimuli (Buonomano 2003), have been observed. In organotypic

cortical slices, neurons can respond reliably at latencies of up to 300 ms after a sin-

gle stimulus (Buonomano 2003). Thus cortical circuits are intrinsically capable of

generating timed responses on timescales well above monosynaptic transmission

delays. Mechanistically, timing relied on network dynamics, specifically, activity

propagated throughout functionally defined polysynaptic pathways. The propaga-

tion path was a complex function of the functional connectivity within the network

and was not simply a result of spatial wave-like propagation.

To date, relatively few studies have revealed cortical neurons strongly tuned to

the interval or duration of tones or to complex sounds on the scale of hundreds

of ms. These data contrast sharply with the tuning of cortical neurons to spatial

stimuli such as orientation, ocular dominance, tonotopy, and somatotopy. It is more

difficult to study temporal selectivity because temporally tuned neurons may not

be topographically organized. In the visual cortex, if we record from a cell selective

to vertical bars, the neighboring cells may also be tuned to vertical bars. Given

the vast number of possible spatio-temporal stimuli, and the potential absence

of chronotopy, it may prove difficult to localize temporal selective neurons with

conventional extracellular techniques.
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NEURAL MECHANISMS AND MODELS OF TIMING

Analyses of the neural basis of timing have generally focused on three general

computational strategies: mechanisms based on neural clocks, mechanisms based

on arrays of elements that differ in terms of some temporal parameter, or mecha-

nisms that emerge from the dynamics of neural networks. In general, these models

must accomplish some variant of the same computational task. They must recode

the temporal information present in an input into a spatial code. That is, in some

way different cells must respond selectively to temporal features of the stimulus.

For example, to discriminate differences in the duration of two stimuli, there must

be differential neuronal responses to each duration.

Clock Models

When considering the mechanisms of timing it is perhaps most intuitive to think in

terms of clocks or interval timers. The basic computational unit of clock theories

involves an oscillator and a counter (Creelman 1962, Treisman 1962). Conceptu-

ally, the oscillator beats at some constant frequency, and each beat would then be

counted by some sort of neural integrator. These ideas have not yet been expressed

concretely in terms of the synaptic organization of a specific brain region. Indeed,

in its simplest form, if such a clock were used for the discrimination of 100-ms

intervals (and allowed the discrimination of a 100- and 105-ms interval) the pe-

riod of the oscillator would have to be at least 200 Hz. At the neurophysiological

level, oscillating at this frequency, as well as accurately counting each beat, seems

unlikely. However, as proposed by Meck and colleagues, clock-like mechanisms

could be involved in timing on the scale of seconds and minutes (Meck 1996,

Matell & Meck 2000).

OSCILLATOR-PHASE MODELS In addition to the oscillator/counter models men-

tioned above, more sophisticated models based on oscillators have been proposed

(Ahissar et al. 1997, Ahissar 1998, Hooper 1998). These include the use of oscil-

lators placed in phase-locked loop circuits. Specifically, Ahissar and colleagues

have proposed (Ahissar et al. 1997, Ahissar 1998) that the thalamo → cortical →

thalamo loop may use dynamic oscillators (oscillators that can change their period

in an adaptive manner) to decode temporal information from the vibrissa during

whisking in rodents.

Spectral Models

Many of the proposed models share the characteristic of decoding time using arrays

of neural elements that differ in terms of some temporal property. The most generic

of these is the spectral timing model of Grossberg and colleagues (Grossberg &

Schmajuk 1989), which has been expressed in varying forms. The original model

assumed a population of cells that react to a stimulus with an array of differently

timed responses. Two variants of this motif have also appeared. One is a variant of
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clock models: Stimuli activate arrays of cells that oscillate at different frequencies

and phases. By doing so, points in time following the onset of a stimulus can

be encoded by activity in a subset of neurons that differs, at least somewhat,

from the subsets of cells active at other times (Miall 1989, Gluck et al. 1990). In

another model generally referred to as tapped delay lines, simple assumptions about

connectivity lead to a sequential activation of different neurons at different times

following a stimulus (Desmond & Moore 1988, Moore 1992, Moore & Choi 1997).

A number of studies propose biologically plausible implementations of spectral

models. In these models all elements share a common implementation, but at least

one of the variables is set to a different value, which allows each unit to respond

selectively to different intervals. A wide range of biological variables have been

proposed, including the kinetic constants of the metabotropic receptor pathway

(Fiala et al. 1996), the time constant of slow membrane conductances (Hooper et al.

2002; see also Beggs et al. 2000), the decay time of inhibitory postsynaptic poten-

tials (IPSPs) (Sullivan 1982, Saitoh & Suga 1995), short-term synaptic plasticity

(Buonomano 2000, Fortune & Rose 2001), or even cell thresholds (Antón et al.

1991).

Spectral models have the advantage of encoding the time since the arrival of a

stimulus by having different subsets of cells active at different times. Combined

with simple learning rules where a teaching or error signal modifies connections

for only active cells, spectral models can learn outputs that are properly timed

and can even show the Weber effect of increased variance with increased delay.

However, to date, neither arrays of elements with different time constants, arrays

of elements that oscillate at different phases and frequencies, nor connectivity

that supports tapped delay lines are supported by identified properties of neurons

or networks. Additionally, these models focused on simple forms of temporal

discrimination and may not generalize well to more complex forms of temporal

processing without additional network layers (see below).

Network or State-Dependent Models

The above models represent top-down approaches where timing is addressed by

inferring a computation and then implementing the computation with neurons. An

alternative bottom-up approach is to start with biologically realistic assumptions

and then to ask the extent to which temporal processing can be found as an emergent

property. These models have no built-in temporal processing or selectivity with ad

hoc assumptions. That is, they do not rely on explicitly setting oscillators, synaptic

or current-time constants, or some other variable that, in effect, functions as a delay

line.

CORTICAL MODEL It has been proposed that cortical networks are inherently able

to process temporal information because information about the recent input his-

tory is inherently captured by time-dependent changes in the state of the network

(Buonomano & Merzenich 1995, Buonomano 2000, Maass et al. 2002). One set
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of studies has examined how interval selectivity can be encoded in a population

of cortical neurons (Buonomano & Merzenich 1995, Buonomano 2000). In an

interval discrimination task, when the first of a pair of tones arrives in a cortical

network, it will stimulate hundreds of excitatory and inhibitory neurons, a subset

of which will fire. In addition to producing action potentials in some neurons, a

series of time-dependent processes will also be engaged. In this model the time-

dependent properties were short-term synaptic plasticity (Deisz & Prince 1989,

Stratford et al. 1996, Reyes et al. 1998, Zucker 1989) and slow IPSPs (New-

berry & Nicoll 1984, Buonomano & Merzenich 1998b), but it could include many

other time-dependent properties. In this model all synapses exhibit the same short-

term plasticity temporal profile, as opposed to spectral models. Because of these

time-dependent properties, the network will be in different states at 50, 100, and

200 ms. Thus, at the arrival of a second event at 100 ms, the same stimulus that ar-

rived at 0 ms will arrive in a different network state. That is, some synapses will be

facilitated/depressed, and some neurons may be hyperpolarized by slow IPSPs. As

a result, the same input can activate different subpopulations of neurons dependent

on the recent stimulus history of the network. The differences in the population

activity produced by the second and first pulse can be used to code for the 100-ms

interval. Given the high dimensionality and abundance of time-dependent prop-

erties of cortical networks, this type of model could provide a realistic means to

decode complex temporal and spatial-temporal patterns of sensory information

(see below).

CEREBELLAR MODEL The evidence from the cerebellum illustrates how timing

and performance on experimental tasks designed to study timing are mediated by

computations that include temporal processing. For example, cerebellar-mediated,

feed-forward prediction may be the computational basis for the temporal process-

ing responsible for timing tasks in the millisecond range.

Buonomano & Mauk (1994) used the correspondence between eyelid condi-

tioning and the cerebellum to test the timing capabilities of a network model of

the cerebellar cortex. Although this model failed in many of its key properties, it

showed how the connectivity of the cerebellar cortex could represent the time since

the onset of a stimulus with subsets of different granule cells that become active at

different times (Figure 9A). This time-varying stimulus representation was similar

in many respects to the activity assumed in certain of the spectral timing models

described above. The key mechanistic difference was that this activity was the

natural consequence of the sparse, distributed, and recurrent connectivity of the

cerebellar cortex.

By incorporating a more complete representation of the connectivity of the

olivo-cerebellar circuitry, and by including recent findings regarding the specific

synaptic conductances found in cerebellar neurons, a second-generation model

now accounts for all key temporal properties of eyelid conditioning (Medina &

Mauk 2000). As shown in Figure 9B, the timing of conditioned eyelid responses

was partly derived from a competitive learning mechanism that increases the
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temporal specificity of the cerebellar learning was one of the key findings from

these simulations (Medina et al. 2000). The key process involves the bidirectional

learning in the cerebellum that eyelid conditioning and other forms of learning

reveal (Raymond et al. 1996).

Thus, computer simulations and related eyelid conditioning experiments sug-

gest that timing mechanisms in the cerebellar cortex involve three interacting

processes (Figure 9). First, sparse recurrent interactions between cerebellar Golgi

and granule cells lead to the activation of different granule cells at different times

during a stimulus. The activity in granule cells therefore not only codes stim-

uli, as suggested in seminal theories of cerebellum (Marr 1969), but also codes

time elapsed during stimuli. With this temporal code it is then possible for a

coincidence-based form of plasticity, such as cerebellar LTD (see Hansel et al.

2001), to mediate learned responses that can be specific for certain times during a

stimulus. Finally, competition between excitatory and inhibitory learning sharpens

the temporal resolution of the timed responses.

In these network or state-dependent models, timing does not arise from clocks or

even from brain systems specifically dedicated to temporal processing. Rather, the

evidence from the cerebellum, for example, illustrates how timing and performance

on experimental tasks designed to study timing may be mediated by computations

that include temporal processing but that are not accurately characterized as interval

timers or clocks.

FUTURE CHALLENGES: COMPLEX STIMULI

Most of the experimental and theoretical studies discussed above have focused

on relatively simple stimuli. In particular, much of the work has been on the

discrimination of the interval or duration of stimuli or on the generation of a

single, timed motor response. The mechanisms underlying speech and music

recognition, as well as the ability to process Morse code, require sophisticated

mechanisms that can process multiple temporal cues in parallel and sequences

composed of a continuous stream of elements with no a priori first and last el-

ement. Thus, a fundamental issue, particularly in relation to the computational

models, is whether these models are sufficiently robust to account for more com-

plex data. Indeed, if a model is limited to the discrimination of simple first-order

stimuli (interval and duration), then this model is unlikely to represent the biolog-

ical mechanisms underlying temporal processing in the range of tens to hundreds

of ms.

Higher-Order Stimuli

Consider the stimuli shown in Figure 10, in which a subject must discrimi-

nate between 2 sequences composed of 2 intervals (3 tones): 50–150 and 150–

50. In reality, in this task one would include 50–50- and 150–150-ms stimulus
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conditions to prevent the use of simple strategies. In clock or spectral models,

neurons would have to respond selectively to the 50- and 150-ms intervals. Addi-

tionally, because both stimuli would activate the 50- and 150-ms interval detectors,

another circuit would have to keep track of the order of activation, to discrimi-

nate between (50–150 and 150–50). Thus as sequences become more compli-

cated, additional circuitry is generally required to keep track of the higher-order

features.

Reset Problem

The processing of sequences, as opposed to a single interval or duration, also

imposes another constraint on the potential mechanisms underlying temporal pro-

cessing. Let us consider how a spectral model will perform in response to the

sequences shown in Figure 10. In a model based on a slow conductance such as

an IPSP, the first tone will activate an IPSP of a different duration in each cell.

If the second pulse arrives at 50 ms, the 50-ms detector will fire (owing to the

interaction between IPSP offset and arrival of the second stimulus). However,

the second pulse is also the first pulse of the second interval, and thus to detect the

subsequent 150-ms interval, the second pulse would essentially have to reset the

inhibitory conductance. We refer to this as the reset problem. When stimulus ele-

ments arrive on the same timescale as the intervals being processed, discrimination

requires that the event that marks the end of one interval engage the initiation of

the timing of the next interval. Resetting of synaptic conductances, in particular, is

unlikely. In spectral models, a potential solution for this problem is to look at the

above task as detecting two intervals 50–200 (50 + 150) versus 150–200 (150 +

50). In this manner the second pulse would not have to reset the timer because all

timing would be relative to the first pulse. Nevertheless, the second pulse could not

interfere with the ongoing computation of the 200-ms interval. This could perhaps

be achieved by assuming that the first pulse saturated or depleted the mechanisms

responsible for inhibition. However, we believe it is unlikely that spectral models

are robust enough to generalize to complex temporal processing involved in speech

and music recognition and complex motor patterns.

In contrast, models based on network dynamics may better generalize to the

processing of more complex temporal patterns. In state-dependent network models

(see above; Buonomano & Merzenich 1995, Buonomano 2000, Maass et al. 2002),

the current state of the network is always dependent on the recent history of activity.

Thus, in the above example, if the third input arrives at 200 ms, the network will be

in a different state depending on whether the second pulse arrived at 50 or 150 ms.

In these models, time-dependent properties, such as short-term synaptic plasticity,

slow PSPs (e.g., GABAB or NMDA-dependent currents), or, potentially, slow

conductance, function as state-dependent memory traces of the recent stimulus

history. In contrast to single-cell models, these time-dependent properties are not

tuned for any particular interval; rather these states are expressed as changes in the

probability of different neurons becoming activated.
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Figure 10 shows results from a state-dependent network model capable of dis-

criminating intervals as well as simple sequences (Buonomano 2000). The network

was composed of 400 excitatory and 100 inhibitory units; all synapses exhibited

short-term synaptic plasticity, and a slow IPSP was also present. As a result of the

time-dependent properties, the network is in a different state at 50 and 150 ms;

thus different neurons will respond to the second pulse depending on its arrival

time. Because different neurons responded to the second pulse, state-dependent

change will be cumulative and alter the response to the third pulse in a different

manner depending on the stimulus history. There are two potential shortcomings

of state-dependent networks. First, the network must be in a specific regime that

allows that expression of the state-dependent changes, which can be nontrivial

because a balance between excitation and inhibition is required. Specifically, inhi-

bition must enable excitatory neurons to fire while preventing run-away excitation.

Second, because these networks encode time as relative to previous stimuli, they

would be least effective at identifying specific intervals embedded in sequences,

for example, comparing a 100-ms interval defined by two tones with a 100-ms

stimulus embedded within a sequence of tones.

CONCLUSIONS

The study of the neural basis of temporal processing is in its infancy. Few agree

on whether temporal processing is centralized or distributed and which structures

are involved. Indeed, if all neural circuits can intrinsically process temporal infor-

mation, then virtually any circuit could be involved, and the location of temporal

processing would depend on the nature and modality of the task at hand. Despite

the fact that these important questions remain unanswered, the studies, to date,

allow several insights into the nature of timing. First, although researchers do not

agree on which areas are involved in sensory timing, it seems clear that the cere-

bellum is responsible for some forms of motor timing. Whether it is the sole source

of motor timing and whether it is involved in sensory processing remain open to

debate. Second, much evidence indicates that distinct neural mechanisms underlie

millisecond and second timing.

Many models of timing have focused on specialized synaptic and cellular mech-

anisms aimed specifically at processing temporal information, and investigators

assumed that spatial and temporal information are essentially processed separately.

Given the inherent temporal nature of our sensory environment, and the continuous,

real-time motor interaction with our environment, we favor the view that temporal

and spatial information are generally processed together by the same circuits, and

that there is no centralized clock for temporal processing on the scale of tens to

hundreds of ms. Additionally, we propose that temporal processing does not rely

on specialized mechanisms, such as oscillators or arrays of elements, as with a

spectrum of different time constants. Rather, we believe that neural circuits are in-

herently capable of processing temporal information as a result of state-dependent

changes in network dynamics.
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Maass W, Natschläger T, Markram H. 2002.

Real-time computing without stable states: a

new framework for neural computation based

on perturbations. Neural Comput. 14:2531–

60

Marr D. 1969. A theory of cerebellar cortex. J.

Physiol. 202:437–70

Matell MS, Meck WH. 2000. Neuropsycholog-

ical mechanisms of interval timing behavior.

BioEssays 22:94–103

Mauk MD, Donegan NH. 1997. A model

of Pavlovian eyelid conditioning based on

the synaptic organization of the cerebellum.

Learn. Mem. 3:130–58

Mauk MD, Ruiz BP. 1992. Learning-dependent

timing of Pavlovian eyelid responses: differ-

ential conditioning using multiple interstim-

ulus intervals. Behav. Neurosci. 106(4):666–

81

McClurkin JW, Optican LM, Richmond BJ,

Gawne TJ. 1991. Concurrent processing

and complexity of temporally encoded neu-

ronal messages in visual perception. Science

253:675–77

McKenna TM, Weinberger NW, Diamond DM.

1989. Responses of single auditory corti-

cal neurons to tone sequences. Brain Res.

481:142–53

Mechler R, Victor JD, Purpura KP, Shapley

R. 1998. Robust temporal coding of con-

trast by V1 neurons for transient but not for

steady-state stimuli. J. Neurosci. 18:6583–

98

Meck WH. 1996. Neuropharmacology of tim-

ing and time perception. Cogn. Brain Res.

3:227–42

Medina JF, Mauk MD. 2000. Computer simu-

lation of cerebellar information processing.

Nat. Neurosci. 3:1205–11

Medina JF, Garcia KS, Nores WL, Taylor

NM, Mauk MD. 2000. Timing mechanisms

in the cerebellum: testing predictions of a

large-scale computer simulation. J. Neurosci.

20:5516–25

Meegan DV, Aslin RN, Jacobs RA. 2000. Motor

timing learned without motor training. Nat.

Neurosci. 3:860–62

Miall C. 1989. The storage of time intervals

using oscillating neurons. Neural Comput.

1:359–71

Middlebrooks JC, Clock AE, Xu L, Green

DM. 1994. A panoramic code for sound

location by cortical neurons. Science 264:

842–44

Millenson JR, Kehoe EJ, Gormezano I. 1977.

Classical conditioning of the rabbit’s nicti-

tating membrane response under fixed and

mixed CS-US intervals. Learn. Motiv. 8:351–

66

Miller KD, Keller JB, Stryker MP. 1989.

A
n
n
u
. 
R

ev
. 
N

eu
ro

sc
i.

 2
0
0
4
.2

7
:3

0
7
-3

4
0
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 U

n
iv

er
si

ty
 o

f 
M

in
n
es

o
ta

- 
L

aw
 L

ib
ra

ry
 o

n
 0

2
/1

4
/0

7
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



TEMPORAL PROCESSING 339

Ocular dominance column development:

analysis and simulation. Science 245:605–15

Mooney R. 2000. Different subthreshold mech-

anisms underlie song selectivity in identified

HVc neurons of the zebra finch. J. Neurosci.

20:5420–36

Moore JW. 1992. A mechanism for timing

conditioned responses. In Time, Action, and

Cognition, ed. E Macar, pp 229–38. Dor-

drecht, The Neth.: Kluwer

Moore JW, Choi JS. 1997. The TD model

of classical conditioning: response topogra-

phy and brain implementation. In Neural-

Network Models of Cognition, Biobehavioral

Foundations, Advances in Psychology, ed.

JW Donahoe, VP Dorsel, pp. 387–405. Am-

sterdam, The Neth.: North-Holland/Elsevier.

Vol. 121

Nagarajan SS, Blake DT, Wright BA, Byl N,

Merzenich MM. 1998. Practice-related im-

provements in somatosensory interval dis-

crimination are temporally specific but gen-

eralize across skin location, hemisphere, and

modality. J. Neurosci. 18:1559–70

Nawrot M, Rizzo M. 1995. Motion perception

deficits from midline cerebellar lesions in hu-

man. Vision Res. 35:723–31

Nenadic I, Gaser C, Volz H-P, Rammsayer T,
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TEMPORAL PROCESSING C-1

Figure 3 Temporal properties of learned eyelid responses. Classical or Pavlovian eyelid

conditioning displays learned timing. (A) In a typical experiment, training involves pre-

sentation of a neutral stimulus, such as a tone, paired with a reinforcing stimulus, such as

a puff of air directed at the eye. (Lower traces) Repeated presentation of such trials leads

to the acquisition of learned eyelid responses. Before training the tone does not elicit an

eyelid response, whereas after training the upward deflection of the trace indicates that the

tone elicits learned eyelid closure. In this case the tone-puff interval is 500 ms. (B) The time

delay between the onsets of the tone and puff influences learning in two ways. First, learn-

ing only occurs for delays between approximately 100 and 3000 ms. Best learning is pro-

duced by delays ranging from 200 to 1000 ms. The tone-puff delay also determines the tim-

ing of the learned responses. These are sample learned responses for animals trained with

the delays coded by the color of the points in the graph. (C) Lesions of the cerebellar cor-

tex disrupt learned response timing. Animals trained using two tones and two tone-puff

delays were then subjected to lesions of the cerebellar cortex (example shown in inset). The

lesions produced a short and relatively fixed latency-to-onset interval independent of pre-

lesion timing. Modified from Perret et al. 1993. (D) Reversible lesions or disconnection of

the cerebellar cortex produce the same effect on timing. These are example responses from

a training session in which the cerebellar cortex was functionally disconnected via infusion

of the GABA antagonist picrotoxin into the cerebellar interpositus nucleus. The darker por-

tion of each trace indicates the tone; responses are chronologically organized front to back.

Modified from Medina et al. 2000.
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C-2 MAUK ■ BUONOMANO

Figure 7 Eyelid conditioning engages the cerebellum relatively directly. This is a

schematic representation of the relationship between eyelid conditioning and the cerebel-

lum. Output of the cerebellum via its anterior interpositus nucleus drives the expression of

conditioned responses. Stimuli such as tones are conveyed to the cerebellum via activation

of mossy fiber inputs. Reinforcing stimuli such as the puff of air directed at the eye are con-

veyed to the cerebellum via activation of climbing fibers.
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TEMPORAL PROCESSING C-3

Figure 9 Mechanisms of timing-specific learning in the cerebellum. Computer simula-

tions of the cerebellum in the context of eyelid conditioning suggest mechanisms for

learned response timing. (A) Peri-stimulus histograms of simulated granule cells for the

presentation of a tone-like mossy fiber input to the cerebellum. This sample shows how dif-

ferent granule cells respond at different times during this stimulus. These simulated gran-

ule cells have identical temporal properties; these differently timed responses arise from

network interactions with mossy fiber inputs and with cerebellar Golgi cells. (B, C) The

simulations suggest that learned timing is enhanced by competitive learning within each

trial. Proper timing requires mechanisms both for learning (LTD) responses, when a climb-

ing fiber is present, and unlearning (LTP) responses, when it is absent. (B) Through these

two mechanisms, the simulated cerebellar Purkinje cells can learn well-timed modulation

of their activity during learning. (C) In simulations with unlearning disabled, timing of

Purkinje cell response and of the learned responses of the simulation is impaired. Modified

from Medina & Mauk 2001.
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C-4 MAUK ■ BUONOMANO

Figure 10 State-dependent model of sequence recognition. The model is composed of

excitatory and inhibitory neurons. The connectivity and synaptic weights are randomly

assigned, the synapses exhibit short-term synaptic plasticity, and a slow-IPSP is present.

The time constant of the short-term plasticity and slow IPSP is the same for all synapses in

the network. The raster plot shows which excitatory neurons fired to the long-short stimu-

lus (green) and to the short-long stimulus (red). If the neuron responded at the same time

to both stimuli the spike is plotted in yellow. Note that there is more yellow in response to

the first pulse than to the last (all points in response to the first pulse are not yellow because

of intrinsic noise). Each pulse of a stimulus will activate a population of neurons and trig-

ger short-term plasticity; thus at the arrival of the second pulse the network will be in a dif-

ferent state, depending on whether the second pulse arrived at 150 (green) or 50 ms (red).

For both stimuli (long-short or short-long) the third pulse arrives at 200 ms; however, the

network will be in a different state depending on the stimulus, allowing the network to

respond differently to the same pulse. The two lower traces represent the voltage of two

output neurons that receive input from all the excitatory neurons above. The weights on the

output neurons were set by training (using a nontemporal learning rule) on different stim-

ulus set presentations. Outputs 1 and 2 respond selectively to the long-short and short-long

stimuli, respectively.
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