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Somebody’s reading your mind 

Damned if you know how it is 

They’re digging through all of your files 

Stealing back your best ideas 

You cover your window with lead 

Even keeping the pets outside 

Then you hear a moment too late 

 this sound coming over the phone 

‘This is the spawning of the cage and aquarium…’ 

Cage & Aquarium (They Might Be Giants, 1988) 

 

 

En ocasiones oigo ecos, ecos de voces eléctricas, ultrasónicas (…). Parecen 

reverberaciones sobrenaturales, pero son códigos cifrados, señales de otra 

dimensión. 

Testimoni recollit per Ruiz Garzón (2005) 

 

 

 

Dedicat a les persones a qui roben les millors idees de la seva ment, a les 

persones que senten ecos sobrenaturals xifrats... ; amb l’esperança que algun 

dia els podem permetre plenament el seu dret a la felicitat i l’autonomia. 
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Schizophrenia is a severe and debilitating psychiatric disorder. It is 

considered to be one of the ten medical disorders that cause the most severe 

long-term disability (Mueser and McGurk, 2004). According to the World Health 

Organisation, it is also the third leading contributor to the global burden of 

mental, neurological and substance use disorders, and the fifth among high-

income countries (Collins et al., 2011). The economic burden of schizophrenia 

can be divided into direct costs and indirect costs. Direct costs refer to medical 

care, including pharmacological and non-pharmacological treatment and 

hospital admissions, and criminal justice costs. Indirect costs relate to the 

decrease in economic productivity of individuals with the disorder and the 

people taking care of them, mainly relatives (McEvoy, 2007), plus costs derived 

of increased comorbid health problems, such as obesity, cardiovascular 

disease, smoking, substance abuse and some types of infection such as HIV or 

hepatitis (Goff et al., 2005; Tandon et al., 2009; Jeste et al., 2011). In Spain, the 

direct and indirect costs of schizophrenia have been estimated to be €1,970.6 

million, including about 2.7% of public investment in health care (Oliva-Moreno 

et al., 2006). 

Schizophrenia has a prevalence of between 0.3 and 2%, with an average 

of 0.7-1% throughout the world (Jablensky, 2010). It has been estimated to 

affect about 24 million people worldwide 

(http://www.searo.who.int/en/Section1174/Section1199/Section1567_6744.htm)

Prevalence seems higher in richer countries and among lower socio-economic 

classes. However, these differences in prevalence have been found to 

decrease when stricter diagnostic criteria are applied (Mueser and McGurk, 

2004). Some authors consider that males have a slightly higher risk of 
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developing schizophrenia than females with a ratio of 1.3-1.4:1 (Aleman et al., 

2003), whilst others do not find sex differences (Mueser and McGurk, 2004). 

However, it is well-established that males with schizophrenia have a worse 

outcome (Mueser and McGurk, 2004; Malla and Payne, 2005).  

Schizophrenia usually develops between the ages of 15 and 45 years of 

age (Tandon et al., 2008), most commonly in late adolescence or early 

adulthood (DeLisi, 2008a). On average the onset is about five years earlier in 

males than females (Häfner et al., 1998b). Despite the peak in age onset 

occurring between 18 and 30 years in both sexes, females show a second peak 

later in life, after the menopause (Häfner et al., 1998a; Stilo and Murray, 2010). 

1.1. The clinical features of schizophrenia 

The clinical picture of schizophrenia is characterised by a remarkable 

diversity of symptoms. Acording to the reviews by Schultz and Andreasen 

(1999), McKenna (2007) and Tandon et al. (2009), these can be divided into the 

following main classes: 

• Positive or psychotic symptoms: These include abnormal ideas, such as 

delusions, and abnormal perceptions, for instance auditory hallucinations. 

Some of the most common delusional themes in schizophrenia are 

persecutory (beliefs that there is a conspiracy to harm the patient), 

grandiose (beliefs that the person has special powers and abilities, is 

especially close to God, that he/she is famous or related to someone 

famous) and hypochondriacal (where the patient describes often bizarre 

changes in bodily function). Another class of delusion is referential 

delusions, where the patient believes neutral events have special 

significance for him/her. Hallucinations are defined as perceptions without 
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the existence of an object that causes them, that are accepted as real by the 

person experiencing them. The most common type in schizophrenia is 

auditory -hearing voices- and these can take many forms, such as 3rd 

person and commenting hallucinations (hearing other people commenting 

on him or her), imperative hallucinations (voices that order the person to 

carry out an action) or so-called extracampine hallucinations (the person 

hears something beyond the limits of normal perception, for instance 

happening thousands of kilometres away). Hallucinations can also be 

somatic (perceptions in the own body, often appearing together with related 

delusions), and less frequently visual, olfactory or gustatory. 

• Negative symptoms: These are characterized by the loss or diminution of 

certain normal functions. These are usually considered to comprise three 

main classes of symptom, lack of volition (reduced motivation sometimes 

amounting to complete apathy), poverty of speech or alogia (marked 

aspontaneity of speech output), and affective flattening (reduced emotional 

responsiveness). 

• Formal thought disorder (incoherent speech): This symptom affects the 

organization of thinking, speech and communication, so that it becomes 

difficult to follow. The patient’s speech may appear to be wandering 

(derailment and loss of goal), without logic (illogicality), or include new, self-

invented words (neologisms). 

• Catatonic symptoms: These refer to changes in motor function, and more 

complex aspects of behaviour. Patients with catatonia show meaningless 

repetitions of actions, slowing and hesitancy of motor actions, or disorders of 

cooperation such as negativism or excessive compliance. These symptoms 
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frequently occur in the context of stupor (marked reduction in all motor 

activity) or excitement (high levels of disorganized and often destructive 

activity). Catatonia can also affect speech, producing symptoms such as 

aprosodia (marked lack of inflection), echolalia (repeating part or all 

everything that is said to the patient) or mutism (complete lack of speech). 

• Lack of insight: Many patients with schizophrenia do not believe that they 

are ill, misattributing the symptoms to other causes or rejecting the need of 

treatment (Mintz et al., 2003). Lack of insight often includes an inaccurate 

awareness of the own cognitive performance (Medalia and Lim, 2004; 

Medalia and Thysen, 2008; Donohoe et al., 2009; González-Suárez et al., 

2011). 

Positive symptoms and negative symptoms are common features of 

schizophrenia, although they are not always present at the same time (e.g. 

McKenna, 2007). In particular, positive symptoms are often intermittent, 

worsening with relapses of illness and improving or disappearing between 

episodes. In contrast, negative symptoms are not seen in all patients, but when 

they are present they are usually unchanging. Unlike positive and negative 

symptoms, for unknown reasons catatonia is nowadays rare. 

Correlational studies have consistently found that positive and negative 

symptoms are unrelated to one another, suggesting that they have different 

underlying causes (Andreasen and Olsen, 1982; Lewine et al., 1983; Rosen et 

al., 1984; Kay et al., 1986). A factor analytic study carried out by Liddle (1987b) 

suggested that there is a more complicated grouping of symptoms, into reality 

distortion (delusions and hallucinations), disorganization (formal thought 

disorder, plus inappropriate affect) and negative symptoms. Most subsequent 
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studies have supported this division (Thompson and Meltzer, 1993; Andreasen 

et al., 1995). 

A further important area of symptomatology in schizophrenia is impaired 

cognition. This forms the topic of this thesis and is discussed in detail later. 

1.2. Course and outcome of schizophrenia 

The course of schizophrenia is very variable. In general, it can be divided 

into the following sequential phases (Tandon et al., 2009): 

1. Prodrome: A period lasting weeks to months or occasionally years 

characterized by subthreshold positive and/or negative symptoms and other 

nonspecific changes. These include suspiciousness, strange ideas, sleep 

disturbance, anxiety, irritability, depressed mood, social isolation, decline in 

functioning, and lack of motivation (Malla and Payne, 2005). 

2. Onset of illness: This represents the first time when the person presents 

overt psychotic symptoms. These almost always usually take the form of 

positive symptoms, but sometimes patients show a worsening evolution of 

negative symptoms like withdrawal and apathy, against which only minor 

delusions or hallucinations can be elicited. After the psychotic phase, there 

tend to remain depressive and negative symptoms. 

3. Chronicity: During this phase the illness becomes established. This 

generally takes place over a period of two to five years. Positive symptoms 

tend to become less severe while negative symptoms tend to worsen. There 

may be exacerbations and remissions of active psychotic symptoms, 

sometimes, but not always, the overall degree of deterioration becomes 

worse with each episode. 
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The outcome of schizophrenia is also very variable, ranging from 

complete recovery to permanent severe disability requiring institutional care. 

McKenna (2007) has reviewed the literature in this area. The findings of the 

best designed studies are not fully consistent, but broadly suggest that around 

20% of patients will show a full or nearly full recovery between episodes of 

acute illness. At the other end of the spectrum, between a third and a half of 

patients will ultimately have a poor outcome, showing moderate or severe 

ongoing positive symptoms accompanied by deterioration in social and 

occupational functioning to the extent that they are not able to live 

independently. Despite this, the most common outcome includes an attenuated 

presence of positive symptoms and more prominent negative symptoms and 

the need to a certain support and supervision to fulfil daily activities. 

1.3. Treatment of schizophrenia 

The most important treatment modality in schizophrenia is 

pharmacological, specifically the class of antipsychotic or neuroleptic drugs. 

The first drug of this type, chlorpromazine (CPZ), was introduced in the 1950s. 

Beginning with haloperidol, other antipsychotic drugs progressively appeared, 

but none were found to have superior effectiveness to CPZ (Davis, 1985). Their 

effectiveness of treatment was also found to be limited, with around 25% of 

patients showing little or no response (Goldberg et al., 1965). Antipsychotic 

drugs were also found to produce significant side-effects, especially the so-

called extrapyramidal side-effects, including parkinsonism and tardive 

dyskinesia, among others (Cunningham Owens, 1999). Tardive dyskinesia, in 

particular, is potentially serious, since although it only affects a minority of 
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patients it is usually irreversible. These drugs would be later be termed 

‘conventional’ or ‘first-generation’ antipsychotic drugs. 

In 1990, clozapine, a drug which had been in existence since 1967, but 

whose use was restricted because of an uncommon but potentially fatal effect 

on the blood, was re-introduced worldwide. This followed a trial by Kane et al. 

(1988) which demonstrated that it showed superior effectiveness to 

chlorpromazine in treatment resistant patients with schizophrenia. Unlike all 

other antipsychotic drugs, clozapine was also found to have only a minimal risk 

of producing extra-pyramidal side effects. Since then, a number of other 

‘atypical’ or ‘second-generation’ antipsychotic drugs have been developed 

(Edlinger et al., 2005). 

All antipsychotic drugs are dopaminergic antagonists, acting 

postsynaptically to produce a blockade of D2 receptors (Coyle et al., 2010). 

This finding was one of the factors that gave rise to the dopamine hypothesis of 

the disorder (discussed in section 14). Apart of the risk of extra-pyramidal side-

effects, the most common side-effects of antipsychotic medication are weight 

gain, increase of the hormone prolactin, and QTc prolongation in the heart rate 

(Buchanan et al., 2010). The risk and magnitude of the side-effects vary among 

the different drugs, although they tend to be more important in first-generation 

than in second-generation antipsychotic drugs (Buchanan et al., 2010; Kane 

and Correll, 2010). 

Antipsychotic drugs exert their principal effect on positive symptoms in 

acute phases (Edlinger et al., 2005; Kane and Correll, 2010). In contrast, their 

effect on negative symptoms is less marked, or minimal according to some 

authors (Dixon et al., 1995; Buchanan et al., 2010; Kane and Correll, 2010). 
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However, clozapine and some other second-generation antipsychotic drugs 

may show a better effect in negative symptomatology than other antipsychotic 

drugs (Leucht et al., 2009). 

The fact that currently existing antipsychotic drugs just improve positive 

symptoms and have little effect in negative and cognitive symptoms is leading 

to searching for new drugs acting in serotoninergic, GABAergic and cholinergic 

systems. To date, no drugs of these types have shown clear evidence of 

effectiveness (Coyle et al., 2010). 

Non-pharmacological strategies have been considered to show 

effectiveness in schizophrenia, although they are only recommended as 

adjunctive to psychopharmacotherapy. These include assertive community 

treatment in order to reduce the probability of re-hospitalization or 

homelessness, supported employment, training in everyday skills, token 

economy interventions and others (Dixon et al., 2010). The most important non-

pharmacological treatment, however, is cognitive behavioural therapy (CBT) 

which has been argued to show effectiveness against both the positive and 

negative symptoms of schizophrenia and to be effective in preventing relapse 

(Tai and Turkington, 2009). The effectiveness of this treatment has been 

supported by meta-analysis (Zimmermann et al., 2005; Wykes et al., 2008). 

However, Lynch et al. (2010) have argued that the effect sizes (ESs) are 

smaller and mostly non-significant when only studies using blind evaluations 

and a control intervention are considered. 

1.4. The aetiology of schizophrenia 

Schizophrenia is a disorder whose cause or causes remain essentially 

unknown (Macher, 2010). Nevertheless, there is a consensus about the 
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importance of several different genetic, neurochemical and neurodevelopment 

factors. 

Genetic predisposition is the most well-established risk factor for 

schizophrenia. Numerous twin and family studies have been carried out and 

reviewed (Gottesman, 1991; Cardno and Gottesman, 2000) and there is a 

consensus that having a monozygotic twin with schizophrenia confers a risk of 

about 50%. There is a similar level of risk when both parents have the illness. 

Beyond this, the probability of developing the illness decreases progressively 

when the closeness of the relative with schizophrenia decreases. For instance, 

siblings, children of one affected parent and dizygotic twins have around a 10% 

chance of becoming ill, and when first cousins or aunts/uncles have the illness, 

the probability is of about 2-3%. 

Many susceptibility genes for schizophrenia have been proposed, but 

there is only strong evidence for three: DISC 1, neuregulin and dysbindin. All 

three genes are involved in potentially relevant neurochemical and brain 

developmental processes. However, according to current evidence the effect of 

each of these genes is at most small (Harrison and Weinberger, 2005; Tiwari et 

al., 2010; Balu and Coyle, 2011; Johnstone et al., 2011; Rico and Marín, 2011). 

Some uncommon copy number variants (CNVs) have recently been 

implicated as strongly causative but individually uncommon causes of 

schizophrenia. CNVs are genomic variants of normality consisting of small 

additions, small deletions or changes in the position of the human DNA. Their 

presence does not determine the presence of the disorder, as in highly 

penetrant mutations in Mendelian, single-gene diseases, and increases 

significantly more the probability of having the disorder, unlikely to genetic 
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variants associated with complex genetic diseases. Some rare and large CNVs 

have been related to schizophrenia and other psychiatric disorders with high 

odds ratios, although they only account for a very small proportion of cases 

(Tiwari et al., 2010; Gershon et al., 2011). The CNVs implicated in 

schizophrenia also increase susceptibility to a range of developmental 

disorders, including autism, mental retardation, attention deficit-hyperactivity 

disorder and epilepsy (Williams et al., 2009). 

As regards neurochemical factors, the dominant theory of schizophrenia 

over many years has been that of a functional dopamine excess. As reviewed 

by Howes and Kapur (2009), this is based on indirect evidence a) that 

neuroleptic drugs exert their therapeutic effect via blockade of dopamine D2 

receptors, and correspondingly b) that drugs with dopamine agonist actions, 

including amphetamine, cocaine and also L-dopa, can induce a state 

indistinguishable from schizophrenia. Until recently, direct evidence for the 

dopamine hypothesis has been lacking. In particular, studies examining for 

evidence for increased dopamine D2 receptors in the striatum in schizophrenia 

in never-treated patients had mostly negative findings (Laruelle, 1998; 

McKenna, 2007). However, three other studies (Laruelle et al., 1996; Breier et 

al., 1997; Laruelle et al., 1999) have found evidence for increased dopamine 

release from synaptic vesicles under the influence of amphetamine. Most 

recently, Howes et al. (2009) found an increased dopaminergic striatal activity in 

people with prodromal psychotic symptoms. In contrast, Shotbolt et al. (2011) 

found a normal striatal dopamine synthesis capacity in schizophrenia patients 

with no marked symptomatology at the moment as well as in their illness-free 

monozygotic twins. 
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The major alternative neurochemical theory of schizophrenia is the 

glutamate hypothesis, which postulates that glutamate transmission is 

decreased in schizophrenia. It was developed following the recognition that an 

anaesthetic and drug of abuse, phenycyclidine, often provoked symptoms 

similar to schizophrenia (Javitt and Zukin, 1991). These studies have been 

extended with demonstrations that a related drug, ketamine, can induce 

symptoms showing a degree of resemblance to schizophrenia in healthy 

volunteers. However, the similarity of this state to schizophrenia has been 

questioned (Pomarol-Clotet et al., 2006). 

Although early studies claimed therapeutic effects of glutamate agonist 

drugs on negative, but not positive, symptoms in schizophrenia (Tuominen et 

al., 2005), more recent studies have failed to confirm this (Buchanan et al., 

2007). As yet, McKenna (2007), after reviewing the evidence, concluded that 

direct evidence of changes in indices of glutamatergic function in the brains of 

schizophrenic patients is conflicting. It is noteworthy that glutamate also 

interacts with dopamine (Harrison and Weinberger, 2005; Stephan et al., 2006). 

According to the neurodevelopmental hypothesis of schizophrenia, brain 

damage or injury sustained early in life is initially dormant but produces 

symptoms when it interacts with normal brain maturational processes occurring 

later, i.e. in adolescence. Key proposals of this theory are a) that individuals 

who subsequently go on to develop schizophrenia show an excess of adverse 

events during pregnancy, birth or early life, and b) that the brain injury is not 

entirely silent during early life, but shows itself as minor developmental delays, 

behavioural changes, etc. 
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An important line of evidence in favour of the neurodevelopmental 

hypothesis is the finding of a higher rate of obstetric complications in babies 

who later develop schizophrenia (Jones et al., 1998; Cannon et al., 2000). 

However, not all studies have found evidence of this (Done et al., 1991; Buka et 

al., 1993). Nevertheless, a meta-analysis by Cannon et al. (2002) found overall 

evidence in support of a higher rate of birth complications. 

The neurodevelopmental hypothesis has received more consistent 

support from longitudinal studies of child development. As Mckenna (2007) 

reviewed, a series of so-called birth cohort studies -which have followed 

children from birth to early adult life or later- have all found that children who will 

later develop schizophrenia have a lower IQ. They also show more anxiety and 

behavioural disorders in childhood (Done et al., 1994; Jones et al., 1994), and 

have a higher frequency of speech delay and other speech problems (Jones et 

al., 1994). Some of these studies have also found that children who later 

develop the disorder show a higher frequency of tics and other minor motor 

disorders (Rosso et al., 2000) and report having experienced minor psychotic 

symptoms at the age of 11 (Poulton et al., 2000). 

Based on the above evidence, schizophrenia is widely considered to 

have a multifactorial aetiology (Andreasen, 1999). The presence of a set of 

susceptibility genes, together with environmental factors such as pre- and 

perinatal adverse events, produce subtle neurodevelopmental changes. These, 

possibly in conjunction with altered cerebral maturation and abnormalities in 

dopaminergic pathways, then lead to the development of illness. 
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1.5. Neural bases of schizophrenia 

There is a large body of evidence examining brain structure and function 

in schizophrenia. At the macroscopic level, it has been accepted for a long time 

that the brain shows no obvious changes post-mortem on visual examination 

(David, 1957). However, a meta-analysis of studies of post-mortem brain weight 

found a 2% reduction (Harrison et al., 2003). Whether there are microscopic 

changes is controversial. There were many early claims for histological 

abnormality in schizophrenic post-mortem brain such as cell loss, cell shrinkage 

and ballooning, dwarf cells, metachromatic bodies, cellular inclusions, 

demyelination and gliosis. Subsequently, David (1957) concluded in a review 

that there were grounds for doubting all these findings. A more recent review by 

Harrison (1999) concluded that only three microscopic findings were well 

supported: absence of gliosis; decreased neuronal size in the hippocampus and 

reduced numbers of neurons in the dorsal thalamus. This last finding could be 

considered doubtful as it was based on only two studies. 

Much of our current knowledge on the neuroanatomical basis of 

schizophrenia derives from structural and functional imaging studies. Structural 

imaging studies began to be carried out shortly after computerized tomography 

(CT) was introduced in the 1970s. There are now many studies using the more 

sophisticated technique of magnetic resonance imaging (MRI). Another 

important source of research knowledge is functional neuroimaing, including the 

techniques of Positron Emission Tomography (PET), Single Photon Emission 

Computed Tomography (SPECT) and functional magnetic resonance imaging 

(fMRI). 
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1.5.1. Brain structure 

The first structural imaging study in schizophrenia was carried out in 

1976. Using CT, Johnstone et al. (1976) originally reported that a sample of 13 

chronically hospitalized schizophrenic patients had significantly larger lateral 

ventricles than a control group of eight normal controls. This finding has later on 

been replicated in most of around 50 further studies (Andreasen et al., 1990). 

1.5.1.1. Gray matter 

MRI gives a much better resolution than CT and permits the 

differentiation of gray matter (GM) and white matter (WM). A meta-analysis of 

58 structural MRI studies including 1588 participants (Wright et al., 2000) found 

support for the following structural changes in schizophrenia: lateral ventricular 

enlargement of around 25% and a 2% reduction in whole brain volume. Volume 

reductions were somewhat more marked in the frontal lobe (5%), hippocampus 

(6%) and thalamus (4%) and amygdala (7%). Volume reductions in the 

temporal lobe (2-3%) were no more marked than in the brain as a whole. A 

summary of the results of this meta-analysis is shown in Table 1. 

Steen et al. (2006) had similar findings in a meta-analysis of 52 studies of 

first-episode (FE) schizophrenia patients including 1424 patients and 1315 

healthy controls. There was a reduction of whole brain volume (2.7%) and 

hippocampal volume (9.3%) plus ventricular enlargement (33.7% for the right 

ventricle; 24.7% for the left ventricle and 25.3% for the third ventricle). Steen et 

al. (2006) also found support for reduced volume in Heschl’s gyrus, part of the 

superior temporal lobe cortex, and other parts of the temporal lobe GM. 
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Table 1. Comparison of regional brain volume of participants with 

schizophrenia and healthy controls in 58 studies, as adapted from Wright 

et al. (2000). 

  Number of subjects 

Brain structure 
Number 

of 
studies 

Schizophrenia controls 

Comparative 
volume in 

schizophrenia 
compared to 
control in % 

Ventricles     
Left lateral ventricle 18 557 496 130 
Right lateral ventricle 18 557 496 120 
Third ventricle 22 595 548 126 
Fpurth ventricle 5 119 134 107 
Total ventricles 30 984 912 126 
Cortical and limbic structures     
Left frontal volume 13 395 367 95 
Right frontal volume 13 395 367 95 
Left temporal lobe 25 693 669 98 
Right temporal lobe 25 693 669 97 
Left superior temporal gyrus 10 314 271 97 
Right superior temporal gyrus 10 314 271 97 
Left anterior superior temporal gyrus 8 194 183 93 
Right anterior superior temporal gyrus 7 179 168 95 
Left posterior superior temporal gyrus 5 94 128 93 
Right posterior superior temporal gyrus 4 79 113 103 
Left parahippocampus 8 185 168 89 
Right parahippocampus 8 185 168 92 
Left hippocampus 24 677 621 93 
Right hippocampus 24 677 621 94 
Left amygadala 7 146 137 91 
Right amygdala 7 146 137 91 
Subcortical structures     
Left caudate 10 308 257 101 
Right caudate 10 308 257 99 
Left putamen 7 169 151 104 
Right putamen 7 169 151 104 
Left globus pallidus 2 36 48 118 
Right globus pallidus 2 36 48 121 
Left thalamus 3 111 99 96 
Right thalamus 3 111 99 96 
Whole brain measures     
Whole brain 31 946 921 98 
Left hemisphere 15 463 434 97 
Right hemisphere 15 463 434 97 
Gray matter 6 155 194 96 
White matter 5 126 155 98 

 

The above structural studies were based on region-of-interest (ROI) 

analysis. That is, brain regions of interest were selected a priori and segmented 

manually or automatically in the images. More recently, whole brain, voxel-

based techniques, such as voxel-based morphometry (VBM), have been 
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developed: these map clusters of significant difference between groups of 

subjects throughout the brain without the necessity of preselecting ROIs 

(Ashburner and Friston, 2000; Davatzikos, 2004). These techniques potentially 

have more power to detect small and/or localised volume differences in 

schizophrenia. Originally, these techniques provided a measure of GM and WM 

density or concentration. However, by means of a technique known as 

modulation or optimization, it is possible to generate a measure of volume 

(Mechelli et al., 2005). 

A meta-analysis on 31 VBM studies found GM density reductions in sites 

in frontal, temporal, insular and thalamic regions in 1195 participants with 

schizophrenia in comparison to 1262 controls (Glahn et al., 2008). A more 

recent meta-analysis by Fornito et al. (2009) supported some but not all of 

these findings. Altogether, 37 VBM studies of schizophrenia were included, with 

data from 1646 participants with the disorder and 1690 controls. When data 

were combined from studies using non-modulated VBM, alteration in the medial 

and lateral prefrontal cortex, temporal cortex and insula bilaterally was found: 

However, the studies using modulated/optimized VBM yielded more restrictive 

results: clusters of significant volumetric differences were seen only in the left 

medial superior frontal gyrus, the left orbitofrontal region and fusiform gyrus. 

The largest and most recent meta-analysis of this type has been carried 

out by Bora et al. (2011b) on 52 studies including 2090 participants with 

schizophrenia and 2284 healthy controls. They found GM volume reductions in 

bilateral inferior, medial frontal, and insular regions, as well as the thalamus and 

the left superior temporal gyrus (see Figure 1 in 
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http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=846

8483). 

A further meta-analysis by the same group (Bora et al., 2011a), carried 

out on 18 studies of FE patients comprising 578 participants with psychosis and 

636 healthy controls, revealed GM volume reductions in the right posterior 

insula and superior temporal gyrus and in the anterior cingulate. The pattern of 

changes was more restricted than in patients with chronic schizophrenia. 

1.5.1.2. White matter 

Brain structural changes in schizophrenia involve not just GM but also 

WM. For example, Wright et al. (2000), in the meta-analysis cited above, found 

evidence for a 4% reduction in GM volume and a 2% reduction in WM volume 

across the whole brain. Bora et al. (2011a) meta-analyzed 24 VBM studies 

(n=885 of the patient sample) examining WM volume in schizophrenia. They 

found reductions in the anterior limb of the internal capsule bilaterally and in the 

right temporal lobe when compared with 883 healthy controls. The findings are 

shown in Figure 1. 

Another technique for examining WM pathology is diffusion tensor 

imaging (DTI). This quantifies the extent to which water can diffuse in different 

directions, giving a measure referred to as fractional anisotropy (FA). Normally 

the direction of diffusion is highly constrained in the direction of the axon 

because most of the water is inside axons surrounded by myelin. However, 

when myelin is absent or damaged or its thickness is decreased, water is more 

free to move in directions perpendicular to the axon and so the FA decreases. 
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Figure 1. Volumetric reductions in WM in schizophrenia according to a 

recent meta-analysis of 24 studies (adapted from Bora et al., 2011a). 

 

The left side in the image represents the left brain hemisphere. 

 

Other properties of the WM fibre tracts, such as their density, their 

average diameter and the directionality (or coherence) of the fibres in each 

voxel, can also affect the diffusion of water molecules (Kanaan et al., 2005; 

Kubicki et al., 2007). 

In an early review of DTI studies in schizophrenia, Kanaan et al. (2005) 

concluded that there was preliminary evidence for WM alterations in the corpus 

callosum and in the cingulum bundle. The cingulum bundle is a bundle of WM 
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running along the length of the cingulate gyrus which carries fibres 

interconnecting the temporal pole, the parietal lobe and the orbitofrontal cortex 

(Schmahmann and Pandya, 2006). Two more recent reviews have also found 

support for decreased FA in the corpus callosum, and also in cingulate and 

frontal WM in schizophrenia (Keshavan et al., 2008; White et al., 2008). Kubicki 

et al. (2007), on the other hand, found evidence for abnormalities in a wider 

range of WM tracts within prefrontal and temporal lobes, as well as 

abnormalities within the fibre bundles connecting these regions (including 

uncinate fasciculus, cingulum bundle and arcuate fasciculus). Kyriakopoulos et 

al. (2008), in a more recent review, found WM alterations in the corpus 

callosum, arcuate fasciculus, cingulum bundle and cerebellar peduncles, as well 

as trends into alterations in frontal and temporal WM tracts. 

The authors of these reviews (Kanaan et al., 2005; Kubicki et al., 2007; 

Kyriakopoulos et al., 2008) also recognized that the findings were inconsistent. 

Kanaan et al. (2005) and Kubicki et al. (2005) emphasised the need for use of 

more homogenous samples, whereas Kyriakopoulos et al. (2008) argued that 

the use of restricted ROI in many of the studies is another potential confounding 

factor. With respect to this last potential confounding factor, Bora et al. (2011a) 

meta-analyzed 23 studies using studies which used a whole brain approach 

(688 schizophrenia vs. 665 healthy participants). FA was reduced in three 

clusters in the patients: the largest cluster included the bilateral genu of the 

corpus callosum, the anterior cingulate cortical/medial frontal WM and the right 

anterior limb of the internal capsule and the right external capsule/corona 

radiata. A second cluster was in the left temporal WM and retrolenticular 

internal capsule, extending to the external capsule and the fornix/stria 
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terminalis. The third cluster included right temporal WM. The findings are shown 

in Figure 2. 

 

Figure 2. FA reduction using DTI in schizophrenia according to a recent 

meta-analysis of 23 studies (adapted from Bora et al., 2011a). 

 

The left side in the image represents the left brain hemisphere. 

1.5.2. Brain functioning 

1.5.2.1. Early findings 

Functional imaging studies of schizophrenia began in 1974 with a study 

by Ingvar and Franzén (1974). Using the technique of 133Xenon inhalation, they 

examined brain activity at rest in 11 patients with dementia and two groups of 

chronic schizophrenic patients, one consisting of nine chronically hospitalised 

patients and the other of 11 younger patients. There were 15 normal controls. 

The demented patients showed significantly reduced cerebral blood flow in all 

cortical areas compared to the controls. In contrast, global blood flow was not 

significantly different from the controls in the schizophrenic patients, but there 
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was a changed regional pattern of flow in both groups of schizophrenic patients, 

with a reversal of the normal pattern of greater flow in anterior as compared to 

posterior regions. Ingvar and Franzén (1974) referred to this abnormality as 

hypofrontality. 

Subsequent studies which examined resting brain activity had conflicting 

findings concerning hypofrontality; while some studies found support for 

hypofrontality (Ariel et al., 1983; Buchsbaum et al., 1984; DeLisi et al., 1985), 

others did not (Mathew et al., 1982; Gur et al., 1983; Gur et al., 1985). Chua 

and McKenna (1995) reviewed 27 studies carried out up to 1994 and found that 

only 10 of 27 studies found evidence for hypofrontality at rest. 

Partly because of these inconsistencies, Weinberger et al. (1986) 

proposed that hypofrontality in schizophrenia might be easier to demonstrate 

when cognitive demands were made on the prefrontal cortex. They carried out 

functional imaging using the 133Xenon technique, both at rest and during 

performance of an executive task, Wisconsin Card Sorting Test (WCST), in 20 

chronic schizophrenic patients and 25 controls comparable in age and sex. The 

schizophrenic patients showed only a non-significant trend to hypofrontality at 

rest, but hypofrontality during WCST performance was significantly more 

evident. Once again, however, this finding was not consistently replicated: Chua 

and McKenna (1995) found that summarising seven studies examining task 

related activations in schizophrenia, just four presented positive and three 

presented negative findings. 

A limited meta-analysis on 22 PET studies including 537 schizophrenia 

patients and 427 healthy controls found support for hypoactivation with a 

moderate effect size (ES) at rest (-0.64) and with a large effect when performing 
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an executive task (-1.13) (Zakzanis and Heinrichs, 1999). Hill et al. (2004) 

confirmed these findings in a meta-analysis of a larger set of studies. This found 

support for hypofrontality at rest (ES of –0.32 in 38 studies with a total sample 

of 1474 participants using absolute measures of blood flow/metabolism and ES 

-0.55 in 25 studies with 950 participants using a relative measure, i.e. dividing 

frontal blood flow/metabolism by global blood flow/metabolism). It also found 

support for hypofrontality during cognitive task performance (ES of –0.42 in 10 

studies with a total sample of 347 participants using absolute measures and ES 

-0.37 in 17 studies with 685 participants using a relative measure). However, 

this meta-analysis did not confirm the proposed greater magnitude of task-

related compared to resting hypofrontality -the ESs were similar in both. 

1.5.2.2. Contemporary functional imaging studies 

The above studies used the ROI approach, typically restricting the 

analysis to the prefrontal cortex or subregions of this, especially the dorsolateral 

prefrontal cortex (DLPFC). More recently, studies have begun to use voxel-

based techniques, which do not preselect areas of interest. Whereas early 

studies used radioisotope-based techniques such as PET, SPECT and 

133Xenon inhalation, contemporary studies have increasingly employed fMRI, 

which does not depend on radiation-emitting isotopes, but is restricted by the 

fact that only activation related changes can be studied. An important finding 

from this new generation of studies was that schizophrenic patients showed 

evidence not just of hypofrontality, but also of ‘hyperfrontality’, i.e. increased 

prefrontal activation, sometimes in isolation and sometimes alongside areas of 

decreased activation, while they performed the n-back task (a standard working 
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memory task in imaging studies explained in section 3521) (Manoach et al., 

1999; Callicott et al., 2000; Callicott et al., 2003; Tan et al., 2006). 

The finding of hyperfrontality has subsequently been supported by two 

meta-analyses. Glahn et al. (2005) meta-analyzed 12 studies including 186 

participants with schizophrenia and 172 healthy controls which used the n-back 

task. They found consistent evidence for decreased activation in the DLPFC 

bilaterally and in the right insular cortex as well as for increased activation in the 

anterior cingulate and left frontal pole regions in patients with schizophrenia 

compared to that in controls. The findings are shown in Figure 2 in 

http://onlinelibrary.wiley.com/doi/10.1002/hbm.20138/abstract;jsessionid=A6033

2B2A379F02D97EE9556BD26A710.d03t03. 

Minzenberg et al. (2009) had similar findings in a larger meta-analysis of 

studies using a range of different executive tasks. They included 41 studies with 

a total sample of 584 participants with schizophrenia and 623 healthy 

participants. The schizophrenic sample were found to show significantly 

reduced activation in the bilateral DLPFC, the right medial frontal cortex, the left 

thalamus, the basal ganglia bilaterally and parts of the parietal and occipital 

cortex. They also showed significantly increased activation when compared to 

healthy controls: these included the dorsal anterior cingulate cortex and the 

frontal pole, areas similar to those found by Glahn et al. (2005), but also areas 

in the left dorsal and ventral premotor cortex, the ventrolateral prefrontal cortex 

and parts of the temporal and parietal cortex. 

A further recent functional imaging finding in schizophrenia has been 

failure to de-activate in the medial prefrontal cortex. Examining 32 chronic 

schizophrenic patients and 32 controls during performance of the n-back task, 
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Pomarol-Clotet et al. (2008) found reduced activation in the right DLPFC and 

other frontal areas, and also failure of de-activation in a large area of the medial 

frontal cortex (see Figure 2 in 

http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=192

7800). This finding has been replicated by a number of other authors, 

sometimes along with failure of de-activation in other regions including the 

posterior cingulate cortex (Whitfield-Gabrieli et al., 2009; John et al., 2011; 

Milanovic et al., 2011; Salgado-Pineda et al., 2011; Schneider et al., 2011). 

Given that this area of failure of de-activation overlaps with some of the 

areas where hyperfrontality has been found in schizophrenia, Pomarol-Clotet et 

al. (2008; 2010) have proposed that the finding of hyperfrontality in 

schizophrenia could actually represent a failure to de-activate. This proposal is 

based on an argument by Gusnard and Raichle (2001) that the subtractive 

nature of functional imaging analysis can result in findings of apparent activation 

in healthy subjects during task performance when what is really taking place is 

reduction in activation from a high baseline. The argument was originally made 

in relation to control and target tasks in the same subjects, and is illustrated in 

Figure 3. In (a) the task of interest is associated with a greater increase above 

baseline than the control task; in (b) the task of interest is associated with less 

of a decrease from the baseline than the control task. However, in both cases, 

there is an increase in activity between the control task and the task of interest. 

Pomarol-Clotet et al. (2008) considered that this argument applies equally to 

differences between groups of subjects, in this case schizophrenic patients and 

controls. 
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Figure 3. Two different ways in which an apparent activation can be found in a 

task of interest, as described by Gusnard and Raichle (2001). 
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In a, the task of interest is associated with a greater increase above baseline than the control task. In b, 

the task of interest is associated with less of a decrease from the baseline than the control task. 

 

This latter finding is interesting because the medial frontal cortex forms 

one of the two midline nodes of the so-called default mode network (DMN), a 

series of interconnected brain regions which are active at rest but de-activate 

during performance of a wide range of cognitive tasks (Gusnard and Raichle, 

2001; Buckner et al., 2008). Other parts of the DMN include the posterior 

cingulate/retrosplenial cortex, the inferior parietal cortex, the hippocampus and 

parahippocampal cortex, and less reliably the lateral temporal cortex (Buckner 

et al., 2008). Studies examining the DMN using independent component 

analysis or whole brain resting state connectivity have also found evidence of 

DMN dysfunction in schizophrenia (Broyd et al., 2009). In several of these 

studies the anterior midline node in the medial frontal cortex seems particularly 

implicated (Whitfield-Gabrieli et al., 2009; Salvador et al., 2010; Camchong et 

al., 2011). The DMN is additionally of interest in schizophrenia because its 

activity is inversely correlated with ‘task positive’ networks involved in task 
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performance (Buckner et al., 2008), one of which is an ‘executive control’ 

network involving the bilateral DLPFC and other frontal regions (Seeley et al., 

2007). 

1.6. Cognitive impairment in schizophrenia 

Although it was not considered an important feature of schizophrenia by 

Kraepelin and particularly by Bleuler (Mckenna et al., 2002), cognitive 

impairment has since become accepted as an important feature of the disorder. 

Early studies reviewed by Chapman and Chapman (1973) established that 

patients with schizophrenia performed more poorly than normal individuals on 

virtually every cognitive task. Later, IQ testing revealed that schizophrenic 

patients had lower IQs than the rest of the population. Overall, the disadvantage 

was found to be minor, on average of the order of less than five IQ points, but 

groups of patients with severe and chronic forms of illness were found to have a 

mean IQ of just over 80 (Payne, 1973). Finally, three reviews of the 

performance of patients with schizophrenia on a wide range of 

neuropsychological tasks all found that groups of acute, mixed and chronically 

hospitalised schizophrenic patients were increasingly difficult to distinguish from 

the patients with various forms of brain damage (Goldstein, 1978; Heaton et al., 

1978; Malec, 1978).  

Heinrichs and Zakzanis (1998) meta-analyzed neuropsychological 

studies comparing schizophrenic patients and controls carried out between 

1980 and 1997 and which covered areas of memory, motor skills, attention, 

intelligence, visual and visuospatial function, executive function, language and 

tactile perception. They included 204 studies with 7420 participants with 

schizophrenia and 5865 comparison subjects. The ESs for impairment were all 



 The neural correlates of cognitive impairment in schizophrenia 29 

moderate or large, ranging from 0.46 (for WAIS-III Block Design) to 1.41 (for 

verbal memory). The degree of non-overlap between the schizophrenic and the 

normal controls varied from 30% to 70% on different tests. Heinrichs and 

Zakzanis (1998) concluded that schizophrenic cognitive impairment affected 

most areas of function and took the form of a continuum from a mild impairment 

overlapping with the levels of function seen in many healthy individuals, to the 

kind of severe dysfunction found in patients with central nervous system 

disease. 

Fioravanti et al. (2005) confirmed these findings in a more recent meta-

analysis of 113 studies including 4365 participants with schizophrenia and 3429 

healthy controls. IQ impairment showed a severe impairment (ES=1.01). 

Language impairment was found to be the same as for IQ (ES=1.01). Memory 

impairment, however, was found to be larger than impairment in IQ (ES=1.18). 

The same happened for impairment in reaction time (ES=0.70 to 1.53). 

Reichenberg (2010) has recently summarized the findings of these and 

other meta-analyses (see Figure 4). He noted that schizophrenia is 

characterised by a severe degree of general intellectual impairment, as indexed 

by studies measuring IQ in the disorder. Against this background, meta-analytic 

studies suggest moderate to marked impairment in attention, specifically the 

subdomain of sustained attention. He also found evidence for a severe deficit in 

executive function. With respect to declarative memory, he noted that deficits in 

declarative memory have been consistently reported, with meta-analyses 

finding severe impairments in immediate and delayed verbal and nonverbal 

long-term memory. Non-declarative memory has been considerably less studied 

in schizophrenia, and has not been the focus of meta-analytic investigations. 
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However, the available evidence suggested that this aspect of memory is 

relatively preserved in schizophrenia patients, and schizophrenia patients show 

near perfect performance or only mild impairment on tasks of procedural 

learning. As regards working memory functions, meta-anaytic results refer that 

tasks that just require active maintenance of information -most typically Digits 

Forward- are markedly less impaired than those that include both maintenance 

and manipulation of information -most typically Digits Backward-. Another 

domain that would show a severe substantial impairment in schizophrenia is 

processing speed. Perceptual tasks and simple motor tasks would also present 

moderate to severe impairment. On the contrary, a relatively preservation of 

linguistic skills, with just mild impairment, would be observed in the results of 

different meta-analyses. 

There is wide agreement that schizophrenic cognitive impairment is not 

caused by neuroleptic drug treatment. King (1990) reviewed the evidence on 

the effects of administration of these drugs to normal subjects and found that 

they had only minor effects on cognitive function. King (1990) and also Mortimer 

(1997) reviewed studies comparing schizophrenic patients before and after they 

received neuroleptic treatment. These studies invariably found no deterioration 

with treatment and sometimes slight improvement in test performance. Finally, 

several studies (Saykin et al., 1991; Blanchard and Neale, 1994; Saykin et al., 

1994) have examined drug-free or never-treated schizophrenic patients using 

wide-ranging batteries of neuropsychological tests and have found much the 

same pattern and degree of impairment as in treated patients. 
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Figure 4. Median effect size of cognitive impairment among cognitive 

domains, with data from several meta-analyses. Taken from Reichenberg 

(2010). 

 

 

 A small number of studies have aimed to determine the extent to which 

cognitive impairment in schizophrenia can be attributed to factors such as poor 

motivation and co-operation (Goldberg et al., 1987; Kenny and Meltzer, 1991; 

Duffy and O'Carroll, 1994). These found little evidence that these factors play 

an important role. McKenna (2007) additionally argued that impairment cannot 

be attributed to these factors because a minority patients with schizophrenia 

show deficits which are so marked that they can be demonstrated on clinically-
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oriented tests such as the Mini-Mental State Examination (MMSE) which are not 

demanding of attention and concentration. 

All authors are in agreement that the degree of cognitive impairment in 

schizophrenia varies markedly from patient to patient. Additionally, several 

studies have documented that between 15% and 30% of patients show 

cognitive function that is within the normal range (Palmer et al., 1997; Weickert 

et al., 2000; Hill et al., 2002; Allen et al., 2003; Chan et al., 2006; Holthausen et 

al., 2007; Palmer et al., 2009). Some authors have argued that there is subtle 

evidence of cognitive impairment even among this group of patients, since 

some cognitive functions, such as memory and processing speed, have been 

found to be mildly affected in some of the studies (Seaton et al., 1999; Wilk et 

al., 2005). However, others have disagreed, and this remains an ongoing 

debate (Palmer et al., 1997; Kremen et al., 2000; Weickert et al., 2000; Keefe et 

al., 2005). 

1.6.1. Cognitive deficits in relation to the clinical features of 

schizophrenia 

1.6.1.1. Relationship to symptoms 

The relationship of cognitive impairment and different types of 

neuropsychological deficit to the symptoms of schizophrenia has been 

extensively investigated. In a seminal paper, Liddle (1987a) found that 

impairment on a range of neuropsychological tests was correlated with scores 

on negative symptoms and disorganization, but not with reality distortion (i.e. 

delusions and hallucinations), with suggestions of a differential pattern of 

association with the two syndromes. Disorganization was associated particularly 
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with poor performance on sustained attention, visual short-term memory, verbal 

learning and orientation, while the negative syndrome was associated with 

impairment on tests of naming and reasoning. This study did not include 

executive tests; however, Liddle and Morris (1991) carried out a further study 

that included a range of executive tasks. This also found significant inverse 

correlations between test scores and negative symptoms and disorganization, 

but not positive symptoms. It also found evidence for a relationship between 

negative symptoms and tests requiring generation of responses, such as verbal 

fluency, and between disorganization and tests requiring the inhibition of 

inappropriate responses, such as the Stroop Test. 

Mckenna and Oh (2005) reviewed these and 25 further studies which 

examined the association between Liddle’s three syndromes and performance 

on a wide range of cognitive tests. Their findings are summarized in Table 2.  

There was a clear pattern of association of poor neuropsychological test 

performance with both negative symptoms and disorganization, but very few 

studies found an association with reality distortion. The pattern of association 

with negative symptoms and disorganization affected not just executive 

function, but also memory, attention and all other areas of cognitive function 

that were evaluated. However, no clear pattern of a relationship between 

specific cognitive functions and negative or disorganization syndromes was 

evident. 

 



 The neural correlates of cognitive impairment in schizophrenia 34 

Table 2. Summary of the positive findings of a review of 27 studies 

relating cognition and psychopathology, adapted from Mckenna and Oh 

(2005). 

 Positive Disorganization Negative 

Executive function    
WCST  3, 5, 6, 9, 18, 19, 21, 22, 23, 24 4, 9, 12, 13, 17, 24 

Verbal fluency1 9 2, 3, 9, 16 3, 4, 9, 12, 13, 16, 17, 19, 23 
Stroop test 10 3, 10, 14, 22 ,26 3, 7 

Trail Making Test-part B  3, 9, 18, 22, 23 4, 9, 13, 19, 23 
Attentional Span    

Digits Forward  4, 18, 20, 22 8, 21 
Corsi blocks  1  

Long-term memory   
General memory  15 13 
Verbal memory 12 1, 8, 18, 25 12, 13, 17, 19 
Visual memory  12, 13 8, 13, 17, 19 

Other  2 1 
Working memory  23, 24 23 
General intellectual function   

Full scale IQ  13, 19 13 
Verbal IQ  8 8 

Performance IQ   17 
Other IQ  2, 7, 8 1, 2, 7 

Language  8 1 
Visual/visuospatial function   11 
Sustained attention  1, 2, 18, 21 2, 18, 19, 21 

WCST: Wisconsin Card Sorting Test; Verbal fluency includes both semantic and/or 
phonetic cue. 

 
1: Liddle (1987a) 14: Baxter and Liddle (1998) 
2: Frith et al. (1991) 15: Clark and O'carroll (1998) 
3: Liddle and Morris (1991) 16: Robert et al. (1998) 
4: Brown and White (1992) 17: Mohamed et al. (1999) 
5: Van der Does et al. (1993) 18: Rowe and Shean (1997) / Eckman and Shean (2000) 
6: Bell et al. (1994b) 19: O'Leary et al. (2000) 
7: Brekke et al. (1995) 20: Tabarés et al. (2000) 
8: Cuesta and Peralta (1995) 21: Guillem et al. (2001) 
9: Himelhoch et al. (1996) 22: Moritz et al. (2001) 
10: Joyce et al. (1996) 23: Cameron et al. (2002) 
11: Cadenhead et al. (1997) 24: Daban et al. (2002) 
12: Norman et al. (1997) 25: Roncone et al. (2002) 
13: Basso et al. (1998) 26: Woodward et al. (2003) 

 

Dibben et al. (2009) examined these relationships more rigorously, using 

meta-analysis. They extracted data from 88 studies examining correlations 

between schizophrenic syndromes and performance on tests examining 

different aspects of executive function (the WCST and other set shifting tests, 

the Trail Making Test part B, verbal fluency, working memory and other tests 

such as dual task performance and multitasking). For all tests pooled, there 
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were significant correlations with negative symptoms (n=83, r=-0.21) and 

disorganization (n=40, r=-0.17), but not with reality distortion (n=34, r=0.01). 

This meta-analysis also provided support for there being partially different 

patterns of association with the different tests executive tests: negative 

symptoms were inversely correlated with verbal fluency at a significantly higher 

level than was disorganization (r=-0.27 v. -0.11, p<0.0001), whereas inhibition 

of automatic responses as measured with the Stroop Test showed the reverse 

pattern (r=-0.13 v. -0.29, p=0.0004). 

1.6.1.2. Relationship to functional outcome 

A separate body of literature has examined the relationship of cognitive 

impairment to functioning and functional outcome in schizophrenia. Green and 

co-workers, in different publications (Green, 1996; Green and Nuechterlein, 

1999; Green et al., 2000), have reviewed and meta-analyzed these studies. In a 

review of 37 studies, Green et al. (2000) concluded that there was evidence that 

verbal memory, vigilance and performance in the WCST appeared to be 

associated with functional outcome. Meta-analysis of selected studies in the 

same publication (188-1002 participants) supported the importance of the 

relationship between verbal memory and functional outcome. Furthermore, 

cognition was found to account for 20-60% of the variance in functional 

outcome in schizophrenia. A more recent meta-analysis on 48 studies 

comprising 2692 participants confirmed the association between several 

different areas of cognitive function and of functional outcome, with pooled 

correlations ranging from small (r=0.16 for attention/vigilance and community 

functioning) to medium ES (r=0.39 for attention/vigilance and social-skills) (Fett 

et al., 2011). 
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Taking together the current scientific evidence, schizophrenic cognitive 

impairment -mainly memory and executive compromise- appears to be 

especially related to negative and disorganized symptoms but not to psychotic 

symptoms. At the same time cognitive deficits seem the most powerful clinical 

features that explain functional outcome in schizophrenia. 

1.7. The neural basis of cognitive impairment in schizophrenia 

Cognitive impairment in neurological disorders typically results from, and 

is related to the severity of, changes in brain structure and function. For 

example, the degree of cortical and hippocampal atrophy in Alzheimer’s disease 

shows a clear relationship to the degree of cognitive impairment the patients 

show (Whitwell, 2010). Similarly, the extent and place of brain damage in 

patients with head injury determines the nature and extent of cognitive deficits 

the trauma causes (McDonald et al., 2002). Functional brain changes without 

structural abnormality can also cause cognitive impairment, the obvious 

example being delirium (MacLullich et al., 2009). In some circumstances, such 

as the cognitive impairment and dementia associated with Parkinson’s disease, 

both structural and functional (neurochemical) factors may be important (Seppi 

and Schocke, 2005; Bohnen and Albin, 2011).  

Schizophrenia is a disorder associated with both structural and functional 

brain changes. Here, however, the relationship of these changes to the 

cognitive impairment that also characterizes the disorder is unclear, and studies 

have had complex and contradictory findings.  
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1.7.1. Cerebral structure 

Lewis (1990) reviewed studies which examined the association between 

the CT finding of lateral ventricular enlargement in schizophrenia, with cognitive 

impairment. He concluded that, although some studies reported an association, 

others did not, and overall there was no convincing evidence for a relationship. 

Antonova et al. (2004) reviewed 34 papers and concluded that there was 

some evidence that whole brain volume, lateral ventricular volume, and frontal 

and temporal lobe volume reductions were associated with general intellectual 

impairment and/or specific neuropsychological deficits. However, they noted 

that there were conflicting findings in each case. Also, the numbers of studies 

were generally small, varying between eight for whole brain volume, seven for 

frontal lobe volume to 13 for temporal lobe volume. The findings were further 

complicated by sex differences in the associations found, and also by the 

existence of correlations between some volume measures and IQ in the 

controls but not in the participants with schizophrenia. 

A more recent review on studies analyzing the relationship between ROI 

analysis and cognition in schizophrenia (Crespo-Facorro et al., 2007) reached 

similar conclusions. They included at least 36 studies, examining relationships 

between different measures of cognitive performance and several measures of 

brain volume -whole brain volume, different frontal regions, different temporo-

hippocampal regions- parietal and occipital lobes, cerebellum, caudate nucleus, 

thalamus, and lateral ventricles- . The authors noted that “there are several and 

important methodological shortcomings in the revised literature”. For instance, 

“most of the studies published have posited to characterize the contributions of 

single brain regions to specific cognitive processes”. However, we know “that a 
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single cognitive deficit may result from alterations in different brain regions 

constituting the neural network associated to this specific cognitive process”. 

They concluded that “...there is still a great need for more methodologically 

stringent investigations that would help in the advance of our understanding of 

the cognition/brain structure relationships in schizophrenia”. 

Some more recent studies have examined associations between brain 

structure and cognitive impairment using more recent voxel-based techniques. 

For example, Minatogawa-Chang et al. (2009) applied VBM to a large sample of 

patients with FE (n=88). They found that GM volume in the left anterior DLPFC, 

right inferior DLPFC, in the lateral parietal cortex bilaterally and in the left 

superior temporal cortex correlated with a composite score based on several 

attentional and executive tests. A similar pattern of correlations was found in the 

subgroup of 48 patients with a diagnosis of schizophrenia. Other studies 

examining correlations between cognitive function and brain structure as 

measured using VBM, however, have had negative findings (Bonilha et al., 

2008; Wolf et al., 2008). 

1.7.2. Cerebral functioning 

In the first study to carry out functional imaging during performance of an 

executive task in schizophrenia, Weinberger et al. (1986) found that failure to 

activate in the DLPFC correlated with the degree of impairment the participants 

showed on the WCST. However, such an association was not found in two later 

studies which used executive (Frith et al., 1995) and memory (Fletcher et al., 

1998) tasks. The relationship between frontal cortex activation and cognitive 

performance was subsequently investigated in two meta-analyses. Hill et al. 

(2004) examined the extent to which impairment on executive, memory or 
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vigilance tasks moderated the ES for hypofrontality during task performance in 

14 studies (number of patients not stated). They found a trend level association 

(z=1.86, p=0.06) for poorer performance to be associated with greater 

hypofrontality. Van Snellenberg et al. (2006) meta-analyzed 30 fMRI studies 

which included 407 patients with schizophrenia and 393 controls. They found 

some evidence that DLPFC activation was lower in studies where schizophrenic 

patients showed impaired test performance. However, like in Hill et al.’s meta-

analysis (2004), the correlation was only at trend level (p=0.09). 

The ‘hyperfrontality’ recently documented in schizophrenia during 

performance of working memory and other executive tasks (see section 1522 

above) has also been linked to cognitive impairment. Weinberger and co-

workers (Weinberger et al., 2001; Tan et al., 2007) have argued that individuals 

with schizophrenia suffer from ‘cortical inefficiency’ and so have to ‘work harder 

to keep up’ with task demands. This leads to a compensatory functional 

response characterized by greater and/or wider activation of relevant cortical 

regions than in healthy subjects. Callicott et al. (2003) have elaborated this idea 

further, proposing that there is an inverted U-shaped function between working 

memory capacity and prefrontal cortex activation. In healthy subjects, 

increasing task demands are first associated with increasing activation, but this 

then falls off after the subject’s working memory capacity is exceeded (see 

Figure 5). If, as a result of decreased cortical efficiency, this U-shaped curve 

were shifted to the left in schizophrenia, it would cause patients to show more 

activation than controls when tasks demands were low, but they would reach 

their point of maximum activation earlier, and thereafter would show less 

activation. 
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Figure 5. Model proposed by the group of Weinberger. 

 

 

To date, only three studies have examined the relationship of increased 

prefrontal activation to cognitive impairment empirically, and these have not had 

clear findings. In a study comparing brain activations of 14 subjects with 

schizophrenia with 14 healthy comparison subjects during the performance of 

an n-back task, Callicott et al. (2003) found that seven schizophrenic patients 

who were low performers showed only hypofrontality when compared to the 

controls. In contrast, seven higher performing patients showed both hypo- and 

hyperfontality when compared to eight healthy controls who also showed good 

performance. 

A later study from the same research group, which also used the n-back 

paradigm, had partially similar findings (Tan et al., 2006). They found that eight 

high performing participants with schizophrenia on the task showed 

hyperfrontality in the left ventral DLPFC cortex compared to 14 controls, 

whereas seven low performing patients showed both hyperfrontality in the left 
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ventral DLPFC and hypofrontality in the right DLPFC in comparison to 12 

controls. 

More recently, Karlsgodt et al. (2009) have found evidence of a more 

complicated pattern of brain activations related to task activation. They used a 

different paradigm, the Sternberg task, in which participants need to keep in 

mind a variable number of consonants presented at the same time and, 

seconds later, have to recognize whether further items were or not included 

among the former group. In the left DLPFC, both the patients and controls 

showed a pattern of increasing activation with increasing working memory load, 

which then decreased slightly at the highest levels. However, there was no clear 

evidence that the curve was shifted to the left in the patients, as the model of 

Weinberger’s group suggested. Results were similar when the patient group 

was split into high- and low-performing groups, although the high-performing 

patients tended to show significantly higher activation than the control and the 

low performing patients at all levels of task difficulty in the left, but not in the 

right DLPFC. 

1.7.3. Brain structural and functional change in studies 

examining groups of schizophrenic patients predefined for 

showing cognitive impairment 

All the structural studies cited in the previous section used analysis of 

correlations to examine the question of the relationship between measures of 

global or regional brain volume and cognitive impairment in schizophrenia. This 

may not be the most appropriate strategy for determining whether or not there is 

an association, because brain volume is affected by a wide range of factors 

which are difficult to control for. In healthy subjects such factors include age, 
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sex and IQ. In schizophrenia, it is widely believed that illness factors other than 

cognitive impairment contribute to the degree whole brain or regional structural 

change. For example, at least some of the decrease in GM volume is 

considered to be ‘neurodevelopmental’ in origin, i.e. present before illness onset 

and not progressing (Pantelis et al., 2003). Studies investigating the relationship 

between cognitive impairment and brain functional abnormality in schizophrenia 

have also relied heavily on correlational analyses; a few studies (Callicott et al., 

2003; Tan et al., 2006; Karlsgodt et al., 2009) have separated patient groups 

into low and high performers on the fMRI task used, but they have not 

examined cognitive impairment more generally. 

An alternative strategy is to compare preselected groups of patients with 

and without cognitive impairment. This has the advantage of being able to 

eliminate other sources of variation in brain structure and/or function, such as 

age and estimated premorbid IQ. An additional advantage is that changes in 

structure and function which are due to schizophrenia and changes due to 

cognitive impairment complicating schizophrenia can be separated. Thus, brain 

changes attributable to schizophrenia without the complicating factor of 

cognitive impairment can be examined by contrasting a group of patients 

without moderate/marked cognitive impairment to healthy controls. In the same 

way, contrasting cognitively preserved and cognitively impaired groups of 

patients permits an assessment of changes due to cognitive impairment without 

the complicating factor of changes due to schizophrenia. 

To date, only five studies have investigated the brain correlates of 

schizophrenic cognitive impairment using (or in one case approximating to) 
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such an approach. Four of these examined brain structural differences in 

cognitively impaired patients, and one examined brain functional differences. 

de Vries et al. (2001) studied eight non-elderly patients with chronic 

schizophrenia who also met criteria for dementia in the absence of any 

neurological cause for this. They did not include a group of schizophrenic 

patients without cognitive impairment, but structural scans (CT and/or MRI) 

were compared to a database of 251 unselected patients with schizophrenia. All 

of the patients were found to be in the range of ventricular enlargement or sulcal 

widening found in schizophrenia in general.  

Rüsch et al. (2007) used VBM to compare 21 participants with 

schizophrenia who showed impaired performance in the WCST with 30 who 

had preserved performance. The two patient groups were comparable in age, 

gender and handedness, but had a different educational status. Both groups 

also differed in the MMSE and in the Digits Backward test, but not in Digits 

Forward nor in Spatial Span Forward or Backward. Using a mask covering all 

subregions of the frontal lobes, they found that the schizophrenia group with a 

low performance on the WCST showed a lower volume in the DLPFC and the 

anterior cingulate cortex bilaterally. 

Wexler et al. (2009) divided a sample of participants with schizophrenia 

into ‘cognitively nearly normal’ and ‘cognitively impaired’ subgroups depending 

on their performance on a set of four attention and working memory tests. Thirty 

healthy controls were also examined. The cognitively preserved participants 

(n=21) performed less than 0.5SD below the healthy controls. The mean score 

of the impaired group (n=54) was 1SD below that of the healthy controls. All 

three groups were comparable for age but differed partially in gender, years of 
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education and ethnicity. Structural MRI was carried out examining lateral 

ventricular volume and GM and WM volumes in the right and left frontal, 

temporal, parietal and occipital regions. The cognitively impaired participants 

showed similar degrees of lateral ventricular enlargement and GM volume 

reduction to the cognitively near-normal cases. However, the impaired patients 

showed significantly smaller WM volumes than the cognitively near-normal 

patients in two (sensorimotor and parieto-occipital) out of the eight cerebral 

regions examined), with a trend towards significant reduction in a third (inferior 

occipital). There were no differences between the near-normal and impaired 

patients in hippocampal, thalamic and cerebellar volume. 

Cobia et al. (2011) carried out cortical thickness analysis in 45 cognitively 

nearly-normal schizophrenia participants, 34 cognitively impaired participants 

with the disorder and 65 healthy comparison subjects. All three groups were 

comparable in age and gender but differed in parental educational status and in 

ethnic origin. The two patient groups were separated based on a cluster 

analysis of their performance on a set of tests of reasoning, declarative and 

semantic memory, attention and executive function. No clusters of significant 

difference were found between the two patient groups, when a false discovery 

rate correction for multiple comparisons was employed. However, at an 

uncorrected level of significance, the impaired group showed more evidence of 

cortical thinning than the preserved group, which was most pronounced in 

lateral occipital and medial temporal cortices. 

In the only study to examine groups of schizophrenic patients with and 

without cognitive impairment at the level of functional imaging, Fletcher et al. 

(1998) compared a group of six patients who showed performance in the 
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normal range on a memory battery (the Rivermead Behavioural Memory Test, 

RBMT), with six patients who all performed in the impaired or very impaired 

range on this test battery. Seven healthy controls were also examined. All three 

groups were comparable in terms of gender, age and estimated premorbid IQ. 

The three groups underwent functional imaging with PET while they 

remembered word lists of varying length, from one to 12 words. The controls 

showed a pattern of increasing activation in the left DLPFC as the task demand 

increased, but both groups with schizophrenia failed to do so, with no 

differences between them.  

In summary, studies comparing predefined groups of schizophrenic 

patients with and without cognitive impairment appear to have scope for 

resolving the question of the relationship of cognitive impairment to structural 

and functional brain abnormality that also characterizes the disorder. However, 

to date, these studies have not resulted in a consensus. Several of the studies 

examining structural differences have failed to find evidence of marked 

differences, although more subtle differences have been found in some of them. 

The findings of functional studies are currently conflicting. 
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2. Hypothesis and objectives of the thesis 
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Hypothesis 

According to the literature reviewed, our general hypothesis is that the 

cognitive deficits of schizophrenic patients are reflected in both structural and 

functional brain changes. Accordingly, we expect that patients with cognitive 

impairment will have more GM reductions and more dysfunctional patterns of 

brain activity than patents without such deficits. 

 

Objectives 

The objective of this study was to further investigate the brain correlates 

of schizophrenic cognitive impairment using a design of comparing groups of 

schizophrenic patients preselected for showing and not showing a marked 

cognitive impairment. Specifically, the aims were: 

1. to investigate the relationship between brain structural changes and the 

cognitive impairment of schizophrenic patients. 

2. to determine whether cognitive impairment of schizophrenic patients is 

specifically associated with brain functional changes. 

3. to investigate the role of task-related de-activations in cognitive impairment. 

Two principal predictions were established: 

1. No significant structural differences will be found between patients with 

schizophrenia who show moderate/marked cognitive impairment compared 

to patients without moderate/marked cognitive impairment. This will apply to 

brain volumetric measures (i.e. whole brain volume, lateral ventricular 

volume, GM and WM volume) as well as to volumetric differences found 

using VBM. 
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2. Schizophrenic patients with moderate/marked cognitive impairment will not 

show significantly different patterns neither of activation in the DLPFC and 

other areas of the so-called working memory network nor in task-related de-

activations compared to those patients without moderate/marked cognitive 

impairment during performance of the n-back working memory task. 
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3. Methods 
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3.1. Participants 

The schizophrenia total sample consisted of two groups of adults with 

schizophrenia. One group (n=26) was selected for showing moderate/marked 

cognitive impairment and the other (n=23) was selected for not showing this, as 

defined below. The participants were recruited from long stay wards (n=15), and 

acute and subacute units (n=25), although a minority were out-patients/day 

hospital attenders (n=9).  

Inclusion criteria were: 

1. Age 18-65. 

2. meeting DSM-IV (APA, 1994) criteria for schizophrenia. 

3. Chronic illness, defined as duration >2 years from first overt psychotic 

symptoms. 

4. Premorbid intellectual function in the normal range (see exclusion 

criteria 3 below). 

5. Right handedness. This was to ensure homogeneity in the functional 

imaging part of the study.  

6. Relatively stable clinical condition at the time of testing (i.e. outside a 

period of acute relapse or exacerbation of chronic symptoms). 

Exclusion criteria were:  

1. History of brain trauma or neurological disease. 

2. Alcohol/substance abuse within 12 months prior to participation.  

3. History of learning disability. This was determined based on 

attendance at a special school. Additionally, in cases where the 

estimated premorbid IQ measure was found to be low, relatives were 

interviewed. 
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All patients were interviewed and their casenotes were reviewed to 

establish the diagnosis. All were taking antipsychotic medication (atypical n=28, 

typical n=7, both kinds n=14). 

The control group consisted of 39 healthy individuals. They were 

recruited from non-medical staff working in the hospital, their relatives and 

acquaintances, plus independent sources in the community. They were 

questioned and excluded if they reported a history of mental illness and/or 

treatment with psychotropic medication. The controls met the same exclusion 

criteria and were selected to be comparable to both groups with schizophrenia 

in terms of age, sex and premorbid IQ.  

All participating subjects gave written informed consent. This research 

was designed and developed in accordance with the principles of the 

Declaration of Helsinki for ethical medical research involving human subjects 

(http://www.wma.net/en/30publications/10policies/b3/index.html). The Research 

committee of Benito Menni CASM Psychiatric Hospital (Sant Boi de Llobregat) 

approved the research protocol (see annex 3). Prior to taking part, subjects 

were informed of the aims of the study, and of their freedom to participate or 

not, and their right to leave the study at any time. They were informed that their 

decision would not influence the medical care they received. 

3.1.1. Selection of patients according to presence and absence of 

moderate/marked cognitive impairment 

Presence of cognitive impairment was defined on the basis of 

performance on two batteries of memory and executive function, the RBMT 

(Wilson et al., 1985) and the Behavioural Assessment of the Dysexecutive 

Syndrome (BADS) (Wilson et al., 1996). Both these tests have extensive 
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normative data for adults, and thresholds for levels of normal and impaired 

performance have been established. 

The RBMT consists of 12 subtests examining different aspects of 

memory, including recall, recognition, orientation and prospective memory -the 

ability to remember to do things. Scores can be combined into an overall 

‘screening’ score. The Spanish translation of the test (Mozaz, 1991), which has 

shown to discriminate among different populations of cognitively preserved and 

impaired participants as well as traditional memory tests do (Pérez and Godoy, 

1998), was used. The subtests are summarised in Table 3. 

The BADS is a wide-ranging battery of executive tests which has been 

standardized on groups of normal subjects and patients with head injury. Its 

reliability and validity has been shown in Spanish healthy subjects and patients 

with schizophrenia (Vargas et al., 2009). Performance on the individual tests 

can be combined to give an overall ‘profile’ score which can also be adjusted for 

age (the standardized score). Table 4 presents a description of the subtests 

included in this battery. 
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Table 3. Subtests included in the RBMT and description, including the 

cognitive domains assessed by each test. 

Name of the task Description 
Remembering a name Verbal recall: The subject is told the name of a person shown 

in a picture and has to remember it approximately 20 minutes 

later. 

Remembering a hidden 

belonging 

Prospective memory: When the examiner says ‘We have 

finished this test’, the subject has to remember to ask for 

something they own which was previously hidden by the 

examiner.  

Remembering an 

appointment 

Prospective memory: The subject has to remember to ask 

when the next appointment is when a bell rings. 

Remembering a newspaper 

article 

Verbal recall: The subject is read a short news item and has to 

reproduce it immediately and after a delay. 

Face recognition Non-verbal recognition: The subject is shown five photos of 

faces and immediately afterwards has to recognize them from 

10 consecutively presented photos. 

Picture recognition Non-verbal recognition: The subject is shown 10 drawings of 

animals and objects and immediately afterwards has to identify 

them from 20 consecutively presented pictures. 

Remembering a route Non-verbal recall: The subject watches the examiner follow a 

route and has to reproduce it, immediately and after a delay. 

Delivering a message Prospective memory: During the route task, the subject has to 

remember to pick up and leave an envelope. 

Orientation Orientation for time, place and current events. 

Date Orientation for time. 
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Table 4. Subtests included in the BADS and description, including the 

cognitive domains assessed by each test. 

Name of the task Description 
Rule Shift Cards 

 
Test using playing cards which examines flexibility 
and ability to shift cognitive set. 

Action Program Test 
 

Requires devising a strategy to remove a cork from a 
container, using simple tools such as iron stick and 
water. 

Key Search Test Requires devising an efficient plan to search a field 
for a lost object. 

Temporal Judgment Test1 

Estimation of the time taken to perform certain 
activities which the subject is unlikely to know the 
exact answer to, such as how long it takes to boil an 
egg. 

Zoo Map Test 
 

Requires strategic planning of a route in around a 
diagram of a zoo, while abiding by certain rules. 

Modified Six Elements Test 
Multitasking ability: The subject has to carry out 
parts, but not all, of six different activities according 
to a set of rules and with time constraints.. 

1 Variant of the Cognitive Estimation Test (Shallice and Evans, 1978). 

 

To determine whether this method of dividing patients into cognitively 

preserved and cognitively impaired categories also separated then on wider 

aspects of cognitive function, a separate study was carried out on 22 healthy 

subjects, 25 cognitively preserved patients with schizophrenia and 29 

cognitively impaired patients with schizophrenia, defined according to the same 

criteria. The findings of this study are reported in detail in Annex 2. Briefly, 

however, it was found that the cognitively preserved patients had numerically 

lower, but mostly not significantly lower test scores on a battery of tests of 

executive function, memory, language and visual/visuospatial function than the 

healthy controls (significant differences just on 1 out of 16 tests). In contrast, the 

cognitively impaired patients scored significantly lower than the cognitively 

preserved patients on almost all tests (14 out of 16 tests). 
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3.2. Psychopathological assessment 

Psychopathology was assessed with the Spanish version of the Positive 

and Negative Syndrome Scale -PANSS- (Peralta and Cuesta, 1994). The 

PANSS is a semi-structured interview that consists of 30 items evaluating a 

wide range of positive, negative and non-psychotic symptoms. Scores for 

positive, negative and disorganization symptoms were calculated based on 

factor analytic studies of the PANSS (Bell et al., 1994a; Lindenmayer et al., 

1995; Lee et al., 2003). 

Overall severity of illness was assessed using the Clinical Global 

Impression -CGI- (NIMH, 1976). The CGI scores severity according to seven 

levels, from one (normal) to seven (very severe illness). 

3.3. Cognitive assessment 

Premorbid IQ was estimated using the Word Accentuation Test (TAP) (Del 

Ser et al., 1997). This is conceptually similar to the National Adult Reading Test 

(NART) used in the United Kingdom (Nelson and Willis, 1991) and the Wide 

Range of Achievement Test used in the USA (Jastak and Wilkinson, 1984). 

These latter two tests measure the subject’s ability to pronounce words which 

do not follow the rules of pronunciation: ability to pronounce a word indicates 

that the person knows the meaning of the word, and it is known that 

pronunciation tends to be preserved even when knowledge of the word has 

been lost due to disease. Since pronunciation of all Spanish words can be 

derived from their spelling, the TAP instead utilizes low-frequency Spanish 

words whose accents have been removed. A recent study has shown that the 

TAP gives a reliable estimate of IQ in normal subjects, and is sensitive to 
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estimated premorbid-current IQ difference in schizophrenic patients (Gomar et 

al., 2011). 

Current IQ was assessed using four subtests of the WAIS-III (Wechsler, 

2001): two verbal tests, Vocabulary and Similarities, and two performance tests, 

Block design and Matrix reasoning. These are the same subtests used at the 

WASI scale (Wechsler, 1999), which is an abbreviated version of the WAIS-III 

validated for the English-speaking population. 

3.4. Statistical analysis of the demographic, 

psychopathological and the cognitive data 

Statistical analyses on demographic, psychopathological and cognitive 

data were carried out using the SPSS statistical software for Windows (version 

15). Demographic data were compared using appropriate tests (χ2, Mann-

Whitney’s U-tests, t-tests and ANOVA). In some cases, however, variables 

were transformed (e.g. through a log transformation) if data were 

heterogeneous, in order to stabilize variances or improve shape of the 

distribution (Howell, 1997). 

All the analyses on demographic, psychopathological and the cognitive 

data were done for all subsamples used for the different neuroimaging subsets 

of the study. 

3.5. Neuroimaging procedure 

All subjects underwent structural and functional MRI scanning using a 1.5 

Tesla GE Signa scanner (General Electric Medical Systems, Milwaukee, Wis) 

located at the Sant Joan de Déu Hospital in Barcelona (Spain). 
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3.5.1. Structural neuroimaging 

3.5.1.1. Image acquisition 

High resolution structural T1 MRI data were acquired with the following 

acquisition parameters: Matrix size 512x512; 180 contiguous axial slices; slice 

thickness of 1 mm, slice gap of 0 mm; voxel resolution 0.47x0.47x1 mm3; echo 

time (TE) = 3.93 ms, repetition time (TR) = 2000 ms and inversion time (TI) = 

710 ms; flip angle 15º. 

3.5.1.2. Brain volume analysis 

Calculation of the total volume of GM and WM brain volume (normalised 

for participant’s head size) was performed with SIENAX (Smith, 2002), part of 

FSL -FMRIB Software Library, Oxford www.fmrib.ox.ac.uk/fsl/- (Smith et al., 

2004). 

Lateral ventricle volume (also normalised for participant’s head size) was 

computed via the FreeSurfer software -http://surfer.nmr.mgh.harvard.edu/fswiki/  

(Dale et al., 1999). The reliability of this method has been shown to be 

comparable to that between two manual raters (Fischl et al., 2002). 

The brain volume measures were compared using parametric statistics 

(ANOVA and independent two-sample t-test), since all data were interval and 

were checked to follow a normal distribution. 

3.5.1.3. VBM analysis 

Structural data were analyzed with FSL-VBM, an optimized VBM style 

analysis (Ashburner and Friston, 2000; Good et al., 2001) carried out with FSL 

tools; this yields a measure of difference in local GM volume. First, structural 
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images were brain-extracted (Smith, 2002). Next, tissue-type segmentation was 

carried out. The resulting GM partial volume images were then linearly aligned 

to MNI 152 standard space (Jenkinson and Smith, 2001; Jenkinson et al., 

2002), followed by nonlinear registration. The resulting images were averaged 

to create a study-specific template, to which the native GM images were then 

non-linearly re-registered. The registered partial volume images were then 

modulated by dividing by the Jacobian of the warp field. The modulated 

segmentated images were then smoothed with an isotropic Gaussian kernel 

with a sigma of 4mm (technical details are shown in 

www.fmrib.ox.ac.uk/fsl/fslvbm/). 

All comparisons were carried out with permutation-based non-parametric 

tests. These were made with the randomise function implemented in FSL, using 

the recently developed threshold-free cluster-enhancement method with 10000 

iterations. 

A VBM analysis of WM volume was also carried out. Since the VBM 

analysis in FSL has only been validated for GM, the VBM5 (http://dbm.neuro.uni-

jena.de/vbm/vbm5-for-spm5/), a toolbox based on the Statistical Parametric 

Mapping (SPM) software package (SPM5 version), was used. The following 

standard pre-processing steps were carried out: tissue-type segmentation; 

normalisation (warping) to standard space of the obtained WM images; and 

modulation. The resulting images were then smoothed with an isotropic 

Gaussian kernel with a sigma of 4 mm. Statistical analyses were carried out 

using the general linear model (GLM) with correction using the theory of 

Gaussian random fields. 
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All statistical tests in the VBM analyses were performed with a statistical 

threshold of p<0.05, corrected for multiple comparisons. 

3.5.2. Functional neuroimaging 

3.5.2.1. N-back task 

The paradigm used was a sequential-letter version of the n-back task 

(Gevins and Cutillo, 1993). This paradigm assesses the ability to maintain 

previous items in memory while attending to the current item and so is a 

working memory task (Lezak et al., 2004). The working memory load can be 

varied by varying the number of items that have to be kept in mind. 

For this study, two levels of memory load (1-back and 2-back) were 

presented in a blocked design manner; in the 1-back task, participants had to 

detect when one letter was repeated twice consecutively, with no other letters 

in-between, whereas in the 2-back task there was one letter between the model 

and the goal letter (see Figure 6). 
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Figure 6. Example of 1-back -green letters- and 2-back -red letters-

sequences. 

 

 

Each block consisted of 24 letters which were shown every two seconds 

(1 second on, one second off) and all blocks contained five repetitions (1-back 

and 2-back depending on the block) located randomly within block. Individuals 

had to detect these repetitions and respond by pressing a button. In order to 

identify which task had to be performed, characters were shown in green in the 

1-back blocks and in red in the 2-back blocks. Four 1-back and four 2-back 

blocks were presented in an interleaved way, and between them, a baseline 

stimulus (an asterisk flashing with the same frequency as the letters) was 

presented for 16 seconds. All individuals went through a training session before 

entering the scanner. 

Participants’ performance was measured using the signal detection 

theory index of sensitivity (d’) of ability to discriminate targets from non-targets 

(Green and Swets, 1966). Higher values of d’ indicate better ability to 
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discriminate between targets and distractors. Subjects who had negative d’ 

values in either or both of the 1-back and 2-back versions of the task, which 

suggests that they were not performing it, were a priori excluded from the study. 

3.5.2.2. Image acquisition 

In each individual scanning session 266 volumes were acquired. A 

gradient echo echo-planar sequence depicting the BOLD contrast was used. 

Each volume contained 16 axial planes acquired with the following parameters: 

TR = 2000 ms, TE = 20 ms, flip angle = 70 degrees, section thickness = 7 mm, 

section skip =0.7 mm, in-plane resolution = 3x3 mm. The first 10 volumes were 

discarded to avoid T1 saturation effects. 

3.5.2.3. fMRI analysis 

fMRI image analyses were performed with the FEAT module, included in 

FSL software (Smith et al., 2004). Pre-processing with FSL-FEAT included: a) 

motion correction (Jenkinson et al., 2002); b) non-brain removal (Smith et al., 

2002); c) isotropic 5mm-FWHM Gaussian smoothing; d) high-pass temporal 

filtering; e) time-series statistical analysis with local autocorrelation correction 

(Woolrich et al., 2001); and f) registration to the MNI 152 standard space 

(Jenkinson and Smith, 2001; Jenkinson et al., 2002). The motion correction 

generates movement parameters that were used as a covariate in the individual 

analysis. To minimize unwanted movement-related effects, participants with an 

estimated maximum absolute movement >3.0 mm or an average absolute 

movement >0.3 mm were excluded from the study.  

At a first level, images were corrected for movement. The temporal 

derivate of the blocked experimental design was added as a covariate in order 



 The neural correlates of cognitive impairment in schizophrenia 65 

to minimize possible movements due to the presentation of the stimuli. In 

addition, the motion parameters generated during the pre-processing were also 

added as a covariate. Images were also eventually coregistered to a common 

stereotaxic space (MNI template). 

GLMs were fitted to generate the individual activation maps for three 

different contrasts. The first contrast was baseline vs 1-back; the second 

contrast was baseline vs 2-back; and the third contrast was 2-back vs 1-back.  

Differences in fMRI activation maps between patients and controls were 

performed within the FEAT module, with mixed effects GLM models (Beckmann 

et al., 2006). FEAT uses the Gaussian Random Field theory to properly account 

for the spatially distributed patterns when performing statistical tests. 

Specifically, the analyses were performed with the FLAME stage 1 with default 

height threshold (z > 2.3) (Woolrich et al., 2001; Beckmann et al., 2003) and a 

p-value < 0.05 corrected for multiple comparisons (Worsley, 2001; Woolrich et 

al., 2004). 

A supplementary analysis was carried out which examined the effect of 

increasing working memory load on the differences between the healthy 

comparison group and the cognitively preserved schizophrenia group and 

between both schizophrenia groups. To do this, models were fitted that assume 

a linear relationship through the baseline, 1-back and 2-back levels of the task, 

thus reporting significant differences on regression slopes between these 

groups. 
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4. Results 
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4.1. Structural neuroimaging findings 

4.1.1. Samples characteristics of the structural neuroimaging 

study 

All the patients and all the controls participated in this part of the study.  

The three subject groups (controls and two patient samples) were 

comparable for age, sex and estimated premorbid cognitive functioning as 

measured with the TAP (see Table 5). 

The cognitively impaired group had a lower current WAIS-III full scale IQ 

and performance IQ compared to both the cognitively preserved patients and 

the healthy controls. The two latter groups did not differ on any WAIS-III scale 

(see Table 5).  

As can be seen from Table 5, the two schizophrenia groups did not differ 

in overall severity of illness as measured by the CGI; however cognitively 

impaired individuals with the disorder had significantly higher total symptom 

scores on the PANSS; this was due to the fact that the subsample with impaired 

cognition presented significantly more negative and disorganized 

symptomatology than the subsample with schizophrenia and no marked 

cognitive compromise. The former group also had a significantly longer duration 

of illness and showed trend level higher mean dosages of antipsychotic drugs 

than the latter group. 
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Table 5. Demographic, cognitive and psychopathological characteristics 

of the participants with schizophrenia and controls in the structural 

neuroimaging study. 

Participants with schizophrenia (n=49)  Controls (n=39) 

Preserved (n=23) Impaired (n=26) 

Group statistics 

Age 40.10 (11.58) 40.10 (10.22) 42.38 (8.23) F=0.45 
p=0.64 

Sex (M/F) 30/9 17/6 20/6 χ
2=0.85 

p=0.96 
TAP estimated IQ1 102.22 (10.21) 103.54 (8.37) 98.36 (10.90) F=1.83 

p=0.17 
Total IQ (WAIS-III) 103.49 (13.13) 100.43 (13.04) 92.73 (13.43) F=5.26 

p=0.01 
I<C (t=3.21; 

p=0.002) 
I<P (t=2.03; p=0.048) 

Verbal IQ (WAIS-III) 104.90 (16.73) 104.00 (17.65) 96.85 (15.93) F=1.97 
p=0.15 

Performance IQ (WAIS-III) 100.08 (17.59) 94.00 (14.61) 84.54 (16.56) F=6.87 
p=0.002 

I<C (t=3.57; 
p=0.001) 

I<P (t=2.11; p=0.04) 
BADS profile score - 16.04 (2.40) 10.69 (4.33) t=5.43 

p<0.001 
RBMT screening score - 9.48 (1.44) 5.17 (1.63) t=9.58 

p<0.001 
Years of illness - 18.28 (10.02) 23.76 (8.29) t=-2.09 

p=0.04 
PANSS total score - 66.57 (17.11) 76.15 (15.03) t=-2.09 

p=0.04 
Positive Syndrome 

(PANSS) 
- 15.09 (5.02) 16.15 (5.90) t=-0.68 

p=0.50 
Negative Syndrome 

(PANSS) 
- 13.91 (6.08) 17.46 (4.39) t=-2.36 

p=0.02 
Disorganized Syndrome 

(PANSS) 
- 7.39 (2.64) 10.42 (3.46) t=-3.73 

p=0. 001
2 

CGI score - 4.13 (1.36) 4.58 (0.90) M-W U=232.00 
p=0.16 

Antipsychotic dosage 
(CPZ equivalent mg) 

- 663.41 (550.94) 985.34 (608.59) t=-1.93 
p=0.06 

1One cognitively preserved patient had missing data for this analysis.  
2 After log10 transformation. 

 

As expected, the two schizophrenia groups differed in their performance 

on the BADS and RBMT. The means and standard deviations are shown in 

Table 5; a scatter plot of the two groups’ scores is shown in Figure 7, together 

with cut-offs for different levels of performance derived from the normative data 
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for healthy, non-elderly adults available for each test. It can be seen that all the 

preserved individuals fell into the ‘normal’ or ‘poor (normal) memory’ range on 

the RBMT and in the ‘high average’, ‘average’, ‘low average’ or ‘borderline’ 

ranges on the BADS. All but two of the cognitively impaired patients fell into the 

moderately impaired or severely impaired range on the RBMT (in accordance 

with the selection criteria the two patients who scored in the normal memory 

range in the RBMT scored in the impaired range on the BADS). The range of 

scores among the cognitively impaired patients on the BADS was wider, with 

12/26 patients scoring in the ‘average’, ‘low average’ or ‘borderline’ ranges. All 

of these patients scored in the moderately impaired range on the RBMT. 
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Figure 7. Scatterplot of the cognitively preserved and cognitively impaired 

participants’ scores on the RMBT and the BADS. Data form the 

subsamples of the structural MRI study. 
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4.1.2. Brain and lateral ventricular volume measures 

All subjects of the structural neuroimaging study were included in the 

analysis except in the comparison of lateral ventricles, where one control had to 

be excluded for technical reasons (in this case, the automatic segmentation 

process gave a result which was not reconcilable with visual inspection).  

A preliminary comparison of the whole group of schizophrenia patients 

with the controls revealed that the patients showed significantly reduced whole 
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brain volume (t=3.74, p<0.001), significantly reduced GM volume (t=4.19, 

p<0.001) and significantly larger lateral ventricles (t=-2.20, p=0.03). There was 

no difference in WM volume between the patients and the controls (t=1.32, 

p=0.19), although the schizophrenia patients showed a numerically smaller 

mean volume (see Table 6). 

 

Table 6. Whole brain and lateral ventricular volume measures (cm3) in the 

controls and in the combined schizophrenia group. 

 Controls (n=39) Schizophrenia group (n=49) Statistics 
Whole brain 1256.75 (47.69) 1485.92 (53.36) t=3.74, p<0.001 

GM 819.46 (35.339) 785.75 (39.09) t=4.19, p<0.001 
WM 707.29 (25.62) 700.17 (24.71) t=1.32, p=0.19 

Lateral ventricles1 12.58 (7.24) 16.74 (10.47) t=-2.20, p=0.03 
1One control was excluded from the analysis.  

 

4.1.2.1. Controls vs cognitively preserved patients 

The previously found differences in whole brain volume and GM volume 

remained evident when the controls were compared only to the cognitively 

preserved patients (whole brain: t=2.62, p=0.01) (GM: t=2.83, p=0.006) (see 

Table 7). The cognitively preserved patients continued to show a larger lateral 

ventricular volume than the controls, but the difference no longer reached 

significance (t =71.25, p=0.22). 
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Table 7. Whole brain and lateral ventricular volume measures (cm3) in the 

controls, and in the cognitively preserved and cognitively impaired 

schizophrenia groups. 

 Controls (n=39) Preserved (n=23) Impaired (n=26) ANOVA 

Whole brain 1526.75 (47.69) 1488.82 (65.92) 
 

1483.35 (40.36) 
 

F=6.98 
p=0.002 

P<C (t=2.62; p=0.01) 
I<C (t=3.82; p<0.001) 

GM 819.46 (35.39) 789.55 (47.52) 
 

782.38 (30.36) 
 

F=8.94 
p<0.001 

P<C (t=2.83; p=0.01) 
I<C (t=4.37; p<0.001) 

WM 707.29 (25.62) 699.27 (29.79) 
 

700.96 (19.74) 
 

F=0.89 
p=0.41 

Lateral ventricles1 12.58 (7.24) 15.95 (12.49) 17.44 (8.49) 
F=2.95 
p=0.06 

I>C (t=-2.59; p=0.01) 
1One control was excluded from the analysis. 

 

4.1.2.2. Cognitively preserved vs cognitively impaired 

patients 

As shown in Table 7, the differences between the two patient groups 

were small and non-significant on all three measures (whole brain: t=0.36, 

p=0.72; GM: t=0.62, p=0.54; lateral ventricular volume: t=0.92, p=0.36). 

4.1.3. VBM 

4.1.3.1. Controls vs cognitively preserved participants with 

schizophrenia 

The cognitively preserved patients with schizophrenia showed 

significantly smaller GM volume than the controls in one cluster. This was 

situated anteriorly and medially, extending from the orbital and medial prefrontal 

cortex to the anterior cingulate gyrus [2190 voxels, p=0.04; peak activation in 

BA10, left medial orbitofrontal cortex, MNI (-12, 44, -8), z score=4.7]. Peak 
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values in each anatomical region are shown in Table 8, and a rendering of the 

cluster on a 3D brain is shown in Figure 8.  

 

Table 8. Significant cluster and the corresponding peak values in each 

anatomical region where cognitively preserved individuals with 

schizophrenia show a significant decrease in GM volume, when compared 

to controls, using VBM. 

Cluster 1 2190 voxels p=0.04     
  BA Z x y z 
Medial and orbitofrontal cortex      
 Left medial orbitofrontal cortex 10 4.70 -12 44 -8 
 Right medial orbitofrontal cortex 10 3.12 11 50 0 
 Left anterior cingulate 11 3.98 -10 38 -6 
 Right anterior cingulate 11 2.99 6 34 -6 
 Left superior medial frontal cortex 10 2.90 0 62 28 
 Right superior medial frontal cortex 10 3.83 13 51 6 

 

Figure 8. Brain regions showing significant GM volume reduction in 

cognitively preserved individuals with schizophrenia compared to healthy 

controls. 

 

The appearance as separate clusters is artefactual, due to the irregular shape of the extended 

single cluster. 

 

There were no regions where the cognitively preserved participants 

showed significantly greater volume than the controls. 

No areas of significant WM volume difference were found between the 

controls and the cognitively preserved participants with the disorder. 
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4.1.3.2. Cognitively preserved vs cognitively impaired 

participants with schizophrenia 

There were no areas of significant GM or WM volume difference between 

both schizophrenia groups. 

4.2. Functional imaging findings 

4.2.1. Sample characteristics of the fMRI study 

This part of the study included 19 cognitively impaired, 18 cognitively 

preserved patients with schizophrenia and 34 healthy controls. Not all the study 

participants could be included in the fMRI part of the study, either because the 

images were not usable because of excessive movement (n=6) or because the 

images were not acquired for technical reasons (n=5). Two participants could 

not tolerate the fMRI procedure. Additionally, four controls were removed in 

order to maintain matching for age, sex and estimated premorbid intellectual 

functioning among the three groups (see Table 9).  

Sociodemographic, psychopathological and cognitive data of the sample 

characteristics of the fMRI study are shown in Table 9. The cognitively impaired 

group had a lower current WAIS-III full scale IQ and performance IQ compared 

to the healthy controls. No other differences concerning IQ were statistically 

significant, although the IQ measures were numerically higher for the controls 

than for both patients’ groups in all cases and for the cognitively preserved 

patients compared to the cognitively impaired. 

As can be seen from Table 9, the two schizophrenia groups did not differ 

in overall severity of illness as measured by the CGI and in overall symptom 

scores as measured with the PANSS. However, similar to the sample as a 
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whole, the subsample with impaired cognition presented significantly more 

negative and disorganized symptomatology than the subsample without marked 

cognitive compromise. The two schizophrenia groups did not differ on duration 

of illness or on mean dosages of antipsychotic drugs. 

Among the patients with schizophrenia, there were no significant 

differences between those who took part in this part of the study and those who 

did not, for age (41.07 vs 42.05; p=0.69), sex (29 male/8 female vs 8/4; p=0.41) 

or TAP score (22.03 vs 22.83; p=0.79). 
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Table 9. Mean values, standard deviations and statistical results of 

demographic, cognitive and psychopathological characteristics of the 

fMRI sample. 

1One cognitively preserved participant had missing data for this analysis. 

 

Participants with schizophrenia (n=37)  Controls (n=34) 

Preserved (n=18) Impaired (n=19) 

Group statistics 

Age 40.90 (11.80) 40.49 (10.58) 41.62 (7.94) F=0.06 
p=0.95 

Sex (M/F) 26/8 14/4 15/4 χ
2=0.04 

p=0.98 
TAP estimated IQ1 102.22 (10.46) 103.01 (7.75) 97.95 (9.81) F=1.55 

p=0.25 
Total IQ (WAIS-III) 104.24 (12.47) 100.44 (13.99) 94.11 (9.37) F=4.24 

p=0.02 
I<C (t=3.08; 

p=0.003) 
Verbal IQ (WAIS-III) 105.44 (16.06) 103.06 (19.07) 96.58 (10.86) F=1.95 

p=0.15 
Performance IQ (WAIS-III) 100.85 (18.19) 94.67 (15.68) 86.74 (17.08) F=4.09 

p=0.02 
I<C (t=2.77; 

p=0.01) 
BADS profile score - 16.06 (2.69) 11.58 (4.26) t=3.80 

p=0.001 
RBMT screening score - 9.72 (1.36) 5.56 (1.46) t=8.84 

p=0.001 
Years of illness - 18.44 (10.86) 22.71 (7. 17) t=-1.39 

p=0.18 
PANSS total score - 67.89 (18.33) 76.79 (17.04) t=-1.53 

p=0.14 
Positive Syndrome 

(PANSS) 
- 15.44 (5.47) 16.37 (5.90) t=-0.49 

p=0.63 
Negative Syndrome 

(PANSS) 
- 14.17 (6.13) 17.89 (4.15) t=-2.16 

p=0.04 
Disorganized Syndrome 

(PANSS) 
- 7.67 (2.85) 10.74 (3.71) t=-2.81 

p=0. 01 
CGI score - 4.28 (1.41) 4.58 (1.02) M-W U=146.50 

p=0.44 
Antipsychotic dosage 
(CPZ equivalent mg) 

- 688.22 (603.25) 913.50 (507.21) t=-1.23 
p=0.23 
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4.2.2. Behavioural performance 

The cognitively preserved individuals were significantly impaired 

compared to the controls on the 1-back version of the task (mean d’=3.77, 

SD=0.91 vs mean d’=4.40, SD=0.65; t=2.90, p=0.01) and on the 2-back version 

(mean d’=2.67, SD=0.87 vs mean d’=3.27, SD=0.96; t=2.22, p=0.03). The 

cognitively impaired patients were also impaired compared to the controls in 

both versions of the task (1-back: mean d’=3.07, SD=1.16 vs mean d’=4.40, 

SD=0.65; t=5.36, p<0.001; 2-back: mean d’=1.89, SD=0.68 vs mean d’=3.27, 

SD=5.57; t=2.22, p<0.001).  

The cognitively impaired participants with schizophrenia were marginally 

significantly impaired compared to the cognitively preserved ones on the 1-back 

task (mean d’=3.07, SD=1.16 vs mean d’=3.77, SD=0.91; t=2.03, p=0.05), and 

significantly impaired on the 2-back task (mean d’=1.89, SD=0.68 vs mean 

d’=2.67, SD=0.87; t=3.06, p=0.004).  

4.2.3. fMRI findings: controls vs cognitively preserved patients 

The cognitively preserved participants showed no areas of significantly 

reduced activation relative to the controls in the 1-back vs baseline contrast. In 

the 2-back vs baseline contrast the controls activated more than the cognitively 

preserved individuals only in the cerebellum [1606 voxels, p=8.27x10-5; peak 

activation in vermis, MNI (1, -53, -28), z score=4.52] (see Table 10). No areas of 

significant difference were seen in the 2-back vs 1-back contrast. 
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Table 10. Significant clusters and corresponding peak values in each 

anatomical region in the 2-back versus baseline contrast. 

Control>Preserved       
Cluster 1 1606 voxels p=8.27x10-5    
Cerebellum   Z x y z 
 Vermis  4.52 1 -53 -28 
 Right cerebellum  4.48 12 -58 -24 
 Left cerebellum  3.93 -20 -62 -28 
Preserved>Control       
Cluster 1 3878 voxels p=1.72x10-9    
Medial and orbitofrontal cortex BA Z x y z 
 Left gyrus rectus  11 4.52 0 26 -14 
 Right gyrus rectus  11 3.93 3 33 -14 
 Left anterior cingulate 11 4.49 -2 32 -6 
 Right anterior cingulate 11 4.07 1 32 -6 

Left medial orbitofrontal cortex 11 3.64 -11 53 -8 
Right medial orbitofrontal cortex 11 4.40 0 32 -8 

Cluster 2 629 voxels p=0.0425     
  BA Z x y z 
Right insula 48 4.13 42 -8 -6 
Temporal lobe      

Right middle temporal gyrus (Temporal pole) 36 3.57 30 10 -40 
Right superior temporal gyrus (Temporal pole) 20 3.34 38 10 -28 

Right hippocampus 20 3.19 34 -11 -19 
Preserved>Impaired       
Cluster 1 1749 voxels p=2.94x10-5    
  BA Z x y z 
Right DLPFC      

Right inferior frontal gyrus (Pars triangularis) 48 3.93 38 28 26 
Right middle prefrontal cortex 46 3.27 38 29 34 

Right inferior frontal gyrus (Pars opercularis) 6 3.57 56 12 12 
Right perirolandic regions      

Right rolandic operculum 6 3.47 58 6 12 
Right precentral gyrus 6 3.39 49 0 24 

 

In this analysis, there were also areas where the cognitively preserved 

patients showed higher activation relative to the controls. These clusters were 

seen in both the 2-back vs baseline and the 2-back vs 1-back contrasts. In the 

2-back vs baseline contrast, there were two clusters of significant difference: 

one involved parts of the medial and inferior orbital prefrontal cortex, extending 

to the anterior cingulate cortex [3878 voxels, p=1.72x10-9; peak activation in 

BA11, left gyrus rectus, MNI (0, 26, -14), z score=4.52]; the other was located in 

the right insula, in the hippocampus and in the right superior temporal gyrus 

[629 voxels, p=0.04; peak activation in BA48, right insula, MNI (42, -8, -6), z 
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score=4.13] (see Table 10). In the 2-back vs 1-back contrast, there was a large 

cluster of significantly greater relative activation in the patients which included 

the medial and inferior orbital prefrontal cortex, left basal ganglia and anterior 

regions of left temporal cortex spreading to both amygdala and the 

hippocampus [5748 voxels, p=8.66x10-13; peak activation in BA38, left middle 

temporal pole, MNI (-40, 18, -34), z score=4.49]. Another cluster affected parts 

of the right basal ganglia, the right insula, the anterior temporal cortex and the 

right amygdala-hippocampus complex [2235 voxels, p=2.56x10-6; peak 

activation in BA35, right parahippocampal gyrus, MNI (26, 2, -34), z 

score=4.56]. The findings for this contrast are summarized in Table 11 and 

shown graphically in Figure 9. 

 

Figure 9. Brain regions where the cognitively preserved individuals with 

schizophrenia showed significant failure to de-activate compared the 

controls in the 2-back vs 1-back contrast. 
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Table 11. Significant clusters and the corresponding peak values of 

increased activation in each anatomical region in the cognitively 

preserved schizophrenia group compared to the control group in the 2-

back versus 1-back contrast. 

Cluster 1 5748 voxels p=8.66x10-13    
  BA Z x y z 
Left amygdala-hipppocampal complex      

Left amygdala 36 3.08 -30 1 -24 
Left hippocampus 36 3.11 -24 -6 -25 

 Left parahippocampal gyrus 28 3.66 -23 2 -30 
Left temporal lobe      

Left fusiform gyrus 36 3.63 -33 2 -33 
 Left inferior temporal gyrus 20 3.93 -32 8 -40 

Left middle temporal gyrus (Temporal pole) 38 4.49 -40 18 -34 
Left superior temporal gyrus (Temporal pole) 36 3.80 -29 5 -33 

Leftt basal ganglia      
Left caudate nucleus 25 3.20 -5 9 -11 

Left putamen 48 3.16 -18 8 -7 
Medial and orbitofrontal cortex      
 Left gyrus rectus  11 3.62 -6  50  -16 
 Right gyrus rectus  11 3.47 2 48 -15 

Left olfactory tract 25 3.89 -2 21 -11 
Right olfactory tract 25 3.93 3 21 -11 

Left superior orbitofrontal cortex 11 3.09 -10 55 -19 
Left medial orbitofrontal cortex 11 3.33  -3  41 -11 

Right medial orbitofrontal cortex 10 3.06  4  51 -5 
 Left anterior cingulate 32 3.63  -9 40  9 
 Right anterior cingulate 11 3.02 9 41 1 
Cluster 2 2235 voxels p=8.66x10-13    
  BA Z x y z 
Right amygdala-hipppocampal complex      

Right amygdala 36 3.42 29 1 -25 
Right hippocampus 20 4.00 28 -12 -22 

 Right parahippocampal gyrus 35 4.56 26 2 -34 
Right temporal lobe      

Right fusiform gyrus 36 3.99 31 1 -31 
Right middle temporal gyrus (Temporal pole) 36 4.34 28 10 -34 

Right insula 48 3.10 39 6 -12 
Right basal ganglia      

Right putamen 48 2.81 20 8 -4 
Right pallidum - 2.93 17 10 0 

 

As described in the introduction (section 1522), this relatively greater 

activation in the cognitively preserved schizophrenic patients could have 

represented either hyperactivation or failure of de-activation. To establish which 

of these possibilities applied, an ROI of boxplots of the averaged values in the 

ROI of the cluster in the medial frontal cortex is shown in Figures 10 and 11 

respectively for the 2-back vs baseline and for the 2-back vs 1-back contrasts 



 The neural correlates of cognitive impairment in schizophrenia 83 

and indicate that the differences represented failure of de-activation: the 

controls showed a clearly negative activation whereas the patients showed a 

mean value close to 0. 

 

Figure 10. Boxplot of the averaged level of activation from the cognitively 

preserved patients and the healthy control groups in the medial frontal 

cluster of significant difference in the 2-back vs baseline contrast. 

 

 

Figure 11. Boxplot of the averaged level of activation from the cognitively 

preserved patients and the healthy control groups in the medial frontal 

cluster of significant difference in the 2-back vs 1-back contrast. 
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4.2.4. fMRI findings: cognitively preserved vs cognitively 

impaired participants with schizophrenia 

There were no areas of significant difference between the schizophrenia 

groups in the 1-back vs baseline contrast. The 2-back vs baseline contrast 

revealed significantly reduced activation in the cognitively impaired individuals 

in an area which included the right DLPFC and right perirolandic regions [1749 

voxels, p=2.94x10-5; peak activation in BA48-, pars triangularis of the right 

frontal inferior gyrus, MNI (38, 28, 26), z score=3.93] (see Table 10). 

Areas of significantly reduced activation were also evident in the 2-back 

vs 1-back contrast. Here, the cognitively impaired patients showed significantly 

reduced activation in two large clusters in the DLPFC bilaterally. On the right, 

this included the DLPFC and extended to the precentral gyrus posteriorly and to 

the superior middle frontal cortex anteriorly [2494 voxels, p=1.19x10-7; peak 

activation in BA42, right superior frontal gyrus, MNI (12, 24, 46), z score=3.88]. 

The corresponding cluster on the left included the DLPFC and extended to the 

basal ganglia, the insula and the precentral gyrus [1786 voxels, p=5.96x10-6; 

peak activation in BA6, left precentral gyrus, MNI (-40, -6, 40), z score=3.74]. 

Two more clusters were located in regions of the right parietal and occipital 

lobes [1962 voxels, p=2.09x10-6; peak activation in BA40, right inferior parietal 

gyrus, MNI (38, -46, 50), z score=4.25] and in roughly similar regions on the left 

[1785 voxels, p=6.02x10-6; peak activation in BA7, left superior parietal gyrus, 

MNI (-32, -64, 48), z score=3.91]. Two further smaller clusters were found in 

both thalami [608 voxels, p=0.02; peak activation in the left thalamus, MNI (-9, -

21, 19), z score=3.41], and in the left inferior occipital cortex [603 voxels, 
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p=0.03; peak activation in BA19, left inferior occipital gyrus, MNI (-52, -76, -2), z 

score=4.04]. The findings are shown in Figure 12 and Table 12. 

 

Figure 12. Brain regions where the cognitively impaired schizophrenia 

group activated significantly less than the cognitively preserved group in 

the 2-back vs 1-back contrast. 

 

 

There were no areas in which the cognitively impaired individuals with 

schizophrenia activated more than the cognitively preserved ones. 
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Table 12. Significant clusters and corresponding peak values of 

significantly decreased activation in each anatomical region in the 

cognitively impaired schizophrenia group when compared to the 

cognitively preserved group in the 2-back versus 1-back contrast. 

Cluster 1 2494 voxels p=1.19x10-7    
  BA Z x Y Z 
Right medial cortex       

Right middle cingulate 32 3.29 12 20 40 
Right superior medial frontal gyrus 32 3.00 8 30 42 

Right DLPFC      
Right superior frontal gyrus 32 3.88 12 25 46 

Right middle frontal gyrus 45 3.12 38 36 16 
Right inferior frontal gyrus (Pars triangulars) 46 3.49 37 27 30 
Right inferior frontal gyrus (Pars opercularis) 48 3.62 32 6 29 

Right prerolandic region      
Right precentral gyrus 6 3.81 54 2 26 

Right rolandic operculum 6 3.30 55 8 16 
Cluster 2 1786 voxels p=5.96x10-6    
  BA Z X y z 
Left DLPFC       

Left inferior frontal gyrus (Pars opercularis) 48 3.56 -50 16 14 
Left inferior frontal gyrus (Pars triangulars) 48 3.19 -41 33 22 

Leftt prerolandic region      
Left rolandic operculum 6 3.61 -47 2 19 

Left precentral gyrus 6 3.74 -40 -6 40 
Left insula 48 3.14 -33 18 8 
Left basal ganglia      

Left putamen 48 3.35 -24 17 4 
Left caudate - 2.61 -13 12 4 

Cluster 3 1962 voxels p=2.09x10-6    
  BA Z X y z 
Right parietal cortex       

Right supramarginal gyrus 40 3.07 54 -37 43 
Right angular gyrus 40 3.68 46 -48 38 

Right inferior parietal gyrus 40 4.26 38 -46 50 
Right superior parietal gyrus 7 3.84 20 -66 52 

Right occipital cortex      
Right precuneus 7 4.14 6 -72 60 

Right cuneus 19 3.17 10 -84 46 
Cluster 4 1785 voxels p=6.02x10-6    
  BA Z x y Z 
Left parietal cortex       

Left superior parietal gyrus 7 3.91 -32 -64 48 
Left inferior parietal gyrus 7 3.73 -32 -61 39 

Left occipital cortex      
Left cuneus 18 3.37 -18 -78 35 

Left superior occipital gyrus 19 3.29 -23 -75 31 
Cluster 5 608 voxels p=0.025    
   Z x y Z 
Left thalamus  3.41 -9 -21 20 
Right thalamus  2.86 6 -8 19 
Cluster 6 603 voxels p=0.0261    
Left occipital cortex  BA Z x y z 

Left middle occipital gyrus 17 3.47 -24 -100 4 
Left inferior occipital gyrus 19 4.04 -52 -76 -2 

Left lingual gyrus 18 3.13 -28 -89 -12 
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4.2.5. fMRI analysis by working memory load 

This analysis -where models were fitted that assume a linear relationship 

through the baseline, 1-back and 2-back levels of the task- had broadly similar 

findings to those in the preceding sections. 

In the analysis comparing the cognitively preserved schizophrenic 

patients to the healthy controls, the patients showed a cluster of significantly 

reduced activation in the cerebellum [1411 voxels, p=0.000246; peak activation 

in vermis, MNI (6, -60, -26), z score=4.45]. As previously, the cognitively 

preserved participants also showed clusters where they showed a significant 

failure to de-activate relative to the controls. One of these affected parts of the 

medial and inferior orbital prefrontal cortex, extending to the anterior cingulate 

cortex [3681 voxels, p=3.75x10-9; peak activation in BA11, left anterior 

cingulate, MNI (-2, 32, -6), z score=4.48]. The other, smaller cluster was located 

in the right insula, hippocampus and parahippocampus extending marginally to 

the right superior temporal gyrus [1173 voxels, p=0.00103; peak activation in 

BA48, right insula, MNI (42, -8, -6), z score=4.1]. The findings for these 

contrasts are shown graphically in Figure 13. 
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Figure 13. Brain regions where the cognitively preserved individuals with 

schizophrenia showed significant failure to de-activate compared the 

controls in the working memory load contrast.  

 

 

 

When the cognitively impaired and cognitively preserved patients were 

compared using working memory load, the former showed a single area of 

significantly reduced activation in the right DLPFC [892 voxels, p=0.00546; 

peak activation in BA48, pars triangulars of the right inferior frontal gyrus, MNI 

(36, 28, 26), z score=3.58] when compared to the latter. There were no areas 

where the cognitively impaired group activated significantly more than the 

cognitively preserved group. The findings for this contrast are shown graphically 

in Figure 14. 
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Figure 14. Brain regions where the cognitively impaired schizophrenia 

group activated significantly less than the cognitively preserved group in 

the working memory load contrast.  
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5. Discussion 
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5.1. Summary of findings 

The aim of this study was to examine the brain structural and functional 

correlates of cognitive impairment in schizophrenia. A design which compared 

groups of patients preselected for showing and not showing substantial levels of 

cognitive deficit was employed. This was principally because previous studies 

using a correlational approach had not had consistent findings, which may have 

reflected difficulties controlling for other factors which can affect brain structure 

and function in this type of study, such as age and IQ. 

In terms of brain structure, while the schizophrenic patients as a group 

showed a range of areas of reduced volume compared to controls, the patients 

with cognitive impairment showed no more abnormality than those without 

cognitive impairment. In contrast, differences were found between the two 

patient groups on functional brain imaging. Specifically, the cognitively impaired 

patients showed reduced activation compared to the cognitively preserved 

patients in a series of brain regions encompassing the DLPFC, pre- and 

postcentral regions, parieto-occipital areas and the thalamus. 

The functional imaging part of the study also revealed differences 

between the healthy controls and the cognitively preserved schizophrenic 

patients. The most conspicuous finding here, which was seen in all analyses 

performed, was failure of de-activation in the cognitively preserved patients. 

This affected the medial frontal cortex and adjacent areas of the inferior frontal 

lobe, the insula, temporal-hippocampal regions and the basal ganglia. 

Additionally, the cognitively preserved patients showed an area of reduced 

activation compared to the healthy controls in parts in the cerebellum, although 

this was less consistent across the analyses. 
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These findings are discussed in more detail below. 

5.2. Structural neuroimaging findings in relation to previous 

studies 

As a group, the schizophrenic in this study showed reduced brain 

volume, reduced GM volume and lateral ventricular enlargement compared to 

the healthy controls. These are the typical structural imaging findings 

associated with schizophrenia (e.g. see the meta-analysis of MRI studies by 

Wright et al. (2000) presented in section 1511). This pattern remained evident in 

both the cognitively preserved patients and the cognitively impaired patients 

when they were considered separately (the difference in lateral ventricular 

volume between the controls and cognitively preserved patients was no longer 

significant, which might be attributable to the smaller sample size in this 

analysis). 

In contrast, there was no statistically significant difference in whole brain 

volume or GM volume between the cognitively preserved and cognitively 

impaired patients with schizophrenia. It could be argued that this negative 

finding could simply have reflected lack of power -there were in fact differences 

in whole brain and GM volume between the two groups of patients of 0.4% and 

0.9% respectively, both in the direction of smaller volume in the cognitively 

impaired patients. Against this, it can be pointed out that two groups of 769 

participants would be required to make the differences found in whole brain 

volume between cognitively impaired and cognitive preserved groups 

significant, and 239 for each group would be needed to do so for the differences 

in GM volume. 
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VBM analysis comparing controls to schizophrenic patients with relatively 

preserved cognitive function revealed a pattern of volume reduction quite similar 

to that found in meta-analyses of studies comparing unselected schizophrenic 

patients and controls. Specifically, they showed a cluster of reduced volume in 

medial and orbital frontal GM compared to healthy controls. This area overlaps 

with an area found to be affected in Fornito et al. (2009) meta-analysis of 37 

studies, and the overlap was greater in the larger and more recent meta-

analysis of 52 studies carried out by Bora et al. (2011b). However, applying this 

technique to the schizophrenic patients with and without cognitive impairment 

again failed to reveal clusters of significant volume difference between them. 

This finding of lack of structural imaging differences between cognitively 

preserved and cognitively impaired schizophrenia is in line with those of a 

number of correlational studies reviewed in the introduction, which found only 

weak and conflicting evidence for an association between cognitive impairment 

and lateral ventricular size, whole brain volume and regional cortical volumes 

(see section 171). However, as noted in the introduction (section 173), a small 

number of previous studies which examined separate groups of patients with 

and without cognitive impairment had more mixed findings. Thus, while Wexler 

et al. (2009) found no significant differences in lateral ventricular volume and 

GM volume between 54 cognitively impaired and 21 cognitively near-normal 

schizophrenic patient groups, they did find differences in WM volume in two of 

eight regions examined (sensorimotor and parietal-occipital), with a trend 

towards significant reduction in a third (inferior occipital). Applying VBM to a 

region limited to the frontal lobe cortex bilaterally, Rüsch et al. (2007) found 

clusters of reduced volume in the DLPFC and the anterior cingulate cortex in 21 
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cognitively impaired compared to 30 cognitively preserved patients. Using 

cortical thickness analysis, Cobia et al. (2011) found no clusters of significant 

difference between 34 cognitively impaired and 45 cognitively preserved 

patients. However, clusters emerged when no correction for multiple 

comparisons was used. 

The findings of the present study also need to be considered in relation 

to studies which have divided schizophrenia into subgroups on the basis of 

measures which show an association with cognitive function. One subdivision of 

this type is the distinction between deficit and non-deficit schizophrenia. Deficit 

schizophrenia, differently to non-deficit schizophrenia, is characterised by 

mainly negative symptoms that are stable over time and by a poor functional 

outcome (Kirkpatrick et al., 2001). As expected, these patients have been found 

to show more severe cognitive impairment than non-deficit cases (Cohen et al., 

2007). Galderisi and Maj (2009) reviewed six studies comparing brain structure 

in patients meeting criteria for these two forms of schizophrenia. They 

concluded that there was no evidence for larger lateral ventricles in the former 

group, and measures of regional cortical volumes and volumes of subcortical 

structures failed to identify clear morphological correlates of the deficit 

syndrome. However, it should be noted that a subsequent study (Fischer et al., 

2012) comparing 20 deficit and 36 demographically well-matched non-deficit 

schizophrenia patients found diminished volume in the superior prefrontal and 

superior and middle temporal gyrus bilaterally in the former group. 

Nevertheless, there were no differences between the two groups in other brain 

regions, including the dorsolateral prefrontal cortex, the inferior parietal cortex, 
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the thalamus, the caudate nucleus, the orbitofrontal cortex, superior temporal 

gyrus and the amygdala-hippocampus. 

Another, closely related division is that between ‘Kraepelinian’ and ‘non-

Kraepelinian’ types of schizophrenia. Kraepelinian patients are characterised by 

poor outcome; they typically require long-term hospitalization or equivalent 

levels of supervision in the community and many show ongoing severe active 

psychotic symptoms (Keefe et al., 1987). Non-Kraepelinian patients show a 

bettter outcome between episodes of illness and are able to live independently 

long periods, with hospitalization not exceeding five years. Outcome in this 

sense and cognitive function are related, with cognitive impairment having been 

found to be the most important predictor of poor functional outcome in the 

disorder (Green, 1996; Green and Nuechterlein, 1999; Green et al., 2000; Fett 

et al., 2011). Mitelman et al. (2007) compared 51 good outcome and 53 poor 

outcome schizophrenic patients. There were no differences in whole brain 

volume between the groups. With respect to GM volume, they found significant 

volume reductions in the poor outcome patients compared to the good outcome 

patients in 18 out of approximately 92 cortical areas examined. Most or all of 

these would not have survived controlling for multiple comparisons. WM volume 

showed a pattern of both reductions and increases in the poor outcome patients 

relative to the good outcome patients, with differences in either direction being 

present in eight brain areas (again uncorrected for multiple comparisons). 

Lateral ventricular volume did not differ between good and poor outcome 

groups (Mitelman et al., 2010). 

The failure to find a relationship between structural brain abnormality and 

cognitive impairment in schizophrenia in the present study is also in keeping 
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with a well-established neuropathological finding in the disorder. This is that, 

while severe cognitive impairment is prevalent among elderly institutionalized 

people with schizophrenia -more than 70% have MMSE scores in the demented 

range (Harvey et al., 1995)-, post-mortem studies have revealed no more 

Alzheimer-type or other brain pathology than in age-matched controls in 

samples of elderly people with schizophrenia with a dementia-like functional 

status (Powchik et al., 1998; Harrison, 1999; Religa et al., 2003). In the same 

direction, two CSF biomarkers which are diminished in Alzheimer’s disease, tau 

and A�42, were found not to be altered in elderly patients with schizophrenia 

(Frisoni et al., 2011). 

5.3. Functional imaging findings in relation to previous studies 

In contrast to the lack of positive findings with structural imaging, clear 

differences between cognitively impaired and cognitively preserved participants 

with schizophrenia on functional imaging were found. Specifically, in the 2-back 

vs baseline and 2-back vs 1-back contrasts the cognitively impaired group with 

schizophrenia showed reduced activation in the DLPFC and other areas. These 

areas became bilateral and extended more widely in the 2-back vs 1-back 

contrast.  

As noted in the introduction, previous studies have not consistently found 

associations between the degree of hypofrontality in schizophrenia and 

cognitive task performance. Thus, two meta-analyses of 14 studies (Hill et al., 

2004) and 20 studies (Van Snellenberg et al., 2006) found that the ES for 

differences in prefrontal activation were moderated by impairment on task 

performance differences only at trend level (p=0.06 and p=0.09 respectively). 

The findings reported in this thesis suggest a stronger association, to the point 
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that most of the task-related hypoactivation found appeared to be attributable to 

cognitive impairment -in the comparison between cognitively preserved 

participants with schizophrenia and controls reduced activation was seen only in 

the cerebellum. 

One possible reason why this study had stronger findings than previously 

is that, rather than using correlational methods, it compared groups which 

differed in cognitive function but which were matched for other factors that might 

influence task performance, for example age and premorbid IQ. In this respect, 

it may be relevant that Van Snellenberg et al. (2006) found in their meta-

analysis, this time using 24 studies, that age significantly moderated differences 

in left-hemisphere activation between patients and controls. However, gender 

and two measures of premorbid intellectual function (years of education and 

NART score) did not significantly influence activation in frontal regions. Other 

more recent studies have also failed to find a relationship between premorbid IQ 

or educational level with frontal activation in schizophrenia during performance 

of executive tasks (e.g Wolf et al., 2007; Pae et al., 2008; Karlsgodt et al., 

2009).  

There appears to be only one study which has examined the brain 

functional correlates of cognitive impairment in schizophrenia using groups 

preselected for showing and not showing this. Fletcher et al. (1998) examined 

brain function during a word list recall task in two groups of patients with (n=6) 

and without (n=6) memory impairment, as defined on the basis of scores on the 

RBMT. They found that the pattern of activation with increasing memory 

difficulty differed qualitatively from those in both groups of schizophrenic 

subjects: whereas the controls (n=7) responded to increasing word list length 
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with an increasing degree of left prefrontal activation, both schizophrenic groups 

showed a tailing off of activation during longer lists. However, there was no 

difference between the memory impaired and memory preserved patients. 

Fletcher et al. (1998) also found task-related de-activations in their study. These 

were seen in temporo-parietal regions bilaterally in the controls and both patient 

groups, and in the medial frontal cortex in the controls and the unimpaired 

schizophrenic subjects, but not in the impaired schizophrenic patients, implying 

that a failure of de-activation was associated with cognitive impairment. 

The findings of the present study differ from those of Fletcher et al. 

(1998) both in terms of activations and de-activations. Reduced activation in the 

present study was related to cognitive function, whereas Fletcher et al. (1998) 

found no association with cognitive impairment. Failure of de-activation was not 

associated with cognitive impairment, being seen only in the comparison 

between the cognitively preserved patients and the controls, whereas Fletcher 

et al. (1998) found this only in the cognitively impaired patients. One obvious 

reason for the differences between the two studies is their respective sample 

sizes. Fletcher et al. (1998) only compared six patients with and six patients 

without cognitive impairment and seven controls. 

As described in the introduction, studies by Weinberger and co-workers 

(Callicott et al., 2000; Callicott et al., 2003; Tan et al., 2006) and others 

(Manoach et al., 1999; Ojeda et al., 2002; MacDonald et al., 2005), have found 

that, during performance of the working memory tasks, schizophrenic patients 

show not only hypofrontality but also hyperfrontality. The finding of task-related 

hyperfrontality in schizophrenia has also been supported by two meta-analyses, 

one of studies using the n-back (Glahn et al., 2005) and other using a range of 
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different executive tasks (Minzenberg et al., 2009). According to Weinberger 

and co-workers (Weinberger et al., 2001; Callicott et al., 2003; Tan et al., 2007), 

the findings of hypofrontality and hyperfrontality are both related to cognitive 

function. In healthy subjects, increasing task demands are first associated with 

increasing activation, but this then falls off after the subject’s working memory 

capacity is exceeded, producing a u-shaped activation curve. Due to reduced 

efficiency of prefrontal cortical processing, patients with schizophrenia show 

more activation than healthy subjects -or hyperfrontality- at low task demands, 

as they ‘work harder to keep up’. As task demands increase, however, they 

then reach their limit of performance sooner than healthy subjects, and 

thereafter show a fall-off of activation, or hypofrontality. In other words the U-

shaped curve is shifted to the left in schizophrenia. Their argument is described 

in detail in the introduction (Figure 5 in section 172 in page 40). 

The study did not find any evidence of hyperfrontality in the comparison 

between cognitively preserved and cognitively impaired patients. Nor did the 

cognitively impaired patients show hyperactivation compared to the cognitively 

preserved patients on the easy (i.e. 1-back) version of the n-back task, which 

might also be expected on the basis of Weinberger’s reduced cortical 

efficiency/working harder to keep up hypothesis. The study of Karlsgodt et al. 

(2009) described in the introduction (section 172), also failed to find a simple 

relationship between hyperfrontality and cognitive function in schizophrenia. 

During performance of the Sternberg working memory task, both 14 patients 

and 18 controls showed a pattern of increasing activation in the left DLPFC, 

with increasing working memory load, which then decreased slightly at the 

highest levels. However, there was no clear evidence that the curve was shifted 
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to the left in the patients, as the model of Weinberger’s group suggested. 

Results were similar when the patient group was split into high- and low-

performing groups. 

 In addition to reduced activation related to cognitive function, the study 

described in this thesis found failure of de-activation in the medial prefrontal 

cortex among other regions, which was only seen in the comparison between 

the controls and the cognitively preserved cases. This finding is similar to those 

of other recent studies (Pomarol-Clotet et al., 2008; Whitfield-Gabrieli et al., 

2009; Milanovic et al., 2011), comparing unselected groups of schizophrenic 

patients with controls. In two of these studies (Pomarol-Clotet et al., 2008; 

Whitfield-Gabrieli et al., 2009), the medial frontal failure of de-activation 

remained after controlling for the difference in n-back task performance 

between the patients and controls, suggesting it was not a function of cognitive 

impairment. This fits with the finding of the present study, where failure of de-

activation was found in the comparison between controls and cognitively 

preserved patients but not in that between cognitively preserved and cognitively 

impaired patients. 

Pomarol-Clotet et al. (2008) have argued that failure of de-activation 

might account for some of the apparent hyperfrontality found in schizophrenia -

which can give the appearance of hyperactivation as a result of ‘reverse 

subtraction’ from a high baseline. Their argument is described in detail in the 

introduction (Figure 3 in section 1522 in page 27). It may be relevant in this 

respect that failure of de-activation found in the present study and in other 

studies (Pomarol-Clotet et al., 2008; Whitfield-Gabrieli et al., 2009; Milanovic et 

al., 2011) involves the medial frontal cortex. This cortical region has also been 
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found to be one of the main areas where hyperfrontality has been found. Thus, 

in their meta-analysis of studies using the n-back task, Glahn et al. (2005) 

identified the anterior cingulate and left frontal pole regions as showing 

consistently increased activation across studies. Interestingly, Glahn et al. 

(2005) also noted that the dorsomedial prefrontal region was not activated by 

either patients alone or controls alone, making inferences about this region 

difficult. In the larger meta-anlaysis of Minzenberg et al. (2009), hyperactivation 

was found in lateral and medial frontal regions, but also in some other frontal 

regions, as well as in right temporal and limbic regions and the left inferior 

parietal gyrus. 

Failure of de-activation in the medial frontal cortex in schizophrenia has 

been interpreted as indicating that there is DMN dysfunction in schizophrenia 

(Pomarol-Clotet et al., 2008; Broyd et al., 2009; Whitfield-Gabrieli et al., 2009). 

The DMN is a series of interconnected brain regions, with two prominent midline 

‘hubs’ in the medial frontal cortex anteriorly and the posterior cingulate 

cortex/precuneus posteriorly. This circuitry of brain regions is activated when a 

person focuses into internal information (such as remembering past events, 

anticipating the future, and considering others’ perspectives) instead of external 

perceptions (Buckner et al., 2008). It is currently a focus of considerable 

research interest in schizophrenia, with reviewed studies finding evidence of 

changes in task-related de-activation (in both directions), as well as abnormal 

connectivity at rest (Broyd et al., 2009). Among other things, it has been 

suggested that failure of de-activation in the network might account for the 

cognitive impairment associated with the schizophrenia (Pomarol-Clotet et al., 

2008; Whitfield-Gabrieli et al., 2009). The results of the present study suggest 
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that failure of de-activation in the DMN in schizophrenia is a feature of 

schizophrenia, but is unrelated to the cognitive impairment associated with the 

disorder, and so do not support this view. 

It is very interesting to compare the results just discussed with the results 

of the VBM comparison between the controls and the cognitively preserved 

group. Volume reductions were clustered in a medial frontal cortex region in the 

VBM comparison, where failure of de-activation was also seen in the fMRI 

study. The overlapping of structural and functional change in the anterior node 

of the DMN in this study has already been found previously. Members of Benito 

Menni’s research group have previously examined this overlap in more detail. 

Pomarol-Clotet et al. (2010), and Salgado-Pineda et al. (2011) found failure of 

both de-activation and volume reductions along the length of the cingulate 

gyrus. Another study had comparable findings; Camchong et al. (2011) found 

functional connectivity abnormality in the anterior node of the DMN, plus WM 

changes in subjacent regions on DTI. 

5.4. Implications of the findings for understanding cognitive 

impairment in schizophrenia 

One of the two main findings of the study reported in this thesis was a 

failure to find a relationship between cognitive impairment in schizophrenia and 

brain structural change. Specifically, cognitively impaired patients did not show 

significantly reduced brain volume, GM volume or WM volume, or have larger 

lateral ventricles, compared to cognitively preserved patients. Nor were did 

clusters of significant volume difference appear with VBM. Structural brain 

abnormality in schizophrenia appeared to be a function of having the disorder, 

but not the cognitive impairment that accompanies it. 
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This finding could be considered counter-intuitive, but it is in accordance 

with those of a considerable number of other structural imaging studies in 

schizophrenia, which have generally failed to find consistent evidence of 

significant correlations between overall or regional brain volumes and cognitive 

test scores. It is also in line with findings from post-mortem studies, which have 

uniformly failed to find that elderly chronically hospitalized schizophrenic 

patients, who have a high rate of dementia, show no more evidence of 

dementia-related pathology at post-mortem than age matched healthy controls. 

The main significance of this finding is that it implies that cognitive 

impairment in schizophrenia might be based on different mechanisms than 

cognitive impairment in other diseases. Thus, in neurological disorders such as 

dementia and brain injury, cognitive deficits result from structural brain changes 

and a relationship between the degree of structural change in different areas 

and the pattern neuropsychological test impairment can often be demonstrated 

(McDonald et al., 2002; Whitwell, 2010). 

It is interesting to note that, in a few neurological disorders, cognitive 

impairment is present but this is related to disturbed brain function and 

structural changes are absent or slight. The leading example here is delirium, 

where brain function is affected by factors such as infection or drug toxicity. In 

this disorder, unlike dementia and brain damage, complete recovery takes place 

if the underlying cause can be treated. Another example is Parkinson’s disease, 

where patients in the early stages of the disorder have been found to show 

impaired executive function. This has been argued to be due to a 

neurochemical (dopaminergic) disturbance in frontostriatal circuits, and there is 

evidence suggesting that it improves with L-dopa treatment (Owen, 2004). This 
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may be particularly relevant to cognitive impairment in schizophrenia, given the 

role of dopamine in both disorders. 

5.5. Implications of the findings for treatment 

The findings of this study suggest that cognitive impairment is related to 

brain functional but not structural changes. If so, it may be potentially reversible, 

as in neurological disorders like delirium or in Parkinson. In fact, cognitive 

impairment is increasingly considered a treatment goal in the disorder 

(Goldberg et al., 2010), partly because of the finding that it has a greater impact 

on functional outcome than psychotic symptoms (Green et al., 2000; Penadés 

et al., 2001). An effective intervention in cognitive impairment could therefore 

significantly decrease the burden of schizophrenia. 

It has been known for some time that treatment with conventional or first-

generation neuroleptics is associated with a small improvement in cognitive 

performance (Mishara and Goldberg, 2004; Goldberg et al., 2010). After the 

introduction of atypical or second-generation neuroleptics, a number of studies 

suggested that they produced a greater degree of improvement (Meltzer and 

McGurk, 1999; Harvey and Keefe, 2001; Harvey et al., 2005). However, recent 

rigorous studies (Goldberg et al., 2007; Keefe et al., 2007; Goldberg et al., 

2010) indicate that the improvements in test scores found are simply due to 

practice effects. Other pharmacological treatments, such as cholinergic, 

GABAergic and glutamate agonists, have been considered for targeting 

cognitive impairment in schizophrenia. However, so far none of these have 

been found to show evidence of effectiveness (Coyle et al., 2010; Burdick et al., 

2011). 



 The neural correlates of cognitive impairment in schizophrenia 107 

Starting in the 1990s, a number of studies have also examined the 

effectiveness of cognitive remediation in schizophrenia. A recent meta-analysis, 

which included 40 controlled studies (2104 participants) (Wykes et al., 2011) 

found a pooled effect size of 0.45 for improvement, in the ‘medium’ range, and 

the treatment was also associated with improved social functioning. However, it 

should be noted that most studies did not control for the nonspecific effects of 

intervention (Goff et al., 2011), and one large, well-conducted study that did so 

had negative findings (Dickinson et al., 2010). 

5.6. Limitations 

This study is one of the largest to have examined the brain structural 

correlates of schizophrenic cognitive impairment, and the largest to examine its 

correlates in brain function. It also had other methodological strengths, 

especially the use of groups of predetermined groups of patients meeting 

criteria for being cognitively impaired and cognitively preserved. Nevertheless, 

the study has a number of limitations which need to be pointed out. 

Perhaps the most important limitation was the relatively small numbers of 

schizophrenic patients. The sample sizes of 26 cognitively impaired and 23 

cognitively preserved patients respectively are towards the lower end of the 

range that have been used in both conventional MRI and VBM studies of 

schizophrenia and other major psychiatric disorders, and so there is potential 

for false negative findings. Nevertheless, as noted in the discussion, very large 

numbers (over 750 in each group for whole brain volume and over 200 in each 

group for GM volume) would be necessary to detect differences, if they are 

present, based on the magnitude of differences found between the cognitively 

impaired and cognitively preserved patients in this study. 



 The neural correlates of cognitive impairment in schizophrenia 108 

Another limitation is that, since the cognitively preserved patients were 

defined only as having memory and executive function above the 5th percentile 

cut-offs on the RBMT and the BADS, they were not completely free of cognitive 

impairment; some of them fell into the poor normal memory range on the RBMT 

and the low average/borderline categories in the BADS. Therefore, this study 

should be regarded as having compared cognitively impaired and relatively 

cognitively preserved, or cognitively near-normal patients.  

Concerning the functional imaging findings, interpretation of the 

differences in the degree of prefrontal activation between the cognitively 

impaired and cognitively preserved patients is complicated by a methodological 

factor. This is the fact that there were also differences in the level of n-back task 

performance between the two groups. It is difficult to exclude the possibility that 

differences in task performance accounted for the differences in activation, 

because the n-back task is itself a cognitive task and the groups were 

preselected on the basis that they differed in cognitive function. Therefore, 

entering n-back performance as a covariate in the analysis would violate the 

principle that the covariate should not be affected by the group factor. This 

issue in fact forms part of a wider debate about what drives task-related 

hypofrontality in schizophrenia: are both poor task performance and reduced 

brain activation manifestations of an underlying intrinsic cortical dysfunction? Or 

does the reduced activation merely index the fact that the patients are 

performing the task more poorly and so activating their frontal lobes to a 

correspondingly lesser extent (Fletcher et al., 1998)? 

Finally, the thickness of slices of 7mm in the fMRI study is on the large 

side by contemporary standards. In general, the amount of signal delivered by 
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the images depends on the volume of tissue that is sampled (i.e. volume of the 

voxel). A rather high in-plane resolution of 3x3 mm2 was used in the study. 

Since the study used a 1.5 T scanner, the 7 mm thickness was to compensate 

for these relatively small sizes in the X-Y plane, keeping the total volume of the 

voxel large enough to ensure a good signal-to-noise ratio in the BOLD images. 
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6. Conclusions  
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1. This study found that patients with schizophrenia and no marked cognitive 

impairment showed a significant decrease in total brain volume and GM 

volume as well as a significant lateral ventricle enlargement compared to 

healthy controls. However, these MRI parameters did not distinguish 

patients with and without moderate or severe degrees of cognitive 

impairment. 

2. Using VBM, a cluster of reduced GM volume in the orbital medial frontal 

cortex was found in the group of schizophrenia with no marked cognitive 

impairment compared to matched healthy controls. However, volume 

differences in these or other clusters were not found to distinguish between 

patients with and without significant degrees of cognitive impairment. These 

and the abovementioned findings suggest that cognitive impairment in 

schizophrenia is not a function of the brain structural changes seen in the 

disorder. 

3. Patients with schizophrenia showed a greater degree of reduced activation 

in the DLPFC than the cognitively preserved schizophrenic during 

performance of the n-back working memory task. This finding suggests that 

cognitive impairment in schizophrenia is closely related to hypofrontality, 

one of the main functional imaging abnormalities associated with the 

disorder. 

4. Patients with schizophrenia without cognitive impairment showed a failure 

of de-activation in the medial prefrontal cortex. However, the cognitively 

impaired schizophrenic patients did not show a greater degree of failure of 

de-activation than the cognitively preserved patients. This finding does not 
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support the view that de-activation abnormality, and consequently DMN 

dysfunction, underlies the cognitive impairment seen in schizophrenia. 
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7. Resum 
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Els correlats neurals del dèficit cognitiu 

en l’esquizofrènia 

Introducció 

Característiques generals de l’esquizofrènia 

L’esquizofrènia és un trastorn psiquiàtric molt sever, incapacitant i costós 

(p.e. Mueser i McGurk, 2004; Oliva-Moreno et al., 2006), que afecta vora l’un 

per cent de la població mundial (Jablensky, 2010). En la majoria de casos, es 

manifesta per primer cop al final de l’adolescència o al començament de l’edat 

adulta (Delisi, 2008b). La simptomatologia de l’esquizofrènia inclou els 

símptomes psicòtics o positius (deliris i al·lucinacions), els símptomes negatius 

(com ara pèrdua o disminució de la voluntat, la producció lingüística i/o 

l’expressió emocional), els trastorns del moviment, el discurs incoherent i la 

manca de consciència de malaltia (per exemple Tandon et al., 2009). Les 

alteracions cognitives són un altre símptoma característic de l’esquizofrènia i 

conformen el tema de la tesi. 

L’esquizofrènia és molt heterogènia en la forma de manifestar-se, tant en 

els símptomes que es presenten, com en el curs que aquests segueixen o en el 

grau d’autonomia que manté la persona, que pot variar entre una autonomia 

pràcticament total i, en la immensa majoria dels casos, un grau de dependència 

de lleu a sever (McKenna, 2007; Tandon et al., 2009). 

La intervenció d’elecció per l’esquizofrènia són els fàrmacs neurolèptics. 

Són efectius, en la majoria de casos, en el tractament de símptomes psicòtics i 

en la seva prevenció; la seva eficàcia en la millora dels símptomes negatius i 
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dels dèficits cognitius és, tanmateix, baixa (Edlinger et al., 2005; Buchanan et 

al., 2010; Kane i Correll, 2010). De forma general, es recomana les 

intervencions psicosocials de forma complementària al tractament farmacològic 

de l’esquizofrènia (Dixon et al., 2010). 

L’etiologia de l’esquizofrènia és desconeguda en bona part (Macher, 

2010). Se sap, però, de la importància de diferents factors genètics, 

neuroquímics i del neurodesenvolupament. 

La predisposició genètica n’és el factor de risc amb més evidència. En 

general, la probabilitat que té una persona de desenvolupar esquizofrènia 

augmenta progressivament quan més propers són els familiars que pateixen el 

trastorn (Gottesman, 1991; Cardno i Gottesman, 2000). La presència dels gens 

DISC 1, neuroregulina o disbindina incrementa lleument la susceptibilitat a 

l’esquizofrènia (per exemple Balu i Coyle, 2011). Així mateix, en una 

percentatge petit dels casos, certes mutacions genètiques augmenten de forma 

important la probabilitat de patir el trastorn (Tiwari et al., 2010). 

Pel que fa als factors neuroquímics, les dues hipòtesis més esteses són 

la teoria d’un excés de dopamina cerebral i, en segon lloc, la d’una disminució 

de la transmissió glutamatèrgica cerebral. Tanmateix, l’evidència científica 

respecte a ambdues propostes és inconsistent (Pomarol-Clotet et al., 2006; 

Howes i Kapur, 2009). 

Segons la hipòtesi del neurodesenvolupament, un dany cerebral en 

l’embaràs o els primers temps de vida produiria una maduració aberrant del 

cervell que podria dur a l’aparició progressiva dels símptomes de 

l’esquizofrènia. Al respecte, l’evidència científica mostra una major freqüència 

de problemes en el part i de disfuncions menors cognitives, conductuals i 
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d’altres tipus en nens que després desenvoluparan el trastorn, en comparació 

amb els nens que no el desenvoluparan (p.e. Done et al., 1994; Cannon et al., 

2002; McKenna, 2007). 

Bases neurals de l’esquizofrènia 

Gran part del nostre coneixement actual sobre els canvis cerebrals de 

l’esquizofrènia es deu als estudis amb neuroimatge estructural i cerebral. 

Els primers estudis de tomografia axial computeritzada (CT) van trobar 

de forma consistent un augment del volum dels ventricles laterals en més d’un 

25% en persones amb esquizofrènia respecte a subjectes sans (Andreasen et 

al., 1990). Les revisions i les metaanàlisis dels estudis de regions d’interès 

(ROI) amb ressonància magnètica (MRI) van augmentar el coneixement sobre 

els canvis estructurals en l’esquizofrènia (Wright et al., 2000; Steen et al., 

2006). S’hi va trobar una disminució del volum cerebral total en un 2%, que 

seria més important en la substància grisa que en la substància blanca. Altres 

canvis evidenciats hi són disminucions volumètriques al lòbul frontal i al gir de 

Heschl de l’escorça temporal, així com a l’hipocamp, tàlem i amígdala. 

La tècnica més recent de morfometria basada en el vòxel (VBM) ha 

permès un augment de la sensibilitat per detectar petites diferències cerebrals 

estructurals. La literatura científica actual hi evidencia disminucions 

volumètriques de substància grisa en regions corticals frontals bilaterals 

medials i inferiors, així com a l’ínsula, el gir temporal superior esquerre i el 

tàlem en esquizofrènia (Bora et al., 2011b). També s’hi ha trobat disminucions 

en substància blanca a la càpsula interna de forma bilateral i al lòbul temporal 

dret (Bora et al., 2011a). 
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La imatge per tensor de difusió (DTI) és una altra tècnica de neuroimatge 

estructural desenvolupada recentment que permet detectar canvis en la difusió 

cerebral de l’aigua i, d’aqueta manera, en els tractes de substància blanca. 

Malgrat la diversitat metodològica i de resultats, les revisions i metaanàlisis de 

DTI en esquizofrènia indiquen alteracions al cos callós i en tractes temporals i 

frontals (Kanaan et al., 2005; Kyriakopoulos et al., 2008; Bora et al., 2011a). 

Pel que respecta als canvis en neuroimatge funcional en l’esquizofrènia, 

des de l’estudi pioner d’Ingvar i Franzén (1974), la recerca va girar bàsicament 

al voltant de confirmar o no la menor activació en àrees cerebral frontals en 

persones amb esquizofrènia respecte a controls sans. 

Els estudis més recents de neuroimatge funcional en esquizofrènia, a 

partir de 1999, progressivament han anat fent ús de la ressonància magnètica 

funcional (fMRI) i n’han abandonat altres tècniques més agressives. Al mateix 

temps, han adoptat tècniques d’anàlisi de les dades d’imatge basades en el 

vòxel, deixant de banda les anàlisis de ROI. Aquests estudis més recents i 

sensibles han confirmat, durant la realització de tasques executives, una menor 

activació en àrees prefrontals dorsolaterals (hipofrontalitat) i, a més, han trobat 

un augment d’activació en àrees frontals medials (hiperfrontalitat) en 

comparació amb subjectes sans (p.e. Minzenberg et al., 2009). 

Més recentment, s’ha evidenciat que aquesta hiperactivació frontal 

medial aparent seria, almenys en part, una alteració en la desactivació del node 

anterior de la xarxa neural per defecte (DMN) durant la realització de tasques 

de rendiment cognitiu (Pomarol-Clotet et al., 2008). La DMN és una xarxa 

d’àrees cerebrals que s’activa quan les persones no realitzem activitats 
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cognitives que impliquen focalització externa sinó interna de l’atenció (Gusnard 

i Raichle, 2001). 

Dèficits cognitius de l’esquizofrènia 

El progrés en el coneixement científic de l’esquizofrènia ha posat de 

manifest la importància del dèficits cognitius en aquest trastorn. El rendiment 

cognitiu i intel·lectual general de les persones amb esquizofrènia és, de forma 

mitjana, una desviació típica més baix que el de la població general. Així 

mateix, el deteriorament no és igual de pronunciat en totes les funcions 

cognitives, de forma que els dèficits en memòria declarativa a llarg termini, en 

els processos atencionals i en les funcions executives són especialment 

marcats i altres processos com el llenguatge, la percepció, la memòria implícita 

i la memòria a curt termini estan relativament menys afectats (per exemple 

Reichenberg, 2010). En qualsevol cas, el grau dels dèficits cognitius i el seu 

perfil són heterogenis entre les persones que pateixen el trastorn i fins i tot no 

està clar fins a quin punt els dèficits cognitius estan presents en tots els casos 

d’esquizofrènia (Palmer et al., 1997; Kremen et al., 2000; Weickert et al., 2000; 

Keefe et al., 2005). 

Així mateix, se sap que les alteracions cognitives, i en particular les 

amnèsiques i disexecutives, es relacionen amb la simptomatologia negativa i 

desorganitzada pròpia del trastorn però no amb els símptomes psicòtics 

(Mckenna i Oh, 2005; Dibben et al., 2009). Al mateix temps, els dèficits 

cognitius semblen ser la principal característica clínica que permet predir el 

funcionament en l’esquizofrènia (p.e. Green et al., 2000). 
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Bases neurals del dèficits cognitius en l’esquizofrènia 

Malgrat l’evidència que l’esquizofrènia cursa amb dèficits cognitius en 

tots o gairebé tots els casos, poc se sap de la relació d’aquests dèficits amb les 

alteracions cerebrals tant estructurals com funcionals que caracteritzen el 

trastorn. De fet, els resultats de la majoria d’estudis, que han emprat anàlisis 

correlacionals, no són consistents. 

Diferents estudis i revisions han intentar aprofundir en el coneixement de 

la relació entre els canvis cerebrals estructurals i els dèficits cognitius propis de 

l’esquizofrènia. Els resultats, tanmateix, no n’han segut concloents, 

independentment de la forma d’adquisició (CT o MRI) i del tipus d’anàlisi de 

neuroimatge realitzat (ROI o VBM) (per exemple Crespo-Facorro et al., 2007; 

Bonilha et al., 2008; Minatogawa-Chang et al., 2009). 

Manquen també resultats consistents per conèixer la relació entre 

l’activació cerebral i el rendiment cognitiu en l’esquizofrènia. N’hi ha indicis, 

però, d’una relació entre un menor rendiment cognitiu i una major hipoactivació 

prefrontal en tasques de memòria de treball (Hill et al., 2004; Van Snellenberg 

et al., 2006). 

Una metodologia alternativa, emprada per uns pocs estudis per 

aprofundir en l’estudi de les bases neurals dels dèficits cognitius en 

l’esquizofrènia, consisteix en comparar la neuroimatge estructural de dos grups 

de persones amb esquizofrènia, un dels quals tindria un rendiment cognitiu 

relativament preservat i l’altre el tindria clarament alterat. Aquesta estratègia té 

l’avantatge afegit que permet separar els canvis cerebrals estructurals i 

funcionals associats amb l’esquizofrènia dels canvis associats amb el dèficit 

cognitiu propi del trastorn. Aquests estudis, per ara, mostren possibles indicis 



 The neural correlates of cognitive impairment in schizophrenia 123 

de canvis estructurals cerebrals subtils associats amb un baix rendiment 

cognitiu en l’esquizofrènia (Rüsch et al., 2007; Wexler et al., 2009; Cobia et al., 

2011). 

Hipòtesi i objectius  

Es treballa sota la hipòtesi que els dèficits cognitius de l’esquizofrènia 

poden estar reflectint anomalies cerebrals estructurals i funcionals. 

L’objectiu d’aquest estudi era aprofundir en el coneixement dels correlats 

cerebrals estructurals i funcionals del dèficits cognitiu en l’esquizofrènia 

utilitzant un disseny que permetés comparar grups amb esquizofrènia 

preseleccionats per mostrar o no una alteració cognitiva marcada. En concret, 

els objectius eren: 

1. Investigar la relació entre les alteracions cerebrals estructurals pròpies de 

l’esquizofrènia i l’alteració cognitiva pròpia del trastorn. 

2. Determinar si l’alteració cognitiva de l’esquizofrènia s’associa 

específicament amb disfuncions cerebrals evidenciables mitjançant fMRI. 

Mètode 

Vam seleccionar una mostra de 26 participants amb esquizofrènia que 

presentaven alteracions cognitives severes i 23 que en presentaven una 

cognició relativament preservada, així com 39 controls sans. Tots tres grups 

eren comparables en edat, sexe i QI premòrbid estimat. 

El criteri per dividir les persones amb esquizofrènia en un o altre grup va 

ser la seva puntuació en el RBMT (Wilson et al., 1985) i la BADS (Wilson et al., 

1996). El RBMT i la BADS són dues bateries neuropsicològiques que valoren 
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respectivament el rendiment en memòria i en funcions executives mitjançant 

tasques amb més validesa ecològica que les proves neuropsicològiques 

clàssiques. El criteri d’inclusió al grup d’esquizofrènia sense alteració cognitiva 

significativa era un rendiment superior al percentil cinc en ambdues proves, 

mentre que, pel grup d’esquizofrènia i alteració cognitiva marcada, calia un 

rendiment menor del percentil ú en almenys una de les dues proves. Un estudi 

complementari realitzat va mostrar que aquests criteris de separació eren 

sensibles al rendiment cognitiu general (veure annex 2). El grup d’esquizofrènia 

sense rendiment alterat en la BADS i el RBMT presentava un rendiment 

numèricament més baix que el grup control en una sèrie de proves de 

rendiment en diferents àrees cognitives, però en gairebé cap d’aquestes 

comparacions la diferència va ser estadísticament significativa. Pel contrari, el 

grup d’esquizofrènia amb un rendiment alterat en almenys una de les dues 

bateries va puntuar significativament més baix que el grup control i que el grup 

d’esquizofrènia i rendiment cognitiu preservat en gairebé totes les àrees 

cognitives avaluades, més enllà de les funcions mnèsiques i executives. 

Es va valorar la psicopatologia dels dos grups d’esquizofrènia mitjançant 

la PANSS (Peralta i Cuesta, 1994) i la CGI (NIMH, 1976). Així mateix, es va 

administrar a tots els participants el TAP (Del Ser et al., 1997) -per tal d’estimar 

el rendiment cognitiu premòrbid- i una selecció de quatre proves del WAIS-III 

(Wechsler, 2001), per avaluar el rendiment intel·lectual actual. 

Es va adquirir neuroimatge estructural mitjançant MRI de tots els 

participants. Es va realitzar anàlisis del volum cerebral total, de la substància 

grisa i la substància blanca total i dels ventricles laterals. Així mateix es va 

realitzar VBM per comparar els grups. 
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També es va adquirir imatges de fMRI de 19 dels participants amb 

esquizofrènia i alteració cognitiva i 18 dels que no en presentaven una alteració 

cognitiva marcada, així com de 34 controls. Durant l’adquisició de les imatges 

de fMRI, van executar la tasca n-back, un paradigma de memòria de treball. 

El principal focus de les anàlisis cerebrals estructurals i funcionals se 

centrava en dues comparacions específiques. En primer lloc, vam comparar el 

grup de cognició preservada amb el grup control, per tal de determinar els 

canvis cerebrals atribuïbles a l’esquizofrènia, sense el factor confusional afegit 

de l’alteració cognitiva. En segon lloc, vam comparar els grups preservat i 

alterat en cognició per conèixer la possible contribució dels canvis cerebrals a 

l’alteració cognitiva pròpia del trastorn. 

Resultats 

Característiques de les mostres 

Les mostres dels dos grups d’esquizofrènia (cognició alterada i cognició 

preservada) i les del grup control, tant en les anàlisis de neuroimatge 

estructural com en les de neuroimatge funcional, eren comparables en quant a 

edat, gènere i rendiment cognitiu premòrbid estimat. Així mateix, en totes dues 

anàlisis, els participants amb cognició alterada presentaven un rendiment 

intel·lectual actual significativament menor tant en el quocient intel·lectual (IQ) 

total com en el IQ manipulatiu respecte als altres dos grups. També hi havia 

diferències significatives entre ambdós grups de participants amb esquizofrènia 

en quant a la puntuació en simptomatologia negativa i en desorganitzada, de 

manera que el grup amb rendiment cognitiu més deficitari hi presentava una 

major puntuació. 
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Neuroimatge estructural 

L’anàlisi estructural va mostrar que els participants amb esquizofrènia de 

forma conjunta mostraven una disminució del volum cerebral total i del volum 

de la substància grisa i un augment del volum dels ventricles laterals en 

comparació amb els controls. Així mateix, es va trobar disminució del volum 

cerebral total i del volum de la substància grisa en el grup d’esquizofrènia i 

cognició preservada en comparació amb el grup control. 

No es va, però, trobar diferències entre els participants amb cognició 

preservada i els que presentaven alteracions cognitives en el volum dels 

ventricles laterals ni tampoc en el volum cerebral total ni tampoc en el volum de 

la substància grisa ni blanca. 

Pel que fa als resultats de VBM, el participants amb esquizofrènia i una 

cognició relativament preservada van presentar un àrea de disminució 

volumètrica significativa a la substància grisa de regions prefrontals medials i 

del cingulat anterior en comparació amb els controls sans. No vam trobar, però, 

àrees d’augment de volum en el grup de cognició preservada en relació als 

controls. Així mateix, no vam trobar diferències entre ambdós grups en volum 

de substància blanca. 

En comparar els grups d’esquizofrènia amb diferent rendiment cognitiu, 

no van aparèixer clústers amb diferències significatives en el volum de 

substància blanca i grisa. 

Neuroimatge funcional 

Pel que fa al rendiment en la tasca n-back de memòria de treball, els 

participants amb esquizofrènia i cognició alterada van tenir, de forma general, 

un rendiment més baix que els altres dos grups i, al mateix temps, els 
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participants amb esquizofrènia i cognició relativament preservada van presentar 

un pitjor rendiment que els controls sans. 

La troballa més consistent en la comparació de neuroimatge funcional 

entre els controls i els participants amb esquizofrènia i cognició preservada va 

ser un dèficit en desactivar parts de l’escorça prefrontal medial, el cingulat 

anterior, l’ínsula, el complex amígdala-hipocamp i l’escorça temporal durant la 

realització de la tasca n-back. 

Així mateix, els participants amb alteració cognitiva van presentar 

hipoactivació en l’escorça prefrontal dorsolateral, entre d’altres regions, en 

relació als participants amb cognició relativament preservada. 

Discussió 

Els resultats d’aquest estudi no relacionen els dèficits cognitius propis de 

l’esquizofrènia amb les alteracions estructurals cerebrals que sovint 

acompanyen el trastorn. Aquesta manca de resultats positius difícilment es 

podria relacionar amb la grandària de les mostres utilitzades, donat que caldria 

mostres de centenars de subjectes perquè els resultats assolissin significació 

estadística. 

De fet, la literatura existent no mostra evidència consistent d’una relació 

entre els canvis estructurals i les alteracions cognitives en l’esquizofrènia, ni en 

estudis correlacionals (per exemple Crespo-Facorro et al., 2007) ni en estudis 

que comparen grups de persones amb esquizofrènia dividides en funció del seu 

rendiment cognitiu (Rüsch et al., 2007; Wexler et al., 2009; Cobia et al., 2011). 

La manca d’una relació clara entre el dèficits cognitius i l’esquizofrènia també 

es posa de manifest en estudis que divideixen els pacients en funció de 
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característiques relacionades indirectament amb una major alteració cognitiva, 

com ara l’esquizofrènia deficitària (Galderisi i Maj, 2009) o l’esquizofrènia 

kraepeliniana (Mitelman et al., 2007; Mitelman et al., 2010). En la mateixa línia, 

tampoc hi ha evidència d’una major presència d’alteracions histopatològiques 

associades amb les demències en persones grans amb esquizofrènia que en la 

població general, malgrat que moltes persones grans amb esquizofrènia tenen 

un rendiment cognitiu molt deficitari, comparable fins i tot al de les persones 

amb demència (p.e. Harrison, 1999). 

En contrast amb la manca de resultats positius en neuroimatge 

estructural, vam trobar diferències significatives en neuroimatge funcional entre 

els participants amb esquizofrènia dividits en funció del seu rendiment cognitiu. 

Aquestes diferències es van manifestar en una menor activació de l’escorça 

prefrontal dorsolateral i altres àrees cerebrals en el grup amb rendiment alterat 

respecte al grup relativament preservat en rendiment cognitiu. 

Els resultats d’aquest estudi mostren de forma clara que gran part de la 

hipofrontalitat detectada en l’esquizofrènia podria estar relacionada amb 

l’alteració cognitiva de la malaltia. En aquest sentit, aquests resultats poden ser 

més contundents que els de dues metaanàlisis prèvies (Hill et al., 2004; Van 

Snellenberg et al., 2006), que havien trobat una correlació estadísticament no 

significativa (p=0.06 i 0.09 respectivament) entre la hipofrontalitat i el dèficit 

cognitiu. El fet que aquest estudi hagi controlat que el grups fossin comparables 

en variables potencialment confusionals (edat, l sexe i nivell cognitiu premòrbid) 

pot haver facilitat la major robustesa de les dades. 

Com ja s’ha comentat a la introducció, diferents metaanàlisis (Glahn et 

al., 2005; Minzenberg et al., 2009) mostren una major activació en àrees 
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cerebrals frontals en persones amb esquizofrènia en comparació a controls 

sans durant la realització de tasques executives. El grup de Weinberger (p.e. 

Weinberger et al., 2001) ho ha interpretat com un intent de compensació de la 

menor activació prefrontal dorsolateral per intentar mantenir el rendiment 

cognitiu. Els resultats d’aquesta tesi, però, no avalen la hipòtesi del grup de 

Weinberger. 

En canvi, aquesta tesi ha mostrat resultats a favor de dèficits de 

desactivació a l’escorça prefrontal medial de les persones amb esquizofrènia i 

una cognició preservada. Altres estudis ja han posat de manifest aquest canvi 

cerebral funcional en l’esquizofrènia, que, fins i tot, romandria després de 

controlar les diferències en rendiment cognitiu (Pomarol-Clotet et al., 2008; 

Whitfield-Gabrieli et al., 2009). Tot plegat suggereix que els problemes de 

desactivació de l’escorça prefrontal medial estarien associats a patir 

esquizofrènia i serien independents de les alteracions cognitives pròpies de la 

malaltia. Al mateix temps, aquest dèficit de desactivació, que s’ha interpretat 

com una alteració en la xarxa neural per defecte (p.e. Whitfield-Gabrieli et al., 

2009), podria explicar almenys part de l’aparent hiperactivació trobada en 

l’esquizofrènia (Pomarol-Clotet et al., 2008). Cal destacar que l’escorça 

prefrontal medial, on apareix el clúster amb un dèficit en la desactivació, és 

bàsicament la mateixa àrea en què s’han trobat diferències en la comparació 

de VBM entre el grup amb esquizofrènia i cognició preservada i el grup control. 

La hipoactivació frontal associada amb els dèficit cognitius en 

l’esquizofrènia pot tenir un paral·lelisme amb l’alteració cerebral funcional 

trobada en els estats confusionals o amb la relacionada amb la disfunció 

executiva en fases inicials de la malaltia de Parkinson. En aquests casos, la 
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disfunció cognitiva pot ser reversible. Continuant amb el paral·lelisme, la 

disfunció cognitiva en l’esquizofrènia també podria ser reversible, encara que 

ara per ara ni els tractaments farmacològics ni la intervenció neurocognitiva s’hi 

han mostrat clarament eficaços. 

Pel que fa a les limitacions que manifesta aquest estudi, són de destacar 

la grandària de la mostra i el fet que el criteri d’inclusió per al grup amb 

esquizofrènia i cognició preservada no exclogui totalment la possibilitat que els 

subjectes d’aquest grup tinguin un rendiment cognitiu límit. Al mateix temps, cal 

tenir en compte que el rendiment cognitiu entre els 3 grups difereix en la tasca 

de n-back. Tanmateix, els grups van ser triats en funció del seu rendiment 

cognitiu, de forma que no es podria afegir el rendiment cognitiu com a 

covariable a l’anàlisi perquè aquest n’està considerat com a factor de separació 

dels grups. Una altra limitació n’és la grossor dels talls a l’estudi de 

neuroimatge funcional (7mm), relativament gran pels estàndards actuals. 

L’objectiu d’això és mantenir el volum total dels vòxels amb una grandària que 

permeti mantenir una bona relació entre senyal i soroll en les imatges BOLD. 
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Conclusions 

1. L’estudi va trobar que els participants amb esquizofrènia sense alteració 

cognitiva marcada presentaven una disminució significativa en el volum 

cerebral total i en el volum de substància grisa així com un eixamplament 

dels ventricles laterals en comparació amb el grup control. Tanmateix, 

aquests canvis no van distingir entre els pacients amb i sense una alteració 

cognitiva moderada o severa. 

2. En utilitzar VBM, es va trobar un clúster de reducció de volum a la 

substància grisa de l’escorça frontal orbitomedial en el grup d’esquizofrènia 

sense alteració cognitiva marcada en comparació amb el grup control. 

Tanmateix, no s’hi van trobar diferències volumètriques en aquest o altres 

clústers entre els grups d’esquizofrènia amb i sense alteració cognitiva 

marcada. Aquests resultats i els esmentats anteriorment recolzen que 

l’alteració cognitiva en l’esquizofrènia no seria una funció dels canvis 

cerebrals estructurals presents en el trastorn. 

3. Les persones amb esquizofrènia i dèficit cognitiu van mostrar un nivell més 

gran de reducció de l’activació a l’escorça prefrontal dorsolateral que els 

pacients amb preservació cognitiva durant la realització de la tasca n-back 

de memòria de treball. Aquest resultat suggereix que l’alteració cognitiva en 

l’esquizofrènia està molt relacionada amb la hipofrontalitat, una de les 

principals alteracions de neuroimatge funcional trobades en el trastorn. 
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4. Els pacients amb esquizofrènia sense alteració cognitiva van presentar una 

desactivació insuficient de l’escorça prefrontal medial. Tanmateix, els 

pacients amb esquizofrènia i alteració cognitiva moderada o severa no van 

presentar un major fracàs en la desactivació que els pacients amb 

preservació cognitiva. Aquest resultat no recolza la visió que l’alteració en la 

desactivació, i, en conseqüència, la disfunció en la xarxa neural per defecte 

estiguin en la base de l’alteració cognitiva pròpia de l’esquizofrènia. 
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One of the most important changes in the concept of schizo-

phrenia in recent years has been the recognition that cognitive

impairment is part of the disorder. Although not a defining

characteristic – some individuals are neurocognitively normal or

near-normal1 – deficits similar in magnitude to those seen in

central nervous system disease are common,2 and in a small

number of cases may attain a severity comparable with

dementia.3 Impairment is present in most or all areas of cognitive

function but appears to be particularly marked in executive

function and long-term memory.4 There are unanswered

questions about the course of schizophrenic cognitive

impairment, but the available evidence suggests that affected

individuals show an IQ disadvantage compared with the rest of

the population before they become ill; that a further decline in

cognitive function takes place around illness onset; but that the

level then remains stable, except in chronically hospitalised

individuals in whom there may be a further decline in old age.5

Although cognitive impairment implies brain damage or

dysfunction, little is known about the relationship between schizo-

phrenic cognitive impairment and the structural and functional

brain abnormalities that also characterise the disorder. Early

computed tomography (CT) studies did not point consistently

to an association with lateral ventricular enlargement.6 Reviewing

magnetic resonance imaging (MRI) studies, Antonova et al7 found

some evidence that whole brain, lateral ventricular and frontal and

temporal lobe volume reductions were associated with general

intellectual impairment and/or specific neuropsychological

deficits, although there were conflicting findings in all cases. The

findings were further complicated by gender differences in the

associations found, and also by the existence of correlations

between some volume measures and IQ in controls but not in

participants with schizophrenia.

Techniques such as voxel-based morphometry (VBM), which

map clusters of significant difference between groups of

participants throughout the brain without the necessity of

preselecting regions of interest, might have more power to detect

small and/or localised volume differences related to cognitive

impairment. Such studies have suggested that grey matter volume

reductions are more extensive in individuals with chronic

schizophrenia than in those with a first-episode,8,9 possibly in

keeping with the finding that the former group typically show

greater degrees of cognitive impairment than the latter.10,11

However, to date these techniques have not been used to examine

the relationship between brain volume and cognitive impairment

directly.

Investigation of the brain functional correlates of cognitive

impairment in schizophrenia has been limited. In the first study

to carry out functional imaging during performance of an

executive task in schizophrenia, Weinberger et al12 found that

the degree of hypofrontality correlated with the impairment the

participants showed on the Wisconsin Card Sorting Test.

However, such an association was not found in two later studies

that used executive13 and memory14 tasks. Two meta-analyses of

hypofrontality in schizophrenia have also examined the influence

of task performance on prefrontal activation,15,16 and both found

only trend-level correlations.

According to recent findings, schizophrenia is characterised

not only by hypofrontality but also hyperfrontality, increased

task-related activation in areas of the prefrontal cortex, which

has been documented during performance of working memory17

and other executive tasks.18 Weinberger and colleagues19,20 have

explicitly linked this latter finding to cognitive function, arguing

that people with schizophrenia have to ‘work harder to keep up’

with task demands and so engage greater and/or more widespread
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Background

Cognitive impairment is an established feature of
schizophrenia. However, little is known about its relationship
to the structural and functional brain abnormalities that
characterise the disorder.

Aims
To identify structural and/or functional brain abnormalities
associated with schizophrenic cognitive impairment.

Method
We carried out structural magnetic resonance imaging (MRI)
and voxel-based morphometry in 26 participants who were
cognitively impaired and 23 who were cognitively preserved,
all with schizophrenia, plus 39 matched controls. Nineteen of
those who were cognitively impaired and 18 of those who
were cognitively preserved plus 34 controls also underwent
functional MRI during performance of a working memory
task.

Results
No differences were found between the participants who
were cognitively intact and those who were cognitively
impaired in lateral ventricular volume or whole brain volume.
Voxel-based morphometry also failed to reveal clusters of
significant difference in grey and white matter volume
between these two groups. However, during performance of
the n-back task, the participants who were cognitively
impaired showed hypoactivation compared with those who
were cognitively intact in the dorsolateral prefrontal cortex
among other brain regions.

Conclusions
Cognitive impairment in schizophrenia is not a function of
the structural brain abnormality that accompanies the
disorder but has correlates in altered brain function.
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cortical metabolic activity than those without schizophrenia when

they try to do so. Nevertheless, a number of studies have

compared participants with schizophrenia who are low- and

high-performing on working memory tasks and their findings

suggest that the relationship between hyperfrontality and cognitive

impairment is quite complicated.21–23

To date, two studies have adopted a strategy of examining

predefined groups of individuals with cognitive impairment. de

Vries et al24 found that eight participants with schizophrenia

and cognitive impairment amounting to dementia had no more

ventricular enlargement or sulcal widening than that seen in

schizophrenia as a whole. In contrast, most of the participants

showed resting perfusion deficits on single photon emission

computed tomography. Wexler et al25 found that 54 cognitively

impaired people with schizophrenia showed similar degrees of

lateral ventricular enlargement and grey matter volume reduction

to 21 neuropsychologically near-normal individuals with the

disorder. However, the cognitively impaired group had

significantly smaller white matter volumes in two out of eight

regions examined. This study did not investigate whether there

were functional imaging differences between the two groups.

Method

Participants

Two groups of people with schizophrenia participated, one

(n= 26) with and one (n=23) without substantial degrees of

cognitive impairment (the cognitively impaired group and

cognitively preserved group respectively). Both these groups were

recruited from long-stay wards (n= 14), acute and subacute units

(n= 26) and out-patients/day hospital (n=9). They all met

DSM-IV26 criteria for schizophrenia based on interview by two

psychiatrists. Individuals were excluded if they were younger than

18 or older than 65, had a history of brain trauma or neurological

disease, or had shown alcohol/substance misuse within the 12

months prior to participation. Individuals were also excluded if

they had a history of learning disability; this was based on

attendance at a special school, or on an interview with relatives,

for example if the estimated premorbid IQ measure was found

to be low. All participants were taking antipsychotic medication

(atypical n= 28, typical n=7, both kinds n= 14), and all were in

a relatively stable clinical condition at the time of testing. The

groups were selected to be matched for age, gender and premorbid

IQ, as estimated using the Word Accentuation Test (TAP).27 This

is conceptually similar to the National Adult Reading Test

(NART)28 and requires pronunciation of low-frequency Spanish

words whose accents have been removed.

Presence of cognitive impairment was defined on the basis of

performance on two well-standardised tests of memory and

executive function, the Rivermead Behavioural Memory Test

(RBMT)29 and the Behavioural Assessment of the Dysexecutive

Syndrome (BADS).30 The RBMT consists of 12 subtests examining

verbal recall, recognition, orientation, remembering a route and

three measures of prospective memory, the ability to remember

to do things. The BADS contains six subtests covering cognitive

estimation, rule shifting, planning, problem-solving and

decision-making under multiple task demands. The cognitively

preserved group scored above the fifth percentile for normal

adults on both tests (screening score of 58 on the RBMT and

profile score of 512 on the BADS). The cognitively impaired

group were required to score below the first percentile on either

the RBMT (screening score of 57) or the BADS (profile score

of 58).

The control group consisted of 39 healthy individuals

recruited from the community. They met the same exclusion

criteria and were selected to be matched to both the groups with

schizophrenia in terms of age, gender and premorbid IQ. Controls

were recruited from non-medical staff working in the hospital,

their relatives and acquaintances, plus independent sources in

the community. They were questioned and excluded if they

reported a history of mental illness and/or treatment with

psychotropic medication.

All participants were right-handed. They gave written

informed consent and the study was approved by the local

research ethics committee.

Procedure

All participants underwent structural and functional MRI (fMRI)

scanning using the same 1.5 Tesla GE Signa scanner (General

Electric Medical Systems, Milwaukee, USA).

Structural imaging

High-resolution structural T1 MRI data were acquired with the

following acquisition parameters: matrix size 5126512; 180

contiguous axial slices; voxel resolution 0.4760.4761mm3; echo

time (TE) = 3.93ms, repetition time (TR) = 2000ms and inversion

time (TI) = 710ms; flip angle 158.

Calculation of the total volume of brain tissues (normalised

for participant’s head size) was performed with SIENAX, part

of FSL (FMRIB Software Library, Oxford; www.fmrib.ox.ac.uk/

fsl/).31,32 This tool additionally generates separate measures of grey

and white matter volume. We compared lateral ventricle volume

(also normalised for participant’s head size) between groups using

FreeSurfer (http://surfer.nmr.mgh.harvard. edu/fswiki), for which

interrater reliability with manual segmentation has been shown.33

Structural data were further analysed with FSL-VBM, an

optimised voxel-based morphometry style analysis34,35 carried

out with FSL tools, which yields a measure of differences in local

grey matter volume. First, structural images were brain-extracted.

Next, tissue-type segmentation was carried out. The resulting

grey matter partial volume images were then aligned to Montreal

Neurologic Institute (MNI)152 standard space, followed by non-

linear registration. The resulting images were averaged to create

a study-specific template, to which the native grey matter images

were then non-linearly re-registered. The registered partial volume

images were then modulated by dividing by the Jacobian of the

warp field. The modulated segmentated images were then

smoothed with an isotropic Gaussian kernel with a sigma of

4mm (for technical details see www.fmrib.ox.ac.uk/fsl/fslvbm/).

Group comparisons were carried out with permutation-based

non-parametric tests. These were made with the randomise

function implemented in FSL, using the recently developed

threshold-free cluster-enhancement method with 10000 iterations,

for proper statistical inference of spatially distributed patterns

(corrected for multiple comparisons).

We also carried out a VBM analysis of white matter volume.

Since the VBM analysis in FSL has only been validated for grey

matter, we used VBM5 (http://dbm.neuro.uni-jena.de/vbm/

vbm5-for-spm5/), performed with SPM5 tools for this analysis.

The following standard pre-processing steps were carried out:

tissue-type segmentation; normalisation (warping) to standard

space of the obtained white matter images; and modulation.

The resulting images were then smoothed with an isotropic

Gaussian kernel with a sigma of 4mm. Statistical analyses were

carried out using the general linear model (GLM) with correction
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for multiple comparisons using the theory of Gaussian random

fields.

fMRI

The paradigm used has been described by Pomarol-Clotet et al.36

Scanning was carried out while participants performed a

sequential-letter version of the n-back task.37 Two levels of

memory load (1-back and 2-back) were presented in a blocked

design manner. Each block consisted of 24 letters that were

shown every 2 s (1 s on, 1 s off) and all blocks contained 5

repetitions (1-back and 2-back depending on the block) located

randomly within block. Participants had to indicate repetitions

by pressing a button. Four 1-back and four 2-back blocks were

presented in an interleaved way, and between these a baseline

stimulus (an asterisk flashing with the same frequency as the

letters) was presented for 16 s. In order to identify which task

had to be performed, characters were shown in green in 1-back

blocks and in red in the 2-back blocks. All participants first went

through a training session outside the scanner.

Performance was measured using the signal detection theory

index of sensitivity (d’).38 Any participants who had negative d’

values in either or both of the 1-back and 2-back versions of the

task, which suggests that they were not performing it, were

excluded from the study.

In each individual scanning session 266 volumes were

acquired. A gradient echo-planar imaging (EPI) sequence

depicting the blood oxygen level-dependent (BOLD) contrast

was used. Each volume contained 16 axial planes acquired with

the following parameters: TR= 2000ms, TE= 20ms, flip angle

708, section thickness 7mm, section skip 0.7mm, in-plane

resolution 363mm2. The first ten volumes were discarded to

avoid T1 saturation effects.

Functional MRI analyses were performed with the FEAT

module included in FSL software.32 At a first level, images were

corrected for movement and coregistered to a common stereotaxic

space (MNI template), and spatially filtered with a Gaussian filter

(smoothing of full width at half maximum (FWHM) 5.0mm). To

minimise unwanted movement-related effects, individuals with an

estimated maximum absolute movement over 3.0mm, or an

average absolute movement higher than 0.3mm were discarded

from the study. Finally, group comparisons were performed using

the same FEAT module, by means of mixed-effects GLM models.

A z-threshold of 2.3 (the default in FSL) was used to generate the

initial set of clusters. To properly account for the spatially

distributed patterns, FEAT uses the Gaussian random field theory

when performing statistical tests.

Data analysis

The main focus in the structural and functional brain analyses was

on two specific comparisons. First, we contrasted the cognitively

preserved group with the control group. This was in order to

determine changes in brain structure and function attributable

to schizophrenia, without the complicating factor of cognitive

impairment. Second, in order to assess the possible contribution

of cognitive impairment itself, we contrasted the cognitively

preserved and cognitively impaired groups. All statistical tests in

the VBM and fMRI analyses were performed with a statistical

threshold of P<0.05, corrected for multiple comparisons.

Results

Sample characteristics

There were no differences between the three groups in age, gender

and TAP-estimated premorbid IQ (Table 1). The two groups with

schizophrenia did not differ in overall severity of illness as

measured by the Clinical Global Impression (CGI);40 however,

the cognitively impaired group had significantly higher total

symptom scores on the Positive and Negative Syndrome Scale

(PANSS).41 They also had a significantly longer duration of illness

than the cognitively preserved group and showed trend level

higher mean dosages of antipsychotic drugs.

As expected, the two groups with schizophrenia differed

significantly in their performance on the BADS and RBMT. The

distributions of their scores are shown in Fig. 1. The cognitively

impaired group also had lower scores on current IQ than the
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Table 1 Demographic, neurocognitive and psychopathological characteristics of the participants with schizophrenia and controls

Participants with schizophrenia

(n=49) Group statistics

Control group

Cognitively

preserved

Cognitively

impaired
I5C I5P

(n=39) group (n=23) group (n=26) t P t P F w2 t U P

Age, years: mean (s.d.) 40.10 (11.58) 40.10 (10.22) 42.38 (8.23) 0.45 0.64

Gender, male/female: n 30/9 17/6 20/6 0.85 0.96

TAP correct words, mean (s.d.) 23.00 (5.29) 23.68 (4.34) 21.00 (5.65) 1.83 0.17

IQ (WAIS-III), mean (s.d.)

Full-scale IQ 103.49 (13.13) 100.43 (13.04) 92.73 (13.43) 3.21 0.002 2.03 0.05 5.26 0.01

Verbal IQ 104.90 (16.73) 104.00 (17.65) 96.85 (15.93) 1.97 0.15

Performance IQ 100.08 (17.59) 94.00 (14.61) 84.54 (16.56) 3.57 0.001 2.11 0.04 6.87 0.002

BADS score, mean (s.d.) 16.04 (2.40) 10.69 (4.33) 5.43 50.001

RBMT screening score, mean (s.d.) 9.48 (1.44) 5.17 (1.63) 9.58 50.001

Years of illness, mean (s.d.) 18.28 (10.02) 23.76 (8.29) 72.09 0.04

PANSS total score, mean (s.d.) 66.57 (17.11) 76.15 (15.03) 72.09 0.04

CGI score, mean (s.d.) 4.13 (1.36) 4.58 (0.90) 232.00 0.16

Antipsychotic dosage

(chlorpromazine equivalent, mg),

mean (s.d.) 663.41 (550.94) 985.34 (608.59) 71.93 0.06

I5C, cognitively impaired group5control group; I5P, cognitively impaired group5cognitively preserved group; TAP, Word Accentuation Test; WAIS-III, Wechsler Adult Intelligence
Scale (3rd edn);39 BADS, Behavioural Assessment of the Dysexecutive Syndrome; RBMT, Rivermead Behavioural Memory Test; PANSS, Positive and Negative Syndrome Scale; CGI,
Clinical Global Impression.
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cognitively preserved group, but this only reached significance for

performance IQ.

Brain and lateral ventricular volume measures

All participants were included in the analysis except in the

comparison of lateral ventricles, where one control had to be

excluded for technical reasons. Comparing all participants with

schizophrenia with the controls, they showed reduced whole brain

volume (1526.75 cm3 (s.d. = 47.69) v. 1485.91 cm3 (s.d. = 53.36),

t= 3.74, P50.001, effect size (ES) = 0.80), reduced grey matter

volume (819.46 cm3 (s.d. = 35.39) v. 785.75 cm3 (s.d. = 39.09),

t= 4.19, P50.001, ES = 0.89) and lateral ventricular enlargement

(12.58 cm3 (s.d. = 7.24) v. 16.74 cm3 (s.d. = 10.47), t=72.20,

P= 0.03, ES =70.45). However, there was no difference in white

matter volume between participants with schizophrenia and

controls (707.29 cm3 (s.d. = 25.62) v. 700.17 cm3 (s.d. = 24.71),

t=1.32, P= 0.19, ES = 0.28). As shown in Table 2, when the

controls were compared with the cognitively preserved group

the differences in whole brain and grey matter volume differences

remained evident (whole brain: t=2.62, P=0.01, ES = 0.68; grey

matter: t=2.83, P= 0.006, ES = 0.73), although that for lateral

ventricular volume no longer reached significance (t=71.25,

P= 0.22, ES =70.35). However, the differences between the

cognitively preserved and cognitively impaired groups were small

and non-significant on all these measures (whole brain: t=0.36,

P= 0.72, ES = 0.10; grey matter: t= 0.62, P=0.53, ES = 0.18; lateral

ventricular volume: t=70.92, P= 0.36, ES =70.14).

VBM

The same participants took part in this analysis, i.e. all those in the

cognitively preserved group (n=23) and cognitively impaired

group (n= 26) and the 39 controls.

Controls v. cognitively preserved group

The cognitively preserved group showed significantly smaller grey

matter volume than the controls in one cluster. This was situated

anteriorly and medially, extending from the orbital and medial

prefrontal cortex to the anterior cingulate gyrus (2190 voxels,

P= 0.04; peak in Brodmann Area (BA) 10, MNI (712, 44, 78),

z-score = 4.70). This is shown in Fig. 2 (the appearance of separate

clusters is artefactual, due to the 3D rendering). There were no

regions where the cognitively preserved group showed

significantly greater volume than the controls.

No areas of significant white matter volume difference were

found between the controls and the cognitively preserved group.

Cognitively preserved group v. cognitively impaired group

There were no areas of significant grey or white matter volume

difference between these two groups.

fMRI

Some participants could not tolerate the fMRI procedure and in

others the images were not usable because of excessive movement.

Therefore, 19 participants who were cognitively impaired, 18 who

were cognitively preserved and 34 controls took part in this

analysis. As shown in Table 3, the groups remained matched for

age, gender and TAP score. Significant differences between the

two groups with schizophrenia remained evident on the BADS

and the RBMT. These two groups did not differ in CGI or PANSS

score, or in antipsychotic dosage. There were no significant

differences between the participants with schizophrenia who took

part in this part of the study and those who did not in terms of age

(41.07 v. 42.05), gender (29/8 v. 8/4) or TAP score (22.03 v. 22.83).

Behavioural performance

The cognitively preserved group were significantly impaired

compared with the controls on the 1-back version of the task

(mean d’ 3.77 (s.d. = 0.91) v. 4.40 (s.d. = 0.65), t= 2.90, P= 0.01)

and in the 2-back version (mean d’ 2.67 (s.d. = 0.87) v. 3.27

(s.d. = 0.96), t=2.22, P=0.03). The cognitively impaired group

were marginally significantly impaired compared with the

cognitively preserved group on the 1-back task (mean d’ 3.07

(s.d. = 1.16) v. 3.77 (s.d. = 0.91), t= 2.03, P= 0.05) and

significantly impaired on the 2-back task (mean d’ 1.89

(s.d. = 0.68) v. 2.67 (s.d. = 0.87), t=3.06, P=0.004).
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Fig 1 Scatter plots of the cognitively preserved and cognitively

impaired groups’ scores on the (a) Rivermead Behavioural

Memory Test (RBMT) and (b) the Behavioural Assessment of the

Dysexecutive Syndrome (BADS).
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Controls v. cognitively preserved group

No areas of significant difference in activation were seen in the

1-back v. baseline contrast or in the 2-back v. 1-back contrast. In

the 2-back v. baseline contrast the controls activated more than

the cognitively preserved group in the right cerebellum (1606

voxels, P= 8.2761075, MNI (12, –58, –24), z-score 4.48).

Additionally, in the 2-back v. baseline contrast, the cognitively

preserved group showed two clusters where they failed to de-activate

significantly relative to the control group. The larger of these

included parts of the medial and inferior orbital prefrontal cortex,

extending to the anterior cingulate cortex (3878 voxels,

P= 1.72610–9, peak activation in BA11, MNI (0, 26,–14), z-score

4.52). The smaller cluster was located in the right insula and in the

right superior temporal gyrus (629 voxels, P= 0.04, peak

activation in BA48, MNI (42, –8, –6), z-score 4.13).

This failure of de-activation was more evident in the 2-back v.

1-back contrast. Here, a large cluster was seen that included the

medial and inferior orbital prefrontal cortex, the left basal

ganglia and anterior regions of the left temporal cortex (5748

voxels, P= 8.66610–13, peak activation in BA38, MNI (740, 18,

734), z-score 4.49). Another cluster affected parts of the right

basal ganglia and anterior temporal cortex (2235 voxels,

P= 2.56610–6; peak activation in BA35, MNI (26, 2, –34), z-score

4.56) (Fig. 3).

Cognitively preserved group v. cognitively impaired group

There were no differences between the groups in the 1-back v.

baseline contrast. The 2-back v. baseline contrast revealed

significantly reduced activation in the cognitively impaired group

in an area that included the right dorsolateral prefrontal cortex,

the inferior lateral frontal lobe and the right insula (1749 voxels,

P= 2.94610–5, peak activation in right frontal inferior pars

triangularis, MNI (38, 28, 26), z-score 3.93). This area of reduced
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Table 2 Whole brain and lateral ventricular volume measures in the controls, cognitively preserved and cognitively impaired

groups with schizophrenia

Cognitively Cognitively

ANOVA

preserved group impaired group
P5C I5C I4C

Controls (n=39) (n=23) (n=26) t P t P t P F P

Whole brain 1526.75 (47.69) 1488.82 (65.92) 1483.35 (40.36) 2.62 0.01 3.82 <0.001 6.98 0.002

Grey matter 819.46 (35.39) 789.55 (47.52) 782.38 (30.36) 2.83 0.006 4.37 <0.001 8.94 50.001

White matter 707.29 (25.62) 699.27 (29.79) 700.96 (19.74) 0.89 0.41

Lateral ventriclesa 12.58 (7.24) 15.95 (12.49) 17.44 (8.49) 72.59 0.01 2.95 0.06

P5C, cognitively preserved group5control group; I5C, cognitively impaired group5control group; I4C, cognitively impaired group4control group.
a. Data in this analysis were corrected for intracranial volume; results were similar without correction. One control was excluded from the analysis.

Fig. 2 Brain regions showing significant grey matter volume reduction in the cognitively preserved group with schizophrenia compared

with healthy controls.

Fig. 3 Brain regions where the cognitively preserved group with schizophrenia showed significant failure to de-activate compared

with the controls in the 2-back v. 1-back contrast.
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activation was more pronounced in the 2-back v. 1-back contrast:

on the right, one cluster included the dorsolateral prefrontal

cortex extending to the precentral gyrus posteriorly and the

superior middle frontal cortex anteriorly (2494 voxels,

P= 1.19610–7, peak activation in BA42, MNI (12, 24, 46), z-score

3.88). A similar cluster on the left included the dorsolateral

prefrontal cortex and extended to the basal ganglia, the insula

and the precentral gyrus (1786 voxels, P= 9661076; peak

activation in BA6, MNI (730, 6, 24), z-score 4.27). Two more

clusters were located in regions of the right parietal and occipital

lobes (1962 voxels, P=2.0961076, peak activation in BA40, MNI

(38, 746, 50), z-score 4.25) and in roughly similar regions on the

left (1785 voxels, P=6.0261076, peak activation in BA7, MNI

(732, 764, 48), z-score 3.91). Two further small clusters were

found in both thalami (608 voxels, P= 0.02, peak activation in

the right thalamus, MNI (6, 78, 19), z-score 2.9) and in the left

inferior and middle occipital gyri (603 voxels, P= 0.03, peak

activation in BA19, MNI (752, 776, 72), z-score 4.04). The

findings are shown in Fig. 4.

There were no areas where the cognitively impaired group

activated more than the cognitively preserved group.

Discussion

Structural imaging findings

As a group, the participants with schizophrenia in this study

showed typical structural imaging findings associated with the

disorder, namely reduced brain volume, reduced grey matter

volume and lateral ventricular enlargement. However, the

cognitively preserved and cognitively impaired groups did not

differ from each other on these measures. When VBM was used

to examine grey and white matter volume further, a cluster of grey

matter volume reduction was seen in the cognitively preserved

group in the medial and orbital prefrontal cortex, overlapping

with areas identified in recent meta-analyses.9,42 Once again, no

clusters of significant grey or white matter volume difference

emerged between the cognitively preserved and cognitively

impaired groups.

Although counterintuitive, these findings are consistent with

the rest of the structural imaging literature, which has

documented only weak and conflicting evidence of an association

between cognitive impairment and lateral ventricular size, whole

brain volume and regional cortical volumes in schizophrenia.6,7
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Fig. 4 Brain regions where the cognitively preserved group activated significantly more than the cognitively impaired group in the 2-back

v. 1-back contrast.

Table 3 Mean values, standard deviations and statistical results of demographic, neurocognitive and psychopathological

characteristics of the functional magnetic resonance imaging sample

Participants with schizophrenia

(n=37) Group statistics

Control group

Cognitively

preserved

Cognitively

impaired
I5C I5P

(n=34) group (n=18) group (n=19) t P t P F w2 t U P

Age, years: mean (s.d.) 40.90 (11.80) 40.49 (10.58) 41.62 (7.94) 0.06 0.95

Gender, male/female: n 26/8 14/4 15/4 0.04 0.98

TAP correct words, mean (s.d.) 23.00 (5.42) 23.41 (4.02) 20.79 (5.08) 1.55 0.25

IQ (WAIS-III), mean (s.d.)

Full-scale IQ 104.24 (12.47) 100.44 (13.99) 94.11 (9.37) 3.08 0.003 4.24 0.02

Verbal IQ 105.44 (16.06) 103.06 (19.07) 96.58 (10.86) 1.95 0.15

Performance IQ 100.85 (18.19) 94.67 (15.68) 86.74 (17.08) 2.77 0.01 4.09 0.02

BADS score, mean (s.d.) 16.06 (2.69) 11.58 (4.26) 3.80 0.001

RBMT screening score, mean (s.d.) 9.72 (1.36) 5.56 (1.46) 8.84 0.001

Years of illness, mean (s.d.) 18.44 (10.86) 22.71 (7.71) 71.39 0.18

PANSS total score, mean (s.d.) 67.89 (18.33) 76.79 (17.04) 71.53 0.14

CGI score, mean (s.d.) 4.28 (1.41) 4.58 (1.02) 146.50 0.44

Antipsychotic dosage

(chlorpromazine equivalent, mg),

mean (s.d.) 688.22 (603.25) 913.50 (507.21) 71.23 0.23

I5C, cognitively impaired group5control group; I5P, cognitively impaired group5cognitively preserved group; TAP, Word Accentuation Test; WAIS-III, Wechsler Adult Intelligence
Scale (3rd edn); BADS, Behavioural Assessment of the Dysexecutive Syndrome; RBMT, Rivermead Behavioural Memory Test; PANSS, Positive and Negative Syndrome Scale; CGI,
Clinical Global Impression.
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The recent study of Wexler et al,25 the only other study besides

ours to explicitly compare groups of cognitively preserved and

impaired individuals with schizophrenia, also failed to find

significant differences in lateral ventricular volume and grey

matter volume between them. Wexler et al25 did find that

cognitively impaired individuals showed significantly smaller

white matter volume in two out of eight regions examined

(sensorimotor and parietal-occipital cortex). However, these

differences may not have been robust since there was no control

for multiple comparisons.

Our structural imaging findings are also in keeping with a

well-established neuropathological finding in schizophrenia. This

is that, although severe cognitive impairment is prevalent

among elderly people who are institutionalised – more than

70% have Mini-Mental State Examination (MMSE) scores in the

demented range43 – post-mortem studies have revealed no more

Alzheimer-type or other brain pathology in such individuals than

in age-matched controls.3

Nevertheless, our study does not completely exclude the

possibility of small structural differences related to cognitive

function. This is because in the conventional MRI analysis there

were differences in whole brain volume and grey matter volume

between the cognitively impaired and cognitively preserved groups

of 0.4% and 0.9% respectively. Although these differences were

small and non-significant, the reductions of brain volume in

schizophrenia as a whole are also small, being of the order of

2% (whole brain) and 4% (grey matter) according to the meta-

analysis of Wright et al.44 It could therefore be argued that our

study was simply underpowered to detect differences between

the two groups with schizophrenia. However, it should be noted

that two groups of 769 participants would be required to

make the differences we found in whole brain volume between

cognitively impaired and cognitive preserved groups significant,

and 239 for each group would be needed to do so for the

differences in grey matter volume.

A final objection to our finding of no relationship between

cognitive impairment and brain volume reduction is conceptual.

If, as is widely accepted,45 structural brain abnormality in

schizophrenia is neurodevelopmental in origin, then it might

not be expected to show the same relationship with cognitive

impairment as brain changes that are the result of brain injury

or degenerative disease. When the evidence that additional brain

volume reductions also take place after illness onset46 is also taken

into account, plus the fact that cognitive impairment itself follows

a complex pre-, peri- and postmorbid course,5 there is scope for a

further argument, that the relationship between brain structure

and cognitive impairment in schizophrenia cannot be adequately

assessed in a simple cross-sectional study such as ours.

Functional imaging findings

In contrast to the brain structural findings, we found clear

evidence of differences between the cognitively impaired and

cognitively preserved groups on functional imaging. Specifically,

in the 2-back v. baseline contrast the cognitively impaired group

showed reduced activation compared with the cognitively

preserved group in the right dorsolateral prefrontal cortex and

other frontal areas, changes which became bilateral and extended

more widely in the 2-back v. 1-back contrast. In fact, most of the

task-related hypoactivation we found appeared to be attributable to

cognitive impairment – in the comparison between the cognitively

preserved group and the controls the cognitively preserved group

showed reduced activation only in the cerebellum.

This result deviates somewhat from the rest of the literature

which, as noted in the introduction, has not found evidence of

a robust correlation between hypofrontality and task

performance.15,16 One possible reason for our stronger findings

here is that, rather than using correlational methods, we

prospectively compared groups that differed in cognitive function

but which were matched for other factors that might affect task

performance, especially premorbid intellectual function. The fact

that the two groups were also well-separated in terms of memory

and/or executive performance (i.e. one was above the fifth

percentile and the other was below the first percentile) would also

have tended to increase functional imaging differences between

them related to this factor.

It does not seem likely that the differences we found between

the cognitively impaired and cognitively preserved groups were

the result of the former simply not performing the task, since

we excluded a priori any participants who showed negative d’

scores, an indicator of failure to perform the task. At the same

time, the difference in level of n-back performance between the

two groups with schizophrenia has the potential to complicate

the interpretation of any functional imaging differences found

between them. This possibility could not be investigated in our

study because the groups were preselected on the basis that they

differed in cognitive function and the n-back task is itself a

cognitive task. Therefore, entering n-back performance as a

covariate in the analysis would have violated the principle that

the covariate should not be affected by the group factor.

In fact, this issue is part of a wider debate about what drives

task-related hypofrontality in schizophrenia: are both poor task

performance and reduced brain activation manifestations of an

underlying intrinsic cortical dysfunction? Or does the reduced

activation merely index the fact that cognitively impaired

individuals perform the task more poorly and so activate their

frontal lobes to a correspondingly lesser extent (see Fletcher et

al14)? This debate has now to some extent been superseded by

the finding that schizophrenia is characterised not only by

hypofrontality, but also by hyperfrontality during task

performance.17,18 Nevertheless, cognitive impairment continues

to play a central role in explanations of this latter functional

imaging abnormality. Thus, according to Weinberger et al,19,20

people with schizophrenia have reduced efficiency of prefrontal

cortical processing. This causes them to show more activation

than healthy individuals – i.e. hyperfrontality – at low task

demands, as they ‘work harder to keep up’. As task demands

increase, they then reach their limit of performance sooner than

healthy participants, and thereafter show a fall-off of activation,

or hypofrontality. We did not find any evidence of

hyperfrontality in our study, suggesting that this abnormality

may not be related to cognitive function in the way predicted by

Weinberger and colleagues,19,21 a conclusion also reached by

Karlsgodt et al.23 However, it should be noted that we did not

fully examine this question, since the theory predicts that

hyperfrontality should be seen at low task difficulty in the

comparison between controls and individuals who are cognitively

impaired, and we did not compare these two groups directly.

In addition to reduced activation related to cognitive function,

we also found failure of de-activation. This affected the medial

frontal cortex among other areas and, since it was only seen in

the comparison between the controls and the cognitively

preserved group, it was unrelated to the presence of cognitive

impairment. Failure of task-related de-activation in the medial

frontal cortex in schizophrenia has now been documented several

times,36,47,48 where it has been interpreted as evidence of

dysfunction in the default mode network – one of the two

prominent midline nodes of which is located in the medial frontal

cortex. The default mode network is currently a focus of

considerable research interest in schizophrenia, with studies
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finding evidence of both changes in task-related de-activation and

abnormal connectivity at rest (for a review see Broyd et al49).

Among other things, it has been suggested that failure of

de-activation in the network might account for the cognitive

impairment associated with the schizophrenia.36,47 Our findings

suggest that this is not the case.

Also interesting in this respect was the overlap between the

structural and functional abnormalities that was evident in our

study: in the VBM comparison between the controls and the

cognitively preserved group, volume reductions were clustered

in a medial frontal cortex region where failure of de-activation

was also seen. We have previously examined this overlap in more

detail,50 and two other studies have had comparable findings.

Camchong et al51 found functional connectivity abnormality in

the anterior node of the default mode network, plus white matter

changes in subjacent regions on diffusion tensor imaging, and

Salgado-Pineda et al48 found failure of both de-activation and

volume reductions in regions extending along the length of the

cingulate gyrus.

Conclusions and limitations

This study provides evidence that structural brain abnormality in

schizophrenia is a function of having the disorder, not the

cognitive impairment that goes with it. In contrast, a substantial

part of the functional imaging abnormality associated with

schizophrenia appears to reflect cognitive impairment.

Limitations of the study include the relatively small sizes of the

groups with and without cognitive impairment. Also, since the

cognitively preserved group was defined in terms of memory

and executive function above fifth percentile cut-offs, it was not

completely free of cognitive impairment; some fell into the poor

normal memory range on the RBMT and the low average/

borderline categories in the BADS. As discussed above, the

inferences that can be drawn from positive findings in an fMRI

comparison between cognitively preserved and cognitively

impaired individuals are inevitably limited by the differences in

performance between them on the task used. In general terms,

more detailed knowledge about the trajectories of structural and

functional brain change in schizophrenia might be needed before

firm conclusions can be drawn about their relationship with

cognitive impairment in the disorder.
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Annex 2 

 

 

Examination of the cognitive profiles of groups of schizophrenic patients 

designated as ‘preserved’ and ‘impaired’ on the basis of scoring on two 

batteries of memory and executive function (the RBMT and the BADS). 
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Study objective 

The study described in this annex was undertaken to test whether the 

method of separation of groups of cognitively preserved and impaired 

schizophrenic patients used in the study described in the main part of this thesis 

resulted in an efficient separation on a range of other tests of cognitive 

execution, including tasks not assessing memory or executive functions. A 

secondary aim was to determine the pattern of separation. For example, it might 

be anticipated that the cognitively impaired group would show an especially 

severe impairment in some areas of function, such as in attention, executive 

function and declarative memory, whereas their performance on measures of 

language and visual/visuospatial function would be less severely affected. 

Additionally, given the findings described in section 16 concerning ‘cognitively 

near-normal’ patients with schizophrenia (Palmer et al., 1997; Seaton et al., 

1999; Kremen et al., 2000; Weickert et al., 2000; Hill et al., 2002; Horan and 

Goldstein, 2003; Keefe et al., 2005; Wilk et al., 2005), it might be predicted that 

the cognitively preserved group would still show some degree of compromise 

compared to controls in one or more of the domains of attention (Seaton et al., 

1999; Weickert et al., 2000), executive function (Weickert et al., 2000; Horan 

and Goldstein, 2003) or declarative memory (Hill et al., 2002). 

Method 

Participants 

The patient sample consisted of 25 cognitively preserved participants 

with schizophrenia and 29 cognitively impaired participants with schizophrenia, 

defined according to the same criteria as in the main study (see section 31 for a 
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more detailed description). As in the main study, the two patient samples were 

recruited from long stay wards (n=24) and acute and subacute units (n=22), 

although a minority were out-patients/day hospital attenders (n=8). All were 

taking antipsychotic medication (atypical n=29, typical n=5, both kinds n=20). 

The control group consisted of 22 healthy individuals recruited from the 

community.  

Some of the patients in this study also participated in the imaging study 

(cognitively preserved patients 17/25, cognitively impaired patients 18/29). Most 

of the controls in this study (20/22) also took part in the imaging study. 

Assessment of cognitive processes 

The tests used are described in detail below, and they are summarized in 

Table I. 

Executive functioning 

This was evaluated using three working memory tests from the WMS-III 

(Wechsler, 2000): Letter-Number Sequencing, Digits Backward and Spatial 

Span Backward. We also used the Modified Six Elements Test, one of the 

subtests of BADS (Wilson et al., 1996), since this is one of the few tests 

currently available which assesses multitasking and priority setting. 

Memory 

Verbal and visual short-term memory were respectively assessed using Digits 

Forward and Spatial Span Forward, both from the WMS-III. Long-term memory 

was assessed by means of two other tests form the WMS-III: Logical Memory 

Immediate for verbal recall, and Faces Immediate for visual recognition. 
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Immediate recall of the Rey-Osterrieth Complex Figure Recall (Rey, 1997) was 

also used as a measure of visual recall. 

Language 

Two tests were included here. One was the Spanish Edition of the 

Boston Naming Test (García-Albea and Sánchez Bernardos, 1986). The other 

was the Spanish translation of the 39-item version of the Token Test (Spreen 

and Strauss, 1998), a measure of comprehension of grammar. 

Visual/visuospatial function 

For this, four subtests of the Visual Object and Space Perception Battery 

(VOSP) (Warrington and James, 1991) were used. This battery contains nine 

tests covering different aspects of visual object recognition and visuospatial 

skills. The four subtests were chosen on the basis that they covered a range of 

different aspects of functioning, and that the range of scores in normal subjects 

was relatively wide (i.e. there were no ceiling effects) (see Table I). In addition, 

copying of the Rey-Osterrieth Complex Figure was included. 

Data analysis  

Statistical analyses were carried out using the SPSS statistical software for 

Windows (version 15). Data were compared using appropriate tests (χ2, Mann-

Whitney’s U-tests, t-tests and ANOVA). In some cases variables were 

transformed (e.g. through a log transformation) if data did not follow a normal 

distribution (Howell, 1997). ESs for differences between the controls and the 

schizophrenia groups and between both schizophrenia groups were calculated 

in the cognitive study using Cohen’s d (Cohen, 1988). 
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Table I. Tests used for the different domains of cognition. 

Test Brief description 
Executive functions 

Letter-Number Sequencing (WMS-III) 
 

Verbal mental tracking: Requires ordering of an 
orally presented, increasingly long sequences of 
mixed letters and one digit-numbers. The subject 
has to give first the letters alphabetically and 
then the numbers in ascending order. 
 

Digits Backward (WMS-III) 
 

Verbal mental tracking: Requires reversing orally 
presented increasingly long series of numbers 
numbers. 
 

Spatial Span Backward (WMS-III)  

Visual mental tracking: The subject has to touch 
an increasingly longer series of cubes in the 
reverse order they are touched by the examiner. 

 

Modified Six Elements Task (BADS) 
 

Multitasking ability: The subject has to carry out 
parts, but not all, of six different activities 
according to a set of rules and with time 
constraints. 

Memory 

Digits Forward (WMS-III) 
 

Verbal short-term memory: Requires simple 
repetition of an increasingly long series of orally 
presented numbers. 

 

Spatial Span Forward (WMS-III) 
 

Non-verbal short-term memory: Requires 
touching a sequence of cubes in the same order 
as they are touched by the examiner. 

 

Logical Memory Immediate (WMS-III) 
 

Immediate verbal recall: The subject listens to 
two short stories and immediately afterwards 
has to reproduce as much of the information in it 
as possible 

 

Faces Immediate (WMS-III) 
 

Immediate visual recognition: Watching carefully 
at 24 different faces and immediately afterwards 
recognizing them among a series of 48 
consecutively presented faces. 

 

Rey Figure immediate recall 
 

Immediate visual recall: Drawing all the 
information remembered three minutes after 
having copied it. 
 

Language 

Boston Naming Test 
 

Verbal expression: Naming of 60 drawings of 
objects. 

 

Token Test 
 

Verbal comprehension: Doing a series of orders 
of increasing complexity using diverse tokens 
that vary in geometric shape, colour and size. 
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Visuospatial functions 
Number Location (VOSP) 

  
Spatial skills: Correctly identifying the number 
located in the equivalent place of the square 
than a point. 
 

Cube Analysis (VOSP) 
 

Spatial skills: Identifying the number of cubes 
drawn (identifying 3D out of 2D). 

 
Object Decision (VOSP) 

 
Object recognition: 20 different items in whose 
the aim is to identify the only silhouette out of 
four possibilities corresponding to an actual 
object. 
 

Silhouettes (VOSP) 
 

Object recognition: Naming the actual object 
corresponding to 20 silhouettes shown. 
 

Rey Figure Copy Visuospatial, visuoperceptive, and construction 
skills: Copying an abstract, complex drawing. 

Results 

Demographic and psychopathological characteristics of the 

sample 

The three subject groups were matched for age, sex and premorbid IQ 

as estimated using the TAP (see Table II). The two groups of patients with 

schizophrenia showed similar illness duration and similar overall severity of 

illness as measured using the CGI. They also showed comparable levels of 

positive and negative symptoms, but the cognitively impaired patients showed 

significant higher scores on disorganization than the cognitively preserved 

patients. The cognitively impaired patients were also taking significantly higher 

doses of antipsychotic medication than the cognitively preserved patients. 

As expected, the cognitively preserved patients showed higher scores 

than the cognitively impaired patients on the BADS (mean=10.07, SD=4.00, 

range 4-18 vs mean=15.84, SD=2.58, range 12-21) and the RBMT (mean=4.82, 

SD=1.74, range 1-10 vs mean=9.64, SD=1.29, range 8-12). 
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Table II. Mean values, standard deviations and statistical results of 

demographic, and psychopathological characteristics of the cognitive 

sample. 

Participants with schizophrenia (n=54)  Controls 
(n=22) 

Preserved (n=25) Impaired (n=29) 

Group statistics 

Age 42.94 (13.03) 39.60 (10.11) 41.16 (8.36) F=0.600 
p=0.552 

Sex (M/F) 15/7 18/7 21/8 χ
2=0.125 

p=0.939 
TAP Estimated IQ1 103.45 (8.87) 103.10 (10.24) 99.16 (9.09) F=1.668 

p=0.196 
Years of illness - 19.24 (9.53) 22.96 (9.70) t=-1.417 

p=0.162 
PANSS total score - 69.64 (14.26) 77.03 (15.24) t=-1.832 

p=0.073 
Positive Syndrome 

(PANSS) 
- 14.80 (5.02) 16.45 (5.49) t=-1.145 

p=0.258 
Negative Syndrome 

(PANSS) 
- 15.52 (5.69) 18.07 (4.19) t=-1.890 

p=0.064 
Disorganized Syndrome 

(PANSS) 
- 8.00 (2.99) 10.69 (3.24) t=-3.152 

p=0.003 
CGI score - 4.17 (1.01) 4.69 (0.93) M-W U=250.00 

p=0.65 
Antipsychotic dosage 
(CPZ equivalent mg) 

- 524.28 (418.14) 690.62 (334.45) t=-2.480 

p=0.012
2 

1 One preserved participant had missing data for this analysis. 
2 After log10 transformation. 

 

Neuropsychological test scores 

General intellectual function 

The findings are shown in Table III. On WAIS-III Full-Scale IQ, the 

cognitively preserved patients were numerically, but not significantly lower than 

the controls. In contrast, the cognitively impaired patients showed a lower mean 

IQ than both the controls and the cognitively preserved patients, significantly in 

the former and at trend level in the latter. Differences were in the same direction 

for Verbal IQ, but did not reach significance in any comparison, whereas the 



 The neural correlates of cognitive impairment in schizophrenia 171 

cognitively impaired patients’ scores were significantly lower than the other two 

groups on Performance IQ. 

 

Table III. Mean values, standard deviations and statistical results of the IQ 

measures of the cognitive subsamples. 

 

Participants with schizophrenia (n=54)  Controls (n=22) 

Preserved (n=25) Impaired (n=29) 

Group statistics 

Full-Scale IQ (WAIS-III) 101.23 (12.62) 95.28 (16.83) 
 

87.45 (14.72) 
 

F=5.482 
p=0.006; 

I�P (t=1.824; 
p=0.074) 

I<C (t=3.517; 
p=0.001) 

Verbal IQ (WAIS-III) 104.91 (14.48) 101.80 (18.50) 
 

95.66 (15.91) 
 

F=2.128 
p=0.126 

Performance IQ (WAIS-III) 96.82 (16.53) 89.36 (14.97) 
 

80.90(13.76) 
 

F=7.148 
p=0.001; 

I<P (t=2.164; 
p=0.035) 

I<C (t=3.752; 
p<0.001) 
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Executive functioning 

As Table IV shows, the cognitively preserved schizophrenic patients 

showed no significant differences compared to the controls on any of the four 

executive tests used. On the other hand, the cognitively impaired patients 

performed significantly more poorly than both the cognitively preserved patients 

and the healthy participants on all four executive tasks. However, the difference 

between the cognitively impaired patients and the healthy controls in Digits 

Backward did not reach statistical significance. 

 

Table IV. Mean values, standard deviations and statistical results in the 

executive tests of the cognitive sample. 

 

Participants with schizophrenia (n=54)  Controls (n=22) 

Preserved (n=25) Impaired (n=29) 

Group statistics 

Letter-Number Sequencing 
(WMS-III) 

9.73 (3.21) 9.04 (3.40) 
 

5.76 (2.81) 
 

F=12.174 
p<0.001; 

I<P (t=3.884; 
p<0.001) 

I<C (t=4.697; 
p<0.001) 

Digits Backward (WMS-III) 5.55 (2.32) 5.72 (2.54) 
 

4.52 (1.46) 
 

F=2.550 
p=0.085; 

I<P (t=2.089; 
p=0.044) 

I�C (t=1.822; 
p=0.078) 

Spatial Span Backward 
(WMS-III) 

5.32 (1.13) 4.76 (1.23) 
 

3.79 (1.35) 
 

K-W χ2=19.703; 
p<0.001 

I<P (M-W 
U=186.00; p=0.002) 

I<C (M-W 
U=107.50; p<0.001) 

6 Elements Task (BADS) 3.41 (0.91) 3.20 (1.08) 
 

1.93 (1.36) 
 

K-W χ2=18.768; 
p<0.001 

I<P (M-W 
U=174.00; p=0.001) 

I<C (M-W 
U=126.00; p<0.001) 
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Memory 

Table V presents the results for the five memory tasks. The cognitively 

preserved patients with schizophrenia showed no significant difference when 

compared to controls on most tests, but they were significantly impaired on one 

task, Logical Memory. The cognitively impaired group did not differ from both 

the cognitively preserved group in the two short-term memory tasks (Digits 

Forward and Spatial Span Forward). However, their performance was 

significantly lower than the controls on Spatial Span Forward. The cognitively 

impaired group showed a significantly lower score than both the controls and 

the cognitively preserved patients on all three long-term memory tasks. 

   
Table V. Mean values, standard deviations and statistical results in the 

memory tests of the cognitive sample. 

Participants with schizophrenia (n=54)  Controls (n=22) 

Preserved (n=25) Impaired (n=29) 

Group statistics 

Digits Forward 
(WMS-III) 

8.59 (2.38) 7.96 (2.30) 
 

7.38 (1.76) 
 

K-W χ2=3.649; 
p=0.162 

Spatial Span 
Forward (WMS-III) 

5.55 (0.74) 5.16 (1.18) 
 

4.72 (1.10) 
 

F=3.970; 
p=0.023 

I<C ( t=3.023; 
p=0.004) 

Logical Memory 
Immediate Recall 

(WMS-III) 

37.86 (9.45) 29.72 (15.14) 
 

 

15.21 (6.96) 
 

F=28.410 
p<0.001; 

P<C (t=2.239; 
p=0.031) 

I<P (t=4.408; 
p<0.001) 

I<C (t=9.865; 
p<0.001) 

Rey Figure 
Immediate Recall 

18.75 (7.41) 16.98 (6.66) 
 

9.40 (5.35) 
 

F=15.782 
p<0.001; 

I<P (t=4.639; 
p<0.001) 

I<C (t=5.237; 
p<0.001) 

Faces Immediate 
Recognition 
(WMS-III) 

35.50 (4.27) 35.24 (4.08) 
 

31.90 (5.22) 
 

F=5.107 
p=0.008; 

I<P (t=2.592; 
p=0.012) 

I<C (t=2.635; 
p=0.011) 
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Language 

 As shown in Table VI, the cognitively preserved patients showed 

numerically, but not significantly lower scores than the controls on both the 

Token Test and the Boston Naming Test. In contrast, the cognitively impaired 

patients had significantly lower scores on both tasks when compared to the 

controls. They also had significantly lower scores than the cognitively preserved 

patients on the Token Test, and at trend level (p=0.08) on the Boston Naming 

Test. 

 

Table VI. Mean values, standard deviations and statistical results in the 

language tests of the cognitive sample. 

1 After y=e(x/5) transformation. 

  

Visual/visuospatial function 

Table VII shows the results of the five tests assessing visual object and 

visuospatial skills. The cognitively preserved group did not show statistically 

significant differences from the control group in any of the tests. In contrast, the 

Participants with schizophrenia (n=54)  Controls (n=22) 

Preserved (n=25) Impaired (n=29) 

Group statistics 

Token Test 160.45 (2.18) 159.08 (3.52) 
 

150.76 (11.40) 
 

F=40.871 
p<0.001

1; 
I<P (t=5.475; 

p=0.001) 
I<C (t=7.040; 

p<0.001) 
Boston Naming Test 53.73 (3.10) 52.24 (5.08) 

 
49.00 (7.58) 

 
F=4.564 
p=0.014; 

I�P (t=1.814; 
p=0.075) 

I<C (t=3.040; 
p=0.004) 
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cognitively impaired patients showed significantly lower performance compared 

with both the controls and the cognitively preserved group on all tests. 

 

Table VII. Mean values, standard deviations and statistical results in the 

visual spatial, perceptive and constructive tests of the cognitive sample. 

 1 After y=e
(x/10) transformation. 

 

Participants with schizophrenia (n=54)  Controls (n=22) 

Preserved (n=25) Impaired (n=29) 

Group statistics 

Number Location (VOSP) 9.32 (1.04) 9.00 (1.16) 
 

7.59 (2.50) 
 

K-W χ2=12.254; 
p=0.001 

I<P (M-W’s 
U=220.50; 
p=0.011) 

I<C (M-W’s 
U=161.00; 
p=0.002) 

Cube Analysis (VOSP) 9.36 (0.85) 9.00 (1.50) 
 

7.17 (2.54) 
 

K-W χ2=15. 845; 
p<0.001 

I<P (M-W’s 
U=189.50; 
p=0.002) 

I<C (M-W’s 
U=139.00; 
p<0.001) 

Object Decision (VOSP) 17.09 (2.37) 16.92 (1.94) 
 

15.59 (2.43) 
 

F=3.544 
p=0.034 

I<P ( t=2.215; 
p=0.031) 

I<C ( t=2.207; 
p=0.032) 

Silhouettes (VOSP) 20.59 (4.31) 20.28 (3.67) 
 

17.24 (4.90) 
 

F=4.826 
p=0.011; 

I<P (t=2.546; 
p=0.014) 

I<C (t=2.546; 
p=0.014) 

Rey Figure Copy 33.25 (1.93) 33.38 (2.45) 
 

28.33 (7.22) 
 

F=8.787 

p<0.001
1; 

I<P (t=3.596; 
p=0.001) 

I<C (t=3.345; 
p<0.002) 
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Comparison using effect sizes 

Figure I summarises the ESs for the differences between the controls 

and a) the cognitively preserved patients and b) the cognitively impaired 

patients. It can be seen that in each case the difference is greater in the 

cognitively impaired patients. For the cognitively preserved patients 12/16 of the 

ESs were in the small range (0.1 to 0.3), and the rest were in the medium range 

(0.4 to 0.7). In contrast, the cognitively impaired group showed ESs which were 

in the medium range (5/16) or large range (�0.8) (11/16). 

 

Figure I. Effect size for the cognitive impairment in each function of both 

schizophrenia groups when compared to the healthy controls.  

-0,5 0 0,5 1 1,5 2 2,5 3
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Number Location
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ReyFigImm

Log Mem Imm

SpatSpanFrwrd

Digits Forward

6 elements Task

SpatSpanBack

Digits Backward

LetNoSeq

I

P

 

I: Cognitively Impaired Participants with Schizophrenia; P: Cognitively Preserved Participants 
with Schizophrenia; LetNoSeq: Letter-Number Sequencing; SpatSpanBack: Spatial Span 
Backward; SpatSpanFrwrd: Spatial Span Forward; Log Mem Imm: Logical Memory Immediate; 
ReyFigImm: Rey-Osterrieth Complex Figure Recall; FacesImmRecog: Faces Immediate 
Recognition; BNT: Boston Naming Test. 
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Conclusions 

This study examined the validity of separating patients with 

schizophrenia into cognitively preserved and cognitively impaired groups, based 

on their performance on batteries of tests assessing only memory and executive 

function respectively. The results show that this strategy resulted in a 

separation on most of a range of other cognitive tests covering executive 

function and memory, as expected, but also language and visual/visuospatial 

function. The cognitively preserved patients tended to score below the healthy 

controls but mostly not at statistically significant level. On the other hand, the 

cognitively impaired patients scored significantly lower than the cognitively 

impaired patients on almost all areas of cognitive function examined. An 

analysis of the ESs for impairment in the two patient groups (compared to the 

controls) confirmed uniformly larger ESs for impairment in the cognitively 

impaired patients.  

There were two exceptions to the pattern found. One of these concerned 

short-term memory. Verbal short-term memory, as measured by Digits Forward, 

was the only test on which the cognitively impaired group did not show a 

significant impairment compared to any of the two other groups. Here, both 

patient groups performed numerically but not significantly more poorly than the 

controls, and the cognitively impaired patients also performed numerically but 

not significantly worse than the cognitively preserved patients. The pattern was 

similar for non-verbal short-term memory (Spatial Span Forward), although here 

there was a single significant difference, in this case between the controls and 

the cognitively impaired patients. The findings here are consistent with the 

conclusions reached by McKenna et al. (2002) in a review of the literature on 
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memory impairment in schizophrenia. They found that the majority of around 12 

studies suggested that verbal short-term memory was not impaired, and argued 

that this form of memory is spared or relatively spared in the disorder. It was 

less clear that this held true for non-verbal short term memory, however, since 

6/10 studies found impairment on spatial span tasks. In summary, the findings 

in this study are consistent with the view that short-term memory, and 

particularly verbal short-term memory, is among the less impaired cognitive 

functions in schizophrenia, and tends to show relatively minor impairment even 

in patients with otherwise severe cognitive deficits. 

Another exception to the pattern of significant differences between 

cognitively preserved and cognitively impaired schizophrenic patients, but small 

and non-significant differences between cognitively preserved patients and 

controls was on one of the long-term memory tests used, Logical Memory. Here 

the cognitively preserved patients also showed significantly worse performance 

than the healthy controls, with a medium ES of 0.65. However, the cognitively 

impaired group had an ES for impairment of 2.73 on the test, the largest in this 

group. The findings here are broadly in agreement with the widely accepted 

view that long-term memory is one of the most severely impaired cognitive 

domains in schizophrenia (Aleman et al., 1999; Mckenna et al., 2002). They are 

also in agreement with findings from a meta-analysis that recall is more affected 

than recognition, and that verbal recall is more impaired than non-verbal recall 

(Aleman et al., 1999). 
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Copy of the document of the Research committee of Benito Menni 

C.A.S.M. Psychiatric Hospital approving to develop the project. 
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