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Abstract

Modern deep learning models employ consider-

ably more parameters than required to fit the train-

ing data. Whereas conventional statistical wisdom

suggests such models should drastically overfit,

in practice these models generalize remarkably

well. An emerging paradigm for describing this

unexpected behavior is in terms of a double de-

scent curve, in which increasing a model’s ca-

pacity causes its test error to first decrease, then

increase to a maximum near the interpolation

threshold, and then decrease again in the over-

parameterized regime. Recent efforts to explain

this phenomenon theoretically have focused on

simple settings, such as linear regression or ker-

nel regression with unstructured random features,

which we argue are too coarse to reveal important

nuances of actual neural networks. We provide

a precise high-dimensional asymptotic analysis

of generalization under kernel regression with the

Neural Tangent Kernel, which characterizes the

behavior of wide neural networks optimized with

gradient descent. Our results reveal that the test

error has non-monotonic behavior deep in the

overparameterized regime and can even exhibit

additional peaks and descents when the number of

parameters scales quadratically with the dataset

size.

1. Introduction

Machine learning models based on deep neural networks

have achieved widespread success across a variety of do-

mains, often playing integral roles in products and services

people depend on. As users rely on these systems in increas-

ingly important scenarios, it becomes paramount to establish
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Figure 1. An illustration of multi-scale generalization phenomena

for neural networks and related kernel methods. The classical

U-shaped under- and over-fitting curve is shown on the far left.

After a peak near the interpolation threshold, when the number

of parameters p equals the number of samples m, the test loss de-

creases again, a phenomenon known as double descent. On the far

right is the limit when p→ ∞, which is described by the Neural

Tangent Kernel. In this work, we identify a new scale of interest in

between these two regimes, namely when p is quadratic in m, and

show that it exhibits complex non-monotonic behavior, suggesting

that double descent does not provide a complete picture. Putting

these observations together we define three regimes separated by

two transitional phases: (i) the classical regime of underparameter-

ization when p < m, (ii) the abundant parameterization regime

when m < p < m2, and (iii) the superabundant parameterization

regime when p > m2. The transitional phases between them are

of particular interest as they produce non-monotonic behavior.

a rigorous understanding for when the models might work,

and, crucially, when they might not. Unfortunately, the cur-

rent theoretical understanding of deep learning is modest at

best, as large gaps persist between theory and observation

and many basic questions remain unanswered.

One of the most conspicuous such gaps is the unexpect-

edly good generalization performance of large, heavily-

overparameterized models. These models can be so ex-

pressive that they can perfectly fit the training data (even

when the labels are replace by pure noise), but still manage

to generalize well on real data (Zhang et al., 2016). An

emerging paradigm for describing this behavior is in terms

of a double descent curve (Belkin et al., 2019a), in which

increasing a model’s capacity causes its test error to first

decrease, then increase to a maximum near the interpola-

tion threshold (where the number of parameters equals the

number of samples), and then decrease again in the overpa-

rameterized regime.
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There are of course more elaborate measures of a model’s

capacity than a naive parameter count. Recent empirical

and theoretical work studying the correlation of these capac-

ity measures with generalization has found mixed results,

with many measures having the opposite relationship with

generalization that theory would predict (Neyshabur et al.,

2017). Other work has questioned whether it is possible

in principle for uniform convergence results to explain the

generalization performance of neural networks (Nagarajan

& Kolter, 2019).

Our approach is quite different. We consider the algorithm’s

asymptotic performance on a specific data distribution, lever-

aging the large system size to get precise theoretical results.

In particular, we examine the high-dimensional asymptotics

of kernel ridge regression with respect to the Neural Tangent

Kernel (NTK) (Jacot et al., 2018) and conclude that double

descent does not always provide an accurate or complete

picture of generalization performance. Instead, we identify

complex non-monotonic behavior in the test error as the

number of parameters varies across multiple scales and find

that it can exhibit additional peaks and descents when the

number of parameters scales quadratically with the dataset

size.

Our theoretical analysis focuses on the NTK of a single-

layer fully-connected model when the samples are drawn

independently from a Gaussian distribution and the targets

are generated by a wide teacher neural network. We provide

an exact analytical characterization of the generalization

error in the high-dimensional limit in which the number of

samples m, the number of features n0, and the number of

hidden units n1 tend to infinity with fixed ratios φ := n0/m
and ψ := n0/n1. By adjusting these ratios, we reveal the

intricate ways in which the generalization error depends on

the dataset size and the effective model capacity.

We investigate various limits of our results, including the

behavior when the NTK degenerates into the kernel with

respect to only the first-layer or only the second-layer

weights. The latter corresponds to the standard setting of

random feature ridge regression, which was recently an-

alyzed in (Mei & Montanari, 2019). In this case, the to-

tal number of parameters p is equal to the width n1, i.e.

p = n1 = (φ/ψ)m, so that p is linear in the dataset size.

In contrast, for the full kernel, the number of parameters is

p = (n0+1)n1 = (φ2/ψ)m2+(φ/ψ)m, i.e. it is quadratic

in the dataset size. By studying these two kernels, we derive

insight into the generalization performance in the vicinities

of linear and quadratic overparameterization, and by piec-

ing these two perspectives together, we infer the existence

of multi-scale phenomena, which sometimes can include

triple descent. See Fig. 1 for an illustration and Fig. 4 for

empirical confirmation of this behavior.

1.1. Our Contributions

1. We derive exact high-dimensional asymptotic expres-

sions for the test error of NTK ridge regression.

2. We prove that the test error can exhibit non-monotonic

behavior deep in the overparameterized regime.

3. We investigate the origins of this non-monotonicity

and attribute them to the kernel with respect to the

second-layer weights.

4. We provide empirical evidence that triple descent can

indeed occur for finite-sized networks trained with gra-

dient descent.

5. We find exceptionally fast learning curves in the noise-

less case, with Etest ∼ m−2.

1.2. Related Work

A recent line of work studying the behavior of interpolat-

ing models was initiated by the intriguing experimental

results of (Zhang et al., 2016; Belkin et al., 2018b), which

showed that deep neural networks and kernel methods can

generalize well even in the interpolation regime. A number

of theoretical results have since established this behavior

in certain settings, such as interpolating nearest neighbor

schemes (Belkin et al., 2018a) and kernel regression (Belkin

et al., 2019c; Liang et al., 2020b).

These observations, coupled with classical notions of the

bias-variance tradeoff, have given rise to the double descent

paradigm for understanding how test error depends on model

complexity. These ideas were first discussed in (Belkin et al.,

2019a), and empirical evidence was obtained in (Advani &

Saxe, 2017; Geiger et al., 2020) and recently in (Nakkiran

et al., 2019). Precise theoretical predictions soon confirmed

this picture for linear regression in various scenarios (Belkin

et al., 2019b; Hastie et al., 2019; Mitra, 2019).

Linear models struggle to capture all of the phenomena

relevant to double descent because the parameter count is

tied to the number of features. Recent work found multiple

descents in the test loss for minimum-norm interpolants in

Reproducing Kernel Hilbert Spaces (Liang et al., 2020a),

but it similarly requires changing the data distribution to

vary model capacity. A precise analysis of a nonlinear sys-

tem for a fixed data generating process is the most direct way

to draw insight into double descent. A recent preprint (Mei

& Montanari, 2019) shares this view and adopts a simi-

lar analysis to ours, but focuses entirely on the standard

case of unstructured random features. Such a setup can

indeed model double descent, and certainly bears relevance

to certain wide neural networks in which only the top-layer

weights are optimized (Neal, 1996; Rahimi & Recht, 2008;

Lee et al., 2018; de G. Matthews et al., 2018; Lee et al.,

2019), but its connection to neural networks trained with

gradient descent remains less clear.
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Gradient-based training of wide neural networks initialized

in the standard way was recently shown to correspond to

kernel gradient descent with respect to the Neural Tangent

Kernel (Jacot et al., 2018). This result has spawned renewed

interest in kernel methods and their connection to deep learn-

ing; a woefully incomplete list of papers in this direction

includes Lee et al. (2019); Chizat et al. (2019); Du et al.

(2019; 2018); Arora et al. (2019); Xiao et al. (2019).

To connect these research directions, our analysis requires

tools and recent results from random matrix theory and free

probability. A central challenge stems from the fact that

many of the matrices in question have nonlinear dependen-

cies between the elements, which arises from the nonlinear

feature matrix F = σ(WX). This challenge was over-

come in (Pennington & Worah, 2017), which computed the

spectrum of F , and in (Pennington & Worah, 2018), which

examined the spectrum of the Fisher information matrix; see

also (Louart et al., 2018). We also utilize the results of (Ad-

lam et al., 2019; Péché et al., 2019), which established a

linear signal plus noise model for F that shares the same

bulk statistics. This linearized model allows us to write the

test error as the trace of a rational function of the underlying

random matrices. The methods we use to compute such

quantities rely on so-called linear pencils that represent the

rational function in terms of the inverse of a larger block

matrix (Helton et al., 2018), and on operator-valued free

probability for computing the trace of the latter (Far et al.,

2006).

2. Preliminaries

In this section, we introduce our theoretical setting and some

of the tools required to state our results.

2.1. Problem Setup and Notation

We consider the task of learning an unknown function from

m independent samples (xi, yi) ∈ R
n0 × R, i ≤ m, where

the datapoints are standard Gaussian, xi ∼ N (0, In0
), and

the labels are generated by a wide1 single-hidden-layer neu-

ral network:

yi|xi,Ω, ω ∼ ωσT(Ωxi/
√
n0)/

√
nT + εi. (1)

The teacher’s activation function σT is applied coordinate-

wise, and its parameters Ω ∈ R
nT×n0 and ω ∈ R

1×nT are

matrices whose entries are independently sampled once for

all data from N (0, 1). We also allow for independent label

noise, εi ∼ N (0, σ2
ε).

Let ŷ(x) denote the model’s predictive function. We con-

sider squared error, so the test loss is,

E(y− ŷ)2 = Ex,ε(ωσT(Ωx/
√
n0)/

√
nT+ε− ŷ(x))2, (2)

1We assume the width nT → ∞, but the rate is not important.

where the expectation is over an iid test point (x, y) condi-

tional on the training set, the teacher parameters, and any

randomness in the learning algorithm producing ŷ, such as

the random parameters defining the random features. Note

that the test loss is a random variable; however, in the high-

dimensional asymptotics we consider here, it concentrates

about its mean.

2.2. Neural Tangent Kernel Regression

We consider predictive functions ŷ defined by approximate

(i.e. random feature) kernel ridge regression using the Neu-

ral Tangent Kernel (NTK) of a single-hidden-layer neural

network. The NTK can be considered a kernel K that is

approximated by random features corresponding to the Jaco-

bian J of the network’s output with respect to its parameters,

i.e. K(x1,x2) = J(x1)J(x2)
⊤. As the width of the net-

work becomes very large (compared to all other relevant

scales in the system), the approximate NTK converges to a

constant kernel determined by the network’s initial param-

eters and describes the trajectory of the network’s output

under gradient descent. In particular,

Nt(x) = N0(x)+(Y −N0(X))K−1(I−e−ηtK)Kx , (3)

where Nt(x) is the output of the network at time t, K :=
K(γ) = K(X,X) + γIm, Kx

:= K(X,x), η is the learn-

ing rate, and γ is a ridge regularization constant2. For this

work, we are interested in the t → ∞ limit of (3), which

defines the predictive function,

ŷ(x) := N∞(x) = N0(x) + (Y −N0(X))K−1Kx . (4)

We remark that if the width is not asymptotically larger

than the dataset size, the validity of (3) can break down and

(4) may not accurately describe the late-time predictions

of the neural network. While this potential discrepancy is

an interesting topic, we defer an in-depth analysis to future

work (but see Fig. 4) for an empirical analysis of gradient

descent). Instead, we regard (4) as the definition of our

predictive function and focus on kernel regression with the

NTK. We believe this setup is interesting its own right; for

example, recent work has demonstrated its effectiveness as

a kernel method on complex image datasets (Li et al., 2019)

and found it to be competitive with neural networks in small

data regimes.

In this work, we restrict our study to the NTK of single-

hidden-layer fully-connected networks. In particular, con-

sider a network of with width n1 and pointwise activation

function σ, defined by,

N0(x) =W2σ(W1x/
√
n0)/

√
n1 , (5)

2These overloaded definitions ofK can be distinguished by the
number of arguments and should be clear from context.
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for initial weight matrices W1 ∈ R
n1×n0 and W2 ∈

R
1×n1 with iid entries [W1]ij ∼ N (0, 1)3 and [W2]i ∼

N (0, σ2
W2

).

We collect our assumptions on the activation functions be-

low, in Assumption 1. Their main purpose is to ensure that

certain moments and derivatives exist almost surely, but for

simplicity we state somewhat stronger conditions than are

actually required for our analysis. To simplify the already

cumbersome algebraic manipulations, we assume that σ
has zero Gaussian mean. We emphasize that this condition

is not essential and our techniques easily generalize to all

commonly used activation functions.

Assumption 1. The activation functions σ, σT : R → R are

assumed to be differentiable almost everywhere. We assume

|σ(x)| , |σ′(x)| , |σT(x)| = O (exp(Cx)) for some positive

constantC, which implies all the Gaussian moments of σ, σ′,
and σT exist, and we assume Eσ(Z) = 0 for Z ∼ N (0, 1).

The Jacobian of (5) with respect to the parameters nat-

urally decomposes into the Jacobian with respect to W1

and W2, i.e. J(x) = [∂N0(x)/∂W1, ∂N0(x)/∂W2] =
[J1(x), J2(x)]. Therefore the kernel K also decomposes

this way, and we can write.

K(x1,x2) = J1(x1)J1(x2)
⊤ + J2(x1)J2(x2)

⊤ (6)

=: K1(x1,x2) +K2(x1,x2) (7)

A simple calculation yields the per-layer constituent kernels,

K1(X,X) =
X⊤X
n0

⊙ (F ′)⊤ diag(W2)
2F ′

n1
(8)

K2(X,X) =
1

n1
F⊤F , (9)

where we have introduced the abbreviations F =
σ(W1X/

√
n0) and F ′ = σ′(W1X/

√
n0). Notice that

when σ2
W2

→ 0,K = K2, i.e. the NTK degenerates into the

standard random features kernel. However, the predictive

function (4) contains an offsetN0(x) which would typically

be set to zero in standard random feature kernel regression

because it simply increases the variance of test predictions.

Removing this variance component has an analogous oper-

ation in neural network training: either the function value

at initialization can be subtracted throughout training, or

a symmetrization trick can be used in which two copies

of the NN are initialized identically, and their normalized

difference N ≡
(

N (a) −N (b)
)

/
√
2 is trained with gradi-

ent descent. Either method preserves the kernel K while

enforcing N0 ≡ 0. We call this setup centering, and present

results with and without it.

Finally, we note that ridge regularization in the kernel per-

spective corresponds to using L2 regularization of the neural

network’s weights toward their initial values.

3Any non-zero σ2

W1
can be absorbed into a redefinition of σ.
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Figure 2. Theoretical results for the test error with and without

centering for different activation functions with φ = 2, γ = 10−3,

and SNR = 1 for (a) the second-layer kernel K2 and (b) the full

NTK K as the number of parameters p is varied by changing

the network width. Nonmonotonic behavior is clearly visible at

the linear scaling transition (p = m) and the quadratic scaling

transition (p = m2). Here, ReLU denotes the zero-mean function

σ(x) = max(x, 0)− 1/
√
2π.

3. Three Regimes of Parameterization

In this section, we outline an argument based on the struc-

ture of the NTK as to why one should expect the test error

to exhibit non-trivial phenomena at two different scales of

overparameterization. From the expressions for the test

error (2) and the predictive function (4), it is evident that

the behavior of the test error is determined by the spectral

properties of the NTK. Although the fine details of the rela-

tionship can only be revealed by the explicit calculation, we

can nevertheless make some basic high-level observations

based on the coarser structure of the kernel.

The number of trainable parameters p relative to the dataset

size m controls the amount of parameterization or com-

plexity of a model. In our setting of a single-hidden-layer

fully-connected neural network, p = n1(n0 + 1), and for

a fixed dataset, we can adjust the ratio p/m by varying the

hidden-layer width n1.

The simplest way to see that there should be two scales

comes from examining the two terms in the kernel separately.

Because K1 = J1J
T
1 and J1 ∈ R

m×n0n1 , the first-layer

kernel has rank at most min{n0n1,m}, which suggests

nontrivial transitional behavior when p = Θ(m). Similarly,

the rank of K2 is at most min{n1,m}, which suggests a

second interesting scale when n1 = Θ(m), or equivalently,

when p = Θ(m2) if n0 = Θ(n1). Our explicit calculations

confirm that interesting phenomena indeed occur at these

scales, as can be seen in Fig. 2.

These two scales partition the degree of parameterization

into three regimes. We consider the classical regime to be

when p . m because classical generalization theory tends

to hold and the U-shaped test error curve is observed. The

transition around p = Θ(m) manifests as a sharp rise in

the test loss near the interpolation threshold, followed by

a quick descent as p increases further, as can be seen in

Fig. 2(a). We call this the linear scaling transition. After

this, we enter a regime we call abundant parameterization
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when m . p . m2. In this regime, the test error tends

to decrease until p nears the vicinity of m2, where it can

sometimes increase again, producing a second U-shaped

curve. When p = Θ(m2), another transition is observed,

which we call the quadratic scaling transition, which can

be seen in Fig. 2(b). On the other side of this transition,

p & m2, a regime we call superabundant parameterization.

See Fig 1 for an illustration of this general picture.

While the classical regime has been long studied, and the

superabundant regime has generated considerable recent

interest due to the NTK, our main aim in delineating the

above regimes is to highlight the existence of the interme-

diate scale containing complex phenomenology. For this

reason, we focus our theoretical analysis on the novel scal-

ing regime in which p = Θ(m2). In particular, as mentioned

in Sec. 1, we consider the high-dimensional asymptotics in

which n0, n1,m → ∞ with φ := n0/m and ψ := n0/n1
held constant.

4. Overview of Techniques

In this section, we provide a high-level overview of the ana-

lytical tools and mathematical results we use to compute the

generalization error. To begin with, let us first describe the

main technical challenges in computing explicit asymptotic

limits of (2).

The first challenge, which is evident upon inspecting (8),

is that the kernel contains a Hadamard product of random

matrices, for which concrete results in the random matrix

literature are few and far between. We address this problem

in Sec. 4.1.

The second challenge, which is apparent by inspecting (9), is

that the kernel depends on random matrices with nonlinear

dependencies between the entries. We describe how to

circumvent this difficulty in Sec. 4.2.

Finally, by expanding the square in (2) and substituting (4),

we find terms that are constant, linear, and quadratic inK−1.

Some of the random matrices that appear inside the matrix

inverses (e.g. X , and W1) also appear outside of them as

multiplicative factors, a situation that prevents the straight-

forward application of many standard proof techniques in

random matrix theory. We describe how to overcome this

challenge in Sec. 4.3.

4.1. Simplification of First-Layer Kernel

A straightforward central limiting argument shows that in

the asymptotic limit the entries ofW1X/
√
n0 are marginally

Gaussian with mean zero and unit variance. As such, the

first and second moments of the entries in the matrix F ′ =
σ′(W1X/

√
n0) are equal to

√

ζ := Ez∼N (0,1)σ
′(z) , η′ := Ez∼N (0,1)σ

′(z)2 . (10)

It follows that we can split K1 into two terms,

X⊤X
n0

⊙
(

F̄ ′)⊤ diag(W2)
2F̄ ′

n1
+ σ2

W2
ζ
X⊤X
n0

, (11)

where F̄ ′ is a centered version of F ′. Focusing on the first

term, because n0n1 = φ2/ψm2, the random fluctuations in

the off-diagonal elements are O(1/m), which are too small

to contribute to the spectrum or moments of an m × m
matrix whose diagonal entries are order one. In fact, the

diagonal entries are simply proportional to the variance of

the entries of F ′, namely (η′ − ζ). Putting this together, we

can eliminate the Hadamard product entirely and write,

K1
∼= σ2

W2
(η′ − ζ)Im +

σ2
W2
ζ

n0
X⊤X , (12)

where the ∼= notation means the two matrices share the

same bulk statistics asymptotically. We make this argument

precise in Sec. S1.

4.2. Linearization 1: Gaussian Equivalents

The test error (2) involves large random matrices with non-

linear dependencies, which are not immediately amenable

to standard methods of analysis in random matrix the-

ory. The main culprit is the random feature matrix

F = σ(W1X/
√
n0), but f := σ(W1x/

√
n0), Y =

ωσT(ΩX/
√
n0)/

√
nT + E , and y := ωσT(Ωx/

√
n0)/

√
nT

all suffer from the same issue.

The solution is to replace each of these matrices with an

equivalent matrix without nonlinear dependencies, but cho-

sen to maintain the same first- and second-order moments

for all of the terms that appear in the test error (2). This

approach was described for F in (Adlam et al., 2019) (see

also (Péché et al., 2019)). The upshot is that the test error is

asymptotically invariant to the following substitutions,

F → F lin :=

√

ζ

n0
W1X +

√

η − ζΘF (13)

Y → Y lin :=

√

ζT

nTn0
ωΩX +

√

ηT − ζT

nT

ωΘY + E (14)

f → f lin :=

√

ζ

n0
W1x+

√

η − ζθf (15)

y → ylin :=

√

ζT

nTn0
ωΩx+

√

ηT − ζT

nT

ωθy . (16)

The new objects ΘF , ΘY , θf , and θy are matrices of the

appropriate shapes with iid standard Gaussian entries. The

constants η, ζ, ηT, and ζT are chosen so that the mixed mo-

ments up to second order are the same for the original and

linearized versions. In particular,

ζ := [Ez∼N (0,1)σ
′(z)]2 , η := Ez∼N (0,1)σ(z)

2 , (17)
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ζT := [Ez∼N (0,1)σ
′
T(z)]

2 , ηT := Ez∼N (0,1)σT(z)
2 .

(18)

The statement that the test error only depends on Y lin is

consistent with the observations made in (Ghorbani et al.,

2019; Mei & Montanari, 2019) that in the high-dimensional

regime where n0 = Θ(m), only linear functions of the data

can be learned. Indeed, Y lin is equivalent to a linear teacher

plus noise with signal-to-noise ratio given by,

SNR =
ζT

ηT − ζT + σ2
ε

. (19)

We often make this equivalence to a linear teacher explicit

by setting σT(x) = x, which implies ηT = ζT = 1. Doing

so also removes the noise from the test label, but since this

noise merely contributes an additive shift to the test loss,

removing it does not change any of our conclusions.

4.3. Linearization 2: Linear Pencil

Next we turn our attention to the actual computation of the

asymptotic test loss. Expanding the test error (2) we have4,

Etest := E(x,y)(y − ŷ(x))2 (20)

= E(x,ε)

[

tr(y⊤y)− 2 tr(K⊤
x
K−1Y ⊤y)

+ tr(K⊤
x
K−1Y ⊤Y K−1Kx)

]

. (21)

The simplification (12) gives,

K = σ2
W2

[

(η′ − ζ)Im +
ζX⊤X
n0

]

+
F⊤F
n1

+ γIm

(22)

Kx =
σ2
W2
ζ

n0
X⊤

x+
1

n1
F⊤f , (23)

which, when applied to (21) together with the substitutions

(13)-(16), expresses the test error directly in terms of the

iid Gaussian random matrices W1, X,ΘF ,Ω,ΘY , E , θf , θy
and x. The expectations over x and E are trivial because

these variables do not appear inside the matrix inverse K−1.

Moreover, asymptotically the traces concentrate around their

means with respect to Ω,ΘY , θf and θy , which we can also

compute easily for the same reason. Therefore, the test error

can be written as,

Etest = a0+
∑

i

bi tr(BiK
−1)+

∑

i

ci tr(CiK
−1DiK

−1)

(24)

where Bi, Ci, Di are monomials in {W1, X,ΘF } and their

transposes, and a0, bi, ci ∈ R.

4For simplicity, we discuss the centered setting with N0 = 0,
which captures all of the technical complexities.

Eqn. (24) is a rational function of the noncommutative ran-

dom variables W1, X, and ΘF . A useful result from non-

commutative algebra guarantees that such a rational function

can be linearized in the sense that it can be expressed in

terms of the inverse of a matrix whose entries are linear in

the noncommutative variables. This representation is often

called a linear pencil, and is not unique; see e.g. (Helton

et al., 2018) for details.

To illustrate this concept, consider the simple case of K−1.

After applying the substitutions (13)-(16) to (22), a linear

pencil is given by







[γ+σ2

W2
(η′−ζ)]I

σ2

W2
ζ

n0
X⊤

√
η−ζ
n0

Θ⊤
F

√
ζ√

n0n1
X⊤

−X I 0 0

−√
η−ζΘF −

√
ζ√
n0
W1 I 0

0 0 −W⊤
1

I







−1

11

,

which can be checked by an explicit computation of the

block matrix inverse. After obtaining a linear pencil for each

of the terms in (24), the only task that remains is computing

the trace. Since each linear pencil is a block matrix whose

blocks are iid Gaussian random matrices, its trace can be

evaluated using the techniques described in (Far et al., 2006)

or through the general formalism of operator-valued free

probability. We refer the reader to the book (Mingo &

Speicher, 2017) for more details on these topics.

5. Asymptotic Training and Test Error

The calculations described in the previous section are pre-

sented in the Supplementary Materials. Here we present the

main results.

Proposition 1. As n0, n1,m → ∞ with φ = n0/m and

ψ = n0/n1 fixed, the traces τ1(z) :=
1
m
E tr(K(z)−1) and

τ2(z) :=
1
m
E tr( 1

n0

X⊤XK(z)−1) are given by the unique

solutions to the coupled polynomial equations,

φ (ζτ2τ1 + φ(τ2 − τ1)) + ζτ1τ2ψ (zτ1 − 1)

= −ζτ1τ2σ2
W2

(ζ (τ2 − τ1)ψ + τ1ψη
′ + φ)

ζτ21 τ2 (η
′ − η)σ2

W2
+ ζτ1τ2 (zτ1 − 1)

= (τ2 − τ1)φ (ζ (τ2 − τ1) + ητ1) ,

(25)

such that τ1, τ2 ∈ C
+ for z ∈ C

+.

Theorem 1. Let γ = Re(z) and let τ1 and τ2 be defined

as in Proposition 1 with Im(z) → 0+. Then the asymptotic

training error Etrain = 1
m
E‖Y − ŷ(X)‖2F is given by,

Etrain = −γ2(σ2
ετ

′
1 + τ ′2) + νσ2

W2
γ2(τ1 + γτ ′1)

+ νσ4
W2
γ2 ((η′ − ζ)τ ′1 + ζτ ′2) ,

(26)

and the asymptotic test error Etest = E(y − ŷ(x))2 is given

by

Etest = (γτ1)
−2Etrain − σ2

ε . (27)
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Remark 1. The subtraction of σ2
ε in eqn. (27) is because

we have assumed that there is no label noise on the test

points. Had we included the same label noise on both the

training and test distributions, that term would be absent.

Remark 2. When ν = 0, the quantity (γτ1)
−2Etrain on the

right hand side of eqn. (27) is precisely the generalized cross-

validation (GCV) metric of (Golub et al., 1979). Theorem 1

shows that the GCV gives the exact asymptotic test error for

the problem studied here.

6. Test Error in Limiting Cases

While the explicit formulas in preceding section provide an

exact characterization of the asymptotic training and test

loss, they do not readily admit clear interpretations. On the

other hand, eqn. (25) and therefore the expressions for Etest

simplify considerably under several natural limits, which

we examine in this section.

6.1. Large Width Limit

Here we examine the test error in the superabundant regime

in which the width n1 is larger than any constant times the

dataset size m, which can be obtained by letting ψ → 0 and

ψ/φ→ 0. In this setting we find,

Etest|ψ=0 =
1

2φχ0
(χ0(φ− 1) + ξφ(1 + φ) + ρ(1− 3φ))

+
νσ2

W2

2φχ0
((ηφ+ ζ)(ρ+ ξφ)− 4ζρφ)

+
νσ2

W2

2φ
(ηφ− ζ) +

φξ + ρ− χ0

2χ0SNR
, (28)

where ν = 0 with centering and ν = 1 without it and

ρ := ζ(1 + σ2
W2

), ξ := γ + η + σ2
W2
η′, and

χ0 :=
√

(ρ+ ξφ)2 − 4φρ2 . (29)

The learning curve is remarkably steep with centering. To

see this, we expand the result as m→ ∞, i.e. as φ→ 0,

Etest|ψ=0 =

{

φ
SNR

+O(φ2) SNR <∞
(1− ξ

ρ
)2φ2 +O(φ3) SNR = ∞ . (30)

Interestingly, we see that when the network is super abun-

dantly parameterized, we obtain very fast learning curves:

for finite SNR, Etest ∼ m−1, and in the noiseless case

Etest ∼ m−2. See Fig 3(b).

6.2. Small Width Limit

Here we consider the limit in which the width n1 is smaller

than any constant times the dataset size m or the number of

features n0, which can be obtained by letting ψ → ∞ with

φ held constant. In this setting we find,

Etest|ψ→∞ =
1

2φχ1
(χ1(φ− 1) + ξ1φ(1 + φ) + ζ(1− 3φ))

+
1

2χ1SNR
(φξ1 + ζ − χ1) , (31)

where ξ1 := η′ + γ/σ2
W2

, and

χ1 :=
√

(ζ + ξ1φ)2 − 4φζ2 . (32)

The small width limit characterizes one boundary of the

abundant parameterization regime and as such provides an

upper bound on the test loss in that regime. Therefore, a

sufficient condition for the global minimum to occur at in-

termediate widths is Etest|ψ→∞ < Etest|ψ=0. By comparing

eqn. (28) to eqn. (31), precise though unenlightening con-

straints on the parameters can be derived for satisfying this

condition. One such configuration is illustrated in Fig. 4(b).

6.3. Large Dataset Limit

Here we consider the limit in which the dataset m is larger

than any constant times the width n1, which can be obtained

by letting φ→ 0 with φ/ψ → 0. In this setting we find,

Etest|φ→0 =







1+ψ
SNR

( φ
ψ
) +O( φ

ψ
)2 SNR <∞

τ2(νζ2σ4

W2
+κ)

(η−ζ)ζ2σ4

W2

( φ
ψ
)2 +O( φ

ψ
)3 SNR = ∞ ,

where ν = 0 with centering and ν = 1 with without it and,

τ := γ + σ2
W2

(η′ − ζ) , κ := ζψ + (η − ζ)ψ2 . (33)

Here again we observe very steep learning curves, similar

to the large width limit above.

6.4. Ridgeless Limit: First-Layer Kernel

Here we examine the ridgeless limit γ → 0 of the first-layer

kernel K1. We find that the result can be obtained through a

degeneration of (28),

EK1

test |γ=0 = lim
σW2

→∞
Etest|ψ=0 (34)

=
1

2φχ̄
(χ̄(φ− 1) + η′φ(1 + φ) + ζ(1− 3φ))

+
1

2χ̄SNR
(φη′ + ζ − χ̄) , (35)

where, χ̄ :=
√

(ζ + η′φ)2 − 4φζ2 and we have specialized

to the centered case ν = 0. The expansion as m→ ∞ also

looks similar to (30) and can be obtained from that equation

by substituting ξ/ρ→ η′/ζ.

6.5. Ridgeless Limit: Second-Layer Kernel

Here we examine the ridgeless limit γ → 0 when the kernel

is due to the second-layer weights only, i.e. K2. This limit
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Figure 3. Test error for NTK regression with σ = tanh under various scenarios. (a) Contour plot of the error as a function of φ = n0/m
and φ/ψ = n1/m for γ = 0 and SNR = 1. The non-monotonic behavior is evident not just in the width n1, but also in the number

of features n0. (b) Learning curves for the NTK for different signal-to-noise ratios. With no noise (black curve), the error decreases

quadratically in the dataset size m, otherwise it decreases linearly. Dashed lines indicate m = n0 and m = n1, where humps emerge for

low SNR. (c) Test error as a function of width for various values of σW2
, which controls the relative contribution of K1 and K2. As σW2

decreases (red to blue), the kernel becomes more like K2 and the small hump at the quadratic transition increases in size until it resembles

the large spike at the linear transition, suggesting that K2 is responsible for the non-monotonicity in the overparameterized regime.

can be obtained by letting σW2
→ 0. In this setting, the

result can be expressed as,

EK2

test |γ=0 =
φ

SNR

1

|φ− ψ| +
2ωζ − β

2ζ|φ− ψ| +

δφ>ψ

(

β − 2χ

2χSNR
− β(η − ζ)

2ζχ

)

, (36)

where ω := max{φ, ψ}, β := ζ + ωη − χ, and

χ =
√

(ζ + 4ωη)2 − 4ωζ2 , (37)

and we have again specialized to the centered case ν = 0.

This expression is in agreement with the result presented

in (Mei & Montanari, 2019).

When the system is far in the regime of abundant param-

eterization, namely p = n1 ≫ m (or ψ/φ → 0), we can

examine the large dataset behavior by first sending ψ → 0
and then expanding as φ → 0. The result is described by

(30) by substituting ξ/ρ→ η/ζ.

7. Quadratic Overparameterization

In this section, we investigate the implications of our theo-

retical results about the generalization performance of NTK

regression in the quadratic scaling limit n0, n1,m → ∞
with φ = n0/m and ψ = n0/n1 held constant. Our high-

level observation is that there is complex non-monotonic

behavior in this regime as these ratios are varied, and that

this behavior can depend on the signal-to-noise ratio and

the initial parameter variance σ2
W2

in intricate ways. We

highlight a few examples in Fig. 3.

In Fig. 3(a), we plot the test error as a function of φ and φ/ψ,

which reveals the behavior of jointly varying the number of

features n0 and the number of hidden units n1. As expected

from Fig. 2(b), for fixed φ the test error has a hump near

n1 = m. Perhaps unexpectedly, for large n1, the test loss

exhibits non-monotonic dependence on n0, with a spike near

n0 = m. Notice that for small n1, this non-monotonicity

disappears. It is clear that the test error depends in a complex

way on both variables, underscoring the richness of the

quadratically-overparameterized regime.

Fig. 3(b) shows learning curves for fixed ψ and various

values of the SNR. For small enough SNR, there are visible

bumps in the vicinity ofm = n0 andm = n1 that reveal the

existence of regimes in which more training data actually

hurts test performance. Note that n0 = Θ(n1) so these two

humps are separated by a constant factor, so the presence

of two humps in this figure is not evidence of multi-scale

behavior, though it surely reflects the complex behavior at

the quadratic scale.

It is natural to wonder about the origins of this complex

behavior. Can it be attributed to a particular component

of the kernel K? We investigate this question in Fig. 3(c),

which shows how the test error changes as the relative con-

tributions of the per-layer kernels K1 and K2 are varied. By

decreasing σW2
, the contribution of K1 decreases and the

kernel becomes more like K2, and the small hump at the

quadratic transition increases in size until it resembles the

large spike at the linear transition (c.f. Fig. 2), suggesting

that K2 is in fact responsible for the non-monotonicity in

the quadratically-overparameterized regime.

8. Empirical Validation

Our theoretical results establish the existence of nontrivial

behavior of the test loss at p = m for the second-layer

kernel K2 and at p = m2 for the full kernel K. While these

results are strongly suggestive of multi-scale behavior, they

do not prove this behavior exists for a single kernel, nor do

they guarantee it will be revealed for finite-size systems, let
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Figure 4. Empirical validation of multi-scale phenomena, triple descent, and the linear and quadratic scaling transitions for kernel

regression (a,b,c) and gradient descent (c). All cases show a peak near the linear parameterization transition (first dashed vertical line),

as well as a bump near the quadratic transition (second dashed vertical line). Theoretical predictions (dashed blue) agree with kernel

regression in their regime of validity (quadratic parameterization). While the global minimum is often at n1 = ∞, it need not be as

illustrated in (b). The NTK does not perfectly describe gradient dynamics in high dimensions, so the deviations between the red (GD) and

blue (kernel regression) curves in (c) are expected. (a) Mean of five trials with m = 24000, n0 = 3000, σ2

W2
= 1/8, σ2

ε = 0, γ = 10−6,

and σ = erf . (b) Mean of five trials with m = 24000, n0 = 6000, σ2

W2
= 1/8, σ2

ε = 4, and σ = c(erf(6(x+ 1) + erf(6(x− 1)) with

c chosen so ζ = 1/4. (c) Mean and standard deviation of 20 trials with m = 6000, n0 = 750, σ2

W2
= 1/8, σ2

ε = 0, and σ = ReLU.

alone for models trained with gradient descent. Here we

provide positive empirical evidence on all counts.

Fig. 4 demonstrates multi-scale phenomena, triple descent,

and the linear and quadratic scaling transitions for ran-

dom feature NTK regression and gradient descent for finite-

dimensional systems. The simulations all show a peak near

the linear parameterization transition, as well as a bump

near the quadratic transition. The asymptotic theoretical

predictions agree well with kernel regression in their regime

of validity, which is when n1 is near m. While we found

that the global minimum of the test error is often at p = ∞,

there are some configurations for which the optimal p lies

between m and m2, as illustrated in Fig. 4(b).

Fig. 4(a) clearly shows triple descent for NTK regression

and a marked difference in loss with and without centering,

suggesting that this source of variance may often dominate

the error for large n1.

Fig. 4(c) confirms the existence of triple descent for a single-

layer neural network trained with gradient descent. The

noticeable difference between kernel regression and the

actual neural network is to be expected because the NTK

can change during the course of training when the width

is not significantly larger than the dataset size. Indeed,

the deviation diminishes for large n1. In any case, the

qualitative behavior is similar across all scales, providing

support for the validity of our framework beyond pure kernel

methods.

9. Conclusion

In this work, we provided a precise description of the high-

dimensional asymptotic generalization performance of ker-

nel regression with the Neural Tangent Kernel of a single-

hidden-layer neural network. Our results revealed that the

test error has complex non-monotonic behavior deep in the

overparameterized regime, indicating that double descent

does not always provide an accurate or complete picture

of generalization performance. Instead, we argued that the

test error may exhibit additional peaks and descents as the

number of parameters varies across multiple scales, and we

provided empirical evidence of this behavior for kernel ridge

regression and for neural networks trained with gradient de-

scent. We conjecture that similar multi-scale phenomena

may exist for broader classes of architectures and datasets,

but we leave that investigation for future work.
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