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Detailed analysis of correlated data plays a vital role in modern analyses. We present a sophisticated neu-
ral network package based on Bayesian statistics which can be used for both classification and event-by-event
prediction of the complete probability density distribution for continuous quantities. The network provides nu-
merous possibilities to automatically preprocess the input variables and uses advanced regularisation and pruning
techniques to essentially eliminate the risk of overtraining. Examples from physics and industry are given.

1. Introduction

Neural networks are inspired by a simple model
of how the brain works in nature: A neuron
“fires” if the stimuli received from other neurons
exceed a certain threshold. In neural networks,
this is described by z7 = g (Zk why - ap T+ ,u?)
where ¢(t) is a sigmoid function and the constant
pj determines the threshold. Thus the output of
node j in layer n is given by the weighted sum of
all nodes in layer n — 1. Network training is then
understood as the process of minimising a loss
function by iteratively adjusting the weights wf,
such that the deviation of the actual network out-
put from the desired output is minimised. Pop-
ular choices for the loss function are the sum of
quadratic deviations or a measure of the entropy.

Neural networks are superior to other meth-
ods because they are able to learn correlations
between the input variables, can incorporate in-
formation from quality variables (e.g. the return
code of a certain algorithm) and do not require
that all input variables are filled for each event.
The latter is of particular importance when e.g.
parts of a detector cannot be read out for each
considered candidate.
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2. The NeuroBayes Neural Network

2.1. Overview

The NeuroBayes neural network package is a
highly sophisticated tool to perform multivariate
analysis of correlated data. A three-layered feed-
forward neural network is combined with an auto-
mated preprocessing of the input variables. Users
can choose from a wide range of options to opti-
mally prepare both individual and all variables
for the network training. Advanced regularisa-
tion and pruning techniques ensure a small re-
sulting network topology where all non-significant
weights and nodes are removed.

The package is split into two parts: The Neu-
roBayes Teacher and the NeuroBayes Expert.
The Teacher uses the training dataset (simulated
events or historic data) provided by the user,
performs the requested preprocessing steps and
trains the network to learn the complex relation-
ships between the input variables and the training
target. The statistical significance of each net-
work weight and node is evaluated automatically
during network training to ensure that only signif-
icant parts of the network topology remain. After
the training the user is provided with a set of con-
trol plots to verify that the training has been suc-
cessful and all information is stored in the Neu-
roBayes Expertise. The Expertise is then used
by the NeuroBayes Expert analysing the data of
interest.



2.2. The Bayesian Approach

NeuroBayes uses Bayesian statistics to incor-
porate a priori knowledge. The conditional prob-
ability to observe B when A has already been ob-
served is given by P(B|A) = % (correspond-
ingly for P(A|B)). Since P(B|A) = P(A|B), this
can be combined to Bayes’ theorem:

P(B|A)P(A)

P(AIB) = =5 (1)

This theorem is extremely important due
to the interpretation A=theory and B=data:
P(dataltheory) is then the likelihood, P(theory)
the Bayesian prior and P(theory|data) represents
the a posteriori probability. P(data) is called the
evidence. Incorporating Bayesian statistics in the
NeuroBayes package prevents unphysical predic-
tions. This can be illustrated by considering the
measurement of the lifetime of a particle. The
true distribution of the number of particles at a
given time time ¢ is given by f(t) x exp(—t/7).
However, limited detector resolution impairs the
measurement which can be modelled by smearing
the true distribution by a Gaussian distribution
as illustrated in figure 1: Although the true distri-
bution (i.e. the projection on the x-axis) is never
negative, values smaller than zero are obtained
in the measured distribution (i.e. the projection
on the y-axis). Denoting the true quantity ¢ and
the measured value by x, a typical measurement
approximates f(z|t) = f(z|t) which gives good
results in case of good experimental resolution
and far away from physical boundaries as illus-
trated in the upper right corner of figure 1. How-
ever, this is not the case close to physical borders
as illustrated in the lower left part of the figure:
While the measured distribution f(z|t) can be-
come negative, the true lifetime is always positive
(semi-)definite. NeuroBayes takes this a-priori
knowledge of the marginal distribution f(¢) into
account and the thus never yields unphysical re-
sults.

2.3. NeuroBayes tasks

The NeuroBayes neural network package can
be used both for classification and shape re-
construction. In the case of classification Neu-
roBayes is used to separate between two different
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reconstructed

Figure 1. Illustration of the Bayesian approach:
The figure shows the distribution of points follow-
ing an exponential smeared by a Gaussian distri-
bution to simulate limited detector resolution.

classes, i.e. it is determined whether a given can-
didate belongs to class A or class B. For example,
NeuroBayes can be used to distinguish between
electrons and other particles reconstructed in the
detector or if a given jet of hadronising particles
contains a B meson or not.

NeuroBayes also allows the prediction of com-
plete probability density distributions f(¢|Z) for
a single multi-dimensional measurement & when
used for shape-reconstruction. This feature can
be used to e.g. determine the energy of an in-
clusively reconstructed B-hadron on a per candi-
date basis using for example the median of the
predicted density distribution. The knowledge of
the full distribution provides much more infor-
mation than for example the mean value (which
is determined in a standard regression analysis):
The width of the distribution can be interpreted
as an estimate of the uncertainty of the predic-
tion. In particular, non-Gaussian behaviour can
be correctly taken into account. This also allows
selecting only high quality candidates with low
uncertainties for the subsequent analysis by e.g.
rejecting candidates with a large width of the pre-
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dicted distribution.

2.4. Preprocessing

Preprocessing the input variables prior to net-
work training plays a vital role in the analysis of
multidimensional correlated data. This can be il-
lustrated by a simple two-dimensional example:
A hiker is to find the deepest valley in the Swiss
Alps starting from a high mountain. Once very
shallow valleys are rejected by a first glance, the
hiker starts descending - however, without fur-
ther tools he has no means to determine whether
the next valley is deeper than this one. Prepro-
cessing the input variables thus corresponds to
finding the optimal starting point for the subse-
quent network training. Users can choose from
a wide range of possible preprocessing options.
Each preprocessing option is applied to either a
specific input variable or to all input variables. A
few options used in many applications from the
extensive list of possible options are highlighted
below. All variables can be normalised and (lin-
early) decorrelated such that the covariance ma-
trix of the thus obtained new set of input vari-
ables is given by the unit matrix. Binary or dis-
crete variables are automatically recognised and
treated accordingly in the further processing. If
NeuroBayes is used for shape-reconstruction, the
inclusive shape can be fixed by introducing di-
rect connections between the input and output
layer of the network. Thus the network training
corresponds to learning deviations of the inclu-
sive shape. Furthermore, the input variables can
be transformed such that the first new variable
contains all linear information about the mean,
the second variable all linear information about
the width of the distribution to be learned, etc.
The statistical significance of each input variable
is computed automatically at the end of the pre-
processing. A further option can be chosen to
reject all (transformed) variables with a signifi-
cance lower than n-o (n = 1,...,9). A very
important option from the extensive list of in-
dividual variable preprocessing is to handle vari-
ables with a default value or é-function. This can
e.g. occur if not all parts of a detector can be
read out for each candidate and the thus result-
ing set of input variables is incomplete. Discrete

input variables can be interpreted as members of
ordered classes (i.e. the value of the variable in-
dicates a certain order, e.g. a lose, medium or
tight cut) or unordered classes (i.e. class A is
different from class B but no further information
can be obtained from the order the classes). A
Bayesian regularisation scheme is applied to ef-
ficiently treat outliers far away from the bulk of
the values. Instead of using the input variable
directly, a new variable can be defined contain-
ing the one-dimensional correlation to the train-
ing target by performing a regularised spline-fit.
The fit can either be done for a general continu-
ous variable or can be forced to be monotonous.
Furthermore, the influence on the correlation to
the training target of other input variables on a
given variable can be removed. All preprocess-
ing options are very robust and work completely
automatic without the need for further user in-
teraction.

2.5. Regularisation

The use of regularisation techniques is of vital
importance during network training. Employing
techniques based on Bayesian statistics the Neu-
roBayes Teacher practically eliminates the risk of
overtraining and enhances the generalisation abil-
ities of the network. Key aspects include the con-
stant determination of the statistical relevance of
individual connections and entire network nodes,
separate regularisation constants for at least three
groups of weights, the automatic relevance deter-
mination of the input variables and (in the case of
shape-reconstruction) the automated shape regu-
larisation of the output nodes. Statistically in-
significant network connections and even entire
nodes are removed during the network training to
ensure that the network learns only real features
of the data. The thus obtained trained network
represents the minimal topology needed to cor-
rectly reproduce the characteristics of the data
while being insensitive to statistical fluctuations.

3. Examples From High Energy Physics

NeuroBayes is successfully used in many
physics analyses. Significant improvement has
been obtained in the identification of jets contain-
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Figure 2. Improvement achieved by selecting jets
containing B-hadrons with NeuroBayes compared
to the previously used method. The upper curve
(in red) has been obtained using the NeuroBayes
Expert, the lower curve (in blue) represents the
best result achieved with conventional methods.
A significant improvement of up to 20% in the
purity of the selected jets at the same efficiency
is obtained.

ing B mesons, the determination of the b flavour
(i.e. b or b) and the identification of the parti-
cle type (e, u*) in the CDF experiment. These
improvements are of crucial importance in the ob-
servation of the By mixing and the measurement
of the mixing frequency Amg. Figure 2 illustrates
the improvement obtained using the NeuroBayes
Expert to select events containing B mesons [3].
The performance is evaluated by determining pu-
rity and efficiency for multiple cuts on the pre-
diction from the NeuroBayes Expert (or the final
discriminating variable in case of other methods).
The efficiency is defined as the number of signal
candidates past a given network cut divided by
the number of all signal candidates, purity is de-
fined as the number of signal candidates pas a
given network cut divided by the number of all
particles past the cut. This results in a charac-
teristic curve in the purity-efficiency plane. The
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ideal working point is the point with the small-
est distance to the upper right corner represent-
ing 100% purity at 100% efficiency, though any
other working point may be chosen depending
on the specific needs of the respective analysis.
A further application is the automated cut opti-
misation in case of resonance signals: Instead of
optimising e.g. the ratio of signal yield divided
by background by successively optimising cuts on
various variables, these variables can be used as
input to the NeuroBayes Teacher. The Teacher
is then trained to distinguish between resonant
and background events. This method can be ap-
plied also on data only in case simulated events
are not available by using the side-bands of the
resonance as estimates for the background. Neu-
roBayes can also be used to determine the quan-
tum numbers J¢ of an unknown particle as dis-
cussed in [4]. Multiple networks are trained us-
ing dedicated simulated events each generated ac-
cording to a specific assumption of the quantum
numbers JP¢. Applying the NeuroBayes Expert
to the data, the resonance will be either enriched
or strongly suppressed depending on whether the
correct JPC assignment is found.

The shape reconstruction mode of NeuroBayes
has been integrated into the BSAURUS [2] pack-
age used in many DELPHI analyses to inclusively
determine the energy of a B hadron and provide
a measure of the error. Using this method the
core resolution of the pull (Free — Etrue)/ Ftrue
has been improved from ~ 40% to =~ 10% as es-
timated by simulation for events measured in the
LEPII phase. A further example which has been
of crucial importance in the observation of B}*
at DELPHI [5] is the determination of the az-
imuthal angle on the inclusively reconstructed B
hadron. Compared to the previously best clas-
sical approach in BSAURUS [2], the resolution
improved significantly. Using the measure of the
uncertainty provided by NeuroBayes (e.g. the
width of the predicted probability density distri-
bution), only the high resolution candidates can
be selected for the subsequent analysis.
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4. Technology Transfer And Applications
In Industry

The technology provided by the NeuroBayes
neural network package does not only play a vi-
tal role in many physics analyses in the DEL-
PHI and CDF collaboration but also have a wide
range of applications in industry. The spin-off
company phi-t (www.phi-t.de) has been founded
with financial support by the exist-seed pro-
gramme of the German Federal Ministry for Edu-
cation and Research (BMBF) in 2002. The shape
reconstruction feature has been successfully used
to optimise the buy-trade strategies in investment
banking.

A successful project with the Badische
Gemeinde Versicherungen has made it possible
to offer radically new policies for car insurances
to young drivers identifying low-risk customers.
Identifying customers likely to cancel the con-
tract in the near future enables the company
to get involved at an early stage of this deci-
sion and thus helps to prevent losing the cus-
tomer. Further applications in industry range
from the identification of (side-) effects of drugs in
medicine and pharmacy, to credit scoring (Basel
II), financial time series prediction, risk minimi-
sation in trading strategies to fraud detection in
insurance claims.

The power of the NeuroBayes technology has
been demonstrated recently at the Data Mining
Cup 2005 [6] with ~ 500 participants from the
whole world. Using NeuroBayes, six students
from the University of Karlsruhe were able to win
the positions 2,...,7 in the final score.

5. Conclusion

The NeuroBayes neural network package pro-
vides a sophisticated tool for the analysis of
highly correlated data. NeuroBayes is based on
Bayesian statistics and the network output can
be directly interpreted as the Bayesian a poste-
riori probability. Taking a priori knowledge into
account, NeuroBayes will never return unphysical
results. The use of advanced regularisation and
pruning techniques practically eliminate the risk
of overtraining and lead to an enhanced general-

isation ability of the trained network. An auto-
mated and completely robust preprocessing pre-
pares the input optimally for the network train-
ing. The various preprocessing options act either
on all input variables (e.g. linear decorrelation of
the variables, expansion in orthogonal polynomi-
als,...) or individual variables (e.g. treatment of
variables with J-functions or default values, or-
dered and unordered classes, ...) and cover a
wide range of cases. NeuroBayes can be used
both for classification and for the prediction of
complete probability density distributions on a
per candidate basis. Significant improvements in
physics analyses were obtained in the DELPHI
and CDF collaborations using NeuroBayes. The
foundation of the company phi-t transfers this
technology to industry and has led to e.g. the
development of new car insurance policies.
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