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ABSTRACT | The successful development of neural prostheses

requires an understanding of the neurobiological bases of

cognitive processes, i.e., how the collective activity of popula-

tions of neurons results in a higher level process not predict-

able based on knowledge of the individual neurons and/or

synapses alone. We have been studying and applying novel

methods for representing nonlinear transformations of multi-

ple spike train inputs (multiple time series of pulse train inputs)

produced by synaptic and field interactions among multiple

subclasses of neurons arrayed in multiple layers of incom-

pletely connected units. We have been applying our methods to

study of the hippocampus, a cortical brain structure that has

been demonstrated, in humans and in animals, to perform the

cognitive function of encoding new long-term (declarative)

memories. Without their hippocampi, animals and humans

retain a short-term memory (memory lasting approximately

1 min), and long-term memory for information learned prior to

loss of hippocampal function. Results of more than 20 years of

studies have demonstrated that both individual hippocampal

neurons, and populations of hippocampal cells, e.g., the

neurons comprising one of the three principal subsystems of

the hippocampus, induce strong, higher order, nonlinear

transformations of hippocampal inputs into hippocampal out-

puts. For one synaptic input or for a population of synchro-

nously active synaptic inputs, such a transformation is

represented by a sequence of action potential inputs being

changed into a different sequence of action potential outputs.

In other words, an incoming temporal pattern is transformed

into a different, outgoing temporal pattern. For multiple, asyn-

chronous synaptic inputs, such a transformation is represented

by a spatiotemporal pattern of action potential inputs being

changed into a different spatiotemporal pattern of action

potential outputs. Our primary thesis is that the encoding of

short-term memories into new, long-term memories repre-

sents the collective set of nonlinearities induced by the three or

four principal subsystems of the hippocampus, i.e., entorhinal

cortex-to-dentate gyrus, dentate gyrus-to-CA3 pyramidal cell

region, CA3-to-CA1 pyramidal cell region, and CA1-to-subicular

cortex. This hypothesis will be supported by studies using

in vivo hippocampal multineuron recordings from animals

performing memory tasks that require hippocampal function.

The implications for this hypothesis will be discussed in the

context of Bcognitive prostheses[Vneural prostheses for

cortical brain regions believed to support cognitive functions,

and that often are subject to damage due to stroke, epilepsy,

dementia, and closed head trauma.
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nonlinear; systems analysis

I . INTRODUCTION

Cognitive functions such as language, abstract reasoning,

and learning and memory have long been held to represent
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the most complex operations of the brain. Thus, it is not
surprising that cognitive functions also have been the most

difficult of brain operations to define in terms of

underlying neural function and neural mechanisms. Cog-

nition most often is defined in terms of theoretical cons-

tructs, for example, Binformation[ or Brecognition,[ and

operations on those constructs, such as Binformation pro-

cessing.[ Theoretical approaches to cognition, although

often successful at the level of inferred cognitive
operations and behavior, have difficulty in bridging the

gap to neuronal functions (e.g., postsynaptic potentials, or

PSPs; action potentials, or APs or Bspikes[) and especially

in bridging the gap to mechanisms underlying neuronal

function (e.g., presynaptic calcium channel kinetics and

neurotransmitter release, receptor-channel kinetics, mem-

brane biophysics, synaptic plasticity, etc.). Without com-

mon points of registry for the conceptual hierarchies of a
neurobiological framework and any theoretical framework

for cognition, it becomes difficult if not impossible, to

understand a cognitive process in terms of a corresponding

neurobiological process, and vice versa. Although fMRI and

other imaging methods hold promise for contributing to

the solution of this problem, neither the spatial-temporal

resolution, nor the generalizability of these technologies

are yet at a level to provide the bridge required.
We propose an operational definition of the neurobi-

ological basis of cognition using a combined experimental/

theoretical approach designed to measure cognitive

processes directly, and to describe them mathematically.

Our approach is based on principles of nonlinear systems

identification, first developed in the field of engineering

[1]–[3]. We and our colleagues have spent much of the last

30 years adapting these principles to neurobiological sys-
tems, and specifically to the hippocampus, a brain region

responsible for long-term memory formation [4]. In our

approach, each neuron is considered the fundamental

operating unit of a given neural system, consistent with the

Bneuron doctrine[ of Ramon y Cajal in the early part of

the 20th century [5]. Neurons generate output signals in

the form of all-or-none APs that propagate to other neu-

rons (typically tens to hundreds of other neurons) along
Baxons[ that end in specialized contacts known as Bsyn-

apses[ (Fig. 1). Each AP input (a neuron may receive

hundreds to thousands of such inputs) generates a synaptic

response that can be depolarizing (excitatory postsynaptic

current, EPSC, or potential, EPSP) or hyperpolarizing

(inhibitory postsynaptic current, IPSC, or potential, IPSP).

If inputs to a neuron cause the resting membrane potential

(typically �70 mV relative to the extracellular fluid) to
depolarize to �55 mV or more, a Bthreshold[ is crossed

which results in the generation of an output AP (this

number for threshold varies considerably from neuron to

neuron, and should be considered very Bapproximate[).

All of these concepts deserve much more detailed con-

sideration for an understanding of the biophysical

properties of neurons and/or fundamental principles of

synaptic transmission [6], [7]. In this paper, however, we

will focus on a few elemental concepts that derive from

essential properties of neurons and neural networks, and
that are key in determining the theoretical and experi-

mental approach used in our research and described here.

We wish to first identify these concepts, and then explain

how they have shaped our approach to studying neural

function at synaptic, neuron, and network levels of orga-

nization. We propose that experimental measurements

and mathematical modeling of network function, using the

formalisms identified, provide the best available direct
observation of high-level neural system function, and thus,

a real, definable, and available neural counterpart to

Bcognitive processes.[

A. Neurons and Neural Networks as Hierarchically
Organized, Dynamical Systems

Among these elemental concepts is that of Bdynamics,[
in other words, the fact that the EPSC and EPSP shown in

Fig. 1 do not have a single value amplitude, but instead,

have an amplitude that evolves over time. EPSPs reflect

Fig. 1. Intracellularly filled hippocampal dentate granule cell,

providing visualization of most of the anatomical components of a

granule cell neuron. Labels identify major aspects of granule cell

anatomy. Right: example intracellularly recorded responses showing

an excitatory postsynaptic current (EPSC), an excitatory postsynaptic

potential (EPSP), and an action potential (AP) generated when

magnitude of the EPSP exceeded threshold. See text for more

explanation.
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EPSCs flowing across the resistance and capacitance of the
cell membrane. The amplitude–time course of the EPSCs

reflect the probabilistic opening and closing of large

numbers of channels in the postsynaptic region of the

cell membrane; the channels are activated by neurotrans-

mitter released by vesicles of the presynaptic element, and

the binding of that neurotransmitter to the postsynaptic

receptor. The dynamics of the relation between receptor

binding and channel state are typically described with
kinetic models. Because the probability of channel opening

is large initially, and then gradually decreases, the EPSC

and the subsequent EPSP have the shape that they do: a

sharp rise followed by an exponential decay. What also is

crucial to an understanding of brain function, however, is

that any biological neural network consists of a hierarchical

organization of dynamical systems [8]–[12]. The dynamics

of molecular interactions of receptor and channel subunits
determine the dynamics of EPSCs; dynamics of EPSCs

determine the dynamics of EPSPs. Within each layer of the

hierarchy, elements can be Btriggered[ or Bactivated,[ but

the activity of a given element then evolves largely accor-

ding to its own internal dynamics.

There also can be interactions between levels in the

hierarchy, however. BInternal dynamics[ strongly influ-

ence the response of a mechanism like an AMPA receptor-
channel to an external input; AMPA receptor-channel

kinetics are unlikely to change substantially unless there is

a genetic mutation of one of its subunits [7]. However, the

kinetics of other receptor-channel complexes like the

NMDA type, include elements that are voltage-dependent

(the voltage-dependent blockade of the NMDA channel by

Mg2þ must be relieved by depolarization of the local

membrane), and thus, are influenced by a property of the
next higher level in the hierarchy, i.e., the neuron. The

transmembrane voltages induced by other inputs sur-

rounding any one NMDA receptor-channel are integrated

by the postsynaptic neuron to determine the local

membrane voltage. This local voltage at the level of the

neuron is the source of a feedback to the lower level of

synapses, to shape the amplitude–time course of the

NMDA-mediated EPSC (see [8], [9], [13], for a formalism
to describe the neural hierarchy).

B. Neurons and Neural Networks as Hierarchically
Organized, Nonlinear Dynamical Systems

Another key concept to understanding brain function

underlying cognition is the Bnonlinearity[ of virtually all

synaptic and neural mechanisms. What is meant by

nonlinearity is straightforward to define, though not so
straightforward to measure, and to measure accurately. The

definition of nonlinearity, in the context of neural synaptic

transmission, is that the response of a postsynaptic neuron

to the second of two successive presynaptic stimuli is not

predictable by the principle of superposition. Consider the

hypothetical examples shown in Fig. 2. The input pulse,

when delivered alone ðxaÞ, generates an output response,

ðyaÞ that exhibits a relatively rapid rise and an exponential
decay typical of EPSP-like waveforms. In the second case,

ðxb; ybÞ, two pulses are delivered with an inter-impulse

interval such that the second pulse is delivered before the

response to the first pulse is completed. This results in

postsynaptic responses that are partially overlapping, and

notably, the resulting compound EPSP is not equivalent to a

simple summation of the two individual EPSPs. Any such

deviation from Bsuperposition[ is identified as a
Bnonlinearity.[ In this hypothetical example, the resulting

response is more than the summation predicted by

superposition, i.e., a Bfacilitative[ second-order nonline-

arity; a response less than that predicted by superposition is

identified as a Bsuppressive[ second-order nonlinearity.

Importantly, observable overlap between responses to

Fig. 2. Hypothetical (based on many, real biological experiments)

illustrating typical nonlinear interactions between two and three

pulses delivered to excitatory synaptic inputs to hippocampal granule

and pyramidal neurons. First (top) trace: single pulse stimulation ðxaÞ
and evoked EPSP ðyaÞ. Second trace: two pulses delivered such that the

second pulse is delivered before the response to the first pulse is

complete. The dashed EPSP demonstrates the amplitude–time course

of the EPSP that would have occurred if the input–output system xb;yb

had been linear. Because the system is nonlinear, however, a strong

facilitation occurs, much larger than predicted based on superposition,

with the response to the second pulse being 3–4 times larger than

that elicited by the first pulse. The third panel, xc;yc, shows another

pair of pulses, with a longer interstimulus interval, that nonetheless

also produces facilitation. The fourth (bottom) panel, xd; xd illustrates

the consequences of combining both pairs of intervals. Again, the

dashed line shows the expected response if the two second-order

nonlinearities combine in a linear manner. Instead, a strong

suppression occurs, revealing a negative third-order nonlinearity.

Corresponding applications of quadruplets and quintuplets would

uncover an even wider scope of nonlinearities, translating into a rich

differential sensitivity to temporal patterns.
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successive inputs is not required for the generation of
nonlinearities. The observable response to a given input

may be completed (i.e., the response returns to baseline),

but that input event may also have initiated, for example,

unobservable activation of biochemical second messenger

systems intrinsic to the postsynaptic neuron, and/or

excitation of local interneurons that provide feedback to

the target cell from which recordings are obtained. The

effects of these secondary inputs may not be observable
until expressed in the context of another direct synaptic

input (see Fig. 2, and [14]).

The first two examples (second and third pairs of

panels) of nonlinearities considered in Fig. 2 are second-

order nonlinearities: deviations from linear summation of

responses to single impulses. We also can consider

summation of second-order nonlinearities, i.e., summation

of two responses where: 1) each response is elicited by the
second of a pair of stimulations and 2) the response to at

least one pair includes a nonlinearity. This possibility is

shown in Fig. 2, the bottom three pairs of panels. Panels xb,

yb and xc, yc each demonstrate a significant nonlinearity in

response to two different interimpulse intervals. When

these two facilitative nonlinearities are combined into a

triplet, however, any expected summation of the two

facilitations instead is revealed as a strong suppression,
expressed ðxd; ydÞ. We have observed this in our own

studies of synaptic transmission in intrinsic hippocampal

pathways, though we have yet to conclusively identify the

explanation. We hypothesize that the first two pulses of

the triplet activate a second messenger system which, in

turn, hyperpolarizes the cell membrane, e.g., through

activation of a Ca2þ-activated Kþ conductance.

1) Formal Definition of Nonlinearities: Before this dis-

cussion proceeds much further, we should pause to provide

a mathematical framework useful for defining and quan-

titatively measuring nonlinearities. To be brief (see [1], [2],

and [15], for more complete discussions of the funda-

mentals related to nonlinearities of biological systems), the

work of Volterra [16], Wiener [17], Marmarelis [1], [2], and

others (see Marmarelis reviews [1], [2]) has established
that for any nonlinear, time-invariant (stationary) system

with finite memory, the system output y can be represented

as a functional power series of the input x, as in the single-

input, single-output, discrete-time case

yðtÞ ¼ k0 þ
XM

�¼0

k1ð�Þxðt� �Þ

þ
XM

�1¼0

XM

�2¼0

k2ð�1; �2Þxðt� �1Þxðt� �2Þ

þ
XM

�1¼0

XM

�2¼0

XM

�3¼0

k3ð�1; �2; �3Þx

� ðt� �1Þxðt� �2Þxðt� �3Þ þ . . . (1)

In this formulation, the system dynamics are expressed by
the temporal convolutions of the input and the Volterra

kernel functions k; the system nonlinearity is expressed in

the form of multiple convolutions of the input and the

higher order (above first order) kernel functions. Kernel

functions k thus represent the input–output nonlinear
dynamics of the system. The zeroth-order kernel, k0, is the

value of the output when the input is absent, i.e., spon-

taneous activity. The first-order kernel, k1, describes the
linear dynamic relation between the input and the output,

as a function of the time interval ð�Þ between the present

time and past time. The second-order kernel, k2, describes

the second-order pairwise nonlinear dynamic relation

between x and y. The third-order kernel, k3, describes the

third-order triplet-wise nonlinear dynamic relation be-

tween x and y, and so on. Higher order kernels, e.g., the

fourth-order kernel, are not shown in this equation. The
formal relation between the Volterra kernels and the single-

pulse, paired-pulse, triple-pulse responses shown in Fig. 2

will be described more fully in Section II [(30), (31)].

2) Relation Between Nonlinearities and Cellular Mechan-
isms: Cellular mechanisms exhibiting second- and third-

order nonlinearities are common throughout the nervous

system. It is fair to state that the great majority of mech-
anisms underlying nervous system functionality exhibit

strong second-order nonlinearities, with third and higher

order nonlinearities being common rather than rare.

Examples of second- and third-order nonlinearities for

hippocampal EPSP recordings already have been shown in

Fig. 2. Note that the strong facilitation of EPSP amplitude

to the second pulse of the triplet almost certainly reflects

residual calcium accumulation presynaptically [18]. The
first pulse activates voltage-dependent calcium channels

located presynaptically; the resulting calcium entry binds

with a family of presynaptic molecules to initiate in-

tegration of neurotransmitter-containing vesicles to the

presynaptic membrane, and the subsequent release of

neurotransmitter into the presynaptic cleft. The time

course for removal of free calcium from the presynaptic,

intracellular space is approximately 50 ms [19]. If a second
pulse activates the same presynaptic fibers within that time

period, the calcium entry caused by the second pulse will

sum with the residual calcium from the first pulse,

resulting in a larger amount of neurotransmitter released

and thus a larger postsynaptic response.

Note that in Fig. 2, the suppression of the response to

the third pulse of the triplet does not represent a Bceiling

effect[ (or saturation): the response amplitude to the third
pulse in the triplet is substantially less than the large

amplitude response to the second pulse. Instead, the first

two pulses of the triplet initiate intracellular mechanisms

and/or feedback circuitry that actively suppress the

glutamate-induced depolarization [20], [21]. In intra-

cellular studies conducted previously [22]–[24], it was

demonstrated experimentally that the majority of the
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second-order suppression is induced by GABA-mediated
inhibition acting through type A and type B receptor

subtypes.

Many of the electrical stimulation protocols that are

commonly used to elicit characteristic response profiles

from target cells, or to reveal particular currents, provide

additional insights into the mechanisms underlying non-

linearities. For example, T-type calcium currents are

sometimes studied by slightly hyperpolarizing the neuron
cell membrane (to bring the majority of channels out of

inactivation) and, while in that hyperpolarized state, de-

livering a depolarization (approximately 10 mV) [25].

These requirements for activating T-type channels would

suggest third-order nonlinearities emerging from the re-

quirements of excitatory input delivered following previ-

ous excitation; the first excitation must be sufficient to

induce GABAergic inhibitory feedback, and the second
excitatory barrage must occur within a specific time

window to avoid desensitization of the T-type channels.

Other calcium channels, e.g., the N-type and the L-type,

require different conditions for their activation. Near-

selective activation of L-type channels requires a period

(e.g., 50 ms) of depolarization (from rest, �75 mV to

approximately 0 mV), followed by an additional depolar-

ization (e.g., toþ20 mV). L-type calcium current then will
continue to flow provided the depolarization remains,

given that L-type calcium channels exhibit little-to-no

desensitization. It is difficult to estimate a priori the degree

of nonlinearity associated with L-type calcium channel

dynamics, but it certainly would be at least of third order,

and may extend across two or more orders of nonlinearity.

N-type calcium channel dynamics will lie somewhere

between those of the T-type and the L-type.
From these examples, we hope that at least some

principles have become clear. Namely, kernels and input–

output models in general, provide a different arsenal of

measures for looking at the same neurobiological mechan-

isms examined with other analytical tools used in the

neurosciences [14], [26], [27]. Most of the other methods

and approaches, which we will term here Bmechanistic,[
emphasize products of the reductionist approach: analysis
and properties of a single mechanism, studied while iso-

lated from the myriad of other mechanisms with which

that target mechanism usually interacts. Kernel functions

and the class of input–output models discussed here

emphasize interactions between mechanisms. Given that

cognitive processes must derive from systems-level dynam-

ics, we would argue that input–output modeling is an

essential component of any attempt to link cognition to
neurobiological mechanisms.

Finally, input–output modeling has sometimes been

called a Bblack box[ approach, based on an assumption

that practitioners of the approach do not know the box

contents, i.e., the neurobiological mechanisms underlying

the dynamics being modeled. This assumption is ludicrous

on its face, of course. Our input–output modeling of hip-

pocampus, and input–output modeling of other systems
like the retina [28], have been accomplished with the same

knowledge of the underlying circuitry, synaptic organiza-

tion, and pharmacology as studies done on the same

systems with mechanistic approaches. In fact, our studies

of the role of GABAergic interneurons in second- and

third-order nonlinearities of hippocampal dentate granule

cells were guided by pharmacologically induced changes in

intracellularly recorded membrane potentials [22]–[24].
Changes in the kernel functions occurred in response to

interstimulus intervals and pairs of interstimulus intervals

matching the time constants of GABAA and GABAB

receptor kinetics, with drug-induced changes being spe-

cific for GABAergic receptor agonists and antagonistsVin

other words, the input–output studies used techniques,

procedures and criteria nearly identical with mechanistic

analyses. In the end, however, kernel analyses reveal more
about the total system functionality, both because of the

effects of broad-band input stimulation (activates many

more mechanisms than traditional single-pulse, paired-

pulse, or constant frequency stimulation), and because the

formalism itself forces data interpretation and problem

specification in terms of a neural network or neural sys-

tems level of analysis. For example, Fig. 3(a) shows a box

diagram of the dentate gyrus in the intact rat, making
explicit the relation between dentate granule cells (the

principal neurons of the dentate), and many of the known

pathways providing feedforward and feedback regulation

of granule cells in response to excitation of input from the

entorhinal cortex (similar feedback pathways for CA3 and

CA1 are not shown). In the context of a continuous

(average interimpulse interval: 500 ms), random interval

(interval range: 1–5000 ms) impulse train stimulation of
excitatory entorhinal input, it can be seen that granule

cells will be activated monosynaptically, but also will be

stimulated multisynaptically through the commissural,

GABAergic, and other feedforward and feedback pathways

intrinsic to the dentate. An equivalent representation for

the pathways included in the hippocampal slice is shown in

Fig. 3(b); the system can be reduced further with phar-

macological blockade of GABAergic receptors. In this
manner, the underlying anatomical pathways that contrib-

ute to dentate granule cell nonlinear dynamics can be

readily identified, and used for interpretation of associated

input-output models. Thus, input–output modeling is only

as Bblack box,[ or uninterpretable, as the user. Recently,

the relation between input–output models and mechanis-

tic models has been formalized, and we have shown how

both approaches can be used in a complementary manner
[20], [21], [29].

C. Neurons and Neural Networks as
Hierarchically Organized, Nonstationary,
Nonlinear Dynamical Systems

The range of different dynamics found in the nervous

system, and the magnitude and higher orders of

Berger et al. : The Neurobiological Basis of Cognition

360 Proceedings of the IEEE | Vol. 98, No. 3, March 2010



nonlinearity found for those mechanisms studied to date,

provide for considerable complexity of temporal pattern

encoding. The degree of complexity increases even further

when we consider that the dynamics being discussed to

this point are not always constant, but instead, can change

over time, or are Bnonstationary.[ The learning and adap-

tive capabilities of the vertebrate and invertebrate nervous

systems are well established. In addition, the last four

Fig. 3. Block diagram of most, known anatomical pathways that provide feedforward and feedback regulation of granule cells in

response to excitation of input from the entorhinal cortex, and thus are the source of some of the nonlinearities of granule cells,

the output neurons of the dentate. (a) Feedforward and feedback pathways in the intact animal. (b) Equivalent representation for the

pathways included in the hippocampal slice.
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decades of neuroscience research have seen experimental
identification of a wealth of long-term, permanent changes

in cellular and synaptic mechanisms that are induced by

the learning process. All of this evidence has shown that

learning and memory do not involve Bout of the ordinary[
mechanisms that are reserved only for learning and

memory, and that remain hidden and unexploited until

environmental circumstances demand their amalgamation

and use. In general, the mechanisms involved in learning
and memory are the same mechanisms that underlie the

biophysics and synaptic transmission of neurons in day-to-

day circumstances: learning and memory simply require

more of mechanism x or less of mechanism y. Given that the

effects of mechanisms x and y are captured by, and

contribute to, the kernels under nonlearning conditions,

we should expect to see a relatively smooth change in

system dynamics during the course of learning, i.e., there
should not be a sudden and abrupt incorporation into the

system of a radically different set of mechanisms, which

would be reflected by a sudden and abrupt change in system

nonlinearities. Although not an optimal test of this

hypothesis, the above is precisely what we observed with

the induction of long-term potentiation (LTP). The

induction of LTP was accompanied by a smooth and

gradual change in pre-LTP second- and third-order
nonlinearities [30]. With regard to the Volterra kernel

expressions introduced earlier, it thus is reasonable to

incorporate cellular plasticity and learning and memory, or

nonstationarities, simply by having the kernel expressions

become a function of time, t, in addition to remaining a

function of � , the time since a prior input pulse

yðtÞ ¼ k0ðtÞ þ
XM

�¼0

k1ðt; �Þxðt� �Þ

þ
XM

�1¼0

XM

�2¼0

k2ðt; �1; �2Þxðt� �1Þxðt� �2Þ

þ
XM

�1¼0

XM

�2¼0

XM

�3¼0

k3ðt; �1; �2; �3Þxðt� �1Þx

� ðt� �2Þxðt� �3Þ þ . . . (2)

Of course, there are more neurobiological processes than

those underlying learning and memory that change as a

function of time, and thus, would be reflected by

nonstationarity of neural system kernels. Both the
noradrenergic and the serotonergic neurotransmitter

systems provide a widely dispersed input to much of the

forebrain, thalamus, brainstem, and spinal cord. Both of

these systems also change their levels of activity markedly

during the sleep–wake cycle, with experiments demon-

strating that the actions of norepinephrine and serotonin

can significantly alter the responsiveness of recipient

neurons to other, nonnoradrenergic and nonserotonergic
afferents. For example, we have shown previously that

large magnitude changes in noradrenergic levels in

hippocampus are associated acutely with substantial

changes in second- and third-order nonlinear responsive-

ness of dentate granule cells to excitatory, glutamatergic

input from the perforant path, and inhibitory, GABAergic,

input from inhibitory interneurons internal to the dentate

gyrus [31].
Other processes having the longest time constants are

likely to be those involved in development of the nervous

system. Like changes in kernels representing learning,

those representing development will not follow a pattern

of deviating from a baseline of system characteristics, and

then returning to that standard some predictable period of

time later, as should be observed in the case of the

dynamics of diurnal cycles. Instead, in the case of devel-
opment, we would expect nonlinear system characteristics

that slowly evolve into progressively richer, more stable,

and more different (than the original) sets of system prop-

erties. This also allows for the exciting possibility that

abnormal developmental and aging states that are difficult

to diagnose (e.g., autism, schizophrenia, Alzheimer’s dis-

ease) might be identified and differentiated with the new

and varied set of quantifiable descriptors represented by
the kernels, and which we propose to be capable of

reflecting Bsystem properties[ of the neural circuitry un-

derlying cognition.

D. Information Representation in the Ensemble
Firing of Populations of Neurons

It has been demonstrated, particularly in cortical sys-

tems, that key information guiding trained, intentional
behavior is represented in the Bensemble[ firing of pop-

ulations of neurons [32]–[39], i.e., spatiotemporal patterns

of electrophysiological activity. The advent of multi-

channel single-cell recording has provided the capability

for simultaneously observing the firing of tens to hundreds

of neurons, so that higher level analyses of the collective

relations among subpopulations of neurons can be con-

ducted [32], [40]–[42]. This has allowed confirmation of
earlier suggestions of collective, ensemble activity in

results from single cell recording studies [43].

How should this collective activity of subpopulations

of neurons be interpreted in terms of cognitive proces-

sing? Clearly, when a subpopulation of neurons achieves

and maintains a given spatiotemporal pattern, or a given

Brelatedness in activity,[ and which as a consequence

allows for the identification of a relation between that
pattern and an external event, it is reasonable to define

that spatiotemporal pattern as a Brepresentation[ [44].

Representations are transient because neuron firing typi-

cally is maintained in one spatiotemporal pattern for only

hundreds to thousands of milliseconds (restated, the

duration of an identifiable spatiotemporal pattern is

typically hundreds to thousands of milliseconds), unless
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we consider pathological conditions, e.g., rhythmic,
cyclical firing characteristic of epilepsy. The latter and

physiological rhythmicities, e.g., alpha rhythm, are

indicative of Bstates[ rather than the identities of specific

external events.

With regard to hippocampus, such representations, or

temporarily stable spatiotemporal patterns, could readily

map onto individual memories, possibly even individual

components of a memory. As the contents of a memory
process, temporarily stable spatiotemporal patterns of

activity within areas that provide input to hippocampus

could constitute Bshort-term memories.[ With representa-

tions as Bcontent,[ input–output transformations could be

considered Bprocess.[ Neural systems and brain regions

process information by transforming incoming spatiotem-

poral patterns into different, outgoing spatiotemporal

patterns. This statement is not a claimVthere simply is
no other reasonable interpretation of the basic phenom-

enology. Thus, information processing underlying cogni-

tion involves transformations of neural representations

that are dynamic, nonlinear, and often nonstationary

(time-varying). While recent advances in multielectrode

technology have made it possible to record the simulta-

neous activities of populations of neurons in behaving

animals, modeling such complex system behavior still
remains one of the most challenging tasks in computa-

tional neuroscience [45]. It is in response to this need that

we have invested over 20 years in the development and

refinement of a combined experimental-theoretical strat-

egy for quantitatively characterizing, and then modeling,

neural systems typical of those routinely found in the

mammalian brain.

II . EXPERIMENTAL-THEORETICAL
STRATEGY FOR MODELING BRAIN
COGNITIVE FUNCTIONS

We formulate here a three-step strategy to model the cog-

nitive function of brain regions in general, and the hip-

pocampus, in particular. In this strategy, we define the

cognitive operation of a brain region as the transformation
from its input activities to its output activities. Therefore,

understanding the cognitive function of a brain region is

equivalent to identifying its input–output transfer func-

tion S. Since in brain regions, input–output signals are

manifested in the form of spatiotemporal patterns of

neural spikes, i.e., all-or-none electrical events recorded

from individual neurons, all parameters of the transfer

function should be derived from the timings of the input/
output spikes. The first two steps deal with the stationary

and nonstationary aspects of the transfer function,

respectively (Fig. 4 left, middle). For the nonstationary

case, the third step seeks to identify the Blearning rule[
underlying the nonstationarity of the transfer function

(Fig. 4 right).

A. Stationary Modeling of Brain Regions
During performance of asymptotically learned behav-

ior, a brain region is modeled as a time-invariant system.

Its transformational property is modeled as a stationary

process. A time-invariant (stationary) system is one

whose transfer function does not depend on time. The

modeling goal in this step then is to identify the time-

invariant transformation S from multiple input spike

trains X to the multiple output spike trains Y (3). Since

the mechanisms underlying synaptic transmission and
generation of spikes in neurons are inherently nonlinear

and dynamical, the stationary model has to be a

multiple-input, multiple-output (MIMO) nonlinear dy-

namical model

S : X ! Y: (3)

In our approach, the MIMO model is decomposed into a

series multiple-input, single-output (MISO) models
(Fig. 5). Each MISO model is then formulated to have

both parametric (i.e., mechanistic) and nonparametric (i.e.,

descriptive) components [46], [47]. First, the overall model

structure is parameterized to be Bneuron-like.[ It captures

Fig. 4. Schematic diagram of the three-step modeling strategy. X: input sequences; Y: output sequences; S: transfer functions;

L: learning rule for S. In Step 1, S is not a function of time. In Step 2 and 3, S varies with time. During learning, S evolved as a result of input and

output activities following the learning rule. Colored boxes indicate the functions need to be identified in each step.
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the stereotypical features of spiking neurons and explicitly

includes variables that can be interpreted as the principal

cellular processes such as the postsynaptic potential, the
spike-triggered after-potential, the pre-threshold noise, and

the spike-generating threshold. This configuration partitions

the system nonlinear dynamics in a physiologically realistic

manner, and thus facilitates comparison with intracellular

recording results. The more versatile features of spiking

neurons, i.e., the transformation from the input spikes to

postsynaptic potentials and the transformation from the

output spike to the after-potential, on the other hand, are
modeled nonparametrically with the Volterra series, taking

advantages of its flexibility in capturing nonlinear dynamics.

1) Model Configuration: The MISO model structure con-

sists of five components (Fig. 5): 1) a feedforward block K
transforming the input spike trains x to a continuous hidden

variable u that can be interpreted as the postsynaptic

potential; 2) a feedback block H transforming the preceding
output spikes to a continuous hidden variable a that can be

interpreted as the after-potential; 3) a noise term " that
captures the system uncertainty caused by both the intrinsic

neuronal noise and the unobserved inputs; 4) an adder

generating a continuous hidden variable w that can be inter-

preted as a prethreshold potential; and 5) a threshold func-

tion generating output spikes when the value of w crosses �.

The model can be expressed by the following equations:

w ¼ uðk; xÞ þ aðh; yÞ þ "ð�Þ (4)

y ¼ 0 when w G �

1 when w � �:

�
(5)

K takes the form of a Volterra model, in which u is ex-

pressed in terms of the inputs x by means of the Volterra

series expansion as

uðtÞ ¼ k0 þ
XN

n¼1

XMk

�¼0

k
ðnÞ
1 ð�Þxnðt� �Þ

þ
XN

n¼1

XMk

�1¼0

XMk

�2¼0

k
ðnÞ
2s ð�1; �2Þxnðt� �1Þxnðt� �2Þ

þ
XN

n1¼1

Xn1�1

n2¼1

XMk

�1¼0

XMk

�2¼0

k
ðn1;n2Þ
2x ð�1; �2Þxn1

� ðt� �1Þxn2
ðt� �2Þ þ . . . (6)

The zeroth-order kernel, k0, is the value of u when the

input is absent, for example, when there is spontaneous
variations in membrane potential first-order kernels, k

ðnÞ
1 ,

describe the linear relation between the nth input xn and u,

as functions of the time intervals ð�Þ between the present

time and the past time. In other words, for each of the

multiple inputs to the system, first-order kernels account

for the effects of a single input event (a spike, or action

potential) on the system membrane potential output, u,

regardless of when those single input events may have
occurred in the past, and thus, regardless of any other

inputs that may have occurred between the past time de-

signated by a particular ð�Þ and the present time. Second-

order self-kernels k
ðnÞ
2s describe the second-order nonlinear

relation between the nth input, xn, and u, as functions of

the two time intervals ð�1; �2Þ between the present time

and the two respective past times. Thus, second-order

kernels account for the modulatory effects of an input
event occurring in the past on the system membrane po-

tential output, u, evoked by a second input event occurring

in the present, when both events occur on the same input.

The previous input pulse may increase the response evoked

by the present input, i.e., cause facilitation, or may reduce

the response evoked by the present input, i.e., cause sup-

pression. Second-order cross-kernels k
ðn1;n2Þ
2x describe the

Fig. 5. MIMO model for population neural dynamics. (a) Schematic

diagram of spike train propagation between two brain regions.

(b) MIMO model as a series of multiple-input single-output (MISO)

models. (c) Structure of a MISO model.
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second-order nonlinear interactions between each unique
pair of input events (xn1

and xn2
) as they affect u, when

each of those pulse events occurs on different inputs. N is

the number of inputs. Mk denotes the memory length of

the feedforward process. Higher order kernels, e.g., third-

and fourth-order kernels, are not shown in this equation,

but should be obvious by extension from the explanations

above.

Similarly, H takes the form of a first-order Volterra
model as in

aðtÞ ¼
XMh

�¼1

hð�Þyðt� �Þ (7)

where h is the linear feedback kernel. Mh is the memory
length of the feedback process (note � starts from 1 instead

of 0 to avoid predicting the current output with itself). The

noise term " is modeled as a Gaussian white noise with

standard deviation �.

In summary, what the Volterra representation states is

that subthreshold variation in membrane potential for any

one neuron can be accounted for by variation in the

temporal pattern of past action potentials for any one
input, or, variation in the spatiotemporal pattern of past

action potentials for a population of inputs to that neuron.

In total, with all of its components, the model states that,

for a population of neurons (input) that provide synaptic

input to a second population of neurons (output), variation

in the spatiotemporal pattern of past action potentials for

the input neurons predicts the spatiotemporal pattern of

action potentials for the output population of neurons. We
know from what are now tenants of fundamental neuro-

science that, in general, such an input–output relation

must be true. Outstanding issues relate more to whether or

not such a relationship can be quantified or modeled, and

whether or not experimental evidence supports such a

model to the extent that it can be used to predict the

effects of arbitrary input patterns. We report here that

both of the latter questions can be answered in the
affirmative.

2) Model Estimation: With the model structure defined

as above, the next step is to estimate all model parameters,

i.e., feedforward kernels k, feedback kernels h, prethres-

hold noise standard deviation �, and threshold �, from the

timings of the input/output spikes. The biggest challenges

in Volterra modeling is the large number of open
parameters (coefficients) to be estimated, especially in

the cases of high dimensional input and high order model.

To solve this problem, Laguerre expansion of the Volterra

kernels (LEV) and statistical model selection techniques

are employed [46], [47].

With LEV, Volterra kernels (k and h) are expanded

with orthonormal Laguerre basis functions b [20], [48],

[49]. Equations (6) and (7) are rewritten into

uðtÞ ¼ c0 þ
XN

n¼1

XL

j¼1

c
ðnÞ
1 ðjÞv

ðnÞ
j ðtÞ

þ
XN

n¼1

XL

j1¼1

Xj1

j2¼1

c
ðnÞ
2s ðj1; j2ÞvðnÞj1

ðtÞvðnÞj2
ðtÞ

þ
XN

n1¼1

Xn1�1

n2¼1

XL

j1¼0

XL

j2¼0

c
ðn1;n2Þ
2x

� ðj1; j2ÞvðnÞj1 ðtÞv
ðnÞ
j2 ðtÞ þ . . . (8)

aðtÞ ¼
XL

j¼1

chðjÞvðhÞj ðtÞ (9)

where v are the convolution of input–output spike trains

(x and y) and Laguerre basis functions b

v
ðnÞ
j ðtÞ ¼

XMk

�¼0

bjð�Þxnðt� �Þ; v
ðhÞ
j ðtÞ

¼
XMh

�¼1

bjð�Þyðt� �Þ: (10-11)

c
ðnÞ
1 , c

ðnÞ
2s , c

ðn1;n2Þ
2x , and ch are the sought Laguerre expansion

coefficients of k
ðnÞ
1 , k

ðnÞ
2s , k

ðn1;n2Þ
2x , and h, respectively (c0 is

equal to k0). The number of basis functions ðLÞ is typi-

cally much smaller than the memory length (Mk and Mh),
so the total number of coefficients is greatly reduced

[46], [47].

All model parameters can be estimated using a

maximum-likelihood method. The negative log-likelihood

function L is

Lðyjx; k; h; �; �Þ ¼ �
XT

t¼0

ln Pðyjx; k; h; �; �Þ (12)

where T is the data length, and P is the probability of

generating the recorded output y

Pðyjx; k; h; �; �Þ

¼
Probðw � �jx; k; h; �; �Þ when y ¼ 1

Probðw G �jx; k; h; �; �Þ when y ¼ 0:

�
(13)

Since " is assumed to be Gaussian, the conditional

firing probability intensity function Pf (the conditional

probability of generating a spike, i.e., Probðw �
�jx; k; h; �; �Þ in (13)) at time t can be calculated
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with the Gaussian error function (integral of Gaussian
function) erf

Pf ðtÞ ¼ 0:5� 0:5erf
�� uðtÞ � aðtÞffiffiffi

2
p

�

� �
(14)

where

erfðsÞ ¼ 2ffiffiffi
�
p
Z s

0

e�t2

dt: (15)

P at time t then can be calculated as

PðtÞ ¼ Pf ðtÞ when y ¼ 1

1� Pf ðtÞ when y ¼ 0

�
(16)

or,

PðtÞ ¼ 0:5� yðtÞ � 0:5½ �erf
�� uðtÞ � aðtÞffiffiffi

2
p

�

� �
: (17)

Model coefficients c then can be estimated by minimizing
the negative log-likelihood function L

ec ¼ arg min LðcÞð Þ: (18)

It is shown that this model is equivalent to a generalized

linear model (GLM) [50], [51] with inputs and preceding

output structured with Volterra models [46], [47]. For this

reason, this model can be termed as generalized Volterra

model (GVM) [47], [52]. Note that u, a, and n are

dimensionless variables, so without loss of generality, �
and � can be set to 1 in estimation, and later restored from
the estimated coefficients.

The second step of model estimation involves the se-

lection of optimal subsets of model coefficients. Mathe-

matically, this step is necessary for further reducing the

number of model coefficients to avoid overfitting. More

importantly, this step identifies the significant inputs

(represented by the first- and second-order self-kernels)

and nonlinear interactions between inputs (represented by
the second-order cross-kernels) of each output neuron and

results in more interpretable models [47]. For a given

output neuron, the selected input neurons are the ones

that have functional connections to the output neuron; the

selected (second) cross-kernels indicate the pairs of inputs

that exhibit nonlinear summations in the synaptic

potential ðuÞ of the output neuron. The statistical model

selection procedure involves a forward step-wise model
selection method [53] and a cross-validation method that

have been described previously [47].

3) Kernel Reconstruction and Interpretation: The model

coefficients ĉ and �̂ can be obtained from the estimated

Laguerre expansion coefficients, ec, as in

ĉ0¼0; ĉ
ðnÞ
1 ¼

~c
ðnÞ
1

1� ~c0
; ĉ
ðnÞ
2s ¼

~c
ðnÞ
2s

1� ~c0
;

ĉ
ðn1;n2Þ
2x ¼ ~c

ðn1;n2Þ
2x

1� ~c0
; ĉh¼

~ch

1� ~c0
; �̂ ¼ 1

1� ~c0
: (19-24)

Feedforward and feedback kernels are then recon-

structed as

k̂0 ¼ 0;

k̂
ðnÞ
1 ð�Þ ¼

XL

j¼1

ĉ
ðnÞ
1 ðjÞbjð�Þ;

k̂
ðnÞ
2s ð�1; �2Þ ¼

XL

j1¼1

Xj1

j2¼1

ĉ
ðnÞ
2s ðj1; j2Þ

2

� bj1ð�1Þbj2ð�2Þ þ bj2ð�1Þbj1ð�2Þ
� �

;

k̂
ðn1;n2Þ
2x ð�1; �2Þ ¼

XL

j1¼1

XL

j2¼1

ĉ
ðn1;n2Þ
2x ðj1; j2Þbj1ð�1Þbj2ð�2Þ;

ĥð�Þ ¼
XL

j¼1

ĉhðjÞbjð�Þ: (25-29)

Threshold � is equal to one.

The normalized kernels provide an intuitive represen-

tation of the system input–output nonlinear dynamics.
Single-pulse and paired-pulse response functions (r1 and r2)

of each input can be derived as [20], [47]

r
ðnÞ
1 ð�Þ ¼ k̂

ðnÞ
1 ð�Þ þ k̂

ðnÞ
2s ð�; �Þ; and

r
ðnÞ
2 ð�1; �2Þ ¼ 2k̂

ðnÞ
2s ð�1; �2Þ (30-31)

r
ðnÞ
1 is simply the PSP elicited by a single spike from the nth

input neuron; r
ðnÞ
2 describes the nonlinear effect of pairs of

spikes from the nth input neuron that is different from the

simple summation of their single PSPs, i.e., r
ðnÞ
1 ð�1Þþ

r
ðnÞ
1 ð�2Þ. k̂

ðn1;n2Þ
2x ð�1; �2Þ represents the nonlinear effect of

pairs of spikes with one spike from neuron n1 and one

spike neuron n2. h represents the output spike-triggered

after-potential (Fig. 6).

4) Model Validation and Prediction: The cross-validation

procedure in model selection guarantees the resulting
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model to have predictive power over novel datasets since

the out-of-sample likelihood function has to be decreased

during model selection [47]. Selected inputs/cross-terms

and estimated parameters/coefficients can be readily used

to make further inferences about the functional connecti-

vity and neuronal dynamics as shown in the previous sec-

tion. However, one also needs to evaluate quantitatively the

goodness-of-fit of the model. One way of doing this is to

evaluate the continuous firing probability intensity pre-

dicted by the model with the recorded output spike train.

According to the time-rescaling theorem, an accurate model

should generate a conditional firing intensity function Pf

that can rescale the recorded output spike train into a

Poisson process with unit rate [54]. By further variable con-

version, interspike intervals should be rescaled into inde-

pendent uniform random variables on the interval (0, 1).

The model goodness-of-fit then can be assessed with a

Kolmogorov-Smirnov (KS) test. If the model is correct, all

points should lie closely to (e.g., within the 95% confidence

bounds) the 45-degree line of the KS plot. Another way is to

quantify the similarity between the recorded output spike

train y and the predicted output spike train ŷ after a smooth-

ing process. First, ŷ is realized through simulation. Secondly,

ŷ and y are convolved with a Gaussian kernel and then

compared by calculating their correlation coefficient [46].

Fig. 6. Interpretations of the feedforward and feedback kernels.

rðiÞ1 is the response in u elicited by a single spike from the ith input

neuron; rðiÞ2 describes the joint nonlinear effect of pairs of spikes from

the ith input neuron in addition to the linear summation of their

first-order responses.kði;jÞ2x represents the joint nonlinear effect of pairs

of spikes from neuron i and j. h represents the output spike-triggered

after-potential on u. Black areas: effect of each kernel on u.

Fig. 7. A stationary multi-input single-output (MISO) model of hippocampal CA3-CA1. r1 are the single-pulse response functions; k2 s are the

paired-pulse response functions for the same input neurons. k2x are the cross-kernels for pairs of neurons. This particular MISO model has six r1,

six r2x, and one k2x.
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5) Application to Hippocampal CA3-CA1 Dynamics: This
method has been successfully implemented in the

modeling of hippocampal CA3-CA1 dynamics [46], [47].

In the hippocampus, CA1 pyramidal neurons are primarily

driven by CA3 pyramidal cells. Output of the CA1 region

thus can be considered a nonlinear transformation of the

CA3 spike trains. In Drs. Sam Deadwyler and Hampson’s

laboratories at Wake Forest University, rats are trained to

perform a memory-dependent behavioral taskVdelayed
nonmatch-to-sample task. CA3 and CA1 spike trains are

simultaneously recorded when the rats are performing

the task, and then used to build the MIMO model

(Fig. 7). Results show that the MIMO model can be

reliably estimated from the CA3 and CA1 spike trains.

The model: a) accurately (but stochastically) predicts the

CA1 spatiotemporal pattern based on the CA3 spatiotem-

poral pattern (Fig. 8); b) provides intuitive representa-
tions of the CA3-CA1 transfer function in means of

feedforward kernels, feedback kernels, noise standard

deviation; and c) reveals the functional CA3-CA1 connec-

tivity with its significant model terms (see [46], [47] for

more details).

B. Nonstationary Modeling of Brain Regions
Our modeling approach also must deal with the non-

stationarities of hippocampal regions. In a nonstationary

(time-varying) system, the input–output transfer function

depends also on time (32). The modeling goal is to track the
emergence and evolution of the MIMO nonlinear dynamics

during learning and memory formation.

SðtÞ : X ! Y: (32)

1) Estimating a Time-Varying MIMO Model: We have
formulated a nonstationary modeling methodology for the

above-described model structure using a point-process

adaptive filtering framework [55]. In this approach, model

coefficients ðcÞ are taken as state variables while the

input–output spikes are taken as observable variables.

Using adaptive filtering methods, state variables can be

recursively updated as the observable variables unfold in

time. The underlying change of system input–output
properties then is represented by the time-varying Volterra

kernels (kðtÞ and hðtÞ) reconstructed with the time-varying

coefficients ðcðtÞÞ.
Firstly, the probability of observing an output spike at

time t, i.e., Pf ðtÞ, is predicted by the GVM at time t� 1

based on the inputs up to t and output before t (14). Sec-

ondly, the difference between Pf ðtÞ and the new observa-

tion of output yðtÞ is used to correct the GVM model
coefficients. Using the stochastic state point process

filtering algorithm [56], coefficient vector CðtÞ and its

covariance matrix WðtÞ are both updated iteratively at each

time step t

WðtÞ�1 ¼ Wðt� 1Þ þ Q½ ��1

þ
@ log Pf ðtÞ

@C

� �T

Pf ðtÞ
@ log Pf ðtÞ

@C

� �"

� yðtÞ � Pf ðtÞ
� 	 @2 log Pf ðtÞ

@C@CT



Cðt�1Þ

(33)

CðtÞ ¼ Cðt� 1Þ þWðtÞ

� @ log Pf ðtÞ
@C

� �T

yðtÞ � Pf ðtÞ
� 	" #

Cðt�1Þ

(34)

Fig. 8. Model prediction with MISO and MIMO models. (a) Actual output spike train (top panel) and output spike train predicted by a MISO model

(bottom panel). (b) Output spatiotemporal pattern predicted by a MIMO model. (a) and (b) are both out-of-sample results.
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where Q is the coefficient noise covariance matrix. In-

cluding W as the Blearning rate[ allows reliable and rapid

tracking of the model coefficients C representing the sys-

tem nonlinear dynamics.

2) Simulation Studies: We have intensively tested this
nonstationary algorithm with synthetic input–output spike

train data obtained through simulations [55]. The tested

systems have various model structures involving different

model orders, e.g., first and second order (including self-

and cross-kernels). The number of system inputs ranges

from moderate to larger scale (e.g., 32-input), which

matches the maximal number of available units in a typical

experimental dataset. The system nonstationarity to be
tracked takes a variety of forms such as: a) step (jump)

change; b) linear change; and c) LTP/LTD-like changes.

Results show that the nonstationary algorithm can reliably

and accurately track the underlying system nonstationa-

rities and represents them in the time-varying Volterra

kernels (see Fig. 9 for a second-order, two-input, step-

change example). In all cases, the estimated kernels con-

verge rapidly (with a 10–100 s timescale) to the target

kernels without interfering each other.

C. Identification of the Learning Rule
The nonstationarity in the transfer function of a given

brain region is determined by the experiences of the
animal. In the brain region, the experiences are internally

represented as the flow of the input/output spatiotemporal

patterns of spike trains. A fundamental question to ask is

whether it is possible to reconstruct the nonstationarity of

the transfer function of a brain region, which is charac-

terized in Step 2, using its input–output spike trains and a

learning rule defining how to modify the transfer function

Fig. 9. A second-order, two-input-single-output system tracked with the nonstationary algorithm. First-order kernels ðk1Þ and second-order

self-kernels ðk2sÞ have step changes at 4000 s. Zeroth-order kernel ðk0Þ, second-order cross-kernels ðk2xÞ and feedback kernel ðhÞ remain

constant. Delay time expand ð�Þ is 500 ms fork1,k2s, andk2x, 1000 ms forh. The amplitude of kernel is indicated by the color. Only diagonal values

of second-order kernels are plotted for simplicity. A: actual kernels; E: estimated kernels.
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based on the input–output spike trains (Fig. 4 right). Such
a learning rule is critical for understanding the underlying

mechanisms of cognition processes, e.g., Hebbian-like

synaptic modification during learning and memory

formation

L : X; Y ! S: (35)

We postulate to conduct mathematical analyses and com-

puter simulations of neuronal network nonlinear, nonsta-

tionary dynamics to identify such potential learning rules.

As a first step, a neuronal network model can be built and

initialized based on the MIMO nonlinear dynamics

identified from naBve animals. The functional connections
between input and output neurons will be determined

based on the feedforward kernels. The spike-dependent

intrinsic properties of the output neurons will be deter-

mined by the feedback kernels. In the next step, learning

processes in the brain region will be simulated by feeding

the network model with the input sequence recorded from

the modeled brain region during learning. The input–

output transfer function SðtÞ will be updated by the input
and output patterns following a learning rule L. Finally, the

learning rule is substantiated through mathematical

analyses, and the associated parameters are optimized so

that the emergence and changes of the transfer function

characterized in Step 2 can be replicated in the simulation.

The candidate learning rules include the following.

1) Input/output frequency-dependent learning. This

learning rule mimics the classical Bienenstock-
Cooper-Munro (BCM) form of synaptic modifica-

tion rules, in which the changes of the transfer

function depend only on the frequencies of the

input/output spike trains [57].

2) Input/output timing-dependent learning. This

learning rule mimics the spike-timing-dependent

plasticity. Changes of the transfer function

depend on the timings of both input and output
spikes [58].

3) Input/output pattern-dependent learning. This

will be a general form of learning rule, in which

changes in the transfer function are determined

by the spatiotemporal patterns of the input/output

spikes [59]. Interactions between multiple input/

output spikes will be explicitly included and

analyzed.
We expect the final outcome of this step to be a generative

model of the identified nonstationarities of the hippocam-

pal population nonlinear dynamics.

III . CONCLUSIONS AND DISCUSSION

In this paper, we have dealt with the issue of the neuro-

biological bases of cognition. More specifically, we have

argued that nonlinear input–output properties of popula-
tions of neurons are potential neurobiological indices of

cognitive processing. We have demonstrated both here and

previously [14], [20], [21], [23], [24], [26], [27], [46], [47],

[60] that nonlinear input–output properties of single

neurons and populations of neurons can be measured ex-

perimentally (electrophysiologically), and for mathemati-

cal modeling, can be readily incorporated within a

theoretical framework of nonlinear systems identification.
We also have presented here some of the most recent

methodological advances in nonlinear systems modeling

that provide the critical capabilities for achieving systems-

level descriptors of neural functionVsystems-level de-

scriptors that can be proposed and investigated as potential

correlates of cognitive function. These new methodologies

allow input–output properties to be defined in the context

of high-order nonlinearities, nonstationarities (synaptic
plasticity) of nonlinearities, and population, ensemble

coding of neural information.

Before discussing these concepts and approaches in the

context of the cognitive function of the hippocampus, it is

important to state some assumptions. First, we assume that

cognitive functions reflect the highest levels of neural

function, i.e., neural operations that involve entire systems

of neurons. For example, the cognitive function of creating
new long-term memories from existing short-term mem-

ories is performed by the hippocampal formation, which is

a collection of cortical neural structures consisting of the

entorhinal cortex, the dentate gyrus, the CA3 pyramidal

cell region (the regio inferior of the hippocampus), the

CA1 pyramidal cell region (the regio superior of the

hippocampus), and the subiculum [5], [61]. The hippo-

campus properVdentate, CA3, and CA1Vis considered
the Bintrinsic trisynaptic pathway[ of the hippocampus,

and is the minimum circuitry involved in the short-term

memory to long-term memory transformation. Second, we

assume that the collective functional properties of the

dentate, CA3, and CA1, when combined together, are

equivalent to the cognitive function of Blong-term memory

formation.[ Third, we assume that the functional proper-

ties of the components of the hippocampus proper iden-
tified above, and for that matter most any brain region, can

be assessed as Binput–output properties,[ i.e., the manner

in which incoming signals are processed into different,

outgoing signals. At a neural level, the composite input–

output properties of the major, intrinsic pathways of a

brain region are its function. When the kernels are esti-

mated accurately for the appropriate order nonlinearity,

and for neural data generated under Bnatural[ conditions,
the kernels: 1) describe how the neural system, at each one

of its major layers or subsystems, responds to the range of

input signals associated with the set of behaviors and/or

cognitive states of interest; 2) describe how neural

correlates of the behavior of interest (#1) are transformed

from the system input to the system output, and at each of

its major layers or subsystems; and 3) allow prediction of

Berger et al. : The Neurobiological Basis of Cognition

370 Proceedings of the IEEE | Vol. 98, No. 3, March 2010



system and subsystem output for a wide range of activity
conditions.

Clinical studies conducted over the last 60 years have

clarified that the hippocampal formation is responsible for

long-term memory formation [4], [62], [63]. The hippo-

campal system does not store memories itself, but instead,

re-encode short-term memory so that information is com-

patible with existing long-term memory. Precisely what

Bcompatibility[ means remains unknown, but as an exam-
ple, compatibility might mean that appropriate first-order

associations for a given episodic memory had been identi-

fied. Long-term memory is stored in a distributed manner,

probably throughout neocortex. With the hippocampus

defined as the set of brain systems above, Blong-term

memory formation[ must be equivalent to the total re-

encoding process performed as inputs propagate from the

dentate gyrus to the CA1 region. How can this Bre-encoding
process[ be assessed and understood? As stated above, and

as demonstrated in previous sections of this paper, we as-

sume that the functional properties of any network of

neurons (or for that matter, any neuron, or any neuron

component, e.g., channel, etc.) can be represented in terms

of its input–output properties, or in this case, its nonlinear

multiple-input, multiple-output properties. Given the

arguments made earlier, and from data described above,
it is our position that neurons should be conceived of as

nonlinear dynamical processing elements. Because of the

inherent nonlinear properties of hippocampal neurons and

the nonlinearities inherent in the processes of synaptic

transmission, input spatiotemporal patterns of spike train

activity are transformed into different, output spatiotem-

poral patterns of spike train activity. The nature and degree

of nonlinear transformation will almost certainly vary as a
function of hippocampal region because of differences in

principal cell morphology, and/or intrinsic conductances

(e.g., distribution, type of active channels), and/or local

circuitry. Nonetheless, as activity propagates from the

entorhinal cortex to the subiculum, each layer of the hip-

pocampus (dentate gyrus, CA3, and CA1) progressively

reencodes short-term memory representations into long-

term memory representations.
The total re-encoding process whereby short-term

memories become long-term memories can be assessed

experimentally, and modeled mathematically, in the man-

ner demonstrated previously with regard to multi-input,

multioutput properties of the CA3-CA1 hippocampal sys-

tem. If the same analyses were performed for the

entorhinal-dentate and the dentate-CA3 subsystems of

the hippocampus, then computer simulations of the
functioning of all three subsystems of the hippocampus

would be attainable. We have investigated previously the

possibility of analytical solutions to the combination of

subsystem nonlinear characterizations to achieve larger

nonlinear system input–output models, and vice versa for

system decomposition, but these studies were of single-

input, single-output cases only [64]–[66]. Experimental

verification of such a simulated model of the functioning of
the intrinsic, hippocampal Btrisynaptic pathway,[ though

difficult, is possible (the requirement would be simulta-

neous recordings of neural activity from two sites in the

hippocampal formation separated by two or more synap-

ses, e.g., layer II of the entorhinal cortex and the CA1

pyramidal cell region).

Considering all of the above, we believe it is

experimentally and theoretically feasible to characterize
each of the subregions of the hippocampus: dentate, CA3,

CA1, and then to integrate the dynamics of each layer into

a model of the intrinsic, trisynaptic pathway of the hippo-

campal system, though we are a long way from demon-

strating this. The nonlinear transformations of the entire

circuit should be equal to the total nonlinear transforma-

tions required to convert short-term memory into long-

term memoryVthough this also is an example of an
hypothesis that should be tested by such a combined

theoretical-experimental approach. The meaning of the

transformations of any one layer is unknown, and again,

this identifies an important area of future study. Clinical

and experimental animal studies have provided compelling

clues as to the function of the entire hippocampus, but we

have only a few hypotheses as the functional role of each

hippocampal subsystem. Input–output studies of each
individual component of the hippocampus will provide

quantifications of the properties of each of the dentate,

CA3, and CA1 fields, and in the process, also provide hints

as to subsystem function to which we previously have not

had access. The major point, however, is that a combined

theoretical-experimental path can be defined for achieving

a biologically based, animal model of a highly important

cognitive functionVlong-term memory formation.
The relevance of this approach to neural prostheses is

that it follows from the positions argued here that it may be

possible for the complexities of higher brain processing

related to concept formation, representations, hierarchi-

cally organized associations, etc., and potentially even

consciousness, i.e., the brain functions least understood in

neural terms at present, and most difficult to repair

following brain damage, to be represented mathematically
as a set of kernels. We have presented an example of such a

characterization with modeling of the CA3-CA1 transfor-

mation contribution to long-term memory. Such a set of

kernels could even be parameterized for context, for

example, for the sleep-wake cycle, and as we have shown

in previous work, can be reduced to hardware circuitry.

What is remarkable about a kernel-based model, in addi-

tion to the attributes identified above, is the degree of
Bcompactness[ of the input–output relation: all of the

mechanisms underlying the highly nonlinear behavior of

hippocampal (or other class) neurons, including the

contribution of interneurons, and notably, the contribu-

tion of unknown mechanisms yet to be discovered, are

included in the model, and as shown here, the model in

turn can accurately predict system output to arbitrary
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input patterns. This is a major advantage of our approach
compared to, for example, linear or low-order nonlinear

models that are the bases of neural prostheses to replace

lost upper extremity functionality. We are in the process of

testing the hypothesis that kernel functions for the

hippocampus can interact with the endogenous tissue to

reinstate normal long-term memory capability after hip-

pocampal dysfunction has been induced experimentally. If

successful, this experimental-modeling work will lay the
foundation for a general strategy to develop neural pros-

theses for any one of multiple cognitive functions. Given

the availability of such models, additional research inves-

tigating the nonlinear transformations of a given brain

region with the purported cognitive functions of the same

neural system could provide substantial insights into the

relations between neural and cognitive dynamics. h
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